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Introduction. In the present paper, we treat the problem on
the A-periods of square integrable analytic semiexact differentials
on an arbitrary Riemann surface.

Virtanen [1] treated this theory of A-periods for the parabolic
Riemann surface, where Riemann’s bilinear relation plays a funda-
mental role. Kusunoki [3] proved a bilinear relation and remarked
that this theory can be generalized to a Riemann surface belonging
to the class Oy,. We generalized the argument of Virtanen by
making use of the distinguished harmonic differentials to an
arbitray open Riemann surface and obtained a condition which is
necessary and sufficient for the existence of an square integrable
analytic semiexact differential with dven A-periods. This result
was obtained also by Kusunoki, independently, by means of the
canonical differential introduced in [4] (cf. Kusunoki [5]). It follows
from this result that there exists an analytic semiexact differential
with a finite number of analytic singularities which is square
integrable outside of each neighborhood of singularities and has
vanishing A-periods. Also we give a metrical criterion for the
unique determination by the A-periods. For this purpose, we define
a conformal invariant which generalize the notion of Pfluger’s
analytic modulus. Then we give a sufficient condition for the
unique determination as an application of this invariant. Further
we show, for a special choice of canonical homology basis, an
inequality that connects this invariant and the harmonic modulus.
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Finally we treat with a few subclasses of analytic semiexact
differentials.

§1. Square integrable analytic semiexact differentials

1. We denote by 1, the class of all square integrable harmonic
differentials which are defined on the Riemann surface R and also
denote by 1,,(I',,.) the class of semiexact harmonic (analytic)
differentials in 1',. Further we denote by I',, the class of exact
harmonic differentials in I', and by I',,(I',,,) the orthogonal comple-
ment in 1", of I, (1'F,), where I'} (1'%,) is the class of differentials
whose conjugates are in L', (1',).

Given an exhaustion {F,} of R by regular regions, then there
exists a canonical homology basis A,, B, **, Ay, Ay, =+ such
that A,, B,, ***, Ay, By form a canonical homology basis modulo
oF,. Now let ¢ be a cycle, then there exists a regular distinguished
harmonic differential &(c) so that S o=(w, (c)*) for @€', ALF,.
Such a &(c) is real and belongs ;o Uyonl¥. and 6(c)=o,,+o,,
outside of a compact set, where ©,,€1l,, ©,€1,~1". If ¢ and
¢’ are two cycles, then (&(¢’), 6(c)*) is equal to the intersection
number ¢’ xc¢ of ¢’ and ¢ (for the definition and the existence, see
Ahlfors-Sario [6]). Particularly, for cycles A;, B; in a canonical
homology basis, 6(A4;) and &(B;) have the following periods ;

SAia-(Ai) =0 ’ SB_,‘ o(A) =96,
SAJ_G-(B;) = —90,;, gBj #(B) =0

LEMMA®., [f @ is a regular distinguished harmonic differential and
o belongs to Uy, A L%, then holds the bilinear relation
(1.1) @ =2(] »f o[ o[ »)
n An Bn An Bn N
Proof. Since ¢ is a distinguished differential, it has a finite
number of non-vanishing A and B-periods. Let the A,-periods
and the B,-periods of @ be denoted respectively by x, and y,,

*)  The bilinear relation for the canonical differential ¢ in [4] and o€}, is
shown by Kusunoki (unpublished).
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then belongs
T=@— Zﬂ (yn a(A,) —x, &(B”))

to Iy ALk, and is the distinguished differential. Hence T=7,,+
7., +df, where 7,,€1%,,, T.,€1,, A" and f is constant in each
complementary component of a sufficiently large regular region Q.
Since I'},, | I}, and 1',, | 1',, we have

(1' 2) (Thm’ o-*) = 0 and (TeO) O‘*) = O o
By Green’s formula, we obtain also
(1.3) (@f, o) = (@f, 7 =~ _fz 0.

Consequently, by (1.2) and (1.3) we obtain the bilinear relation
(@, o) = 22 (¥(5(A,), o*) —x,(5(B,), o))

“3(LrLe o),

i.e. the above-mentioned result.

In case when all A-periods of a differential ® happen to be
null, ® is said to be A-exact. Then if @ is a regular distinguished
A-exact harmonic differential and @* has vanishing A-period along
the cycle A conjugate to the cycle B such that @ has non-vanishing
B-period, then it follows from lemma that ||@|=(p, @)= — (@, @**)
=0, that is, =0. Thus, particularly, we have the following

COROLLARY. A-exact analytic semiexact differential whose real part
is a regular distinguished differential vanishes identically.

