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Introduction

In this paper motivated by a recent paper of S. Mori [9] we
shall study a compactification of Green spaces under the use of
L. Naim’s results [10] on Martin spaces and discuss the Dirichlet
problem and some applications to the functiontheory.

We consider, as the basic space, a Green space R and define
in §2 a compactification R* of R, maximal ideal space of a normed
ring ©. Every non-negative continuous superharmonic function on
R can be extended continuously onto R* (Lemma 3). The ideal
boundary R*—R has a compact subset with remarkable proper-
ties, which is called, after H.L. Royden, the harmonic boundary
(sec. 4).

In § 3 we treat Dirichlet problems for functions given on the
harmonic boundary. Since it is shown that R* is not metrisable
(Theorem 2), the usual Perron’s approach must be somewhat modi-
fied, in particular for the discussion of solvability, but the results
are quite similar.

As applications we show finally in §4 a theorem (Theorem 11)
of Riesz type for several complex variables and refer to a Con-
stantinescu-Cornea’s theorem [4] on open Riemann surfaces which,
in case of the unit circle, reduces exactly to the theorem of
Riesz-Lusin-Privaloff-Frostman-Nevanlinna.



386 Yukio Kusunok:

§1. Preliminaries

1. We shall state brieﬁy some definitions and L. Naim’s results
[10] which will be used in the sequel. As the basic space R we
consider a Green space introduced by M. Brelot and G. Choquet [2].
Bounded domains in the euclidean space of dimension =2 and
Riemann surfaces of hyperbolic type are the most typical examples
of Green spaces. Let g, be a fixed point of R and

G(p, 9/ G(b, g,)

K(p"’)z{l (p=a=a)

where G denotes the Green function on K, then there exists a
compact metric space I@, Martin space, such that R is dense on R
and for any sequence of points {p,} (p,€ R) tending to a point
se R—R, {K(p,, q)} converges uniformly on every compact subset of
R to a uniquely determined harmonic function, say K(s, ¢) =K (q).
We denote by A the ideal boundary R—R and by A, the set of
points s€ A for which K, are minimal in the class of positive
harmonic functions on K. According to R.S. Martin [8] every
positive harmonic function /2 on R can be represented by a canonical
measure u, on A, as

wp) = | K(Ddm(®, peR

In case of h=1, we write u,=X.
Every K-potential carried with a positive measure on R

u) = | K, 9 amia)

is extended onto R as a lower semi-continuous function. Now a
set ECR is called to be thin (“effilé”) at a point s€ ANE (bar
means the closure taken on IAG) if there exists a K-potential U
with a property

Uls) < lggplegf U(p) .

E is also said to be thin at all points of A not belonging to E.
As the elementary properties
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a) The union of two sets both thin at s is thin at s.

b) Every polar set is thin at each point of A.

¢) A boundary point s€ A belongs to A, if and only if R is not
thin at s.

The sets on R whose complements in R are thin at s€ A, make a
filter §, by a). Every set of ¥, is not thin at s€ A, on account
of a) and c¢). The limit of a function along %, is called the pseudo-
limit (or fine limit) at s and denoted by limg . The results of
Naim used in the following are:

(1°) Every Green potential with a positive measure possesses a
pseudo-limit zero on A,, [X]. Here [X] means “except a
set of X-measure zero’.

(2°) Maximum principle (I). Let u be a subharmonic function
on R bounded above. If for every s€ A, [ X], there exists
a set E, which is not thin at s and

(1) lim sup u(p) < 0

b>s, PER

then #<<0 throughout R.
In particular, if the pseudo-limits of # are <0, on A,, [X],
then << 0 throughout R.

§2. Normed ring associated with R

2. Let & be a family of functions on R with the following
properties :

(i) f€© is bounded and continuous on R

(ii) for every f€ & there exists a function T(f)=T.f€ HB

(bounded harmonic on R) such that the difference @p=f—T-f

possesses a pseudo-limit zero on A,, [ X].

