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Introduction. In the present paper, we treat the problem on
the A-periods of square integrable analytic semiexact differentials
on an arbitrary Riemann surface.

V irtanen  [1 ] treated this theory of A-periods for the parabolic
Riemann surface, where Riemann's bilinear relation plays a  funda-
mental role. Kusunoki [3] proved a bilinear relation and remarked
that this theory can be generalized to a Riemann surface belonging
to the class O H D .  We generalized the argument of Virtanen by
making u s e  o f  th e  distinguished harmonic differentials to an
arb itray open Riemann surface and obtained a condition which is
necessary and sufficient for the existence of an square integrable
analytic sem iexact differential with even A-periods. This result
was obtained also by Kusunoki, independently, by means of the
canonical differential introduced in [4 ] (cf. Kusunoki [5]). It follows
from this result that there exists an analytic semiexact differential
w ith a  finite number o f  analytic singularities which is square
integrable outside o f each neighborhood of singularities and has
vanishing A-periods. Also we give a  metrical criterion for the
unique determination by the A-periods. For this purpose, we define
a  conformal invariant which generalize the notion  of Pfluger's
analytic modulus. Then we give a  sufficient condition for the
unique determination as an application of this invarian t. Further
w e show , for a special choice of canonical homology basis, an
inequality that connects this invariant and the harmonic modulus.
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F in a lly  w e treat w ith  a  few subclasses o f  analytic semiexact
differentials.

§ 1 .  Square integrable analytic semiexact differentials

1 .  We denote by Fn the class of all square integrable harmonic
differentials which are defined on the Riemann surface R  and also
denote by Ilh s ,(P a s e )  the c lass o f  sem iexact harmonic (analytic)
differentials in F h . Further w e denote by r 

h e
 the class of exact

,— km/harmonic differentials in rn  and by 1 ' h a  (P  1  the orthogonal comple-
ment in Ï ,, o f 11,(11„), where 11,(1. )  is  the class of differentials
whose conjugates are in l l he(rhse).

Given an exhaustion {Fn } o f  R  by regular regions, then there
exists a canonical homology basis A „B „ ••• , A p ,„„ A ( ) , . . •  such
that A 1 , B 1 , •••, A ( „) , B,„„) form a canonical homology basis modulo
aFn .  Now let c be a cycle, then there exists a regular distinguished
harmonic differential (5-(c) so that (0-=(a), ù ( c ) * )  fo r  0 .) E r \ I  .

Such a  e r ( C )  is  r e a l and belongs to Ph o n  IT „  and (5-(C)= 6
) h m + W e o

outside of a compact set, where co,  E coeo E n  1 .  I f c  and
c ' are two cycles, then (d-(e), 6--(c)*) is  equa l to  the intersection
number c ' x c  of c ' and c  (for the definition and the existence, see
A h lfo rs-S a r io  [6 ]) . Particularly, for cycles A i , B i  in  a  canonical
homology basis, -6-(A i )  and (5-(B i )  have the following periods ;

& (A i) = 0 ,
Aj

A j

e î (B i )  =

LEMMA * ) . I f  p  is  a regular distinguished harmonic differential and
a belongs to l ' i ,s e n 1 1 , ,  then holds the bilinear relation

(1.1) (P,o-*) n An Bn A n B n  )  •

Proof. Since (50 is  a distinguished differential, it has a  finite
number o f  non-vanishing A  and B -p erio d s . Let the An -periods
and the B a -periods o f  q be denoted respectively by x „ and y n ,

* )  The bilinear relation for the canonical differential ça in  [ 4 ]  and a E rt.„(- 1 1 ' h „  is
shown by Kusunoki (unpublished).
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then belongs
T  =- -  (73 (y„ ek(A„) — x„ (5-(B„))

to Ph e r v l I „  and is  the distinguished differential. Hence 7 =7 h m +
d f ,  where T h .  E rhm , T e o E Pe o n F '  and f  i s  constant in  each

complementary component of a sufficiently large regular region I-2.
Since Ph ,„, 1 1 1 „  and P e o l l ' h ,  we have

(1.2)( T h , n ,  0 ') 0  a n d  (Te e , (T*) 0.

