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E. R. Kolchin has developed the Picard-Vessiot theory and,
more generally, the Galois theory for differential fields of charac-
teristic zero”. In these theories, Galois groups are algebraic matric
groups or, more generally, algebraic groups; every algebraic group
appears as a Galois group, and its structure supplies knowledges
about the structure of the differential field-extension. The purpose
of the present work is to construct a similar theory of differential
fields of an arbitrary characteristic.

By the way, the basic theory of differential fields in the case
of characteristic zero is well equipped by Ritt, Kolchin and others,
and effectively applied to various problems”. But, it may be said
that the basic theory in the case of non-zero characteristic is not
yet sufficiently made up®. Not a few part of difficulties in the
latter case are due to the definition of differential fields which is
done literally in the same manner as in the former case. If we
define them anew by means of Hasse’s higher differentiations®,
computations become very troublesome, but we get available results.

1) Kolchin [4-8]. See also Matsumura [9].

2) Ritt [11], Kolchin [4] and [6]. These contain bibliographies on the subject.
3) Kolchin [3], Seidenberg [13], Kaplansky [2] and Okugawa [10].

4) Hasse [1] and Schmidt-Hasse [12].
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Thus, we can obtain a generalization of Kolchin’s theory of Picard-
Vessiot extensions in the case of an arbitrary characteristic.

This paper consists of two characters. Chapter I contains a
new definition of differential fields of an arbitrary characteristic
and a sketch of various results. In Chapter II, these basic results
are applied to develop a theory of Picard-Vessiot extensions of an
arbitrary characteristic.

Chapter I. Differential algebra

When we speak of a »ing in this chapter, it is always supposed
tacitly that the ring is commutative and contains a subfield whose
unity coincides with that of the ring. All the fields, which appear
in this paper, are of an arbitrary fixed characteristic p (zero or non-
Zero).

1. Differentiations

Let 6=1{96,;v=0,1,2, -} be an infinite sequence of maps &, of
a ring R into itself. We shall call 6 a differentiation in R if it
satisfies the conditions :

(D3) B,(xy) = 3 8,x3,y, (D4) 8(3ux) = (7”1-#) 8k,

whenever x, y€ R and A, @, v are non-negative integers. From

(D1-4), we see:

1° each 6, is an endomorphism of the additive group of R;

2° 6, is a usual derivation in R;

3° if n is a positive integer, x,, -+, x,, x€ R and if v, A, -+, A
are non-negative integers, then we have

n

(DB/) Bv (xl"'xn) = 2 Blel' 'anxn »
Vl+~~~+V"=V
’ Ao+, !
(D4’ 8y, 8y, 1 = (_;f'_‘{_‘)_ By i

4° as particular cases of (D4’), we get
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v 177 v A"
(D4”) 8 =v18,(03>0), (D) & _Exl:;v 8, (M >0, v3>0),
so that

(a) in case p=0, 6 is determined by 6, (cf. Ex. 1.1 below),
(b) in case p=-0,

818, 85 -+ 835 = [0 1/ (p ) 1(p* )2 - (p° )] 8, (» >0),

where V=§] ¢, p’ (0<lc,<<p—1) is the p-adic expression of a
=0

non-negative integer v; since the integer in the [ ] is not

divisible by p, & is determined by 8, (0<le< o0)>;

5° 8,=0(»>0) for every element ¢ of the prime field in R.
We shall have occasions to use the following lemma :

LEMMA 1.1. Let 8 be a differentiation in a ring R, x€ R,
p==0, e a positive integer and & an integer ~>1. Then,

1.1) 8,(x*) =0 if A==0 (mod. p°),
8, (x*%) = (8,x)*°
8, (x%7°) = ar(x® "+ 8,x)* +[-+] }
if A=0 (mod. p°) and A = vp°,

1.2)

where the part [ --+] contains none of 8,x (p>v).
The proof is easy by virtue of (D3’), taking into account that
a?=ca (mod. p).

Exampie 1.1. If R is a ring, p=0 and D a derivation in R,
then 6= {6,=(1/»!)D*; »>0} is a differentiation in R.

ExampLE 1.2. Let R be a ring and R, the ring of formal

5) If A=k§0akpk is the p-adic expression of a non-negative integer 1 and if p&¥ 0
is the maximum power of p which divides 1!, then we see at once that N(l)=(/1—k5s‘oak)/
(p—1). From this, it can be proved without difficulty that, when /I,-=l§oa.»,,pk AL<in),
Mt 2,= %‘Obk‘bk are p-adic expressions of a finite number of non-negative integers
P SRETTRD andk their sum, then (A,+--+2,)!/3,!---2,! is not divisble by p if and only if
i_’,‘la,-,,=b,, for every k.
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power series of m indeterminates U,, ---, U, over R. For every
element

P= 3V app, Ut Upn (ap, € R)

Py>0,::50, >0

of Ry, every integer ¢ with 1<{/<{m and every non-negative
integer v, put

d;,P = ’)") gy UPt von UL oo Ufm,

P20y >0 ("‘
Then, every one of the m sequences d;={d;,; v >0} A<i<{m)
is a differentiation in Ry. For each i, d; will be called the formal
differentiation with respect to U;. We see at once that d,,d;.=d;.d;,
A<im, 1<j<m, i==j, A\ >0, p>0).

Two differentiations 6= {3, ; v>>0}, &= {8, ; »>>0} in a ring R
will be called commutative if 8,6,=20.06, for every pair A, £ (A >0,
#=>0).

2. Differential rings and differential fields

The composite notion of a ring (field) R and a finite number
of mutually commutative differentiations 8,= {5,, ; v >0} (1<i<m)
in R is called a differential ring (field respectively). It is denot-
ed by (R, §,, +--, 8,): if the associated differentiations are clear, it
may be denoted simply by R. We shall call the differential ring
(field) R ordinary or partial according as m=1 or >1.

If a differential ring (field) (R, 9,, ---, 6,,) is given, we regard
the set = {81\,1.--8,"%; v, >0, -+, v,, >0} as a domain of operators
on R; every element =36, -8, is called a differential operator
and v,+--++v,, is called the order of ¢ which is denoted by ord 6.
If x€R, €0, then 0x and ord d are called a derivative of x and
the order of the derivative 6x of x. Notions such as differential
subring (subfield), differential extension ring (field), differential
ideal, differential homomorphism and so on are defined canonically
in view of the domain © of differential operators ; namely, they are
defined as admissible ones under the operator-domain ®. If an
element ¢c€ R is such that 6,c=0 for every pair 7, v (1<i<{m,
»>0), then c¢ is called a constant of R. The set of all constants
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in a differential ring R makes obviously a subring; it is called
the 7ing of constants of R. 1If, in particular, R is a differential
field, we see that the set of all constants makes a subfield; this
is called the field of constants of R.

