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E . R . Kolchin has developed th e  Picard-Vessiot theory and,
more generally, the Galois theory for differential fields of charac-
teristic zero'. I n  these theories, Galois groups are algebraic matric
groups or, more generally, algebraic groups ; every algebraic group
appears as a Galois group, and it s  structure supplies knowledges
about the structure of the differential field-extension. The purpose
of the present work is to construct a  similar theory of differential
fields of an arbitrary characteristic.

B y the way, the basic theory of differential fields in the case
of characteristic zero is well equipped by Ritt, Kolchin and others,
and effectively applied to various problems°. But, it may be said
that the basic theory in the case of non-zero characteristic is not
yet sufficiently m ade up°. Not a  few  part o f difficulties in the
latter case are due to the definition of differential fields which is
done literally in the same manner as in  the fo rm er case . If we
define them anew by means o f Hasse's higher differentiations°,
computations become very troublesome, but we get available results.

1) Kolchin [4-8]. See also Matsumura [9].
2) Ritt [11], Kolchin [4] an d  [6 ]. These contain bibliographies on the subject.
3) Kolchin [3], Seidenberg [13], Kaplansky [2] and Okugawa [10].
4) Hasse [ I ]  and Schmidt-Hasse [12].
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Thus, we can obtain a generalization of Kolchin's theory of Picard-
Vessiot extensions in the case of an arbitrary characteristic.

This paper consists of two characters. Chapter I contains a
new definition o f differential fields of an arbitrary characteristic
and a sketch of various results. In Chapter II, these basic results
are applied to develop a theory of Picard-Vessiot extensions of an
arbitrary characteristic.

Chapter L  Differential algebra

When we speak of a ring in this chapter, it is always supposed
tacitly that the ring is commutative and contains a subfield whose
unity coincides with that of the ring. All the fields, which appear
in this paper, are of an arbitrary fixed characteristic p  (zero or non-
zero).

1 . Differentiations

Let 8 = {8, ; v=0, 1, 2, be an infinite sequence of maps 8 ,  of
a ring R  into itself. We shall call 8 a differentiation in R  if it
satisfies the conditions :

(D 1 ) 80x  = x , ( D 2 )  8 , ( x  +y) =  8 vx+ 8vy ,

(D 3 ) 8 ,(x y ) =  E x. 8v2 Y , ( D 4 )  3 ,,(8 1,x ) =

whenever x, y E R  and X, tc, y  are non-negative integers. From
(D1-4), we see :

10 e a c h  8, is an endomorphism of the additive group of R ;
2 °  a, is a usual derivation in R ;
3 °  if n  is a positive integer, x „ • • • ,  x „, x E R  and if y, X„ •••, X„

are non-negative integers, then we have

(D3') 81, (xi . • -x„) = E x i • • • • .8,,,x„vi ,•••±v„-v -

(D4') — ( xi +  +x-) 1 8 x •
i!•••X r! x l

4 °  as particular cases of (D4'), we get
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(D 4") 8 '1!  8 ,  (I) > 0 ) , ( D 4 ' ) — 
(X

"
) (X > 0  u>  0)(x,

so that

(a) in case p = 0, is determined by 8, (cf. Ex. 1. 1 below),
(b) in case p  0,

8 '.["8 ; 1 8 pcz2 " '  8 cp I t  =  E, !/(PD'i(P2 !yo (p"!)'*1 (') > 0 ),

where 1.) = Ê  ce p' (0 <s e <p  —1) is  the p-adic  expression of a
, =0

non-negative integer v ; since the integer in the E  ]  is not
divisible by p , 8  is determined by ape (0 <e<co)" ;

5 °  8,c = O (1) > 0 )  for every element c  of the prime field in R.
We shall have occasions to use the following lemma :

LEM M A  1. 1. L e t 8  be a  dif ferentiation i n  a  r i n g  R, x E R,
p +0, e  a positive integer and a  an  integer > 1 .  Then,

(1.1)8 , ( x P ° ) 0  i f  X _ 00  (mod. pe) ,
8

1 2
,(xP0) ,x)Pe

( .  )  
ce(x ' .8„x )P e  + [. . . ]}

i f  X  0  (mod. pe) and

where the p art  [••-] contains none of  8 ,x (p>v ).
The proof is easy by virtue of (D3'), taking into account that

at' (mod. p).

EX AM PLE 1. 1. I f  R is  a ring, p = 0 and D  a derivation in R,
then 8= { — (111)!)D0 ; > 0 }  is  a differentiation in R.

EX A M PLE 1. 2 .  Let R  be a ring and R u  the ring of formal

5 )  If 2 = a k Pk  is  the p-adic expression of a non-negative integer A and if p1(X)
k()

is the maximum power of p which divides A!, then we see at once that N (2)— (2 —  a i ) "k>o
(1) - 1 ) .  From this, it can be proved without difficulty that, when A i= Y 2, a,k Pk  (1<i<n),

k>o
21+ ••• + 2,,= bkPk are p-adic expressions of a finite number of non-negative integers

k>o
21, •••, 2„ and their sum, then (2 ,+•••+2„)!/ 2 ,!.••2„! is not divisble by p if and only if

:_;_,a, k =b k  fo r every k.

vpe
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power series o f m  indeterm inates U „••• ,U ,, over R .  For every
element

P = E  a, ••• (a,i E R)
Pi>o,

of R u ,  every in teger i  w ith  1 < i < m  and  every non-negative
integer v, put

d„P  = E (P i)a , Ub••• U1 • • •  U rn .

Then, every one of the m  sequences d i = { d „ ; v > 0 } ( 1 < i< m )
is  a  differentiation in R .  F o r  each i ,  d ,  will be called the form al
differentiation with respect to U1 .  We see at once that d i x d f ,,= d i ,d , ,
(1 < i< m ,1 < j< m ,  i+  j ,  X > 0 ,  P > 0 ) .

Two differentiations 8=  {8, ; > 0 1 ,  8' = {8;,; v> 0 }  in  a ring R
will be called commutative if  8,8', = 5;,8, for every pair X, p  (X >0,
1-b> 0 ).

2. Differential rings and differential fields

The composite notion of a ring (field) R  and a finite number
of mutually commutative differentiations 8 ,=  { 8 ,; v> 0 } ( 1 < i< m )
in  R  is called a  dif ferential ring  (f ield respectively). It is denot-
ed by (R , 8 1, •••, 8 „ ,) : if the associated differentiations are clear, it
may be denoted simply by R .  W e shall call the differential ring
(field) R  ordinary  or p artial according as m = 1  or > 1 .

If a  differential ring (field) (R, 8 „ • • • , 8,i)  is g iven , w e regard
the set 0 = { 8 „ i ••••am ,,, ; > 0 , •  •  •  ,  > 0 }  a s  a  domain of operators
on R ;  every element 9= 8„ : ••8„,,n is called a  differential operator
and Pi  + ••• +v„, is called the order of O which is denoted by ord O.
If x E R, O E 0 ,  then Ox and ord O are called a  derivative of x  and
the order of the derivative Ox of x .  Notions such a s  differential
s u b r in g  ( s u b f i e ld ) ,  dif f erential ex tension ring (f ield), differential
ideal, dif ferential hom om orP h ism  and so on are defined canonically
in view of the domain C of differential operators ; namely, they are
defined as admissible ones under the operator-domain C .  If an
element cE  R  is such  that 81 s = 0  for every pair i, ( 1 < i < m ,
v > 0 ) ,  then c  is called a  constant of R .  The set of all constants
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in a differential ring R  makes obviously a subring ; it is called
the ring  o f  constants o f R .  If, in particular, R  is  a differential
field, we see that the set of a ll constants makes a subfield ; this
is called the f ield of  constants of R.