By Green's formula, we obtain also

(1.3)( d f ,  0 - *) = (df , (5 - * ) . = = O.

Consequently, by (1. 2) and (1. 3) we obtain the bilinear relation

(y, Œ* ) (Y.W A.), xn(er.(B.), e))

i.e. the above-mentioned result.
In case when all A-periods o f a  differential co happen to be

null, co is said to be A -ex ac t. Then if y  is a regular distinguished
A-exact harmonic differential and p *  has vanishing A-period along
the cycle A  conjugate to the cycle B  such that y  has non-vanishing
B-period, then it follows from lemma that 11 p112

 —  (g), y**)
= 0 , that is, qi =O. Thus, particularly, we have the following
C O R O L L A R Y . A -exact analy tic sem iex act differential whose real part
is  a  regular distinguished dif ferential vanishes identically .

2 .  We consider the analytic differentials co(A„)— ep(A„) + ier•(A„)*
(n=1 , 2, •••). Let a„„„= et(A „)* and  R„„,— (3-(A ) *  ,  then  a n ,,,

Am B m
and 0„„, are a ll real and c o (A ) has the following periods schema :

A-periods B-periods

iceni
an2

i "cenn-i
icenn 1 + 0 n .
iants+1

= PS el' — S P
" ( L n  B n An Bn
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Since 6-(A„) and ei-(A ,„) are real differentials, we have

an. = (ô -0 0 * , er.(A-.) * )  =  W A X ,  ô ( A ) * )  = anz. •

Also, for a finite number of real numbers x„ • ••, x k  such  that at
least one of x i ( 1=1, •••,k ) differs from zero, we obtain

cei f  x ix ,  ( 5 - ( A „ )  +  •  +  x fr a-(A k )112 >  0 .

Thus we know that the period matrixn m  I  (n, m = 1 , •• is
symmetric and positive def inite . Therefore, if any positive numbers
ak k  (k  =1, 2, •••) are  given, we can determine a  linear combination

p k =  x co(A,n )  w ith  rea l coefficients x„, such  that p k  h a s  the
m-,

following A s -periods:

p k  = 0)(A„,) =  i E x  a
'  =An . - 1

J 0  (n < k )
t i a k k  (n  = k ) .

Since x „ , a r e  re a l, th e  re a l p art o f p k  is  a ls o  a  distinguished
harmonic differential. Let p k =ia k .  and Ç P k = bk n+ iC  k n ,  where

AnJ B n
ak n , b k „ and ck „ are a ll real and ak „=0  (k >n ) , a k k > 0  and bk n =0
(k < n ) ,  then P k  h as the following period schema :

A-periods B-periods

0 bki+icki

O bkk-i+ickk-i
i a kk bkk+i C kk

i a kk-ki kk  I

W e w ill show th a t th e  sy stem  {pk }  (k =1 , 2, •••) constitutes an
orthogonal sy stem . To see this, we put .7-k  as  th e  real part of p k ,
then

(P k ,  P h )  =  ( T h +iT h
*

,  T h + i T h
*

)

=  ( T k , T  +  i ( T  h
*

 T ( T  T  h
*

)  + (T  h *  T h * )

=  2 ( 'r  k , erh ) - 2 i ( e r h ,  T h * )  .

Since erk  and  T h  are  real distinguished harmonic differentials, by
the application of the bilinear relation (1. 1), we have
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*
( T k ,  T h ) —E T T h

*
h * T E h rrk

n A n Bn A n Bn n Bn

0 (h > k )
l akkbkk (h —  k)

and

(T  k  T  k * )  =  O.