2. We consider the analytic differentials w(4,)=4(A4,)+i5(4,)*
(1=1,2, ). Let @,=( 2(4)* and B,.=| #(4)%, then a,,
A Bm

and B,,, are all real and c:;‘(A,,) has the following periods schema :

A-periods B-periods
i, B,
ia,, iB,,

z a”ﬁ—l i 8"”-1
1 ann 1 +1 ann

? 'Crnn-(-l t 18nn+1
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Since ¢(A,) and &(A4,,) are real differentials, we have
= (6(A)*, (A" = (6(4,)* &(4)%) = a,,

Also, for a finite number of real numbers x,, -+, x, such that at
least one of x; ({=1, -+, k) differs from zero, we obtain

k

‘Zlaijxixj =[x, 6(A)+ -+ +x,6(A 7 >0.

l,]=

Thus we know that the period matrix ||«,,|| (r, m=1, ---, k) is

symmetric and positive definite. Therefore, if any positive numbers

a,. (=1, 2,-.-) are given, we can determine a linear combination
k .

Pr=>1%,0(4,) with real coefficients x,, such that ¢, has the
m=1

following A,-periods :

SA,,q’kzmi:x S “’(Am)—ZExm ,,,,,_{.0 (n<k)

Zakk (” - k).

Since x,, are real, the real part of ¢, is also a distinguished
harmonic differential. Let S Pr=1a,, and S Pr=bp,+icg,, where
Bn

@y, bps and c,, are all real and =0 (E=>n), a,, >0 and b,,=0
(k< m), then @, has the following period schema:

A-periods B-periods
0 bpticy
0 bpp-r+iCppy
iay, brpt+ich

1Qrp+ 1Chiin

We will show that the system {p,} (k=1,2, --+) constitutes an
orthogonal system. To see this, we put 7, as the real part of ¢,,
then
(Pe> Pi) = (Tp+iTy*, 7 +iT,*)
= ('Tk’ 'Th)+i('rk*) ‘Th)_l.('rk) 'Th*)-{_(‘rk*) 'Th*)

= 2(7x, Th) —2i(T, ) -

Since 7, and 7, are real distinguished harmonic differentials, by
the application of the bilinear relation (1.1), we have
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e (AN U W R P

_ { 0 (h>4k)
Aribpe (h = k)

and

(7, ™*) = 0.
" By this follows the orthogonal relation :
PorP) =0 (k==h)
(Pr, P) = 21l -

Let us normalize ¢k and denote by v, the normalized differential,
that is, ¥.=®./\/2a,,b,,- By the general theory of square in-
tegrable analytic differentials on a Riemann surface (Nevanlinna
[9]), it follows that if {c.} be a sequence of complex numbers for

which the series > |c,|’ converges, then
b=1
Z_ k"!rk

converges and vepresents an element of 1',,, and
loll* = 23lel® and (@, 4) = cs.

We point out that if ¢, be real, the real part of ® belongs to
IyAL%,, but is in general not a distinguished differential.

3. TuroreM 1. Let {a,+ib,} be a sequence of given complex
numbers. A mecessary and sufficient condition for the existence of
an analytic differential o €1',,, having a,+1ib, as its A,-periods is
the convergence of the series

oo k
(1' 4) ,; I,’Z; (an+ibn)lkn|2 ’
where 1, is the real part of B,-periods of v, that is,
1.5) o =Re| y=— Lo zw),
\/zakkbkk

Ly =0  (E<mn).
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Such.an analytic differential ® can be represented by

(L.6) o= (@ Ve = —2i B3 @+ib) bl

Proof. Necessity. Suppose that there exists an analytic differ-
ential o satisfying the condition. Let = be the real part of ®, then
T and ** belong to I'y,,AL'%.. Also let p, be the real part of {r,,
then, by the help of the bilinear relation (1.1), we obtain the
relations