Let S be a differential ring (field), R a differential subring
(subfield) and m a subset of S. The ring (field) which is generated
over R by all derivatives of all elements of m is the smallest
differential subring (subfield) of S which contains R and m; we
shall denote it by R{m} (R<{m)>). The ideal which is generated
in S by all derivatives of all elements of m is the smallest dif-
ferential ideal of S that contains m; it is denoted by ((m)).

PROPOSITION 2.1. If a is a differential ideal of a differential
ring (R, 8,, -+, 8,), then the radical ideal m of a is a differential
semiprime ideal® of R. (Compare this with the result in [3], p. 117.)

In case p=0, this is well-known since 6,,=(1/»!)3,> A<i<m,
v>0). In case p==0, for every x €m, there exists an integer ¢ >0
with x?°€a; hence (8,%)?"=8, ,pe(x*)€a by Lem. 1.1., so that
Spxem (1<i<lm, »>0).

ProPOSITION 2.2. If m is a differential semiprime ideal of a
differential ring (R, 6,, -+, 8,,)) and n a non-empty subset of R, then
the quotient ideal m: n in R is a differential semiprime ideal of R.

If xéem: n, then xzém for every z€n, hence 6,x-z+

V-1
Zo 8,x+9;,_,2=0,(xz)em. Assuming inductively that 8,x€m: n
A=

O<A<y), we get 6,x-2°cm, and consequently (8,,x-2)’€m so
that 6,,x-zem. Since this is true for every z€m, we have
S, xEM: n.

Let (R, 3, -+, 6,) be a differential ring and a a differential
ideal of R not containing 1. Since a is an admissible ideal of the
ring R under the domain ® of differential operators, ® can be
regarded canonically as a domain of operators on the quotient ring
R/a. Thus, R/a is a differential ring associated with the dif-
ferentiations 6,, -+, 6,,. The canonical map of R onto the differential

6) An ideal is called semiprime if it coincides with its radical ideal,
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ring R/a is a differential homomorphism.

Let (R, 6,, -+, 8,,) be a differential ring. Now, consider the ring
Ry of Ex. 1.2 which is regarded as a differential ring associated
with the differentiations d,, -+, d,,. If =8, -6, is an element
of the domain ® of differential operators of R, we denote by U,
the monomial U:..-U,=. Assigning to every x € R the element
E(x)zezwﬁx-Uo of R,, we get a differential isomorphism F of R

into Ry, which is called the Taylor expansion of R.

LEmMA 2.1. For every choice of non-negative integers v,, +--, ¥,
let 3, .., be a map of a ring R into itself, such that §,., is the
identity map and the map x—>E’(x)=v Zv S, X UlrUym of R
into the ring Ry of Ex. 1.2 is la ring-homomorphism with
E'(®, n,X) = dpy, @y, E'(x) (v, >0, -+, v, >0). Then, putting
81y, = 8pnjo (1<d<m, v 2>0), R becomes a differential ring associat-
ed with the differentiations 8;={5;,; v >0} A<i<m), where
81,,1--.8,,,,,’":8\,1...,, and E’ is the Taylor expansion of the differential
ring R.

m

PropOSITION 2. 3. If (R, 6,, .-+, 8,) is a differential ring and S
the total ring of quotients of R, them we can prolong 6., ---, 8,
uniquely to S so that S obtains a structure of a differential exten-
sion ring of R.

It is easy to prove this directly, but we get a shorter proof
applying Lem. 2. 1. We omit the proof here. By the way, If we
denote the prolongations by the same symbols §,, .-+, 8,, as the
given differentiations in R and write each z€ S in the form z=x/y
(x, y€ R, y being non-zerodivisor in R), then &,,z can be defined
by induction on v, using the equation

(2.1) Bt = Buzey+ 38028,y (LKi<lm, v>0).

PROPOSITION 2.4. Let o be a differential isomorphism of a dif-
ferential ring (R, S,, -+, 8,) onto a differential ring (R', 8, -+, 8,,),
each pair of corresponding differentiations being denoted by the same
symbols, and S, S’ the differential total rings of quotients of R, R’
respectively. Then, the prolongation isomorphism of the ring S onto
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the ring S’, which is uniquely determined, is a differential isomor-
phism of S onto S'.
The proof is obvious by virtue of the equation (2.1).

PrOPOSITION 2.5. If (F,8,, -+, 8,) is a differential field and
G a separably algebraic extension field of F, then we can prolong
8., -, 8,, uniquely to G so that G obtains a structure of a differential
extension field of F.

In order to prove this, we may suppose that [G: F]< o, and
consequently, G is generated over F by an element x which is a

zero of a polynomial f(X )=éoa,,X” (a, € F, a,=1) irreducible over
=

F. Thus, the proof can be easily done by means of Lem. 2.1. We
remark that, in view of the uniqueness, if we denote the prolonga-
tions by the same symbols &, -+, §,, as the given differentiations
in R, then 8,,x can be defined inductively by means of the equation

@.2) ar ()-8, %+ S 8, @, Koo o8k =0
dX k=0 voz....q.vkzv 0 !
Vl V’n.,Vk v
‘ aA<i<m, v>=0),

so that, for every y=nij bx*eG (b,e F),
F=0

2.3) 8,y =30 3 8, bBuxedx (1<i<m, v>0).

-1
=0 V0+~-.~i-\lk=\l

£

PROPOSITION 2.6. Let o be a differential isomorphism of a dif-
ferential field (F,$,, -+, 8,,) onto a differential field (F’, o,, -+, 8,),
and G a separably algebraic differential extension field of F. Then,
any isomorphism, which is a prolongation of o, of G onto a (separably
algebraic, and consequently differential) extension field G’ of F is a
differential isomorphism.

The proof is obvious by virtue of the equations (2. 2) and (2. 3).