By this follows the orthogonal relation :

(yok  , p h ) 0 (k  I   h)

( P k ,P k ) = 2 a k k bk k •

Let us normalize q,k  and  denote by q rk  the normalized differential,
that is , I kk — P k I\ / 2 a k k b k k .  B y the general theory of square in-

tegrable analytic differentials on a Riemann surface (Nevanlinna
[9 ] ) ,  it follows that i f  {ea be a sequence o f complex numbers for

which the series E-  c k  12 converges, then
k= 1

(f) = E Ck l ir k
k -1

converges and represents an element o f  1-‘ase and

110) H2 = I c 2 a n d  (co, qfk )  = c k
k=1

We point out that if  ck  be real, the real part of co belongs to
Fk o n 115 e  , but is in  general not a  distinguished differential.

3 .  THEOREM I. L e t {an -Fib n }  be a sequence o f  given complex
numbers. A  necessary and sufficient condition for the existence of
an analytic differential 0) E 1' a 2 8  having a n i  b„ as its A n -periods is
the convergence of the series

(1.4) Ê  1 Ê (a +ib n ) lk n r
k=1

where l k „ is the real part of B,,-periods o f  'q rk , that is,

(1. 5) /k„ R e l  * l e  —  
b , , , ,( k n) ,

sn v 4,cfkkbkk
k „ = 0 (k  <n ) .
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Such an analytic differential co can be represented by
-

(1. 6) =  E (co, ' k » k  =  — 2 i EE' (an+ ibOlknilkle •
k=1 k= 1 n = 1

Proof. N ecessity . Suppose that there exists an analytic differ-
ential co satisfying the condition. Let T be the real part of co, then
T and T*  belong to F k s e n  .  A l s o  let p k  be the real part of
then, by the help of the bilinear relation (1. 1), we obtain the
relations

(Ph, =  —E P k )  =P/1 '  5 -*  'j
A n

r̀*
B nn An B n_=1,

(Pk, 7. * )  =  E Pk rr— P k )  = a. ben •
7I An Bn An 13n

Hence

(1. 7) (co, Ikk)
2 ( T ,  PO — 2 i

= 2 ( b„/ k „— i l a n l k „) =  — 2i 1 (an+ib,z)lk,, •

We put ck = —2i ( a n + ib n ) l k n  and make the linear comblinations

W m= C k Ir k•
 Then by Bessel's inequality we obtain

4 pi ( an ±  b n )  l k n  2 = C k =  IIcomH2 1 - _- 'HIC''112 •

= k
Therefore, E I E (a n+ ibn )/ k .1 2 ‹  c o  •

k=i

Sufficiency. Suppose that the series (1. 4) converges, then

co (an+ibn)lkniqrk

represents an element of r o , •  To show that the A n -periods o f co

are a „ + i b ,  we put

fin+i Qn
An

then, by making use of the bilinear relation, we have (see

(c°,
 J r )

( P .  + ign)lk . (k  = 1 , 2, ...) .

On the other hand, the Fourier coefficients of CO are

(co, qrk ) = —2i  i (a n + ib n ) l k „ (k 1, 2,...).

(1-• 7))
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Hence

(k = 1, 2, •-•).

kb k Since /kk= +0, we have successively
v La kkb kk

P n + ia n = a n + ib (n = 1 ,  2, .

Thus the desired result is obtained.

If th e  series E E (a n + ib n ) l k „ 2 converges, then k 1 1t_ i an /k „ I2

k-1 —1
and 211),,/,,,,r converge, hence we obtain the following

k  = 1  k  :=  1

C O R O L L A R Y . I f  there exists an analytic differential coE r ase whose
A n -periods are a n + ib n ,  then there exist two analytic differentials
co, and 0),in  r a s e  such that A n -periods o f co, and co, are an  and ib n ,
respectively.

Such two differentials co, and co, are represented, respectively,
by

(01 =  — 2 i ( anlkn)*kk-i
and

—  2 2,
( b n  lk n ) q rk  •

We notice therefore that, since the real part of q r, is distin-

guished harmonic differential and belongs to l' h o n 11,„, the imagi-

nary part of —2i Ê (Ê a n l k n ) * k  belongs to i ,- 1 ;;  on the other
k -i —1

hand, the real part of 2 Ê (Ê bn l k n ) *  belongs to [' n o n  11„. If
k _i 

the genus of R is finite and the real part (imaginary part) of 04(00
is restricted to be distinguished, by the corollary of the lemma in 1
co,(co,) is represented by the above series (finite series) uniquely.
But in general, co E is not determined uniquely by its A-periods
on an arbitrary Riemann surface.