Note that the representation

(2) f:T'f+(p’ fE@

is unique on account of Maximum principle (I). We introduce &
the following norm

(3) 1711 = sup (D)
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Lemma 1. |[fIIZIIT-fIl, fe®

ProOF. Given & >0, there exists a set E, € §, at each s€ A}, [X]
on which |f— T.f|< & Hence we have by Maximum principle (I)

[|T+f|| = sup [ljgglggp T-f(p)]
< sup [l;lgg Psegpf(p)]+8§||fll+8 ,

where sup is taken for s€A,, [X], q.ed.

Now the following functions are contained in the class &;

() HB-functions on R. In fact, for f€ HB we have merely
to take T-f=1.

(8) Bounded continuous super- and sub-harmonic functions on
R. For instance, if f is superharmonic and we take as 7T-f the
greatest harmonic minorant of f, then @=f—T7.f is a Green
potential by Riesz’ decomposition (cf. [2]), hence f€ & by (1°).

(v) Continuous functions on R restricted to R. Indeed, for a
continuous function f on R we consider as T-f the solution of the
Dirichlet problem for f restricted to A, then 7-f possesses the
pseudo-limit f on A, [X] (cf. [10]).

LEMMA 2. & makes a ring with unit 1 under the usual addition

and multiplication.

Proor. Let f;=T-f;+®; (i=1,2) be any two elements of &.
Clearly, f=f,+fi=T-f+9 (p=p,+®,) belongs to & and T is
linear over & ;

(4) T(fitf) =T-fi+T-f,.

As for the product, one can write it, on account of the bounded-
ness of f;, such as

Sifo= (T-f)(T-f)+
where lim& Jr=0, s€ A,, [X]. While for any HB-functions # and v
uv = [(u+0v)’— (u—0)"]/4€ &,

because each term in the right hand side is subharmonic. Hence
(T-f(T-f)=w+¢, we HB and limg ¢=0, s€A,, [X]. Thus we
know f,f,i=w+® (p=v+¢) belongs to & and w=T(f, 1), i.e.
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(5) T(f. f) = T(T-£)(T 1) -

THEOREM 1. The space & is a normed ring with respect to the
norm (3).

It remains to prove the completeness. Let || f,,—f,l|—0 (m, n
—oo) where f,=T-f,+®,, then {f,} converges uniformly to a
bounded continuous function f on R. Since by Lemma 1 and (4)

|| T'fn_ T'fn” g Hfm—an ’

the sequence {7-.f,} also converges uniformly to an HB-function
on R. Writting this limit function as 7-f,

f=Tf+p, ¢=Ilime,

where the covergence is uniform on R. There exists a set e A,
of X-measure zero, outside of which all ¢, possess a pseudo-limit
zero. Given €>0, |p—p,|< /2 on R for a large number » and
there is a set Ey€ §,, s€ A,—e on which |p,|< /2. Hence |p|< &
on E? which implies limg ¢=0, s€A,, [X]. That is, fe e.

3. Let &, be the subclass of & such as
@o = {7)6 S, llmg,‘(P =0, SEA,, [X]} ’

which is complete with respect to the norm. The set of bounded
continuous functions whose carriers are compact on R makes an
ideal &, &,. Let Wt be the set of all maximal ideals of ©.
Introducing M the closure topology due to Gelfand-Silov (cf. [5],
[7]), then M becomes a compact Hausdorff space, say R*, on which
the homeomorphic image of R is open and dense. We denote it
again by R. Every function of & can be contiﬁuously extended
to R*. The closed set

A* = R*—R

is called the ideal boundary of R. A* consists of maximal ideals
containing &,. We note that, besides the elements of &, following
functions also can be continuously extended to R*. Hereafter we
say that a function f is continuous in the wide sense if f is a
continuous mapping into the extended real line,



390 Yukio Kusunoki

LEMMmA 3. Let f be a positive functions continuous in the wide
sense on R. If f(p)=min (f(p),n)eS (n=1,2, ), then at each
g€ A* f has a finite or infinite limit” equal to lim £,(q) and f defined

by these limits is continuous on R* in the wide sense.
In particular, positive superharmonic functions continuous in
the wide sense on R have this property.