(P, T) = _E <SA"PkSBn'T*_SAn'T* SB”Pk> = Zk ulin s
(Pe, ™) = ;<SA kaB T_SA,,TSB,,Pk> - _nz:; Pulin -

n n

Hence
1.7 (o, 9) = 2(7, pe) —2i(7, pi)
= 23 bl i Y ul) = — 20 3 (@ +i 00 Lo
We put ¢,= ——Zié(a,,ﬂ—i b,)!,, and make the linear comblinations

wmzjnjc,,«[rk. Then by Bessel’s inequality we obtain
n=1

m

1312 @+ bl = S lesl* = llonlF <P
Therefore, g‘_l. | ‘; (@n+1b,)leu|* < oo
Sufficiency. Suppose that the series (1.4) converges, then
o = _22';[2 (@, +ib) Ve

represents an element of I',,,. To show that the A,-periods of @
are a,+1b,, we put

g ® = p,+1iq,,
An
then, by making use of the bilinear relation, we have (see (1.7))
k
@, ¥p) = =20 23 (Patid)len (R =1,2,).

On the other hand, the Fourier coefficients of ® are

@ %) = =20 D @H+ib) e (=12,
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Hence
k k
,:L—:a(pn—’_iqn)lkn :’E(an+ibn)lkn (k = 1) 2) "')-
. b .
Since /,,=——* . =40, we have successivel
s ben Y

Patiq, =a,+ib n=1,2 ).

Thus the desired result is obtained.
If the series Z‘,lf‘_,(a +1ib,)!,,|? converges, then E|Ed Upn?

n=

and Zle l..|” converge, hence we obtain the followmg

COROLLARY. If there exists an analytic differential o €1',,, whose
A, -periods are a,+ib,, then there exist two analytic differentials
o, and ®, in T, such that A,-periods of ©, and », are a, and ib,,
respectively.

Such two differentials ®, and ®, are represented, respectively,
by

0 k
o, = —2i ’; (“Z;anlkn)“l’k

and
k

=23} (D bulu) V-

n=1

We notice therefore that, since the real part of 4, is distin-
guished harmonic differential and belongs to 1, 1'%., the imagi-

nary part of —2i Z(Za lk”)«lrk belongs to 1, A I'f. ; on the other
hand, the real part of 22(2() l..)V, belongs to LyyALl%.. If

the genus of R is finite and the real part (imaginary part) of o,(®,)
is restricted to be distinguished, by the corollary of the lemma in 1
w,(»,) is represented by the above series (finite series) uniquely.
But in general, o € 1',,, is not determined uniquely by its A-periods
on an arbitrary Riemann surface.

The analytic differential —(¢(B,)+76(B,)*) has 9,,—i8,,, as
its A,,-periods. Thus, by the help of the corollary of the theorem
I, we have the
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CoroLLARY (Virtanen [2])°. There exists an analytic differential
o(A,) €y, such that

S o(d) = 1, S o(A,) =0  (m=+n).
An Am
Such a differential o(A,) is represented by the series

2 gzk,,xp,,.

4. Let ¥ be a distinguished harmonic differential with a finite
number of harmonic singularities (residue sum 0) without A and
B-periods. We put ¢=—;—(?+i #*) and \17:%_(; +iF*), Tthen @ is a
square integrable analytic differential outside of each neighborhood
of poles and is semiexact on R with suitable slits joinning simple
poles. On the other hand, ¥+ belongs to 1., (Ahlfors-Sario [6]).
@+ has purely imaginary A, B-periods and ¢ —+ has real A, B-
periods. Since 2Vr=@+Jr—(p—+) belongs to I',,, by the above
corollary we can find an analytic differential o € 1',,, such that o has
the same A-periods as the imaginary part of A-periods of 2y
Then @++r—o is A-exact and has the given analytic singularities
(residue sum 0). Thus we have

THEOREM II. There exists an A-exact analytic differential o with
given a finite number of analytic singularities (residue sum 0) such
that o is square integrable outside of neighborhoods of singularities
and semiexact on R with suitgble slits joinning simple poles.

Since the real part of @+ is distinguished, if the genus of
R is finite, then the differential constructed in theorem II exists
uniquely whenever its real part is restricted to be distinguished.

§2. A condition for uniqueness.
1. Let o be an element of I',,, and denote by a,-+7b, its
A,-periods, then it follows from theorem I that o= —2; i} ,,Z: (a,+
ib,,)l,,,,«lf,,=§)l,(w, Y)Y, has the same A-periods as kco Hence

1) K. Oikawa has constructed also such a normal differential w(A,) by Accola’s
method (unpublished),
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o —o’=7 is an A-exact analytic semiexact differential. We denote
by 1'4, the class of all A-exact differentials which belong to I',,.,
then I'4,= {0} is equivalent to the completeness of orthonormal
system {y,} in I',;,. Since I',,CI'4,, if the class I'4, is an empty
class on an Riemann surface R, then R must belong to the class
04p. In other paper (Kobori-Sainouchi [10]) a sufficient condition
for I'4,= {0} was given. . We are going, in the following, to give
a more general metrical criterion.