Let S  b e a  differential ring (field), R  a  differential subring
(subfield) and m a subset of S .  The ring (field) which is generated
over R  by all derivatives o f all elements o f m  i s  the smallest
differential subring (subfield) o f  S  which contains R  and m ; we
shall denote it by R  { m }  (R <m ›). The ideal which is generated
in  S  by all derivatives o f all elements of m  is  the smallest dif-
ferential ideal of S  that contains m; it is denoted by ((m)).

PROPOSITION 2. 1. I f  a is  a  dif ferential ideal o f  a  differential
ring  (R , 8 1, • - •, 8 „,), then the radical ideal n i o f  n  is  a  differential
sem iprim e ideal" of  R. (Compare this with the result in P i  p. 117.)

In case p= 0, this is well-known since (11 !)8 ( 1 < i  < m ,
v> 0 ) .  In case p + 0, for every x  Em, there exists an integer e> 0
w ith  xPe E a ; hence (8i ,x)Pe =8 i pe(xPe) G a  b y  Lem. 1. 1., so that

x Em  (1 < i < m ,  v> 0 ) .

PROPOSITION 2. 2. I f  n i  is  a  dif ferential sem iprim e ideal of  a
differential ring (R , 3 i , •••, am ) and n  a  non-empty subset o f  R , then
the quotient ideal ni : n  in  R  is a dif ferential sem iprim e ideal of  R.

I f  x E ni : n ,  th e n  xz  E n i f o r  e v e ry  z G n , hence 8i v x •z +

E E m . Assuming inductively that 81,x E nx=0
(0 < X <  v ),  w e get 8i ,,x •z 2 E  n i ,  and consequently (81„x•z) 2 E m  so
th a t 8i ,x  • z E ni. S in c e  th is  i s  t r u e  fo r  every  z E in ,  w e  have

E : n.
Let (R , •••, 8 „,) b e a  differential ring and a  a  differential

ideal of R  not containing 1. Since a is  an admissible ideal of the
ring R  under the domain C o f differential operators, C can be
regarded canonically as a domain of operators on the quotient ring
Ria. T h us, R ia  i s  a  differential ring associated with the dif-
ferentiations 8„ •••, 8„„ The canonical map of R  onto the differential

6 )  An ideal is called sem iprim e if  it coincides with its radical ideal,
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ring R i a i s  a  differential homomorphism.
L et (R, 8,, •• • , 8,, i ) be a differential ring. N ow , consider the ring

R u  o f E x . 1. 2 which is regarded a s  a  differential ring associated
w ith the differentiations d„ •••, d m . If 0 =  8 „ ,•  •  • 8 , is  an  element
of the domain (-) o f differential operators of R ,  we denote by I/0

th e  monomial Ui'l ••• U,n'nz. A ssign ing to  every x E R  the element
E ( x ) =E  ex•uo  o f  R u , w e ge t a  differential isomorphism E  o f R

into R u , which is called the Taylor expansion of R.

LEMMA 2. 1. For every choice of  non-negative integers v„ •-•, v ,n ,
le t 8,, .„  be a  m ap o f  a  rin g  R  into itself , such that 80 . 0 i s  the
identity  m ap and the m ap x — >E '(x )= E  „ n x • W i . • • U m  o f  R

in to  t h e  r in g  R u  o f  E x .  1 . 2  i s  a  ring-hom om orphism  with
,,n x )  = d 1 1 ••• d„ E '(x )  ( >  0 , • • •, v„, >  0 ) .  T hen, putting

(1 < i < m ,  y  >0 ), R  becomes a  dif ferential rin g  associat-
e d  w i t h  t h e  dif f erentiations 8i = { m ; v> 0 }  (1< i < m ) ,  where
am i •••8,,,,,,,, =8 , 1 ..„,n  an d  E ' is the Tay lor expansion of  the dif ferential
ring  R.

PROPOSITION 2. 3. I f  ( R , •••, 3,n )  is  a  dif ferential ring  and  S
the  to tal rin g  o f  qu o tien ts  o f  R ,  then w e can prolong a „ n,
uniquely  to S  so  that S  obtains a structure  o f  a differential exten-
sion ring  o f  R.

It is easy to  p rove th is d irectly , but w e get a  shorter proof
applying Lem. 2. 1. W e omit the proof here. B y the w ay, If we
denote the prolongations b y  th e  sam e sym bols 81 , •••, 8„, as the
given differentiations in R  and write each z E S  in  the form z = x/y
(x, yE R , y  being non-zerodivisor in  R ) ,  th e n  1„z  can be defined
b y  induction on V ,  using the equation

(2. 1) Sivx = (1 < i  < m ,  v >  0) .x-0

PROPOSITION 2. 4. L et cr be a  differential isomorphism of a dif-
f erential ring  (R ,  8„ ••• , 8 m )  onto a  dif ferential ring  (R ', S „  •••,
each pair of  corresponding differentiations being denoted by the same
symbols, and S ,  S '  the dif ferential total rings of  quotients of  R , R '
respectively. T h e n ,  the prolongation isomorphism of the ring S  onto
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the  ring S ',  w hich is uniquely  determ ined, is a  differential isomor-
phism  o f  S  onto S '.

The proof is obvious by virtue of the equation (2. 1).

PROPOSITION 2. 5. I f  (F, 8 i , •••, a m )  i s  a  dif f erential f ield and
G  a  separably  algebraic extension f ield o f  F ,  then we can prolong
8 1, ••• , 8 ,n uniquely  to G so that G obtains a structure of  a differential
extension f ield o f  F.

In order to prove this, we may suppose that EG : F l<0  0  ,  and
consequently, G  is generated over F  by an element x  which is a
zero of a polynomial f ( X ) =  a k X k (a k  E F , an = 1 )  irreducible over

k=0
F .  Thus, the proof can be easily done by means of Lem. 2. 1. We
remark that, in view of the uniqueness, if we denote the prolonga-
tions by the same symbols 8„ •••, 8,„ as the given differentiations
in R ,  then 8 x  can be defined inductively by means of the equation

d f(2.2)
d X

( x ) •8 ,x  +± E  8 , a k •8„ i x• • •• •8 x  = 0
,,-0 , „+•••+vk- ,

(1 < i < m, > 0) ,

so that, for every bkxk E G (bk  E F) ,
k=0

(2. 3) 6 1 yE 8„ 
0
bk  • si ,  x• ••• . 8 „ , x  (1  <  i >0 )  .k--0 

PROPOSITION 2. 6. Let be a  dif ferential isomorphism of a dif-
f erential f ield (F, 6 ,  • • • ,  8 . )  onto a  dif ferential f ield (F ',  8, , •••,
and G  a  separably algebraic dif ferential extension field of F .  Then,
any isomorphism, which is a prolongation of 0-, of  G onto a  (separably
algebraic, and consequently differential) extension f ield G' of  F  is  a
dif ferential isomorphism.

The proof is obvious by virtue of the equations (2 . 2 ) and (2. 3).