Proof is immediate and omitted.
In the following we shall denote the function f extended on
R* as above by f again.

THEOREM 2. Our compact Hausdorff space R* is not metrisable.

PrOOF. Suppose that R* is metrisable, then there would exist
a countable number of points ¢, € A* (v=1, 2, ---) which are dense
in a compact subset A* of R*. Further for each ¢, we can take
a sequence of points p4 (x=1,2,---) on R tending to ¢,. We re-
arrange them as {p,} (=1,2,---). If constants ¢, >0 are chosen

such that 2 ¢,.G(Po, p)< oo where p,(==p,) € R, then the function

G(b) = 33 &,G(b, )

is non-constant positive and harmonic on R except p, (n=1, 2, ---).
For a positive number M _>G(p,)
GM(p) = min (G(p), M) < M

is a continuous superharmonic function € &, hence by the mini-
mum principle there is a point ¢*€ A* such that

GY(¢*) = inf GM(p) <M
PER
Since {g,} is dense in A* and G is continuous on R*, for suf-
ficiently small € >0 there exists a point ¢; such that
GM(g;) = M-é¢&, g; € A*

While G(p5)=+o (p=1,2, --), therefore we have GM(p%)=M and
GM(g;)=M for p—co. This is a contradiction.

1) Limit taken over the filter of neighborhoods of q.
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4. Let A¥ be the set of maximal ideals containing an ideal
&,. A¥ is a compact subset of A*, which is called the harmonic
boundary of R and plays an important role in our theory.

THEOREM 3 (Maximum principle (I11),). Every sub (super)-harmo-
nic function on R which is bounded above (below) and continuous in
the wide sense attains its maximum (minimum) on the harmonic
boundary A¥ of R.

Proor. It suffices to prove for bounded functions. Let # be
a bounded continuous superharmonic function on R. Let inf u=2X
R
and X be the principal ideal generated by #=u—X (=0)€ &. Then
I UGS, becomes a (proper) ideal of &. To see this, suppose JuS,
=&, then there exist functions f and ¢, such that

aft+o, =1, fe6, Q.
While
af =w+p,, w=T@-f), PEQ.

Hence by Maximum principle (I) we have

w=1.
On the other hand

w<aM—-p,, M= max/(0, sgpf)

Since w—#M is subharmonic, it follows by Maximum prin-
ciple (I)
w=<aM on R, hence infw=<0
R

which is a contradiction. Thus we know Ju®, is an ideal con-
taining #, which implies # vanishes at some point of A¥, q.e.d.
For the following purposes we prepare two lemmas.

LEMMA 4. Let q be any point A¥ and E a compact subset of
A¥ disjoint with q. Then there exists a positive HB-jfunction u on
R such that u(q)=0 and u=1 on E.

PrOOF. Since ¢ does not belong the closure E, there exists an
f€ & such that f belongs to ideal /\ N, but not to maximal ideal
NEH
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q. That is, f=0on E and f(¢)==0. Now from the decomposition
ff=v+p, v=T-f?, pe S,

and Maximum principle (II), we find that » is a non-negative
HB-function such that v vanishes on E and v(q)=c:/-0. Now
v,(p)=min (v(p), c)€ S, and

u=1—(T-v)/c
is the required.

LEMMA 5. Let u, and u, be any superharmonic functions conti-
nuous in the wide sense on R, then

(ul A uz)(q) = min (ul(q)’ uz(‘])) ’ qge Aik

where u, N u, means the greatest havmonic minorant of u, and u,.
This is an immediate consequence of the Riesz’ decomposition

min (un u?) =u, N Nu,+g,

g being a Green potential. Since g,=min (g, n)€&,, g, hence g
vanish on A¥ (Lemma 3).

§3. Dirichlet problems

5. Let f be a real-valued function given on the harmonic
boundary A¥ of a Green space R and U, resp. U, the families of
continuous (in the wide sense) superharmonic resp. subharmonic
functions # resp. v on R satisfying the boundary conditions ;

(6) limu(p) =f(g), resp. lpiTglv(P)gf(q), geAY.