The analytic differential —(a-(B„)+ i (B ,.) ') h a s  ,n n  1 $  m n  as
its A„,-periods. Thus, by the help of the corollary of the theorem
I, we have the
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COROLLARY (Virtanen [2])' ). T here ex ists an analy tic dif ferential
co(An )E P a s , such that

co(A) = 1 ,c o ( A n )  =  0 (m n) .
An Am

Such a dif ferential co(An )  is represented by  the series

2 il k n *  k  •

4 .  Let r-t-' be a  distinguished harmonic differential with a finite
number of harmonic singularities (residue sum 0 )  without A  and

1 1-B-periods. We put 0— 
 2

 (ii-H-i e )  and ATr 
2 

(f7+ iir- *), then -0 is  a
square integrable analytic differential outside of each neighborhood
of poles and is  semiexact on R  with suitable slits joinning simple
po les. On the other hand, 11; belongs to l' a ,„ (Ahlfors-Sario

-0+q- ;  has purely imaginary A, B-periods and 0 —i r e a l  A, B-
periods. Since 21-fp 0+11; —(0—Ips) belongs to h a s e , b y the above1

corollary we can find an analytic differential Gr E l' a „  such that 0- has
the same A-periods a s  th e  imaginary part o f A-periods of 2 .
Then 0+A7p —0-  i s  A-exact and has the given analytic singularities
(residue sum 0). Thus we have

THEOREM II. There ex ists an A-exact analy tic dif ferential co w ith
given a f inite num ber of analy tic singularities (residue sum  0) such
that co is square integrable outside of neighborhoods of singularities
and semiexact on R  w ith suitable slits joinning simple poles.

Since the rea l part of 0 + + ,'  is distinguished, if the genus of
R  is finite, then the differential constructed in  theorem II  exists
uniquely whenever its real part is restricted to be distinguished.

§  2 .  A  condition for uniqueness.

1 .  Let Go b e an  element of r a s e a n d  denote by an +ib n  i t s
An -periods, then it follows from theorem I  that = —21 Ê  ( a n+

k = 1  n = 1

ib n) 1 kn *  k  = (C k ) *  k  h a s  th e  sam e A-periods a s  co. H ence
1 1 

1 )  K. Oikawa has constructed also such a  normal differential co (A 5 )  by Accola'$
method (unpublished),
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co—N°=7 is an A-exact analytic semiexact differential. We denote
by ra, the class of a ll A-exact differentials which belong to 1ase)

then l'a e =  {0 } is equivalent to the completeness o f orthonormal
system { r k }  in r a s ,,. Since Fa e  C F 8 , if the class IV,„ is  an  empty
class on an Riemann surface R, then R  must belong to the class

A D  • In other paper (Kobori-Sainouchi [10]) a  sufficient condition
for Fa, =  {0 } w as given . W e are going, in the following, to give
a more general metrical criterion.

A t first, w e suppose that the exhaustion {Fn } (n = 1 ,2 , is
canonical, that is , each contour ceP (i=1, 2, ••• , m (n)) o f aF„ is  a
dividing cycle. Then, for any two harmonic semiexact differentials
(0 and a-, holds the generalized Green's formula

(2.1) (a), ) F  = err CO)— 21&
k---1 Ak Bk Ak B k aFn

where u (p ) is  a  function defined separately on each contour a(„" of
u(p)=1

P

 ( p ,  pi e a n  (cf. [10 ] or Accola [11]).