3 .  Differential polynomials

Let (R , 8 1, , 8 . )  be a differential r in g . If x „  • • • , x „  ate ele-
ments of a differential extension ring of R  and Ox;  (0 E C-) , 1 - < j< n )
satisfy no polynomial relation over R ,  then x „  • ,  x „  are called
differentially  independent over R.
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Now, let X ;( 1)  •••, (..7 E  J  and P „  * • . ,  V m  being non-negative
integers) be a set of ind e te rm in a te s  over R  and S = R [X 5 (1),, ••• , v .);
j e  L), > 0 ,  • • • ,  v „ ,  > 0 ] .  Prolong Si , ( 1  <  <  m , 0 )  t o  S  as
follows :  denoting the prolongations by the same symbols 8 i , ,

1 ° 8 i , X ; (1 )„  ••• , ( i ) X 5 (1 )1 , • • • ,  u + v i ,  • • • ,  um)

( i E  J , vi >  0 , v„, >  0 )

2 °  for a monomial M ---aY,•••Y r  (a E  R  and Y 1 , • • • ,  Y , being some
o f X 1 (1)1 , •••, v„,) ( jG J, 1), > 0 , • • • ,  v „ ,> 0 ) ) ,

3 °  for a finite number of such monomials M„ •••, M .,  as in 2°,

(E  M k) -  8 i v M k  •
k= 1 k.=-•1

Then, (S, 8„ •••, )  becomes a  differential extension ring of R.
Denote X 5 (0 , • • • ,  0 )  b y  X 5 , th en  X 5 ( 1 , •••, v.) ann,„,X.;
(jE J, •••, > 0 )  so  th at S = R {X ; ; jE J } .  T h e X ; ( jE J )
are differentially independent over R .  Elements o f S  are called
differential polynomials of X i ( jE  J)  over R .  As a special case, if
R  is a differential field F , we get the differential field of quotients
G= F<X ;  ; j>  o f S.

PROPOSITION 3 .  1 .  I f  (R,8„ •••, am ) i s  a  dif f erential ring and
X 1  (j E J )  a set of differentially independent elements over R , then
every constant of S= R {X ;  ; jE  j}  is contained in R.

P ro o f . In order to prove this, it is enough to consider the
special case where R  is an ordinary differential ring associated with
a single differentiation 8 =  { 8 , ;  v > 0 }  and a single differentially in-
dependent element X over R .  We shall prove, for each A E S = R {X }
with A 0 R, the existence of a positive integer 1-1, such that a/A +0.
There are two alternative cases as follows.

Case I: there exist some derivatives of X  which are contained
in  A  with exponents not divisible b y  p .  (This case is  the only
possible one if p= 0 .)

Among such derivatives of X, let 8,X be the one of the highest
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order. W rite A  in  th e  form A = A . 1 ( X ) i ,  where A i  are poly-
,-0

n o m ia ls  o f ( X)P (p > v )  and 8 ,X  (cr<  v )  over R ,  a > 0  and A + 0 ,
and where, furthermore, ce < p  —1 provided p =1_0. Choose a positive

integer it, such that ( P
i a
+  v )  is not divisible by p (see footnote 5).

Since each term of A i  i s  of the form

a(8 , 1X ) 0iPe' • ••  (8 , ,,X )P,Per (8, 1X )f i •••X )  I s

a E R ;  r ,  s  being non-negative integers ;

Pr >  v ,  ( 7 1< v , Œs < P >

Pi, P r ,  (71 I • •  7  CrS being distinct ;
0 1 , • • • , 1( 7- being positive integers not divisible by p ;
e 1 , • • • ,  e r ,  f i ,  • • • ,  f ,  being positive integers /

8,(A 1 ( X ) i)  is  a sum of parts of the form
.•• 8. 1 (8,X )•••8,„, i ( 8 , X ) .

x0+•••+x,
-Fri+•••+7,+,0].+••.+wi=

Using (1.2) and observing 8 ,X (p> ,a+  v ) , we get

a,(A i ( , x ) i )  =  i  ( 1̀ .
 p
+ ( 8 , X ) i - i ( 8 „ , , X ) A i + [ • • • ]  ,

where the [ • • • ]  i s  a polynom ial of ( X )"  ( o>  P+ v )  and 8 0.X

(cr< p ± v )  over R .  Hence,

(3. 1) 8,J1 (aA ra(8 ,X ))•( 14
 1
+, 1 • v ,X + [ • • • ]

(the [ • • • ]  being as above),
so that 8„A =1=0.

Case II: every derivative of X  is contained in A exclusively
with exponents divisible b y  p .  (In this case, w e have necessarily
p i 0 . )

Let 8 , 1X ,  • • • , 8 , r X  be a ll the distinct derivatives o f X  which
are actually contained in A .  Denote by e ( v i ) ,  • • • ,  e(2)r )  the positive
integers such that A  is  a polynomial of ( ,X ) P ' ' ) , •••,

over R  and each o f e ( I .0 ,  • • • ,  e (v r )  is  taken  as large as possible,
and put e =  max (e( 1 1), •••, e()),-)), =  p i ; X =  ppe and p i = x/pe(vi)

(1 < i < r ) ,  where f  is a sufficiently large positive integer such that
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(P i ± v i )  (1 < i < r )  are not divisible b y  p  (see footnote 5). For

each term

M  =  a (6, i X riP e c ' "  • (8, , ,X ) arP " )

(aG R ; a„ • • • , a,. being non-negative integers)

of A , let us observe the derivative o f X  of the highest order in
8 ,M .  Using (1 . 2 ), we get

8,M  = ace i R t t i + x ) . 1 - 1 8 X}Pe'vl) (8 X )2Peo'2) ...(8, , X)orpeo r)

Pi

p e (V r)

a a r ( ( th r
i a
+  V r ) ( 8 Vr X r r  181kr-vrX i

(81,1X )cn1pe01)...(8vr i X ) r _ i P e (V r_ i )

+ E...1
,

Ê  ( M / (6, 1x ) 1) ) • ICI ' ±
pe(i)

 v-X 1 +E...1p i

where the [ • • • ]  contains n o  derivative o f  X  o f  order > 0  =

max ( P I  +- • • • ,  Pr+ V A  Hence,
peoy

(3.2)8 , A .  = (aA/a(s, i x)Pe`vi))- { ( Ib i + , i x ) + E.••1 ,
p i

where the [ • • • ]  i s  as above and aA. a (6, i x )P"  d = 0  ( 1  <  < r ) .
Suppose th a t o n ly  one of i +  v , ,  Jar + vr  is equal to co, then
obviously 6,A  -1-0. On the contrary, suppose th at more than one
o f / 1 +  • • - ,  Pr+ 2) r are equal to (0 ; i f  we had 8 ,A =  0 , we should
have e(v i ) =e(2)1 )  fo r at least tw o  distinct values of i ,  j  in order
that 8 X  should vanish in 6 „A ; this would im ply /-t•i =  ,  contra-
dicting with the inequality y i d=

C O R O L L A R Y  I f  (F, 8 1, •••, 6 m ) is a dif ferential field and X ; Cie .T)
a set of differentially  independent elements over F, then every constant
o f G =F<X ;  ;  j  J >  is contained in F.

P ro o f .  In order to prove this, it is enough to consider the
special case where (F, 8 )  is  an ordinary differential field and the
set X;  consists only of a single element X .  Let A IB  be an element
of G =F<x > with A I B F ,  where A, B  are elements of F{ X }  and
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relatively prim e as polynomials o f  derivatives o f  X  over F.
Assume that A 1 B  is  a constant. Then, we get

(3.3)8  A •  B  —  A •  8  „ B  =  0

for every positive integer p.

Case I: there exist some derivatives of X  which are contained
in A or in B  with exponents not divisible by p.

Among such derivatives o f X , le t 8 ,X  b e  the one of the

highest order and write each of A, B  in the form A -=±  A i ( X ),

B = ,  where Ai  and B  are polynomials of opx y (p> 0
and 8 . X  ( c r < v )  over F ,  at least one of a, 13 is positive, A==0 and
and B p  + 0 ,  furthermore, a <f i —1 and bi<p  —1 provided O .
B y (3. 1), we get

8,A •B— A •8,13

={0.,40(&,x)>B—A(aBia(a,x))}.(P t z
+

 ) •
 +

x+  L• • •]

(the [•••] being as in (3. 1)).