Let H, resp. H, be the lower resp. upper envelopes of functions
belonging to U, resp. U,. H, and H, are harmonic or = co on R.
If they are coincident we write it H, and say that f is solvable,
provided that H, is finite. In this section we treat the case that
f is bounded. In this case it should be noted that the limits exist
in (6), moreover there exist the decreasing resp. increasing sequences
of harmonic functions %, resp. v, such that
(7) luigu,,zﬁf resp. limo, = H,.

Hpoo
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Indeed, for any bounded u€ Uy, T-u<u and T-u=u on A¥, hence
T-uc U,, moreover, by Lemma 5 T-uA T-v also belongs to Uf,
provided that # and » belong to U +. Therefore we can find the
sequences {#,} and {v,} in (7) (cf. [7]). Now we can immediately
solve the following Dirichlet problem as in the classical case.

THEOREM 4. Let f be a bounded function on the harmonic
boundary A¥ of R, then we have for any q€ A¥

(8) lim H/(p) = H{g) < lim sup f(r) ."”
b>q, PER T>q, 7€ *
In particular, if f is continuous on A¥, it is solvable and

(9) HAp) —> HAq) = f(q), p— q€AT,

moreover for each point pE€ R there exists a regular (Borel) measure
u? on A¥ such that

10) H($) = |, F@ dw(@) *

ProOF. Let g€ A¥, then for any € >0 there exists a neighbor-

hood V of ¢ such that for s€ VNnA¥
FE) = A+E&, A= limsup f(r)
r—q,r € A}
Let E=Af—V, then by Lemma 4 there exists a positive HB-
function W such that W(g)=0 and W=1 on E. It follows by
Maximum principle (II), that we have, for sufficiently large positive
constant C
H,<CW+r+& in R,

hence HAp)— HAq)<A+&, which implies (8). If f is continuous,
H,=H, by (8) and Maximum principle (II),. Thus H, gives a
positive linear functional (for each point p€ R) over the space of
continuous functions on the compact Hausdorff space A¥, hence
there exists a regular measure x” on A¥ by which HAp) can be
expressed as (10).

1) This means inf (sup f) where U, denotes any neighborhood of g.
Tq UgMaF

2) Hereafter we write ;+ instead of y?, in particular if some relations hold for
any p€R.
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As the immediate consequences, we know at first that for any
f€& T-f can be expressed as

Tof = [, fdu,
because every function of & vanishing on A¥ belongs to &,.

THEOREM 5 (Maximum principle (11),). Let u be a subharmonic
function which is bounded above and continuous in the wide sense
om R. If u<0 on A¥ except a set of u-measure zero, then u=<0
throughout R.V

Proor. It suffices to prove for a bounded #. By Riesz’ de-
composition we know u<<T-u on R and u=T-u on A¥. It follows
that

u<Tou= SA; Teudu = SArud,L <0.

6. To treat the Dirichlet problem for non-continuous functions
we start from

LEMMA 6. Let {u,} be a monotone sequence of HB -functions on
R and limu,=u be bounded, then

u(g) = limu,q),  for geAf—e, ple)=0.
PrOOF. Suppose {u,} is increasing, then we have
11) limu,(q) < u(g), geAf
and

u = limu, = lim SA*u,,d,w = SA* limu,dp, on R.

n oo H-ypoo ] Moo

While since u€ HB, urgyud/ﬁ,

[ @) —tim e, (@) dia) = 0,

from which the conclusion is obtained under (11).

1) Cf. the remark after Theorem 6.
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LEMMA 7. Let E be a closed subset of A¥. Then the character-
istic function Xg of E is solvable and

Hy, = SA,;XEd/“' =uwE), onk,

moreover there exists a simultaneously open and closed set E,E
such that W(E—E)=0 and H,, vanishes on AY¥—E,, =1 on E,,

moreover Hy,=Hy By

Proor. Take a decreasing sequence of HB-functions {u,}
(cf. (7)) such that

lim u” - EXE ) unE UxE .

where we may assume #,=1 on E, because it is enough to consider
u,AN1. By (8 H,,=0 on an open set A¥f—FE on A¥ and since
u,=1 on E, by Lemma 6 we have

Hy, = Xg on A¥, [].
Since H,, € HB, the set E,= {Hy,=1} (CE) is closed and uw(E—E,)
=0. Hence it is easily seen by Maximum principle (II), that
ExE:ﬁxEO- This implies that H,, vanishes on A¥—E,. While H,,
is continuous, hence we find that £, must be open and immediately
H,,=H,,, qed.

