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On the a priori estimate for solutions of the
Cauchy problem for some non-linear
wave equations
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For the global Cauchy problem of wave equation, the existence
of an a priori estimate of the solution is very useful as we have
shown recently in another report [1] [2] for one special type of
the non-linear wave equation :
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under relatively weak conditions.
Here, we note that a priori estimate is also obtained for
wave equation of a little different type with more than one space
dimension which is identical to the equation treated by Konrad
Jorgens [3] in the case of 3 dimension and without damping term.
At first we shall treat the case in which the space dimension
is 2. Our Cauchy problem is the following : Find the solution of
the equation
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satisfying the following initial conditions.

{ u(x, y,0) = ux, y)

2
( ) u,(x, Y, 0) = ul(x) y)

where u,(x, y) belongs to C*® and u,(x, y) belongs to C°
Here we do not solve this problem, but we obtain an a priori
estimate for the solution of this problem assuming #,(x, y) and
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u,(x, y) have compact carriers” under conditions for functions f
and g:

Conditions

i) f(w) and g(u) are continuously differentiable in — oo < u<C
+oo u
ii) sgnuf(u)>>0 and G(u)zS g(wu)du=>0 for |u|_>M.
iii) f'(u)>—Fk (k is one positiove constant)
|g’(u)| < Polynomial of ||
Before we proceed to write our results, we define two generalized
energies E () and E,(¢) for our solutions u(x, y, ) of (1) and (2).
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and we see
(6) E(0) = SS[G(uO)+—(u1)2 (31) %( >]dxdy
(axay> (%) Jowar
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where always integrals are taken in whole x, y plane which is
possible, because, u,(x,y) and u/(x, ¥) have compact carriers and
u(x, v, t) also.

Now we estimate the energy E,(¢) of the solution by the initial
energy. First we transform (1) and (2) into a system of equations.
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v(x, 3, 0) = u(x, y)
u(x, y, 0) = ux, y)

|
|
(9) | 253,00 = 5 )
4 9,0) = 2 (1, 9)
; Yy
and
_ v’ P g
(10) Et) = Sj [G w+2+ L —z—]dxdy

Differentiating (10) with respect to ¢ and Considering (8), we have

(1) dE" = SS [g @y + v Zrp af’ +q aq]dxdy
SS [g(u)erv aﬁ 3(1+p 3u+q~ —f)— g(u)v]dxdy
oy

= ([ [—or@dxay < [ @)1dxay

<M
b
<tff [E"L L e +G(u)]dxdy+Lol,
(12) %‘}(t)gLEo(t)jLLOl 0<t<h,

where / is the area of the carrier of u/x, y) multiplied by 2.
13) E(t) < " E(0)+ e Lyih = e“"(E,(0)+ Lylh)

Next, we proceed to estimate E,(f). We write
B = L {[ (o2t pie g2+ a3l dxdy

Differentiating (8) by x and y, we have:
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ov, ap, o
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And we obtain,
dE, ov,, 0 px ap,
1% ZF = SS[ Vegg TV ay”’x e o TPy ay +"f ]dxdy
= [ r=r@ui—g @~ 1 @0~ g wav,dxdy
= ([ reez o)~ g pv.—g g, Nddy
We consider the integral :

= {{1gpo. dxdy.

By the condition (iii)

< |11 10l dzdy < of [ alpdzdy of [ o2azas

= (s ([ ) ([f ser)

<c[[j @ +araxar |"-E0
< CE(OEW),
[log 0 < ¢ | B0 dt-+k,

0 2dr Eo’r"'/zdﬂ' k
E(t)<E(0)§ e <E(0)S (k.

Then we obtain by the Sobolev’s lemma

lu(x, 3, ) < C|E(t)+E?)]
< C{(E,(0)+ Lll)e""+ Ey(0)ec B+ Lolhy*/?etth+ky

This is our desired results.
We proceed to show that similar results can be obtained for the
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case of 3 space dimension under more stringent condition. We
replace condition iii) by,

i) f'(u) > —k, lg'(w) | <clul®
Our equation is the following :
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We can estimate the energy E(f) by the same argument of the
preceding case, where E(f) is defined.

a7 E® = (|| {6+ 5 @+ s+ 2+ D)y

(16)
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18) E(t) < e {E(0)+ M/} 0<¢t<h.
E(?) is the integral:
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We obtain by the condition iii).

ED = 1 [[§ rowz+ [ swpo.av.
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We treat the last term by the similar inequality as we have used
in (15):
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where vza—u, pza—u, pzza—u—, Ds Then we have
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Just similarly we can estimate other terms. It is easy to see
that the maximum norm of U(x, y, z, t) for 0<¢</k is majorized
by E,0) and E,(0)*.

NOTES

1) We assume also that the solution u(x, y, {) and its derivatives
of 3rd order with respect to x, ¥ and ¢ are square integrable in
xy space for all £. By the Sobolev’s work [4], we can find always

this solution for sufficiently small ¢, for our Cauchy data.

2) We could not find the bound for u by E,0) and E,(0), there-

ot
fore the existence of a global solution of the Cauchy problem is

not proved for the equation (1) and (16). But if fF (g—?> is linear

for Z—?, we can easily prove the global existence of the solution

of the Cauchy problem.
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