Since (aAla(&,x))B—A(aBia(s,x))=0, this contradicts with (3. 3)

i f  we take a positive integer p  such that p
+ v )  is  n o t divisible

by p .
Case II : every  derivative  of X  is contained in A  and B  ex-

clusively with exponents divisible b y p .  Concerning A  and B,
determine 8,2f , •••,8,,X , e(v 1), e ( v r ) , p , X , • • • ,  tb, as in the
proof (Case II) of Prop. 3. 1. W e get by (3. 2)

A •B — A •B

{(aA la(8, 1X)Pe (v d)B— A (aBia( x )P e'v )} (
I j (8 .,.x)P"i)tti

+C...1
(the [••-] being as in (3. 2)).

Similarly as in the proof (Case I I ) o f Prop. 3. 1, we see that this
contradicts with (3. 3).

Now, let (F ,  8 „  • • • ,  8„,) be a  differential field, X „ •••, X „ dif-
ferentially independent over F  and R = F I X „  • • • ,  XJ the differential
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ring of differential polynomials of X „  X „  over F.
I f  we denote by P(X „ •••, X „), or simply by P(X ), an element

o f R , and if ( x 1 , « ,  which may be denoted simply by (x ), is
a  set o f n  elements o f a  differential extension field of F ,  then
P(x „ •••,x „), or simply P(x ), means the element which is obtained
from P(X„ • • • , X„) by the substitution 8,„X J --->6i ,x ;  (1 < i  < m ,u > 0 ,
1< j < n ) .  I f  P(x )=0 , (x )  is called a z ero of P (X )  or a solution
of the dif ferential equation P ( X ) = 0 .  I f  m = { P,(X ); X E Al i s  a
subset of R  and (x ) is  a common zero of a l l  P x (X )  (X E A), then
(x ) is called a zero of i n  or a  solution of the sy stem  { P,(X )=0;
X E AI of  dif ferential equations. Let in be the radical ideal of ((m))
in R , then  in  is a  differential semiprime ideal o f R  (Prop. 2.1),
and the set of zeros of m  is identical with that of

Let p  be a  differential pirme ideal o f R  (not containing 1),
and q  th e  differential homomorphism o f R  onto the differential
quotient ring R / p .  Since we can identify every a E F  with its
image p ( a ) ,  we identify F  with a subfield of R / p .  Since R /p  is
a differential integral domain, its field of quotients G is a differential
extension field of F .  I f  w e  put q ( X ) = x ;  ( 1 < j < n ) ,  w e get
R /p =F{ x „ •••, x „ }  and G = F < x „  ••• , x „ ›. W e see at once that (x)
is  a zero of p , and that an element P(X )  of R  is contained in p
i f  P(x )= O. A zero (y) of p  is called a generic zero of p  i f  every
P ( X ) E R  with P ( y ) =0  is contained in p; the above-mentioned (x)
is  a generic zero of p.

Let (z 1 , •••, z n )  be a set of n  elements of a  differential exten-
sion field of F .  If we denote by pc z y p the set of a ll P(X ) G R  with
P(z )= 0, then P c z ) / F  is a differential prime ideal of R  not containing
1 and (z )  i s  a  generic zero of p( z ) , , ;  the above-mentioned p  and
(x ) are such that P=1)(xvy•

4 .  Condition (S ) and condition (SO

Let (F, 6 ,  • • . ,  8„,) be a differential field and H  its differential
extension field. If w e say  th a t qi i s  a  differential isomorphism
over F  of H  into a differential extension field of F , we mean that
the differential isomorphism q, leaves every element of F  invariant.
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We say that H  satisf ies the condition (S ) over F , if

{
there ex ists, f o r  every ze  H — F , a  dif ferential isomor-

(S) phism a' over F  o f  H  into a dif ferential extension f ield of
H  such that aiz4= z.

In particular, we say that H  satisf ies the condition (So)  over F , if

there ex ists, f o r  ever zE H — F , a dif ferential automor-

{ ph ism  C T  over F  o f H  such that crz  I  z.

L et us consider some results about these conditions, which will
be used afterwards.

PROPOSITION 4. 1. Let (F , 8„ •••,8„,) be a  dif ferential field, H
its dif ferential extension field which satisf ies the condition (So)  over
F  and z„ •••, z r  a  f inite num ber of elements of H which are linearly
independent over F . T h en , there ex ist r  dif ferential automorphisms
C r„ • • •  0 -

7,  o f H  over F  such that det . CriZ  1 ‘1<i<r,1<j6r s i=  0 .

P ro o f . We shall prove this by the induction on r. Since the
statement is triv ial for  r= 1 ,  l e t  r  b e  > 1 .  B y  the induction
assumption, there exist r - 1 differential automorphisms or„ •••, Cry _ i

o f  H  over F  such that det ( 0 - i z i ) i ‹ i ‹ r - 1 , 1 ‹ ; - , = [ = 0 .  N ow, suppose
that we have

Cr1Z1 • • •
Cr

 1 Zr -  1 ŒiZ r

0
Crr-1Z 1 ••• °-

r -  1Zr -  1 Crr - 1ZY

0- Z i • • • cr,Z,. _ 1 0-Zr

for every differential automorphism 0 -  o f  H  over F .  Choose r- 1
- 1

elements a„ •••,a r _ , of H  such that E a i z i .a i =cr i z r (1 < i < r - 1 ) ,

then we have

(4.1)•  a;  =  o- zr

for every differential automorphism 0 -  o f  H  over F , and consequ-

ently 
j - i

 

, 7-0-zi •Tai = To- zr = ' , 7-0- z i •a;  i.e. ' , 1-0-z•
.7
 •(o-a•

.1
 —a5 ) = 0  for everyj_ i

 

(So)
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pair of differential automorphisms o ,  T  o f I/ over F .  Since, for
each pair of T and i (1 < i < r  —1), we can take so that TŒ=o- i ,

,-1
we get E  Gri z i (ra ;  -  a1 ) 0 .  Hence, Taf =a ;  (1 <j<r — 1 )  for every T ,

j - i

and a f E F  ( 1 < j < r  —1) dy the condition (S0). Thus, we get from
(4. 1) the equality z i a ;  = Zr (a contradiction).

PROPOSITION 4. 2. L et (F, 8„ • ••, 8,n )  be a  dif ferential f ield, H
its dif ferential extension field which satisf ies the condition (S0)  over
F  and x„ • •• , x„ a finite number of  elements of  H such that the ring
F [O x  ; OE®, 1< j < n ]  is  of  f inite ty pe ov er F .  L e t  X „ •••, X „
be dif ferentially  independent over H , an d  p u t  R = F { X „ •-• ,
P=P(x)iF and S=G {X „ • •• ,X „} where G is an intermediate differential
f ield between F  and H .  Then, Gp can be represented as an intersec-
tion o f  a f inite num ber o f  dif ferential prim e ideals o f  S .  I f

(4.2)G p  = n  • • • n

(T k  being dif ferential prim e ideals o f  S)

is such an  irredundan t representation, we have

(4.3)T k n R  =  p, dim T j ,  =  dim P  (1  <  k  < r)

where dim p  and dim T k  are  th e  transcendence degrees o f  R/p over
F  a n d  o f  S IT k  ov er G  respectively.