The following lemma is valid also in our space.

LEmMMA 8. Let {p,} be a monotone sequence of solvable functions
on A¥, which converge to @, then

H, = lim H,,.

#5300

THEOREM 6. A measurable function f on A¥ is solvable if and
only if it is integrable with respect to w. And then

(12) Hy=,.fdu,
moreover
(3) Hy=f on A%, [4].

ProOF. As is seen little later, for any simple (step) function
theorem is valid. Now we may suppose a given f is non-negative.
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Let {f,} be an increasing sequence of simple functions tending to
f, then by Lemma 8
H;=lim Hs, = 11m S Salp = S_\* lim f,dp = SA* fdp

nyoo

therefore the first assertion of the theorem holds. Hy is defined
on A¥ by Lemma 3. Since Hs,=f, on A¥, [1], we have H,=f,,
successively H,= f on A¥, []. Hence if H< oo, Hs=f on A¥, [ 1]
by (12).

To complete the proof, we consider the characteristic function
Xz of a pm-measurable set ECA¥. There exist an increasing
sequence of closed sets E,(C E) such that yx?(E—E,)=0, E,=lim E,,.

nyoo

Since Xg,—Xg, using Lemma 7 we have by the same argument
as above

H,, (p) = SATXEOd/-"p = SA;_,XEd,w”, for any p,

and Hy, =Xz on A¥, [p]. While, HxEogﬁngleEngEo+F1xE_EO.
xg-g,— 0, hence Hyy=H,, . Indeed, if we
take, for any €_>0, an open set ¢ DE—E, whose u?-measure <&,
then it is easily seen that

Here it is proved that H

OgﬁxE_Eo(p) = S A} XE-E, d/.l/ SS Terd/l.P(\E.

Since & is arbitrary, ﬁxE_ Eo( p)=0 i.e. ng_ EOEO. Thus we know
that Theorem is valid for simple functions.

REMRAK. For any Borel set ECA¥, H,,=u(E). Hence if
w?(E)=0 for some point p€ R, u?(E)=0 for any p€ R by means
of the usual minimum principle. Therefore the Maximum principle
(II), still holds if #<<0 on A¥—E, x?(E)=0 for some p€ R.

As an application,

THEOREM 7. Let u be a superharmonic function which is bounded
below and continuous in the wide sense, then the function u on A¥
is integrable with respect to w and is expressed as

u = SA*ud,u,-i—w in R,



On a compactification of Green spaces 397

where w is a Green potential. In particular, if w is positive and
harmonic on R, then w is singular and the integral term is quasi-
bounded.

ProoF. Let u,(p)=min (u(p),n)e & (n=1, 2, ---), then since by
Theorem 4 and Lemma 3

ugungSA*und/b in R, hence ugSA*ud,u,
1 1

we find « is integrable on A¥. Moreover by (13) w=0 on A¥, [x],
therefore any HB-function ® (=0) majorized by w must be identi-
cally zero by Maximum principle (II),, q.e.d.

7. THEOREM 8. A positive harmonic function w on R is singular
if and only if w vanishes on A¥.

Proor. Let w be singular and v=min (w, k) (k>0). Since v
is a superharmonic function € &, 0<T.v<v<w, hence T-v=0,
that is, v reduces to a Green potential. It follows that v=w=0
on A¥ by Lemma 3. The converse is trivial.

THEOREM 9. [If a single point q€ A¥ has a positive measure
with respect to p, then p({q}) is minimal in class HB. Conversely,
any minimal function o (sup@=1) in HB is identical with the -

R

measure of an isolated point of A¥.