3. Differential polynomials

Let (R, 9,, -+-, 8,,) be a differential ring. If x,, ---, x, aie ele-
ments of a differential extension ring of R and 0x;(0€ 0, 1< j<n)
satisfy no polynomial relation over R, then x,, ---, x, are called

differentially independent over R,
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Now, let X;(v,, ---, v,) (j€J and v,, --+, v,, being non-negative
integers) be a set of indeterminates over R and S=R[X;(»,, -**, ¥,);
je]J, »,>0, -+, v,,>0]. Prolong 96, 1<i<m, »>0) to S as
follows : denoting the prolongations by the same symbols 6;,,

1° 8,X; (v, vy ¥p) = (V-ll:v,-> X; (v, w0y v 5 vy V)
(eI, v 20, =+, v, >0);
2° for a monomial M=¢aY,---Y, (¢€ R and Y,, ---, Y, being some
of X;(v,, -, vp) (FJET, v, >0, «++, v,>0)),

M= 23 Biv0a°8£‘u1Y1°'"'8ierr;

Vo etV =V

3° for a finite number of such monomials M,, .-, M, as in 2°,
aiv (;Mk) = k; 8:’ka .

Then, (S, 8,, -+, 8,,)) becomes a differential extension ring of R.
Denote X;(0, -+, 0) by X;, then X;(v, -, v,) =20, +9,,,X;
(jeJ, »»>0, =+, »,>>0) so that S=R{X;; jeJ}. The X;(j€])
are differentially independent over R. Elements of S are called
differential polynomials of X;(j€ J) over R. As a special case, if
R is a differential field F, we get the differential field of quotients
G=F<{X;; jeJ> of 8.

ProrosiTiON 3.1. If (R, 9, -, 9,) is a differential ring and
X;(je€]) a set of differentially independent elements over R, then
every constant of S=R{X;; j€ J} is contained in R.

Proof. 1In order to prove this, it is enough to consider the
special case where R is an ordinary differential ring associated with
a single differentiation 6= {8, ; »v>>0} and a single differentially in-
dependent element X over R. We shall prove, for each A€ S=R{X}
with A ¢ R, the existence of a positive integer # such that 6,4 ==0.
There are two alternative cases as follows.

Case 1: there exist some derivatives of X which are contained
in A with exponents not divisible by p. (This case is the only
possible one if p=0.)

Among such derivatives of X, let 8,X be the one of the highest
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order. Write A in the form Azfj A;(6,.X)¢, where A; are poly-
nomials of (8,X)?(p_>v) and 8,X (< ») over R, « >0 and A,=0,
and where, furthermore, &< p —1 provided p==0. Choose a positive

# ;V) is not divisible by p (see footnote 5).

Since each term of A; is of the form
a(BPlX)ﬁ;pel ves (Ber)ﬁrer (Bo-IX)fl . (BG_SX))’S
a€ R; r, s being non-negative integers;
P > Y, pr> v, 0-1< Y, oo, O-.<>'<V;
Py, % Py, @y, *+, 0, being distinct;

integer # such that (

B, -+, B, being positive integers not divisible by p; -
e,, -, e, f,, -, f, being positive integers
3,.(A;(6,X)) is a sum of parts of the form
8,8, {(8, X)*"} .8, {(8, X))/} -8, (8.X)-+-8,,(8,X).
Ao+,

F+T14+ e F st oyt doi=HF

Using (1.2) and observing 6,X(p_>w+v), we get
BF-(Ai(BvX)i) =1 </L;’|l’— V) (BVX)i_l(Bu !-vX)A£+ [] ’

where the [-++] is a polynomial of (8,X)? (p>p+v) and 6,X
(0<m+v) over R. Hence,
(3.1) 8,4 = (9A/0(5, X)).</":;”) 8y X 4[]

(the [---] being as above),

so that 6,4==0.

Case II: every derivative of X is contained in A exclusively
with exponents divisible by p. (In this case, we have necessarily
p==0.)

Let 8, X, -+, 8, X be all the distinct derivatives of X which
are actually contained in A. Denote by e(v), ---, e(»,) the positive
integers such that A is a polynomial of (8, X)*"", ---, (8, X)?"*"
over R and each of e(v,), .-+, e(v,) is taken as large as possible,
and put e=max (e(v,), -, e(v,)), #=pS, A=pp® and p;=\/p°"?
(1<ir), where f is a sufficiently large positive integer such that
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(”"2”") (1<i<r) are not divisible by p (see footnote 5). For
each term
M = a(8, X2 e (8, Xy
(eeR; «, -+, @, being non-negative integers)

of A, let us observe the derivative of X of the highest order in
6,M. Using (1.2), we get

e(vy

oM = ac, {(’w‘:I ”1>(8V1X)°’1-‘8F1+hx}p )(BVZX)“Z"M”~~-(5V,X)“"’”””
N
raa ()6, X8, 0 X8, Xy (5

- eV, . R peVY
— g‘ (0M/9(8,,X)**") - {(/L,/-Ll; v,> 5“1,4%_)(} +[1,

X)mr_lp?("r_ %

Vr-1

where the [--+] contains no derivative of X of order >e =
max (4, +v,, *++, #,+v,). Hence,

peVY

3.2) 84 = 35304/0, X)) ("o, x) ",

where the [.--] is as above and 8A4/3(8,X)?*"? =0 1 <i< 7).
Suppose that only one of g, +v,, -, #,+v, is equal to ®, then
obviously 8,A4--0. On the contrary, suppose that more than one
of #,+v,, -, #,+v, are equal to »; if we had 6,A=0, we should
have e(v;)=e(v;) for at least two distinct values of 7, j in order
that 8,X should vanish in 8,4 ; this would imply s#,=p;, contra-
dicting with the inequality v;==v;.

COROLLARY [If (F,38,, -+, 8,,) is a differential field and X; (j€ J)
a set of differentially independent elements over F, then every constant
of G=F{X;; j€ J> is contained in F.

Proof. 1In order to prove this, it is enough to consider the
special case where (F, 6) is an ordinary differential field and the
set X; consists only of a single element X. Let A/B be an element
of G=F<{x)> with A/B¢ F, where A, B are elements of F{X} and
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relatively prime as polynomials of derivatives of X over F.
Assume that A/B is a constant. Then, we get

(3.3) 8,A-B—A-8,B=0
for every positive integer /.