P ro o f . Since F[Ox i  ; OE ®, 1< j < n ]  is  of finite type over F,
we can choose among 61x ;  (0 E 1 < j ( n )  a  finite subset y „ •- ,
su ch  th a t F[0.,r ;  ; OE 0, 1 < j  <  n ]= F [y l , •  ,  y i ]. Denote by
Zx (X E A) all of Ox ;  (0 E e, 1 < j < n )  other than y„ •••, y ,. Further-
more, denote OX ;  (0 E ® , 1 < j < n )  b y  Y„ • • •, Y ,, Z (X  E A) corre-
spondingly as we denote Ox;  (0 E C, 1 < j < n )  by y„ • • • , y„ zx (XE A),
an d  p u t R ' = F [ Y i , •••, S '= G L Y ,  • • • ,Y a  an d  p '= p r\R '.  If
we put I.V0.-- pc ,/G for each differential automorphism of H  over
F ,  we can see by Prop. 4.1 that GI)/ nv,,, so that Gp' is  a semi-

prime ideal of S ' .  Therefore, we get an irredundant representation

GP = sfq r\

and can prove without serious difficulties the equalities
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v n i r  = dim 43', dim p' (1 < k  ( r ) .

L e t A, ( Y )  be elem ents o f  R '  such  that zx = A, (y) (X E A).
Then, we see easily that p= (p', ZÀ —A,(Y) ;  X E A ) in  R ,  and that
the ideals Th= (43;„ Zx —Ax(Y ) ; X E A ) are prime ideals o f S ,  and
that

Gp = T i n • • • n T r  (an irredundant representation),
Tkr"\ R  = p , d im  Tk = dim p (1 k  < r ) .

A t last, we see by Prop. 2. 2 that Tk are differential ideals of S.

PROPOSITION 4. 3. Let (F,8„ •••,8„,) be a differential f ield, H  its
dif ferential extension f ie ld  and G an intermediate dif ferential f ield
between F  and H such  that H  satisf ies the condition (S 0)  over G.
I f  there ex ist a f inite num ber o f elements x „ •••, x n  o f  H  such that
H =F<x „ ••• , x n > and F[Ox i ; OE 0 ,  1 < j < n ]  is of f inite type over
F, then each differential autom orphism  cr of G over F  can be prolonged
to a dif ferential isomorphism  of H  into a differential extension field
o f H.

P ro o f . Let X „ •-•,X „ be differentially independent over H, and
put S =G { X „ • • • , X 7,} , T  = H  , •  •  •  ,  ,  4 -1-1(x)/G in S  and si.3a, the
set of all differential polynomials o f S  which are  obtained from
elements of by operating 0-  on  their coefficients. Then, r is  a
differential prime ideal ( 1) of S ,  and, similarly as Prop. 4. 2, there
ex ists a  differential prim e ideal 'V (  1 )  o f  T  w ith  T'n s=
Denote by (y1, •••, y„) a  generic zero of 13', then (y )  i s  a  generic
zero of r ,  and w e see  th at a  differential isomorphism o f H =
G  , • • • , x n > into H<Y1, •••, y„> is determined by x 1 —y

 ( 1  < n )
such that it prolongs (T.

PROPOSITION 4. 4. Let F  be a differential field and G a separably
(and norm ally ) algebraic extension f ield of F . Then , G  can be re-
garded as a  dif ferential extension field of F  w hich satisf ies the
condition (S ) (the condition (So)  respectively) over F.

P ro o f . For each z E G —  F, there exists obviously an isomor-
phism  a' over F  of G  onto a  separably algebraic extension field
G ' o f G  with 0' z z  (an automorphism a  over F  of G with 0- z  z ) .
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By Prop. 2. 6, 01  i s  a  differential isomorphism over F  of the dif-
ferential structure of G  onto that o f G ' (0- - i s  a  differential auto-
morphism over F  of the differential structure of G).

REMARK. The converse of Prop. 4. 4 is partially true. Namely,
if  G  is  a  differential extension field of F  which is algebraic over
F  and satisfies the condition (SO over F , then G  is separably and
normally algebraic over F.

5. Linear dependence over constants and linear homo-
geneous differential equations

If x „  • • . ,  x„ are finite number n  of elements of a differential field,
and 0 , ,  • • • , 0 „  n  differential operators, we denote det 

b y  We 1 . „0 „ (X 1 , • • •  x n ) •

PROPOSITION 5. 1. Let x l ,  • • • ,  x „ be n  elements of a  differential
f ield F .  Then, x „ • • • ,  x „ are linearly  dependent over the f ield C  of
constants of F , if and only  if  W  l x0, 1 ,  • • • ,  x , i )  = 0 for every choice
o f n  dif ferential operators 0 1 , •-•,

The proof o f Prop. 5. 1 an d  th e  following C or. are  straight-
f oward.

COROLLARY Let x , ,  • • • ,  x „ be elements o f a  dif f erential f ield F.
I f  th e re  ex is t n - 1  dif f erential operators O „ • • • ,0 „_ ,  such that

•••, X n  1 ) J 0 and W 0 1 ...,,_ 1 0.0„_ 1 0  (x 1 , ••• X 0=0 f o r  every dif-
f erential operator 0 ,  then x „ • • • ,  x , ,_ ,  are linearly independent over
the f ield C  of constants of F  and x „  i s  a  linear com bination of
X1 , • • • ,  x „_ , over C.

Since W 0 1 0,,(xi, •••, x „ )  a r e  polynomials o f  derivatives of
•••, xt,  with rational integral coefficients, we can speak without

ambiguity of linear dependence or linear independence over constants
as one does in  [4 ].

L et (F , 8„ •••, en ) be a differential field, X  a single differentially
independent element over F .  Linear combinations over F  of deriva-
tives of X  are called linear dif ferential form s of X  over F .  If L

is  a  linear differential form , the equation L = 0 is ca lled  a  linear
homogeneous differential equation of X  over F.
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Herein, we shall consider F-modules of linear differential forms
of X  over F .  If such a module WI satisfies the condition i .,931 TJJJ
(1 < i < m ,  u> 0 ) ,  we shall call T1 a  dif ferential module o f  linear
differential forms o f X  over F .  I f  L x (X E A ) is  a  se t o f linear
differential forms o f X  over F , the set 2 of all linear combinations
over F of all derivatives of L, (X E A) makes the smallest differential
module of linear differential forms o f X  over F  which contains
L x (X E A ). 2  is  ca lled  the differential module of linear differential
forms o f X  over F  which is generated b y L x (X E A ) .  A solution
of the set of linear homogeneous differential equations L x = 0 (X e A)
is  a zero of 2, and vice versa. Thus, the consideration of a set
of linear homogeneous differential equations o f X  over F  can be
transfered to  th at o f a  differential module of linear differential
forms of X  over F.

Now, arrange all differential operators into a sequence {8 1,82 , •- }
and use the notation 0, < 0 ,  (or 0 ,> 9 ,) to mean that 0 , precedes
to 0 , in that sequence. I f a  differential module 2  of linear differ-
ential forms of X  over F  is given, we can divide up the sequence
{ 0„0„ •••}  into two subsequences {0;. , 0 , •••} , • • • } ,  the
latter of which may be finite, in such a manner that 2 has a base
L e  (i > l )  of the form

0 X — E a 11 •07 X (i > 1 ,  a i ;  E F ; a i ;  =  0  if 01
.,' > 0 ) .

This base of 2  do es d ep en d  on the arrangement {G„ 0 2 , •••},
but we see that the number of OÇ', ••• does not depemd on it.
I f  r  is  a non-negative integer not larger than that number, it is
easy  to  show that there ex ist r  zeros of 2  w h ich  are linearly
independent over constants.