Since ((0, t(0• *)F ((0, — i(0 )F„—ill 2
F „ for an analytic differential

(0, if  (0 belongs to F ,t„  then by (2. 1), we get
p(ro)

CO S CT) CO) = 1,07) .
k = 1 ( Bk Ah Bk 3Fn aFn

0.1 2
nF

Thus i uc0=11(012,,,> 0  (0 )+ 0 ) .  We consider the class F--,4,„(P„—aFn
F 1) of analytic semiexact differential without A-periods on F
If Fln — F  is not a  connected set, F,t(F„— F 1 )  represents the class
of element (0 such that the restriction of (0 to each component of

n — F, is  A -exact analytic semiexact differential. W e define a
quantity K l „ as follows :

u(0
K ,„=  K (F „— F 1 ) =  inf  S F "

u(T)
F ,

where (0 varies over ra 0 (P„—F 1 )  such that i Ç u (T )> 0 .
aF ,

We call
i t  the generalized analytic modulus associated with F,,— F1 . W e
remark that K l „ depends, in  general, upon the choice of canonical
homology basis, but is  a  conformal invariant for a  suitably fixed
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11% K i „ 2co F 1 •
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u w - 6  uo)> O , we obtainaFn a F I

K i „ . > 1 .

If we restrict ( 1 )  to the class F,(P„— F,) of analytic exact differen-
tia ls , the corresponding invariant becomes the Pfluger's analytic
modulus k,„ (Pfluger [12]). When the genus of each component of
P„— F, is zero, r g ,(F i n —F1 ) = r n e (Fin —F,), hence we have K i n =k i „.
On the other hand , if the genus o f a t le a s t one component of
Fl t i —F, is positive, there are A-exact analytic semiexact differentials
having non-vanishing B-periods on its component (cf. Ahlfors [8]
theorem 4  or Behnke und Stein [13]), hence r a e (Pn —F1)=rg,(P„
— F,) and so we have in general

k i n > K 1,. .

THEOREM III. I f  lim  K i n = ' X ) ,  then any  elem ent o f  P a s ,  without A -

periods is identically  zero.

P roof. Suppose th a t co  is  an  A -ex ac t ana lytic  semiexact
differential and is not identically zero on R , then

112F„ = UCT)
■IF

homology basis. Since

Since I la) 2
F ,> 0  and lim K ,„= 0 0 ,  6)11 2 cannot be finite. Therefore,

we obtain the above mentioned result.
T hus w e know  that, i f  lim K,„= 00, the square integrable

analytic semiexact differential is determined uniquely by its A -
periods. L et us denote by K „ the generalized analytic modulus
associated with F y,_ F,. , then easily we get

(2.2) K in> KiK2••• K .-1.

Thus we have
—

COROLLARY. I f  I .E K n = co, then any  elem ent o f  l ', , , , ,  w ithout A -
n = i

periods is identically  zero,
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More generally, we shall consider the class A N  of square
integrable analytic semiexact differential whose A-periods vanish
except for a  finite number o f A i -periods (i = 1, 2, • ••, N ) .  Let A,
(i=1, • • • , N ) C F „,,  then we can conclude that i f  lim  K on 00 ,  then

any element co of  ' A I V  such that i  u e o > 0  is identically  zero.
Because, by (2. 1) we have

wJ = 2 js±  gm { ,Ç co + i ucTi (n >  no) ,
A k  Bk 5Fn

hence

11(0 11% - 2  IÊT g m { (7)} = u
=1 A k Bk DFno )1, •

From this we obtain the desired rerult.

2 .  Let w  b e  an element o f 1' (hsesP
n
)

r \
l' „ (P „ ) , then by (2.1)

we get

(2. 3)

H 2Fn ( w ,  w * * )F n (f
k= 1 (Lk v B k

— •)* co) + ucT)* .
Ak Bk

Now we consider the class r„(P„— FO r \ 11,(Fin —F1) , then under the
use of (2. 3) we can define a conformal invariant h ,„ as follows :

u7)'1'
h 1 „ in f 

a ' S.U ) *

where co varies over the above class and ,f ucT)*>0 2).
Then h 1 ,, 1 and by the same way as we did in the proof of

the theorem I I I  w e  have the following result : I f  lim h ,„= DC

then l'her\ M =  {0} , th at is, R  belongs to the class OKD•
Let us denote by r g e ( P .— F i ) ( 1 1 ` 4 ( P „ — F i )  th e  class o f  co E