Case I: there exist some derivatives of X which are contained
in A or in B with exponents not divisible by p.
Among such derivatives of X, let 6, X be the one of the

highest order and write each of A, B in the form Azij A(8,X),

B .
B=Z}Bj(3vX)’, where A; and B; are polynomials of (8,X)? (p>v)
and 6, X (e<v) over F, at least one of «, 8 is positive, 4,==0 and
and Bg==0, furthermore, a<(p—1 and B<p—1 provided p==0.
By (3.1), we get
8,A-B—A-5,B
— {(0A/3(5,X)B—A@B/o(3, X))} +( X T¥)e8,, X +[---
{(04/23,X)B — A@B/oG XN (¥ F*) -8, X+ ]
(the [--+] being as in (3. 1)).

Since (04/9(6,X))B— A(0B/9(6,X))==0, this contradicts with (3.3)
if we take a positive integer # such that (’M ;”) is not divisible
by p.

Case II: every derivative of X is contained in A and B ex-
clusively with exponents divisible by p. Concerning A and B,
determine 8, X, ---, 8, X, e(v)), -+, e(v,), #, N, #,, -+, p, as in the
proof (Case II) of Prop. 3.1. We get by (3.2)

BAA 'B - A ‘BAB
= S1{OA/3(3,X)* B~ AGB/AB, X} (M4 %) (0,00, X0

(the [---] being as in (3. 2)).

Similarly as in the proof (Case II) of Prop. 3.1, we see that this
contradicts with (3. 3).

Now, let (F,§6,, ---,6,,) be a differential field, X,, ---, X, dif-
ferentially independent over ¥ and R=F{X,, ---, X,;} the differential
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ring of differential polynomials of X,, ---, X,, over F.

If we denote by P(X,, -+, X,), or simply by P(X), an element
of R, and if (x,, -, x,), which may be denoted simply by (x), is
a set of n elements of a differential extension field of F, then
P(x,, -+, x,), or simply P(x), means the element which is obtained
from P(X,, ---, X,) by the substitution 8,,X;—8,,x; (1<i<m, v >0,
1<j<n). If P(x)=0, (x) is called a zero of P(X) or a solution
of the differential equation P(X)=0. If m={P,(X); A€ A} is a
subset of R and (x) is a common zero of all P,(X) (A€ A), then
(x) is called a zero of m or a solution of the system {P,(X)=0;
M€ A} of differential equations. Let m be the radical ideal of ((m))
in R, then m is a differential semiprime ideal of R (Prop. 2.1),
and the set of zeros of m is identical with that of m.

Let p be a differential pirme ideal of R (not containing 1),
and @ the differential homomorphism of R onto the differential
quotient ring R/p. Since we can identify every a€ F with its
image @(a), we identify F with a subfield of R/p. Since R/p is
a differential integral domain, its field of quotients G is a differential
extension field of F. If we put o(X;)=x; 1<j<n), we get
R/py=F{x,, -, x,} and G=F<{x,, -+, x,>. We see at once that (x)
is a zero of p, and that an element P(X) of R is contained in P
if P(x)=0. A zero (y) of p is called a generic zero of p if every
P(X)e R with P(y)=0 is contained in p; the above-mentioned (x)
is a generic zero of p.

Let (z,, -, z,) be a set of n elements of a differential exten-
sion field of F. If we denote by b,.,» the set of all P(X)€ R with
P(2)=0, then Y.y, is a differential prime ideal of R not containing
1 and (2) is a generic zero of P,,.; the above-mentioned p and
(x) are such that p=9.,,=.

4. Condition (S) and condition (S,)

Let (F,$,, --+, 8,,) be a differential field and H its differential
extension field. If we say that @ is a differential isomorphism
over F of H into a differential extension field of F, we mean that
the differential isomorphism ¢ leaves every element of F invariant.
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We say that H satisfies the condition (S) over F, if

there exists, for every z€ H—F, a differential isomor-
(S) phism o' over F of H into a differential extension field of
H such that o'z 2.

In particular, we say that H satisfies the condition (S,) over F, if

there exists, for ever z€ H—F, a differential automor-

S,
) { phism o over F of H such that oz==z.

Let us consider some results about these conditions, which will
be used afterwards.

PROPOSITION 4.1. Let (F, 8,, -+, 8,,) be a differential field, H
its differential extension field which satisfies the condition (S,) over
F and z,, -+, 2, a finite number of elements of H which are linearly
independent over F. Then, there exist v differential automorphisms
o,, 0, of H over F such that det (0,2;);cicr 1<jar 0.

Proof. We shall prove this by the induction on 7. Since the
statement is trivial for r=1, let » be >>1. By the induction
assumption, there exist »—1 differential automorphisms o, -+, 0,_,
of H over F such that det(9;2;)i<ic/-1, 1<j<r-:70. Now, suppose
that we have

0,2, 018r-1 01,
O-r_lzl O-r_lzf_l O—r—lzr
OZy 0%, oz,

for every differential automorphism o of H over F. Choose »—1
elements a,, -+, @,_, of H such that 'ﬁo-,-zj-a,-:a,.z, A<LEiLr—-1),
j=1

then we have

4.1) iozj-aj = oz,

for every differential automorphism ¢ of H over F, and consequ-
r—1 r—1 r-1

ently >iroz;era;=7102,= 2 702;+a; i.e. 2 702;+(Ta;—a;)=0 for every
j=t j=1

=1
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pair of differential automorphisms o, * of H over F. Since, for
each pair of 7 and ¢ (1<(i<{7—1), we can take o so that ro=o;,

we get gafzj(vaj—aj)zo. Hence, ma;=a; (1<j<r—1) for every ,
and a;€ F (1<j<{r—1) dy the condition (S,). Thus, we get from

(4.1) the equality i‘lzjaj:z, (a contradiction).
j=1

PROPOSITION 4.2. Let (F, 8., -+, 8,) be a differential field, H
its differential extension field which satisfies the condition (S,) over
F and x,, -+, %, a finite number of elements of H such that the ring
Fl0x;; 00, 1<j<n] is of finite type over F. Let X,, -, X,
be differentially independent over H, and put R=F{X,, ---, X,},
P=Piyr and S=G{X,, -, X,} where G is an intermediate differential
field between F and H. Then, Gy can be represented as an intersec-
tion of a finite number of differential prime ideals of S. If

4.2) Gp = PN NP,
(Ve being differential prime ideals of S)

is such an irredundant representation, we have
(4.3) PR =9, dimp, =dimp A<LELr),

where dimp and dim B, are the transcendence degrees of R/[p over
F and of S/, over G respectively.