Let I=  { L =O ; X  E Al be a  set o f linear homogeneous differ-
ential equations o f X  over F ,  and 2  the differential module of
linear homogeneous differential forms of X  over F  which is gene-
rated by L  If the number o f 6P,', OZ, •••, which are obtained for 2 in
the above-described manner, is finite (say n )  then I is said to be
of f inite ty pe (or o f  type n).

PROPOSITION 5. 2. Let I be a set of linear homogeneous differen-
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tial equations of  X  over F .  I f  I is o f  type n , there ex ist n  solutions
of  t w hich are contained in  a dif ferential extension f ield o f  F  and
linearly independent over co n stan ts . I f  x „ •••, x „ are such solutions,
every solution of  I , w hich is contained i n  a  dif f erential extension
f ie ld  o f  F<x „ •••, x n >, i s  a  linear com bination o f  x „ •••, x „ over
constants.

Such a set of solutions x „ •••, x „ o f f  will be called a fun-
dam ental system  of  solutions of

Chapter II. Picard - Vessiot theory

In this chapter, let (F , 6„ •-•,8„,) be a  fixed differential field
o f an  arbitrary characteristic p  (zero or non-zero) such that the
field C  of constants of F  is algebraically closed. The following
discussions are done, in general speaking, in a similar manner as
those o f [4 ], so that the proofs of many of the propositions are
omitted or outlined.

6 . P icard - Vessiot extensions

Let G  be a differential extension field of F  which satisfies the
conditions :

(P1) there exists a set I of linear homogeneous differential equa-
tions of a  differentially independent element X  over F  which
is  of type n  and has a fundamental system x 1 , •••, x„ o f solu-
tions such that G=F<x„ •••, x n >;

(P2) every constant of G  is contained in F ;
(P 3 )  G  satisfies the condition (S ) over F.

Then, G  is called a Picard- V essiot extension o f F .  The set I  in
(P1) is called a defining se t o f  linear homogeneous differential equa-
tions for the Picard-Vessiot extension G  of F .  In case p= 0, this
definition coincides with that in [4].

I f  0- ' is a differential isomorphism over F of G into a differential
extension field of G, then (ex „ ••• , x „ is  a fundamental system of
solutions of I. H ence, we get by Prop. 5. 2

0-'xi  = (01 (1 < j  <  n),
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where ( e )  are  constnts of G<0- 'G > and the m atrix (c (0- ') )  is
regular.

The following Kolchin's lemma and its corollary hold also true
under our definition of differential fields :

LEMMA 6. 1. Let H  be a dif ferential field, K  i t s  fie ld  o f con-
s tan ts , and C „ •••,C „ independent indeterm inates ov er H .  I f  a
subset m  o f  H E C „ •••,C ,J is g iv en, there ex ists a  subset m ' of
K E C „ ••• ,C ,J such  that a set (c„ •••, c,,) o f  n  constants of a dif-
f erential extension f ie ld  of  H  is  a zero of m  if a n d  only  i f  it  is
a zero o f  m'.

C O R O L L A R Y  If  H , K  are as above, and c l ,  • • • .c „ any number
of constants of a differential extension field  of H , we have

tr. deg. H (c„ •••, c „)= tr. deg.h: (c, , •••, c.) •
Let C11 (1 < i < n ,  1 < j < n )  b e n ' indeterminates over G  and

(c i )  a  regular n x n -m atrix  of constants of a differential extension
field of G .  Then, using Lem. 6. 1 and its Cor., we see similarly as
in  [ 4 ]  that there exists a  semiprime ideal g  o f C[C i i  ;  1 < i < n ,
1 - < j< n ] such that a  differential isomorphism over F  of G  into
an differential extension field of G  can be determined by

x i ( l <  j  n )

if and only if  (c'") is  a zero of g.
If cr is  a  differential automorphism of G  over F ,  we get

(Tx;  E  x ici ;  (o-) < < n) ,

where (c15 (0)) is  a  regular matrix of elements of C and a zero of
g. Conversely, i f  a  regular nx n-m atrix  (c 11)  of elements of C is
a zero of g, a  differential automorphism of G  over F  can be de-
termined by

x1--> E xici ; < n) .

The group o f all differential automorphisms of G  over F  is
denoted by ( G / F )  and called the Galois group of G  over F. I f
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x„ •••, x n  o f  (13 1) are  fixed, the map a —> (ci ,(0- ) )  is  an  isomorphism
o f 06(G IF) in to  G L (n ,C ); the im age o f ( (G /F)  is  an  algebraic
matric group and can be identified with (M(GIF).

PROPOSITION 6. 1. I f  G  is  a Picard-  V essiot extension of F, then
G satisf ies the condition (S0)  over F.

This is  clear, following [4 ], on account o f (P3).

PROPOSITION 6. 2. I f  G  is  as  above, we have

dim N (G IF) = tr. deg.FG.

The proof is sim ilar to that in  [4 ], by virtue of Prop. 6. 1 and
Prop. 4. 2.

EXAMPLE 6. 1. Let x 1 , be differentially independent over
F , and 0„•••, 0n  distinct differential operators which are fixed arbi-
trarily , and put

uo iW oo, .on (x„ • • • , xn )/ W o i (x„ • • • , x n ) ( 0 E  0 ,  1  < i  < n )
F„ = F<u o i  ; 0 E 0, 1 < i  < n > ,
G = F„<x „ xn> = F<xi xn> •

W e shall show th at G  i s  a  Picard-Vessiot extension of F „ and
65(G/F„)— GL (n, C).

B y Cor. of Prop. 3. 1, every constant of G  is contained in  F,
consequently in F .  L e t  X  be a  differentially independent element
over G, and consider linear homogeneous differential equations

W eei ...en (X) x l • • • n) W  01•••0 , i (X ly  ' •  •  y x n ) 0

i.e. 0 X —  ( -1 ) i 1 uo i •01X  0 (OE 6)

of X  over F .  T h is  s e t  o f  linear homogeneous differential equa-
tions is of type n, and x„ .••, x„ is  a  fundamental system of solu-
tions (Prop. 5. 1 and its  C or.). For an y  regu lar n x n-matrix (c 1 3 )

o f elements o f C , w e  se e  a t once that x 'i =  x i ci ;  (1 < j < n )  are

differentially independent over F. Consequently, a  differential
automorphism of G over F can be determined by x i ( 1  <j <n )  ;
s in ce  every  uo i  (0 E  0 , I < i < n )  i s  invarian t under this auto-
morphism, so is every element of F , .  Thus, G L (n,C ) is the group
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o f all differential automorphisms o f  G  over F .  T herefore, the
above-mentioned semiprime ideal g in  this case is  the zero ideal.
Now, it can  be easily  p roved  that Ox ;  ( 1 < i < n ,  1 < j < n )  are
algebraically independent over F. From this and the fact g= (0),
we can deduce without difficulties that G satisfies the condition (S)
over F .

7. Interm ediate d ifferential fields

Let G and x„ •••, x„ be as those at the beginning of the preced-
ing section.

We shall denote by _V the set of all intermediate differential
fields over which G  satisfies the condition (S), and b y g  the set
o f all algebraic subgroups of 6(G /F).

PROPOSITION 7. 1. I f  F ,  is  an element of g , then G is a Picard-
V essiot extension o f  F ,  and (._ (G1 Fi ) b e lo n g s  to  g . T h e  m ap
F, —>-(N G IF,)  o f  g  in to  g  is  bijective.