Proor. The first part of the theorem is evident, as {g} is a
closed set. To prove the converse, let e={p€ A¥, o(p)=1}. Since
e is closed, 0<H,,<wo. It follows that Hy =c-.® (c: const. >0),
hence ®=0 on A¥—e. If e contains at least two points ¢, and g¢,,
there exists by Lemma 4 an HB-function # (0<«#<1) such that
#(¢,)=1 and u(q,)=0. Since v=uA o<, v is proportional with e.
While v(g,)=min (u(q,), ®(g,)) =0, which is absurd, q.e.d.

From above two theorems we have the following

COROLLARY. Every positive minimal function  on R vanishes
on A¥, provided that itis unbounded. If Q is bounded, Q vanishes
on A¥ except an isolated point q* om A¥ where Q(g*)=sup Q(p).

PER

Moreover the set of bounded minimal functions on R is countable.
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We note here that for an unbounded positive minimal func-
tion w the set

E. = {geA¥, w(g) = +oo} CA*—A¥
is closed and conmected (cf. [6]), which is proved as follows. E. is
evidently closed. Let E. consist of two disjoint components E,

and E,, then there exists a continuous function f=0 on R* such
that f=0on E, and =1 on E,. Let U={f_>1/2}, m=max w (< o)
U
and w, be a superharmonic function such that
{w in R—U
w, = . .
min (w, m) in U
Let u, be the greatest harmonic minorants of w,, then #, are not

identically zero. Indeed,

{w—m in D= {peR—U; w(p) >m}
W, =u= .
0 in R—D

# is a non-constant subharmonic function, hence %, >0. Since w
is minimal and u,< w,<w, #,=cw (c: const._>0) which is absurd,
because u,< w, is bounded (< m) on U.

§ 4. Applications

8. First of all we state some remarks on harmonic measures.
Let A be a Borel set on A, and ®, the harmonic measure of A

in R, ie.
oa(p) = | K(8)dX(s),
which is characterized by the property
o, AN(1—w,) =0
(cf. [4]). Considering ©, as an element of & we have by Lemma 5
min (@4(¢), 1—4(¢) =0  for geA¥f.

that is, the values of o, on A¥ are either 1 or 0. Hence there
exists a set E such that

wy, = W(E) = Hyp, E= {g€AY, oy(g) =1} .
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E is simultaneously open and closed on A¥ by Lemma 7. It should
be noted that if A is a closed set, @, possesses the pseudo-limit
zero on A,—A, [X]. To see this, let G, (n=1, 2, ---) be sets of
points of R whose distances from A are not greater than 1/#, then
by Martin [8]

wa(#) = lim 12,(5)

In general, for a positive superharmonic function # and a closed set
G on R u¥(p) stands for a superharmonic function which is equal
# on G except a set of capacity zero and equal H?'G on R—G.
H;’f‘G is the solution of Dirichlet problem on R—G with the
boundary function u where % means the function # extended by
0 onto an Alexandroff point of K. Let o} denotes a sphere with
diameter » whose center is s€ A,. Since for s€A,—G, and r=1/n
" R—G,,, we have

0 < wu(p) < 1E,(0) < HI(p),  peaink.

While, by Naim [10] lim%sHi’gf‘R(p)=0 for any » >0 and s€A,,
[X], from which we can immediately get our conclusion.

Now from our point of view we shall prove some theorems
valid on the Martin spaces.

THEOREM 10. Let R be a Green space and A the Martin boundary
of R. Let e be a set on A whose X-measure (harmonic measure) is
positive. If a positive superharmonic function u continuous in the
wide sense on R possesses at each point of e a pseudo limit + oo,
then u is identically + co.

ProOF. There exists a closed set Fe such that o >0, ie.
wp(g,)=X(F)>0 (cf. §1). Let

W(p) = or(p)/((p)+1).

1/(#+1) is a non-negative bounded continuous subharmonic function.
This is seen by considering the approximation of # by smooth
superharmonic functions in the local. Hence We &. From above
remark we know that the pseudo-limit of W is equal zero on
A, [X], hence
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Wes,,
and that there exists a closed set E on A¥ such that
op=Hy,, = m(E)y>0 on R*.
Since u#(E)=1 on E and W=0 on Af, it follows that
U= +oo on FE.