Proof. Since F[0x;; 0€ 0, 1< j<n] is of finite type over F,
we can choose among ¢x;(0€®, 1< j<#) a finite subset y,, -, y,
such that F[0x;; 0€0,1<j<n]=F[y, -, »]. Denote by
zy(A € A) all of 0x;(0€ O, 1< j<n) other than y,, ---, y,. Further-
more, denote 0X;(0e€®, 1< j<n) by Y,, -, Y,, Z,(A€ A) corre-
spondingly as we denote 6x;(0€ ®, 1< j<n) by ¥,, =+, 31, Z2(A€ A),
and put R'=F|Y,, -, Y,], S=G|Y,, ---,Y,] and p'=pnR. If
we put B;=D,,/G for each differential automorphism o of H over
F, we can see by Prop. 4.1 that Gp’=[;\*l*,’, so that GY’ is a semi-

prime ideal of S’. Therefore, we get an irredundant representation
Gy = PN N

and can prove without serious difficulties the equalities
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PBiNR =y, dim P, = dim p’ A<kLy).

Let A,(Y) be elements of R’ such that z,=A,(y) A€ A).
Then, we see easily that p=(’, Z,—A,(Y); A€ A) in R, and that
the ideals PB,=(F}, Z,—A(Y); A€ A) are prime ideals of S, and
that

Gy = BL,n---nY,  (an irredundant representation),
BAR=p, dimP,=dimp (QA<L<Lr).
At last, we see by Prop. 2.2 that 3, are differential ideals of S.

PrOPOSITION 4. 3. Let (F, 6., -+, 8,,) be a differential field, H its
differential extension field and G an intermediate differential field
between F and H such that H satisfies the condition (S,) over G.
If there exist a finite number of elements x,, -+, x, of H such that
H=F{x,, -, x,> and F[0x;; 0€ 0, 1<j<n] is of finite type over
F, then each differential automorphism o of G over F can be prolonged
to a differential isomorphism of H into a differential extension field
of H.

Proof. Let X,, -+, X, be differentially independent over H, and
put S=G{X,, -+, X,}, T=H{X,, -+, X,}, B=p¢ in S and P°, the
set of all differential polynomials of S which are obtained from
elements of ‘¥ by operating o on their coefficients. Then, ¥ is a
differential prime ideal (#1) of S, and, similarly as Prop. 4. 2, there
exists a differential prime ideal ' (#1) of T with P'NS=9L".
Denote by (y,, -+, ¥,) a generic zero of ¥, then (y) is a generic
zero of Y¥°, and we see that a differential isomorphism of H=
G<x,, ++, x,> into H y,, **+, ¥, is determined by x;—y;, 1<li<n)
such that it prolongs o.

PROPOSITION 4.4. Let F be a differential field and G a separably
(and normally) algebraic extension field of F. Then, G can be re-
garded as a differential extension field of F which satisfies the
condition (S) (the condition (S,) respectively) over F.

Proof. For each z€ G—F, there exists obviously an isomor-
phism ¢’ over F of G onto a separably algebraic extension field
G’ of G with ¢’z:]-z (an automorphism o over F of G with oz=2).
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By Prop. 2.6, ¢’ is a differential isomorphism over F of the dif-
ferential structure of G onto that of G’ (¢ is a differential auto-
morphism over F of the differential structure of G).

REMARK. The converse of Prop. 4.4 is partially true. Namely,
if G is a differential extension field of F which is algebraic over
F and satisfies the condition (S,) over F, then G is separably and
normally algebraic over F.

5. Linear dependence over constants and linear homo-
geneous differential equations

If x,, -+, x,, are finite number # of elements of a differential field,
and 6,, -+, 0, n differential operators, we denote det (0;%;),cicn 1<j<n
by We, ., (%15 -+, %)

ProposITION 5.1. Let x,, -+, x, be n elements of a differential
field F. Then, x,, -+, x, are linearly dependent over the field C of
constants of F, if and only if Wy .., (x,, -+, k,,)zO for every choice
of n differential operators 0, -+, 0,.

The proof of Prop.5.1 and the following Cor. are straight-
foward.

COROLLARY Let x,, -+, x,, be elements of a differential field F.
If there exist n—1 differential operators 0,, -, 0,., such that
Woon_, (X1s =, Xuo) =0 and W g, o (1, -+, %,)=0 for every dif-
ferential operator 0, then x,, -, x,-, are linearly independent over
the field C of constants of F and x, is a linear combination of
Xy, 0ty X,y OVer C.

Since W,,..4,(x,, ---, x,) are polynomials of derivatives of
x, -+, X, with rational integral coefficients, we can speak without
ambiguity of linear dependence or linear independence over constants
as one does in [4].

Let (F, 6, --+, 8,) be a differential field, X a single differentially
independent element over F. Linear combinations over F of deriva-
tives of X are called linear differential forms of X over F. If L
is a linear differential form, the equation L=0 is called a /inear
homogeneous differential equation of X over F.
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Herein, we shall consider F-modules of linear differential forms
of X over F. If such a module M satisfies the condition 6,0 I
A<i{m, »v>0), we shall call M a differential module of linear
differential forms of X over F. If L,(A€ A) is a set of linear
differential forms of X over F, the set & of all linear combinations
over F of all derivatives of L, (A€ A) makes the smallest differential
module of linear differential forms of X over F which contains
L,(xe A). € is called the differential module of linear differential
forms of X over F which is gemnerated by L,(A€ A). A solution
of the set of linear homogeneous differential equations L,=0(\ € A)
is a zero of ¥, and vice versa. Thus, the consideration of a set
of linear homogeneous differential equations of X over F can be
transfered to that of a differential module of linear differential
forms of X over F.

Now, arrange all differential operators into a sequence {4,,9,, ---}
and use the notation 6,< 6, (or 8,°>6,) to mean that 6, precedes
to 6, in that sequence. If a differential module € of linear differ-
ential forms of X over F is given, we can divide up the sequence
{6,, 9,, --'} into two subsequences {4, 8;, ---}, {60!, 8y, -}, the
latter of which may be finite, in such a manner that € has a base
Ly, (i2>>1) of the form

Lg/‘. = 0;X_12>1 a,‘,“(?)_,;lX (i>1, a;]-GF; a;; = 0 if 95’ >92) .

This base of ¥ does depend on the arrangement {4,, 6,, ---},
but we see that the number of 67/, 85/, .-- does not depemd on it.
If » is a non-negative integer not larger than that number, it is
easy to show that there exist » zeros of ¥ which are linearly
independent over constants.