P ro o f . The first half o f this is obviously true. Since the set
o f all elements which are invariant under all elements of 6(G/F 1 )
is  F ,  (Prop. 6. 1), the map F,-->03(GIF1 )  o f g  into g  i s  injective.
L e t 6 ' be an element o f  g .  Then, the set F ' o f all elements of
G  which are invariant under all elements o f 6 ' is clearly an inter-
mediate differential field. I f  z  is an element of G — F ',  there exists
0-  E 6' with o- z-J- z, so  that F ' belongs to g .  Similarly as in [4],
we can prove the equality ( G / F ') — W.

PROPOSITION 7. 2. Let F ,  be an element o f g .  Then, 03 (G/Fi)
is  a normal subgroup o f  N (G IF) if and only  if  (FF,=- F , fo r  every
element 0-  o f  (. ( G I F ) .  I f  th at  is  so, every element cr o f  ( (GIF)
induces a  dif ferential autom orphism  C e  o f  F ,  over F , and the map
0- -- - cr. is a  homomorphism o f  the g ro up  ( (G I F) onto  the group
N (F i l F )  o f  all dif f erential autom orphism s o f  F ,  ov er F, and the
k ernel o f  this hom om orphisn2 is 03 (GI Fi ) ;  moreover, F, satisf ies the
condition (S0 )  over F.

P ro o f .  We prove here only the statement that the homomor-
ph ism  —, -(5-7  is onto ; the other parts of the proof of Prop. 7. 2 a r e
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sim ilar to those in [4].
Let T be an element of 6 (F 1 /F ) , and X„ •••, X„ differentially

independent over F „  and put R i = F i {X„ •• • , X„}, S=G {X„ •-•, X n },

P=P(x)/Fr  D en o te  b y  p-  the set of all elem ents o f R ,  which are
obtained from differential polynomials in p by operating T  on their
coefficients. Then, p  is  a differential prime ideal of R ,  not con-
taining 1, and, we can prove sim ilarly as Prop. 4. 2 that the ideal
Gsrf  of S has an irredundant representation as an intersection of
differential prime ideals • • • ,  Tr  o f  S ,  s o  th a t  R,r\vi
(1< i < r ) .  I f  (.Y1, y„) i s  a  generic zero of T „  (y )  is  a lso  a
generic zero of If. Now, w e  express ev e ry  z E G  in  the form

z  =  A 1 (x)1B1 (x) (A i(X ), B ,(X )e R 1 ; 131 (x) 0) .

Denoting by AI (X ) ,  B  ( X )  the differential polynomials which are
obtained from A,(X), B 1 (X ) respectively by operating T on their
coefficients, put

z' =  Ai (y)/Bi (y) .

This z' is well-defined by z, and the map z— z' determines a dif-
ferential isomorphism af of G  into G<y„ •••, y n >  which is obviously
a prolongation of T .

On account of the existence of 0 ', we can see, using Lem. 6. 1,
the existence of a differential automorphism a  o f G  over F  which
prolongs T .

8 .  P r im it iv e s  a n d  exponentials

P r im it iv e s  Let x b e  an element o f a  differential extension
field of F ,  and put ai ,x = a i ,  (1<i<n2, v>0) and 0x=a, (0E e).
If a E  F  (1 < i< m ,  v > 0 )  i.e . a, E F  (0 E e , o r d  0 > 0 ) ,  x  is called
a prim itive over F .  If x is a primitive over F  and a ' a differential
isomorphism over F  o f F < x>  into its d ifferential extension field,
then ex — ci+x , where c' is  a constant of F<x><Œ'F<x>>.

Let us suppose that x  is  a primitive over F  with x  F , that
every constant of G= F<x> is contained in F, and that G  satisfies
the condition (S )  o ver F .  Then, choosing tw o in tegers íö,
(1<i o <m, v o > 0 ) w ith  ai o .„0 -1=0, the set o f linear homogeneous
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differential equations

0X—(a o la i 0 , 0 )•8 i 0 ,0X  =  0( 0 E  0 ,  ord 0 > 0 )
over F  has a fundamental system 1 , x  of solutions, so  that G  is
a  Picard-Vessiot extension of F .  W ith respect to  1 ,  x ,  every
element 0-  of the Galois group 6 =6 ( G  I F )  is identified with an
element o f GL (2, C):

f l  c\
\O 1) (c E C ).

Hence, 6  i s  abelian and anticompact (see [ 4 ] ) .  The map 0- ->c
is an isomorphism of 6  into the additive group C E  of C , the image
o f 6  being an algebraic subgroup of C .  W e  have two possible
cases :

Case I : suppose is  o f finite order s. Let its elements be
OE0 (the identity map), o,, •••, crs-, and their images c0(= 0), c1, •••,

Then, x  i s  a  root o f a n  algebraic equation 11 (X + c i ) =a (aE  F ),=0
which is irreducible over F ,  and x  is separable over F .  Since

= c o i.e . sc1 = 0  (1 < i < s - 1 ) ,  Case I can occur only for p 0. We
can see that s is  a power fie of p , and that there exist e  elements
7„ •••, 7 e o f  C , which are linearly independent over the prime field,
such that the additive group {c 0 , c„•••,c s _1} is generated by 71 , ••-,
(( w ill be denoted by 6„,•, e .)

Case I I : suppose 6  infin ite. Then, x  is transcendental over
F, and the isomorphism 0- ->c is onto C .  (In  this case is denoted
by 6 ,— ) I f  p=i- 0 , for every power p1 of p , C ' contains algebraic
subgroups of the form 6 , 1 T o  s u c h  a group a y i  corresponds
the intermediate field

= F<  0 < h l i  - i (x+ h i 7,+•••+11,7,)> .

0 < 1 1 ,‹ p  - 1

Exponentials Let x  b e a non-zero element o f a  differential
extension field of F ,  and put ( x )/x=a 1,  (1< i < m ,  v> 0 )  and
(0x)/x=a 0 (0E  CI). I f  a i „ E F  ( 1 < i  < m ,  v> 0 )  i.e . a, E F  (0 E 6 ) ,  x
is called  an exponential over F ,  I f  x  i s  an exponential over F
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and OE' a differential isomorphism over F  o f F<x> into its differ-
ential extension field, then OE'x=c/x, where c' is  a non-zero constant
o f F<x><OE'F<x>>.

Let us suppose that x  i s  an exponential over F  with x  F ,
that every constant of G= F<x> is contained in  F ,  and that G
satisfies the condition (S) over F .  Then, the set of linear homo-
geneous differential equations

OX—a0X = 0 ( 8  E 0)

over F  has a fundamental system x  of solutions, so  that G  i s  a
Picard-Vessiot extension of F .  With respect to x, every element
OE of the Galois group 6= 6(G  1 F )  is identified with an element of
GL(1, C):

C r = C  ( C  E C) .

Hence, 6  is  abelian and quasicompact ( s e e  P I , and an algebraic
subgroup of the multiplicative gronp C  o f  C .  W e have two
possible cases :

Case I :  suppose 63 of finite order s. Similarly as in [4], we
see that Xs E F  where s is not divisible by p ,  and that 6  consists
o f a ll s-th roots of unity. (63 will be denoted by 6 9 .)

Case I I : suppose infin ite. Then, x is transcendental over
F  and 6—Cx. (In this case ( is denoted by 6 E .) For every positive
integer s which is not divisible by p , Cx contains a unique algebraic
subgroup 6 , of all s-th roots of unity, and the intermediate differ-
ential field F s = F<.xs> corresponds to 6 s .