Ph s ,(P„ M (P . —  Fl ) such that both co and co* have vanishing
A-periods. We note that since r,';',„(P„ —Fon  rm(F„ —F1 )  rae(F.
— F,), we have

2 )  When co does not be restricted to an element o f l' , it may happen that the
corresponding modulus is always equal to 1 (cf. [12]) .
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inf 
LF

n K
u (7)*

u (7)*
aF,

where co varies over the above class and Ç t o 7 )* > 0 .  Analogously,
F 1

we have

inf < k in ,
u(- 6*

u(T)*
aF I

where Co varies over the class r„(F„— F,) r \ l t ( P n ---F l )  and ue7)*
aF,

> 0. It is clear that k i n >h ,„,  but since l'A e (P n  —F1) Ph e (Fn —F,)
and 1 (Fn —F1 ) D 114(Fn —F1 ) ,  we can not, in general, determine
the inequality o f K 1„ and h i..

3 .  In the case that the exhaustion IFJ. is not necessarily
canonical, the restriction of a semiexact differential to the regular
region Fn  is not in general semiexact on F .  But if we choose a
canonical homology basis with respect to an exhaustion {F, } o f  R
such that the cycles on aF„ are w eak ly  homologous to a  linear
combination of A -cycles on ly (Ahlfors [10]), then a  semiexact
differential without A-periods becomes also semiexact on F .  B e -
cause any dividing cycle in F„ is homologous to a linear combina-
tion of cycles on aFn . We point out that in this case theorem III
is valid also.

The following relation of the Pfluger's analytic modulus kn  and
harmonic modulus tt„ associated with P „ ,, -F „  is well known :

kn >  1L ,

where the equality kn = holds for a  doubly connected region.
We shall show that the inequality h o ld s  a lso  fo r a  sp ec ia l
ch o ic e  o f ca n on ica l h om o lo g y  b a s is . To see this, we denote by v(p)
the harmonic function which is 0 on SF,„ 1 on a F „, .  Let 7 ( t )
be a set of finite number o f level curves ; v (p)=t ;  (0= t i < t ,<  - -
<t ,_ 1 < t ,= 1 )  such that at least one critical point of v (p) is con-
tained in 7(0 (j=1-1, 2)). We add the relatively compact region



A naly tic semiexact dif ferentials on an open Riemann surface 289

f2;  bounded by 7(t) ( j = 2, •••, o -1 )  to  the exhaustion { F }  and
introduce the above mentioned homology basis with respect to the
exhaustion {F„ F„ • , F„, f 22, • •• F n 4  1  * • • }  then the region
bounded by 7(t) (t i < t < t i , i )  h as  the same canonical homology
basis as that o f S2i  (c f. A h lfo rs  [7 ], H ilfssa tz  5 ). Then, for co E
1

,(P.+1 — F „ ) ,  both co and co* have the vanishing periods along each
component o f th e  level curve 7(t) ( 0 < t  < 1 ) .  W e use v+iv* —
x +iy= z (0<v <1, 0<v* <d— D(v)) as the local variable and set
Co ---A (z )d z . We write

 f d
M ( t )  = i 146-) = u Ady u ft 'd y  ,

O JO

iY
where u(iy)=S. A d (iy ) and the differentiation is with respect to
the local variable. Then m(t) is determined uniquely by o E r (Ats e ( P n + i

—F„), because u is determined except for an additive constant on
each component of 7(t), but co has vanishing periods along each
component of 7(t). Therefore we can apply the sam e argument
as that in [ 6 ]  (pp. 231-232) and we have

(2.4)K „ ,

where the equality holds for a doubly connected region.
Let us denote by K„" ) (P„c") the generalized analytic modulus

(harmonic modulus) of the component of Fl„ + , —Fn . Then, by
the same way as that in the case of the proof o f kn = min k i" (cf.