While by Theorem 7 u is integrable on A¥ with respect to u,
hence the set {g€ A¥; u(q) = +o} must be of w-measure zero,
which is a contradiction.

As applications of this theorem we get theorems of Riesz type.

THEOREM 11. Let D be a domain in 2n-dimensional euclidean
space R™ admitting a Green function and A the Martin boundary
of D. Let

P2y, vy 2,) = (P21, 5 20), s P2, 05 20),  (m=1)

be an analytic transformation of D into R™™ and p(D) denotes the
image of D in R™. Suppose E is a set in R*™ such that there exists a
positive continuous pluri-superharmonic function® Q on R*" (vesp. p(D))
which becomes +oo on E (resp. p(DYNE). If @ possesses a pseudo-
limit € E at each point of the set ¢ A whose X-measure (harmonic
measure) is positive, then the mapping p degenerates so that p(D)E.

In fact, Q(@(z, -+, 2,)) becomes a positive pluri-superhar-
monic, hence superharmonic function continuous in the wide sense
on D and possesses a pseudo-limit + oo at each point of e. Hence
the theorem follows from the preceeding one.

If the boundary surface of D is sufficiently smooth, the Martin
boundary of D is identical with the euclidean boundary. In the
special case that ¢ is bounded and E the 2(m—2\)-dimensional
subspace

w, = a,, -+, W, = a, A=x<m,
it suffices to take

Q= —log|(w,—a,) - w,—a)| +K (K : const. >0).

1) As for pluri-subharmonic functions see e.g. H.L. Bremermann [3].



On a compactification of Green spaces 401

In case of one variable we can choose as D any open Riemann
surfaces possessing a Green function and get under the following
remark a theorem of Constantinescu-Cornea [4] (in slightly re-
stricted form) which reduced exactly to the classical Riesz-Lusin-
Privaloff-Frostman-R. Nevanlinna’s theorem.

Given a superharmonic function ¥ >0 on R, the extremisation
of v with respect to a set GC R is, by definition, a positive super-
harmonic function on R which is the lower envelope of positive
superharmonic functions on R majorizing » on G. We denote it
by Eqv. If R—G is open,

Eco(p) = HEp), peR—G.

On the other hand, every harmonic function # >0 on R can be
decomposed such as

u(p) = Iow(p)+HE(p),  DEG

where G is a domain (cf. [4]). Hence, in particular, I;K, >0 on
G if and only if E; K, is not identical with K, therefore by Naim’s
criterion, if and only if R—G is thin at s. Thus we know that
for se B(p), M(s) in [4] is a pseudo-limit of ¢ at s.

9. Finally we refer to a continuous mapping of our compact
space R* onto the Martin space R (cf. [5]. Let C(R) be a ring
of continuous functions on R, which is a subring of & by sec. 2
(y). For each point (maximal ideal) M€ R* M = {fe MNCR)} is
an ideal of C(R), moreover a maximal ideal, because an ideal
(M’, g) (ge C(I?), gél(\l’) would contain a non-vanishing constant
gM)=g(p)—(g(p)—gM)). For M’ there exists a unique point
Me R such that f (M )=0 for every fé€ ]\AJ’, otherwise for each point
peI@ we have a function f,€ M’ which does not vanish at b.

Hence from the compactness of R there exists a function g=
S £3,€ M such that g0 on K. Since 1/g€ C(R), it follows that
1=g-§61\/>1’ which is absurd. The mapping

A

T M—-M
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gives a continuous mapping of R* onto R, which leaves each point
of R invariant. Since R is dense in R, 7(R*)=R and T(A¥)=A.
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Added in Proof (July 10, 1962). Prof. M. Brelot has kindly informed
me that he had given in his paper (Ann. Acad. Sci. Fenn. 250) a sharper
result than Th. 10. By his theorem Th. 11 is improved correspondingly,
that is, the continuity of £ is unnecessary and at each point s of ¢ ¢ has
merely to possess a limit € E (more generally, to approach E) along a

non-thin set at s.