9 .  L io u v i l l ia r t  extensions

Let H  be a differential extension field of F .  Suppose that H
satisfies the following conditions :

(L1) every constant o f H  is contained in F,
(L2) there exist a finite number of elements y„ •••, yr  o f  H  such

that H= F<y„ •••, yr >,
(L 3 ) i f  we put F o = F, F J =F ; _i <y i > ( 1 <j<r) ,  it holds that, for

each j (1< j< r ) ,  either yi  i s  a primitive or an exponential
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over F 5 _ „  or y;  is separably algebraic and normal" over F 5 _1 ,
(L 4 ) H  satisfies the condition (S) over every F 5  ( 0 <j<r) .
Then, H  is called a  Liouvillian extension of F .  In case p  0 , this
is  a  Liouvillian extension satisfying the normality condition of
the remark at p. 38 of [4].

Now, let G  be an intetmediate differential field between F  and
H  such that G  is a  Picard-Vessiot extension of F.

LEM M A  9. 1. L e t H  a n d  G  be as abov e. Then, G<y ,> i s  a
Picard- V essiot extension of F< y 1 )', and G  is  a Picard-  Vessiot ex-
tension o f F<y i >r\G, and we have

61.(G<y i >IF<y ,>)= 63 (GI F<y,>r■G) .

The first two statements are obvious. The last statement can
be proved similarly as in  [4 ] (Chap. IV § 21).

LEMMA 9.2. L e t  H  an d  G  be as above. Then, 3 = ( G /  F )  has
a norm al chain, in  which every quotient group is abelian or finite.

The proof is similar to that in  pp. 39-40 of P a
We shall distinguish, a s  in  P a  te n  types of differential ex-

tensions of F , namely, extensions by

1 °  primitives, exponentials, and separably algebraic elements,
2 °  primitives and exponentials,
30 exponentials and separably algebraic elements,
40 p rim itives and separably algebraic elements,
5 °  primitives and separable radicals
6° exponentials, 7 °  primitives,
8 °  separably algebraic elements,
9 °  separable radicals, 10 ° rational elements ;

for each of these types, we do not exclude the possibility of finite
repetitions of infinite sequences of extensions.

Let 6=63 (G I F ) be the Galois group o f  a  Picard - Vessiot ex-
tension G  of F  and its component of the identity, and list the
properties which they may possess :

7 )  This means that the separably algebraic extension Fi_ 1<y i >=Fi_ 1 ( y 5 )  of F i _ i

is normal over F i_ i
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10 0 .°  is solvable, 2 °  6  is solvable,
30 6 °  is quasicompact, 40 0 °  is anticompact,
50 6  is solvable and 6° is anticompact,
6 °  6  is solvable and quasicompact,
7 °  6  is solvable and anticompact,
8 °  6  is finite, 9 °  6  is solvable and finite,

100  0 =  {co}  ( a ,  being the identity).

PROPOSITION 9. 1. L e t  G  be a Picard- V essiot extension of F,
6 - 6 3 ( G IF )  the Galois group, 06° its component of the identity and
i  a positive integer < 1 0 . I f  6  is contained in  a  L iouv illian ex-
tension o f  F  o f  type i°, then 6  is  o f type i°. Conversely, if  G  is
o f type i°, then G  is of type i°.

P ro o f. Suppose that G  is contained in a Liouvillian extension
H  o f F  of type T h e n ,  we can prove similarly as in [4] (p. 40)
that 6  is of type i°.

Conversely, suppose that 0  is of type i°, and let us prove that
G  is of type i°. Since this is clear in case 8 < i< 1 0 , we consider
only the cases 1 < i< 7  as follows.

6° is a normal algebraic subgroup o f 6 .  Therefore, by Prop.
7. 2, it corresponds to the intermediate differential field F °  between
F  and G, such that 6°— 63(G/F°), 63/0°=6(F7F) and F° satisfies
the condition (So) over F .  Hence, F° is a  finite algebraic extension
o f F ,  and, moreover, it is separably and normally algebraic over
F  (see Rem. at the end of § 4). Since 6 ' is of type 2°, 2°, 6°, 7°,
7°, 6° or 7° according as 6  is of type 1°, 2°, 3°, 4°, 5°, 6° or 7°,
we may assume for our purpose that 6  is connected and of type
2°, 6° or 7°.

Case I :  6  is of type 7 ° .  Since 6  can be reduced to special
triangular form (see [4] pp. 19-20), the defining set of linear homo-
geneous differential equations o f  G  over F  has a  fundamental
system x 1 , •••, x„ of solutions with G =F<x i ,-••,x ,,> such that

(9.1)0 - x ;  = E x i ci ; ( 1 < n, c i ;  E C , c5 1 - 1 )

for every 0-  E 03. Let us prove, by means of (9. 1) and the induction
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on n, that G is of type 7 ° .  Since x ,  is contained in F  in any case,
the case n = 1  is  trivial. Now, suppose n > 1  ;  then, we get

Cr (X i/ X 1 ) -=  Ci f - PE  (xi /x i ).c i ; ( 2  <  j < n ) ,

so that

0-(0(x i /x 1)) e(x1/x1)•c1; (2< j < n ;  BE o r d  0 > 0 ,  cr E .
i =2

By the induction assumption, F<0(x2/x1), • ••, e(x n /x,)> is of type
7 °  fo r each 0 E w i t h  ord  0 > 0 ;  hence, F09(x2/x1), • ••, 0(x,i/xi) ;
OE 0 , o r d  0>0> i s  o f typ e  7 ° ,  and s o  i s  F<x2/x1, •••, x,a/xi>=
F<x, , • • •, x>= G.

Case I I :  N  is  of type 6 ° .  Since can be reduced to diagonal
form (see [ 4 ]  pp. 19-21), the defining set of linear homogeneous
differential equations o f  G  over F  h as  a  fundamental system
x„ x„  of solutions with G  F<x „ ••• , x n > such that

0- x5 = c• i x ; ( 1  <  j< n ,  c ;  E C)

fo r  every 0-  E IS. H e n c e , 0-(Ox) = c ( 0 x )  (1 < j  <  n , BE 0 ), and
cr(Oxi /x j ) — &xi /xi  (1 < j < n ,  OE e) for every cre 06, so that &xi /xi  E F
(1 < j < n ,  OE (I)). Therefore, G  is  of type 6 °  (finite repetitions of
extensions by exponentials).

Case III: is  of type 2 ° .  Since 63 can be reduced to tri-
angular form (see [4 ]  p. 19), the defining set of linear homogeneous
differential equations o f  G  over F  h as  a  fundamental system
x„ •••, x„  of solutions with G=F<x i , •••, x„.> such that

(9. 2) Œxj =  E x i ci ; ( 1  <  j <  n, c i ;  E C)

for every o-  E Ca Let us prove, by means o f (9. 2) and the induc-
tion on n , that G  i s  of type 2 ° .  Sim ilarly as in Case II, x ,  is
exponential over F .  Since the case n = 1  is  trivial, suppose n > 1 .
Then, we get

0- (x5 /x 1) = (cificii)+Ê (x1/x1)•(c15ic11) (2  <  j<  n ) ,
i=2

so that
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( 0
(X j/X 1 )) =  e ( X i / X 1 ) .  ( C i j k i i )  (2 < j < n ;  GE e, o rd  e> 0 , 0- E ) .

Y= 2

By the induction assumption, F<G(x2/x1), • •., 0(xn/x1)> is of type 2°
for each GE e  with ord 0 > 0 ;  hence, F<O(x,Ix i ), •••, 0(x/ x); G E e,
ord 0 >  0>  is  o f typ e  2 ° ,  an d  so  a r e  F<x,/x„ •••, xn /xi >  and
F<x„ x 2 / x i, •••, xn 1 xl >=G.

Institute of Mathematics,
Yoshida College,

Kyoto University.
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