1

[ 6 ]  p. 233) we can conclude that

(2.5)K t ,  =  min K- ;» •

Now le t {F, } be an exhaustion of R  by regular regions and
for each n we make a set of level curves 7(t i )  defined as above.
The regions bounded by those level curves construct an exhaustion.
We introduce an above mentioned canonical homology basis with
respect to  th is exhaustion . T hen  by (2. 2), (2. 4) and (2 . 5) we
know that the following result holds.

0 ,1

THEOREM IV. I f  11 (min Do, then there ex ists an exhaustion
j

and a corresponding canonical homology basis such that M =  {0}.
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Thus, on such a surface, for such a  canonical homology basis,
( E r a s e ) is determined uniquely by its A-periods. In [1 0 ] we

have proved this theorem by the other way.

§ 3. A  special subclass of r a s e .

1. We saw that if  co be an  element o f r
a s e )  then =

belongs to F L , where 0= Ê  (co, , kkN rk=  —2i (an+ib.) 1 kn'tkk•k=i k=i
Since 7 is orthogonal to elements of the system {'kk} hence (0, 7)
=0. Thus we get

11. - 0 112 =  (co —co°, r r )  = (co, = (C °  C ° ) (C° CÙO) = 11 °4 2 — IIC°° 112

hence co° has the smallest norm in the class of 0- E r a s e  such that
0- has the same A-periods as co. After Virtanen [1] we call such
a  co° norm al dif ferential and denote by 1'„%, the class of normal
differential. FL, is the subspace spanned by {* k }  and w e have
an orthogonal decomposition

ass — 4--rz iss. •

I f  we use { 6 ( B ) }  instead o f using {(3-(An )} , w e  have an ortho-
normal system Ip k j. in  l' a „  b y  the same way a s  we did in  § 1.
Thus we have also an orthogonal decomposition

rase — rgse

where r 5 5  is  the subspace spanned by 
{ p k }  and 1 ,  the class of

B -ex a c t E r a s e  •

2. Let co be an element of r a s e  
and { c o }  b e  a  system of the

elementary differentials of 1st kind, that is,

1

further if the condition

(3.1) :Êillco„11

be satisfied, then

n  =  0 ( m  n )

< O S --)
An
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W  112 = E co„ (0 co, n, w)
"=.1V-A n "=N  "'=N ( An Am

" N An
r û .f Am

C6 10)„,..)1 <Er
— n=N

CO
An

 

Am
Hcon11110)„,H

   

_ (A l l ( ')  n i l  S .
A n

It follows from (3. 1) that the series

(3. 2) E .„

converges and has the same A-periods as  (0• Th u s, w h en  the
surface R  satisfies the condition for uniqueness and moreover co

satisfies (3. 1), then co is expressed by the series (3. 2) uniquely.
On an arbitrary Riemann surface, if CO and 10)„} be restricted to
the class r â ,, we denote them by (0

° and  { a ) } ,  then  the corres
r

-
-

ponding series E CO
° w °  belongs to F .  Therefore we have

An

THEOREM V. Let co° be an element o f 1.1 ,  and {c0,5 be the system
o f elem entary  dif ferentials E ,  then, if the series

E 11 , 0'11a

 

An

  

-
converges, CO

° is represented by  E (,)„° uniquely.„.-1 A n

3 .  Finally, following the method in [1], we establish a bilinear
relation for two elements o f 113 0  . For this purpose, w e  show
that if

(3. 3) E 116411

then

CO
An

< c ° (c.erase),

(3. 4)
k=1 An

0 0 ,

where / k „=R e k k (cf. (1. 5)).Bn
Since 116 4112 = IL, and lk„= 0  ( k < n ) ,  this follows from
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6)„",, II. f cn
J An

) 2 ( )2
E  a n + b  • I E

k=-1

 

„c.
=  E  I a n -Fib n i . la , i +ib„,1•, / ( E1 L)(Egm)