At first, we suppose that the exhaustion {F,} (n=1, 2, ---) is
canonical, that is, each contour «i (i=1, 2, ---, m(n)) of oF, is a
dividing cycle. Then, for any two harmonic semiexact differentials
® and o, holds the generalized Green’s formula

(n)
e @ =B of o= of o) w,
k=1 Ak B Ak B 3F
where u(p) is a function defined separately on each contour ai of

L u(p)= g o (p, p;€ay’) (cf. [10] or Accola [11]).

Since (o, co M, = (0, —io)p, =i||®||}%, for an analytic differential
o, if ® belongs to I',, then by (2.1), we get

ol =3 ([ of o-[ of o)-| w=-{ uw.
k=1 Ak Bk Ak Bk 0F 0F
Thus iSaF”u@=||m||"'Fn>0 (@==0). We consider the class I'4,(F,—
F,) of analytic semiexact differential without A-periods on F,—F,.
If F,—F, is not a connected set, I'A,(F,—F,) represents the class
of element ® such that the restriction of ® to each component of

F,—F, is A-exact analytic semiexact differential. We define a
quantity K,, as follows:

Kln = Kln(pn_Fl) = infSaL
w ucﬁ,
9F,

where ® varies over I'Z.(F,—F,) such that zS uo >0, We call
Fy

it the gemeralized analytic modulus associated with F,—F,. We
remark that K., depends, in general, upon the choice of canonical
homology basis, but is a conformal invariant for a suitably fixed
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homology basis. Since ||co||2Fn_F1=z'S u@—iS um >0, we obtain
9F AF,

K.,=1.

If we restrict ® to the class I',,(F,—F,) of analytic exact differen-
tials, the corresponding invariant becomes the Pfluger’s analytic
modulus k,, (Pfluger [127]). When the genus of each component of
F,—F, is zero, I'A (F,—F,)=1,(F,—F,), hence we have K,,=k,,.
On the other hand, if the genus of at least one component of
F,—F, is positive, there are A-exact analytic semiexact differentials
having non-vanishing B-periods on its component (cf. Ahlfors [8]
theorem 4 or Behnke und Stein [137]), hence I, (F,—F,)& T4 .(F,
—F)) and so we have in general

ki = K, -

THEOREM III. If lim K,,=co, then any element of 1',,, without A-

1300

periods is identically zero.
Proof. Suppose that o is an A-exact analytic semiexact
differential and is not identically zero on R, then

lolz, =i uw.
oF

n

The definition of K,, implies
o7, = K llo, %, .

Since [[@|/% >0 and lim K,,=co, ||@]|* cannot be finite. Therefore,

we obtain the above mentioned result.
Thus we know that, if lim K,,=cc, the square integrable

R

analytic semiexact differential is determined uniquely by its A-
periods. Let us denote by K, the generalized analytic modulus
associated with F,.,—F,, then easily we get

2.2) K,=KK, - K,_,.
Thus we have

COROLLARY. If ]jiK,,zoo, then any element of 1, without A-

periods is identically zero,
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More generally, we shall consider the class 1'4; 4% of square
integrable analytic semiexact differential whose A-periods vanish
except for a finite number of A;-periods (i=1, 2, -+, N). Let A4;
(i=1, -+, N)CF,, then we can conclude that if lim K, ,=co, then

n-y00

any element ® of 1'2v A% such that i S uw >0 is identically zero.
3F g
Because, by (2.1) we have

lolp, =25 gm{{ of oj+if ws  @>n),

9Fn

hence

lolt—253gm(( of of =i w=k.(if uo)

From this we obtain the desired rerult.

2. Let ® be an element of L', (F,)~1%.(F,), then by (2.1)
we get

2. 3)

p(n)
Hc"lli",,: —(, “’**)F,,: _2(5 COS (T,*_S G*S (o>+s uw*,
=1 \Jar JBg Ak Bk Fn

Now we consider the class 1, (F,—F,) A 1. (F,—F,), then under the
use of (2.3) we can define a conformal invariant %,, as follows:

S uw*

. F.

h,, = inf YOFn
w

uw*

3F,
where ® varies over the above class and S uw* >02,
oF,

Then %,,=1 and by the same way as we did in the proof of
the theorem III we have the following result: If limhk,,=cc,

Hp oo

then Uy, ATH.= {0}, that is, R belongs to the class Ogp.