Let [={L,=0; A€ A} be a set of linear homogeneous differ-
ential equations of X over F, and ¥ the differential module of
linear homogeneous differential forms of X over F which is gene-
rated by I. If the number of 67/, 85, ---, which are obtained for € in
the above-described manner, is finite (say #) then [ is said to be
of finite type (or of type n).

PRrROPOSITION 5.2. Let | be a set of linear homogeneous differen-
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tial equations of X over F. If1isof type n, there exist n solutions
of 1 which are contained in a differential extension field of F and
linearly independent over constants. If x,, .-, x, are such solutions,
every solution of |, which is contained in a differential extension
field of F<{x,, -, x,>, is a linear combination of x,, -, x, over
constants.

Such a set of solutions x,, -+, x, of | will be called a fun-
damental system of solutions of I.

Chapter II. Picard-Vessiot theory

In this chapter, let (F, 6,, ---, 8,,) be a fixed differential field
of an arbitrary characteristic p (zero or non-zero) such that the
field C of constants of F is algebraically closed. The following
discussions are done, in general speaking, in a similar manner as
those of [4], so that the proofs of many of the propositions are
omitted or outlined.

6. Picard-Vessiot extensions

Let G be a differential extension field of F which satisfies the
conditions :

(P1) there exists a set [ of linear homogeneous differential equa-
tions of a differentially independent element X over F which
is of type # and has a fundamental system x,, -+, x,, of solu-
tions such that G=F<{x,, -+, x,;

(P2) every constant of G is contained in F';

(P3) G satisfies the condition (S) over F.

Then, G is called a Picard-Vessiot extension of F. The set | in
(P1) is called a defining set of linear homogeneous differential equa-
tions for the Picard-Vessiot extension G of F. In case p=0, this
definition coincides with that in [4].

If o’ is a differential isomorphism over F of G into a differential
extension field of G, then ¢’x,, ---, o’x, is a fundamental system of
solutions of [. Hence, we get by Prop. 5.2

o'x; = '2:1 x5 (0) aA<i<n),
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where c{,(¢’) are constnts of G{o'G> and the matrix (ci;(¢”)) is
regular.

The following Kolchin’s lemma and its corollary hold also true
under our definition of differential fields :

LEMMA 6.1. Let H be a differential field, K its field of con-
stants, and C,, ---, C, independent indeterminates over H. If a
subset m of HI[C,, -+, C,] is given, there exists a subset m' of
K[C,, -, C,] such that a set (c,, -+, c,) 0f n constants of a dif-
ferential extension field of H is a zero of m if and only if it is
a zero of m'.

CorOLLARY If H, K are as above, and c,, +--.c, any number
of constants of a differential extension field of H, we have

tr. deg.x(c,, -+, ¢,) = tr.deg.x(c,, =+, C,).

Let C;; A<i<{n, 1<j<n) be »n* indeterminates over G and
(ci;) a regular n X n-matrix of constants of a differential extension
field of G. Then, using Lem. 6.1 and its Cor., we see similarly as
in [4] that there exists a semiprime ideal g of C[C;;; 1<li<n,
1<j<n] such that a differential isomorphism over F of G into
an differential extension field of G can be determined by

=N, 1<i<n)

if and only if (c¢%;) is a zero of g.
If o is a differential automorphism of G over F, we get

O"x]- = gxi(/‘;i(o‘) (1<j<n)7

where (c;;(o)) is a regular matrix of elements of C and a zero of
g. Conversely, if a regular »x#n-matrix (c;;) of elements of C is
a zero of g, a differential automorphism of G over F can be de-
termined by

x,-—>2_'lx,~c,-j A<<in).

The group of all differential automorphisms of G over F is
denoted by &(G/F) and called the Galois group of G over F. If
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%y, -+, %, of (P1) are fixed, the map o—(c;;(¢)) is an isomorphism
of &(G/F) into GL(n, C); the image of &(G/F) is an algebraic
matric group and can be identified with &(G/F).

PrOPOSITION 6.1. If G is a Picard-Vessiot extension of F, then
G satisfies the condition (S,) over F.
This is clear, following [4], on account of (P3).

PROPOSITION 6.2. If G is as above, we have
dim @ (G/F) = tr.deg.rG .

The proof is similar to that in [4], by virtue of Prop. 6.1 and
Prop. 4. 2.

ExampLE 6.1. Let x,, ---, x, be differentially independent over
F, and 6, ---, 6, distinct differential operators which are fixed arbi-
trarily, and put

Ug; = Weel--«6;~~~en(x1, try xn)/Wel~~~e,,(xn e x,) (0€0, 1<i<n),
F,= Fluy; 0€0, 1<i<n,
G = F.,{x,, 1+, X0 = F{x,, =+, X,

We shall show that G is a Picard-Vessiot extension of F, and
S (G/F,)=GL(n, C).

By Cor. of Prop. 3.1, every constant of G is contained in F,
consequently in F,. Let X be a differentially independent element
over G, and consider linear homogeneous differential equations

WGOI“-G”(X) xl) Tt xn)/WBy"ﬂn(xly R xn = 0
ie. OX—3(—1iuu0,X=0 (0€)

of X over F,. This set of linear homogeneous differential equa-
tions is of type #, and x,, '+, x, is a fundamental system of solu-
tions (Prop. 5.1 and its Cor.). For any regular #zXxmn-matrix (c;;)

of elements of C, we see at once that x§=21 x,0;; (1<j<n) are

differentially independent over F. Consequently, a differential
automorphism of G over F can be determined by x;—x} (1<j<n);
since every u, (0€®, 1<i<#n) is invariant under this auto-
morphism, so is every element of F,. Thus, GL(#n, C) is the group
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of all differential automorphisms of G over F,. Therefore, the
above-mentioned semiprime ideal g in this case is the zero ideal.
Now, it can be easily proved that #x; 1<li<{n, 1<j<n) are
algebraically independent over F,. From this and the fact g=(0),
we can deduce without difficulties that G satisfies the condition (S)
over F,.

7. Intermediate differential fields

Let G and x,, ---, x, be as those at the beginning of the preced-
ing section.

We shall denote by < the set of all intermediate differential
fields over which G satisfies the condition (S), and by & the set
of all algebraic subgroups of &(G/F).