E  lan+ibnl-lam +ibm l•Elik nik ,n1
k

E  E  I a n +  b  la m + i b,n111k.11.1
k

= ( E  I a „+  b  11 knI (E am+ i b,n1 11 km1)
k r

= ( E l l CH)2 •
n=--1A n

Now let al (1=1, 2) be two elements of r,„ and satisfy (3. 3), then
by (3.4)

(3. 5)

Moreover, we suppose that 0- 2 ( i =  1, 2) have pure imaginary A -

periods. Set .f ib;!) (1= 1, 2), then by (1.6)
Ars

k
(3. 6) cr? (o-, 2 b» knlfr k •

Hence the inner product of o-7 and 01 is

(3. 7) ((T? (Tr:2) = (0 - 7, *O(', 'Ikk )
k.=1

4 E E(E b1n1 1 1 141:) . ( E b T  1 kmn
k=- 11 =1 M.= I

Since 1 k n =0  (k  <n )  and
k 00 k

E ( E 1  ken  1 kn1 * E lk ! ) k i n I ) LE(E1 ,,„ k.,,i.) i) 2 (E I  k m i ) (7.1) 1 ) 2T  / 2 < c o  7

we get

4  i.21 (E 14» inn) • la ( n,n) =  4 2 b;» k„(Ê° b T  n.) •
k =1  n=1 k=1 tn =1

On the other hand, b y  (3. 6) and (1. 5)

Re o  =  E  (4 ,  k)
Bn k = 1 B n

= 2 ik m ) lk n  •

k r 2

E  E (4. < (i = 1, 2) .k=i---1 An
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Hence (3. 7) is equal to

2 E  kl) Re =  2 E gm S 1 ? e  ni.

Summing up the above result, we have

THEOREM V I . If  both  01 and 01 have the pure imaginary A -periods
and satisf y  (3. 3), then holds the bilinear relation

(T ) = 2 EIm0 - 7-Re c4.
A n B n

Kyoto Technical University.

REFERENCES

[ 1 ] V irtanen, K . I. ; Ü ber Abelsche Integrale auf nullberandeten Riemannschen
Fldchen von unendlichem Geschlecht. Ann. Acad. Scient. Fenn. A.I. 56 (1949).

[  2  ]  ; Bemerkung zur Theorie der quadratisch intergrierbaren analy-
tischen Differentiallen. Ann. Acad. Scient. Fenn. A.I. 78 (1950).

[3 ] Kusunoki, Y .; O n  Riemann's period relations on open Riemann Surfaces. Mem.
Coll. Sci. Univ. Kyoto. Ser. A. Math. vol. 30 (1956) 1-22.

[  4  ]  ; Theory o f Abelian integrals and  its  applications to conformal
mappings. Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. vol. 32 (1959) 235-258.

5 ; Square integrable normal differentials on Riem ann surface. J.
Math. Kyoto Univ. vol. 3 (1963). (to appear).

6 Ahlfors, L . and Sario, L .;  R iem ann Surfaces. Princeton. (1960).
[ 7 ] Ahlfors, L.; Normalintegral auf offenen Riemannschen Fl5chen. Ann. Acad.

Scient. Fenn. A.I. 64 (1949).
[  8  ]  ; Open Riemann Surfaces and Extremal Preblems on Compact Sub-

regions. Comment. Math. Helv. 24 (1950) 100-134.
[ 9 ] Nevanlinna, R.; Uniform iesierung. Berlin (1952).
[10] Kobori, A. and Sainouchi, Y .;  O n  th e  Riemann's relation on open Riemann sur-

faces. J. Math. Kyoto. Univ. vol. 2 (1962) 11-23.
[11] Accola, R. ; The bilinear relation on open Riemann surfaces. Trans. Amer. Math.

Soc. vol. 96 (1960) 143-161.
[12] Pfluger, A .; Ü ber das Anwachsen eindeutiger analytischen Funktionen auf offenen

Riemannschen Fl5chen. Ann. Acad. Scient. Fenn. A.I. 64 (1949).
[13] Behnke, H. und Stein, K.; Entwicklung analytischer Funktionen auf Riemann-

schen FlAchen. Math. Ann. 120 (1949), 430-461.

Bn A JBn