Let us denote by I'&A.(F,—F)A1¥AF,—F,) the class of o€
Uy (F,—F)AT¥ (F,—F,) such that both ® and »* have vanishing
A-periods. We note that since I'A.(F,—F,) AI¥AF,—F)>1'A(F,
—F)), we have

2) When w does not be restricted to an element of 1%, it may happen that the
corresponding modulus is always equal to 1 (cf. [12]).



288 Yoshikazu Sainouchi

2"
F

uw*
oF;

inf

(5]

=K.,

where ® varies over the above class and S u@* >0. Analogously,
oF
we have '

where @ varies over the class I',,(F,—F,) A% (F,—F,) and S uw*

>0. It is clear that k,,=>#h,,, but since I'A,(F,—F,) D (F,—F))
and 1}, (F,—F,) > 1'¥A(F,—F,), we can not, in general, determine
the inequality of K, and #,,.

3. In the case that the exhaustion {F,} is not necessarily
canonical, the restriction of a semiexact differential to the regular
region F, is not in general semiexact on F,. But if we choose a
canonical homology basis with respect to an exhaustion {F,} of R
such that the cycles on 0F, are weakly homologous to a linear
combination of A-cycles only (Ahlfors [107]), then a semiexact
differential without A-periods becomes also semiexact on F,. Be-
cause any dividing cycle in F, is homologous to a linear combina-
tion of cycles on 6F,. We point out that in this case theorem III
is valid also.

The following relation of the Pfluger’s analytic modulus &, and
harmonic modulus ¢, associated with F,,, —F, is well known:

ky = 13",

where the equality k,=pi* holds for a doubly connected region.
We shall show that the inequality K,= 1y holds also for a special
choice of canonical homology basis. To see this, we denote by v(p)
the harmonic function which is 0 on 0F,, 1 on 0F,,,. Let (¢,
be a set of finite number of level curves; v(p)=t; (0=¢<¢,<--
<t,_,<t,=1) such that at least one critical point of »(p) is con-
tained in 9(¢;) (j==1,»). We add the relatively compact region
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Q; bounded by ¥(¢;) (j=2, :--,»v—1) to the exhaustion {F,} and
introduce the above mentioned homology basis with respect to the
exhaustion {F,, F,, -+, F,, Q,,---,Q, |, F,,,, -}, then the region
bounded by «(¢) (¢;<<¢<(t;,,) has the same canonical homology
basis as that of Q; (cf. Ahlfors [7], Hilfssatz 5). Then, for @€
A (F,,,—F,), both ® and »* have the vanishing periods along each
component of the level curve v(f) (0<{¢<{1l). We use v+iv*¥=
x+iy=2z (0<v<{1, 0<ov*<{d=D()) as the local variable and set
o=A(z)dz. We write

m(t) = iS UG = S:’uﬁdy = S:ua’dy,

v=¢

rid
where u(i y)=S Ad(iy) and the differentiation is with respect to
0

the local variable. Then m(¢) is determined uniquely by o € I'4,(F,.,
—F,), because u is determined except for an additive constant on
each component of ¥(¢), but ® has vanishing periods along each
component of ¥(¢). Therefore we can apply the same argument
as that in [6] (pp. 231-232) and we have

2.4 K, = mr,

where the equality holds for a doubly connected region.

Let us denote by K{’(#{”) the generalized analytic modulus
(harmonic modulus) of the component F$ of F,,,—F,. Then, by
the same way as that in the case of the proof of k,=min &y (cf.

J

[6] p. 233) we can conclude that
2.5) K, = min K.

Now let {F,} be an exhaustion of R by regular regions and
for each » we make a set of level curves v(¢;) defined as above.
The regions bounded by those level curves construct an exhaustion.
We introduce an above mentioned canonical homology basis with
respect to this exhaustion. Then by (2.2), (2.4) and (2.5) we
know that the following result holds.

THEOREM IV. If 1 (min p$)=co, then there exists an exhaustion
n=1 j

and a corresponding canonical homology basis such that 1'4.= {0}.
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Thus, on such a surface, for such a canonical homology basis,
o (€I',,) is determined uniquely by its A-periods. In [10] we
have proved this theorem by the other way.