ProrosiTION 7.1. If F, is an element of &, then G is a Picard-
Vessiot extension of F, and &(G/F,) belongs to G The map
F,—~8(G/F) of & into G is bijective.

Proof. The first half of this is obviously true. Since the set
of all elements which are invariant under all elements of &(G/F,)
is F, (Prop. 6.1), the map F,—®&(G/F,) of & into & is injective.
Let & be an element of &G. Then, the set F’ of all elements of
G which are invariant under all elements of & is clearly an inter-
mediate differential field. If z is an element of G —F’, there exists
o€ ® with oz==2, so that F’ belongs to &. Similarly as in [4],
we can prove the equality &(G/F’)=®'.

PROPOSITION 7.2. Let F, be an element of F. Then, &(G/F,)
is a normal subgroup of S(G/F) if and only if oF,=F, for every
element o of S(G/F). If that is so, every element o of &(G/F)
induces a differential automorphism & of F, over F, and the map
oc—& S a homomorphism of the group S(G/F) onto the group
SF/F) of all differential automorphisms of F, over F, and the
kernel of this homomorphism is & (G| F,); moreover, F, satisfies the
condition (S,) over F.

Proof. We prove here only the statement that the homomor-
phism o—g& is onto; the other parts of the proof of Prop. 7.2 are
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similar to those in [4].

Let = be an element of &(F,/F), and X,, --+, X, differentially
independent over F,, and put R,=F, {X,, -, X,}, S=G{X,, -+, X,.},
P=YPeyr,. Denote by p’ the set of all elements of R, which are
obtained from differential polynomials in p by operating = on their
coefficients. Then, p" is a differential prime ideal of R, not con-
taining 1, and, we can prove similarly as Prop. 4.2 that the ideal
Gp” of S has an irredundant representation as an intersection of
differential prime ideals %,, -+, B, of S, so that R,NAPR, =P’
1<i<Lr). If (9, «, ¥, is a generic zero of %,, (y) is also a
generic zero of p. Now, we express every z€G in the form

z=A,®)/B.(x) (AX), B(X)eR,; B,(x)==0).

Denoting by Aj(X), Bi(X) the differential polynomials which are
obtained from A,(X), B,(X) respectively by operating = on their
coefficients, put

Z = Ai(9)/Bi(y) -

This 2’ is well-defined by 2z, and the map z— 2’ determines a dif-
ferential isomorphism ¢’ of G into G<y,, -+, ¥,> which is obviously
a prolongation of .

On account of the existence of ¢/, we can see, using Lem. 6. 1,
the existence of a differential automorphism o of G over F which
prolongs .

8. Primitives and exponentials

Primitives Let x be an element of a differential extension
field of F, and put 8,x=a;, 1<li<m, v>0) and 0x=a, (6 € O).
If g, e F 1<i<m, »v>0) ie. g€ F (€6, ord §>0), x is called
a primitive over F. If x is a primitive over F and ¢’ a differential
isomorphism over F of F<{x)> into its differential extension field,
then o’x=c’+x, where ¢’ is a constant of F{x>{o'F{x>>.

Let us suppose that x is a primitive over F with x ¢ F, that
every constant of G=F<{x> is contained in F, and that G satisfies
the condition (S) over F. Then, choosing two integers i,, v,
1<i,<m, v, >0) with a;, =0, the set of linear homogeneous
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differential equations
0X —(as/@;n)+8:0, X =0  (0€®, ord 6 >0)

over F has a fundamental system 1, x of solutions, so that G is
a Picard-Vessiot extension of F. With respect to 1, x, every
element o of the Galois group =& (G/F) is identified with an
element of GL(2,C):

— (19 ceo.

Hence, ® is abelian and anticompact (see [4]). The map o—c¢
is an isomorphism of & into the additive group C* of C, the image
of & being an algebraic subgroup of C*. We have two possible
cases :

Case I: suppose & is of finite order s. Let its elements be
o, (the identity map), o,, -+, o,_, and their images ¢,(=0), ¢,, -, ¢,_,.

Then, x is a root of an algebraic equation JI1 (X+c)=a(ae F)
i=0

which is irreducible over F, and x is separable over F. Since
oi=o, i.e. sc;=0 (1<i<s—1), Case I can occur only for p==0. We
can see that sis a power p° of p, and that there exist ¢ elements
Y5 -+ ¥, of C, which are linearly independent over the prime field,
such that the additive group {c, c,, -*-,¢,_,} is generated by v,, -*-, 7,.
(& will be denoted by &, ., .)

Case II: suppose & infinite. Then, x is transcendental over
F, and the isomorphism o—c is onto C*. (In this case & is denoted
by ®&p.) If p:1-0, for every power p° of p, C* contains algebraic
subgroups of the form &, .., .. To such a group G,,..,, corresponds
the intermediate field
Fy. ., =F 1II (x+hy+-+hy)>.

0<h <p-1

Exponentials Let x be a non-zero element of a differential
extension field of F, and put (8,,x)/x=a;, 1<i<m, v>0) and

Ox)/x=ay, (€B). If a,,e F 1<i<m, v>0) i.e. a,€ F (€ O), x
is called an exponential over F, If x is an exponential over F
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and o’ a differential isomorphism over F of F<{x> into its differ-
ential extension field, then o’x=c’x, where ¢’ is a non-zero constant
of F{xH(a'F{x)).

Let us suppose that x is an exponential over F with x ¢ F,
that every constant of G=F<{x)> is contained in F, and that G
satisfies the condition (S) over F. Then, the set of linear homo-
geneous differential equations

over F' has a fundamental system x of solutions, so that G is a
Picard-Vessiot extension of F. With respect to x, every element
o of the Galois group $=O(G/F) is identified with an element of
GL(1,C):

c=c (ceC).

Hence, & is abelian and quasicompact (see [4]), and an algebraic
subgroup of the multiplicative gronp C* of C. We have two
possible cases:

Case I: suppose & of finite order s. Similarly as in [4], we
see that x°€ F where s is not divisible by p, and that & consists
of all s-th roots of unity. (8 will be denoted by &;.)

Case II: suppose & infinite. Then, x is transcendental over
F and @=C*. (In this case & is denoted by G;.) For every positive
integer s which is not divisible by p, C* contains a unique algebraic
subgroup &, of all s-th roots of unity, and the intermediate differ-
ential field F,= F<{x*> corresponds to &,.