§3. A special subclass of I',,,.

1. We saw that if ® be an element of I',,, then 0 —o’=7

oo oo k
belongs to I'ii,, where o'= 33 (o, Y )Vr,=—2i 33 23 (@, +10,) s V.
k=1 k=1 n=1
Since T is orthogonal to elements of the system {y.}, hence (¢, 7)
=0. Thus we get

[|[o—0|f = (0 —0°, 7) = (@, 7) = (@, ©) — (v, @°) = [|o|f—]|]]*,

hence ®° has the smallest norm in the class of o€ I',,, such that
o has the same A-periods as . After Virtanen [1] we call such
a ®° normal differential and denote by 1%7,, the class of normal
differential. 1%, is the subspace spanned by {y,} and we have
an orthogonal decomposition

— 0 H A
J-‘ase - Fase + l‘ase .

If we use {6(B,)} instead of using {s(4,)}, we have an ortho-
normal system {p,} in 1., by the same way as we did in §1.
Thus we have also an orthogonal decomposition

— v H B
l‘ase =1 ase + Fase ’

where 1%, is the subspace spanned by {p,} and 1'%, the class of
B-exact wel',,,.

2. Let ® be an element of 1',,, and {®w,} be a system of the
elementary differentials of 1st kind, that is,

[ on=1, [ w,=0  nem;
An Am
further if the condition

(3.1) Stloull || o] <o

be satisfied, then
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[l i , SA”C"HZ = ZM i (m” SA,.(D’ meAmw>

=53/.00.
).

It follows from (3.1) that the series

(@ o) =3 51| o

n=pN M=px

| a|loalllion
Am

3.2) "2; (o”S 0}

An

converges and has the same A-periods as ®. Thus, when the
surface R satisfies the condition for uniqueness and moreover
satisfies (3.1), then ® is expressed by the series (3.2) uniquely.
On an arbitrary Riemann surface, if ® and {o,} be restricted to
the class 1'%,,, we denote them by «° and {»}}, then the corres-

ponding series f}wﬁf w" belongs to 1%,.,. Therefore we have

n=1 JAn
THEOREM V. Let ©° be an element of 1'%, and {®3} be the system
of elementary differentials €\1's,,, then, if the series

converges, ©° is represented by i co?.S ®° uniquely.
n=1 An
3. Finally, following the method in [1], we establish a bilinear
relation for two elements of I'S,,. For this purpose, we show
that if

(3.3) Satll| of<e  (@er,
then

oo k 2
3.4) 2 21 (tane| [ @]) <o

where l,m=ReSB Ve (cf. (1.5)).

Since ||co2||2=i}lf,. and /,,=0 (k<n), this follows from
k=1
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], o)) = (Z1anring/Sn.)
= 3 eyt it [t it g (RIS )

Hiby| | @m+ibpl 3 | Lpnlon]
=1

n=

S

3
ll

=

n

:M8

I

v
M- M~ u[\d8 §

Il
Ms IMe 1M

la +i0,] 1@ +i0,| | Lgnlim]
(
G

|@u+iby| [ hnl) (Z!a il [ eml)

[ @l

1

x>
Il

Now let o7 ({=1, 2) be two elements of 1y, and satisfy (3. 3), then
by (3.4)

(3.5) ST

<o (i=1,2).

Moreover, we suppose that of (i=1,2) have pure imaginary A-
periods. Set S a?=ib” (i=1,2), then by (1.6)

An

3.6) ot = 50 P = 251 30 b

k=1 n=1

Hence the inner product of ¢} and o3 is
3.7) (o3, o9 = 23 %, ¥, )
= 4 (B ) (2 )]

Since /,,=0 (k<n) and
oIS 1= JMPES 0210 TN SN 2 oMT AP LR
we get

42 (E bl ) (Z b Lem) = 420(“ Z]lkn(Z i L) -
On the other hand, by (3.6) and (1.5)

Re{ ot =18, woRe| ¥
By =1 Bn
k

= 233 (23 5 L) o -
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Hence (3.7) is equal to

2§b§.“ReS o) = 22 Qms a‘l’-ReS ay.
n=1 Bn n=x] An B

n

Summing up the above result, we have

THEOREM VI. If both o) and o3 have the pure imaginary A-periods
and satisfy (3.3), then holds the bilinear relation

('T?,ffg)=2§9mg cr'l’-ReS od.
n=1 Apn

Bn
Kyoto Technical University.
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