9. Liouvillian extensions

Let H be a differential extension field of F. Suppose that H
satisfies the following conditions :

(L1) every constant of H is contained in F,

(L2) there exist a finite number of elements y,, -+, y, of H such
that H=F<y,, -, y,»,

(L3) if we put F,=F, F,=F;_{y;> (1<j<r), it holds that, for
each j (1<j<r), either y; is a primitive or an exponential
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over F;_,, or y; is separably algebraic and normal” over F;_,,
(L4) H satisfies the condition (S) over every F; (0<j<7).
Then, H is called a Liouvillian extension of F. In case p=0, this
is a Liouvillian extension satisfying the normality condition of
the remark at p. 38 of [4].

Now, let G be an intermediate differential field between F and
H such that G is a Picard-Vessiot extension of F.

LEMMA 9.1. Let H and G be as above. Then, G y,)> is a
Picard-Vessiot extension of F<{y.,>, and G is a Picard-Vessiot ex-
tension of F<{y. >NG, and we have

@(G<y1>/F<JG>) = @(G/F<y1>f\G) .

The first two statements are obvious. The last statement can
be proved similarly as in [4] (Chap. IV §21).

LEMMA 9.2. Let H and G be as above. Then, 8=8(G/F) has
a normal chain, in which every quotient group is abelian or finite.

The proof is similar to that in pp. 39-40 of [4].

We shall distinguish, as in [4], ten types of differential ex-
tensions of F, namely, extensions by

1° primitives, exponentials, and separably algebraic elements,
2° primitives and exponentials,

3° exponentials and separably algebraic elements,

4° primitives and separably algebraic elements,

5° primitives and separable radicals

6° exponentials, 7° primitives,
8° separably algebraic elements,
9° separable radicals, 10° rational elements;

for each of these types, we do not exclude the possibility of finite
repetitions of infinite sequences of extensions.

Let 8=®&(G/F) be the Galois group of a Picard-Vessiot ex-
tension G of F and &’ its component of the identity, and list the
properties which they may possess:

7) This means that the separably algebraic extension F;_{y;>=F;_,(y;) of Fj_,
is normal over F;_,.
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1° & is solvable, 2° & is solvable,

3° & is quasicompact, 4° (&° is anticompact,

5° & is solvable and &° is anticompact,

6° & is solvable and quasicompact,

7° & is solvable and anticompact,

8° & is finite, 9° (8 is solvable and finite,
10° &= {s} (s, being the identity).

PrOPOSITION 9.1. Let G be a Picard-Vessiot extension of F,
&=G(G/F) the Galois group, & its component of the identity and
i a positive integer < 10. If & is contained in a Liouvillian ex-
tension of F of type i°, then & is of type i°. Conversely, if G is
of type 1° then G is of type i’

Proof. Suppose that G is contained in a Liouvillian extension
H of F of type i°. Then, we can prove similarly as in [4] (p. 40)
that & is of type ?°

Conversely, suppose that & is of type ¢° and let us prove that
G is of type °. Since this is clear in case 8<(i<(10, we consider
only the cases 1<(i<(7 as follows.

&° is a normal algebraic subgroup of &. Therefore, by Prop.
7.2, it corresponds to the intermediate differential field F° between
F and G, such that &=8(G/F°), 3/&'=G(F°/F) and F° satisfies
the condition (S,) over F. Hence, F° is a finite algebraic extension
of F, and, moreover, it is separably and normally algebraic over
F (see Rem. at the end of §4). Since & is of type 2°, 2° 6°, 7°,
7°, 6° or 7° according as & is of type 1°, 2°, 3°, 4°,5°, 6° or 7°,
we may assume for our purpose that & is connected and of type
2°, 6° or 7°.

Case I: & is of type 7°. Since & can be reduced to special
triangular form (see [4] pp. 19-20), the defining set of linear homo-
geneous differential equations of G over F has a fundamental
system x,, .-, x, of solutions with G=F<x,, ---, x,> such that

(9. 1) oX; = gx,-c;j (1 <j<n, C;je C, Ci; = 1)

for every o€ . Let us prove, by means of (9.1) and the induction
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on n, that G is of type 7°. Since x, is contained in F in any case,
the case n=1 is trivial. Now, suppose #n_>1; then, we get

o(x/3) = eyt B (fm)ey @<,
so that

o (0(x;/ %)) = ge(x,./xl).c,.,. @<i<n; 0€®, ord 670, cc ).

By the induction assumption, F<{0(x,/x,), -+, &(x,/x,)> is of type
7° for each € ® with ord 8>0; hence, FI{O0(x,/x,), -+, 0(x,/x,);
0e®, ord>0> is of type 7°, and so is F<x,/x,, -+, X,/%, 0=
Fx,, -, x,0=0G.

Case II: & is of type 6°. Since ® can be reduced to diagonal
form (see [4] pp. 19-21), the defining set of linear homogeneous
differential equations of G over F has a fundamental system
x,, -+, x, of solutions with G=F<{x,, ---, x,,> such that

ox; =y (1<j<n, ¢;€C)

for every o€ @®. Hence, o(0x;) = c;(0x;) 1<j<n 0€0), and
o(0x;/x;)=0x;]x; (1<j<m, 0€ O) for every o€ &, so that Ox;/x;€ F
1<j<n, 6e®). Therefore, G is of type 6° (finite repetitions of
extensions by exponentials).

Case III: & is of type 2°. Since & can be reduced to tri-
angular form (see [4] p. 19), the defining set of linear homogeneous
differential equations of G over F has a fundamental system
x,, -, x, of solutions with G=F<x,, ---, x,> such that

9.2) ox; = gxicij 1<i<n, ¢;€0)

for every o €®. Let us prove, by means of (9.2) and the induc-
tion on #, that G is of type 2°. Similarly as in Case II, x, is
exponential over F. Since the case n=1 is trivial, suppose n_>1.
Then, we get

7(55/%) = @l + 2 (il x)Clen) @ <i<n),
so that
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T (0, 2)) = 31005/ )+ cusfes)  R<j<n; 0€ O, 0rd 030, 7€ ®).

By the induction assumption, F<{0(x,/x,), -+, 0(x,/x,)> is of type 2°
for each € ® with ord 6_>0; hence, F<{0(x,/x,), -+, 0(x,/%,); €O,
ord>0> is of type 2° and so are F<{x,/x,, ---, x,/%)> and
Fxy, x,/%,, <o, x,/2>=G.

Institute of Mathematics,
Yoshida College,
Kyoto University.
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