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8§1. Introduction

Much progress has been made in the study of homotopy groups
of spheres since H. Freudenthal defined the “Suspension” in his
paper “Uber die Klassen der Sphirenabbildungen”, Composito.
Math. 5 (1937), 299-314. Though many topologists have studied to
compute the homotopy groups of spheres, the problem is still open.

The present paper attempts to define and study new general-
ized Hopf homomorphisms H,: 7; (S*") - 7, (S**") (k=1,2, --).
The difference among the miscellaneous Hopf homomorphisms will
be studied. The higher composition than the secondary composi-
tion will also be constructed and its properties will be stated in
this paper.

Sections 2 and 3 of the paper are devoted to the contruction
of higher compositions. Their properties are stated in these sec-
tions. Main tool is the secondary composition.

In Section 4 we will give the formula of the Hopf homomor-
phism H defined in [10] for the higher composition.

In Section 5 we define the generalized Hopf homomorphism
by use of the structure of the suspension space of the reduced
product complex.

Section 6 is the application of Section 2 and the preparation
for the forthcoming paper [11].

In [11] the author will compute the (#+/)-th homotopy groups
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of the n-sphere for /=21 and 22.
In this paper we use the following notations ;

[X, Y] : the set of all homotopy classes of maps: X—Y,

EX 1 the suspension space of X,

CX 1 the cone of X,

Ef 1 the suspension of a map f,

Fa . the suspension of a homotopy class «,

a (the set of) the extensions of «,

B (the set of) the coextensions of B (for the definition, see
[10]),

X\mj CY: the mapping cone attached by «a:Y — X,

0x 1 the loop space of X,

7% or w{S":2): the 2-components of ={S").
I would like to thank Prof. H. Toda who read the manuscript
and gave me the benefit of many helpful conversations.

§2. The tertiary compositions
We assume given a sequence of maps

a b ¢
A«—B+«—C<«—D

such that @ob and boc are null-homotopic. According to [10], we
define a homotopy class {q, b, ¢} € [ED, A] which is defined modulo
left multiplication by the subgroup a,[ ED, B] and right multiplica-
tion by the subgroup (Ec)*[EC, A]. This double coset will depend
only on the homotopy classes of a, b, ¢, and be denoted by {«, B, v}
where «, 8, v stand for the homotopy classes of a, b, ¢, respectively.

We recall some properties concerning the secondary composi-
tions. (For the proof see [9], [10]).

Proposition 2. 1.
(0) If one of o, B, or v is O, then {«, B, vy} =0.
(1) {a, B, y}oESC {a, B, yob}
(2) {a, B, vo8} C {a, Bor, 6}
(3) {aeB, v, 8} C {a, Boy, 8}
(4) @oi{B, v, 8} C {aoB, v, 8}.



Generalized Hopf homomorphism and higher composition, I 173

Proposition 2. 2.
—{a, B, 9} oES = ao{B, v, 8}

Proposition 2. 3.
If sums are defined, then

1) {a, B 9} +{a, B, v} > {a B v+7'}.

(2) {d, 8, '7} + {a’ g, 'Y} = {a» B+4, 7}’ y=Ev'.

(3) {GC, )8, 7} + {“,) B) 'Y} p) {a+a,» /3: '7}> /3=E/8/» 'YZE')','
Assume that we have a commutative diagram

a, 8, %

a, B, Ve
where «;08;=8;0v;=0 (i=1,2). Then we have
Proposition 2. 4.
Felay, By, v} and (SiYy*{a,, B,, v.} are equal as double cosets of
aZ*[SDl’ Bz] and (S'yl)*[scl’ Az]'
Let «, 8 and v be same as above. Consider the commutative
diagram

@ ¥
A «—— B\JCC «—— ED
B

b e

A\JCB«——EC ED
v -8 Ey

where p is a mapping shrinking B to a point (See Lemma 2.7).

Proposition 2. 5.
The set of all the compositions BoEy coincides with —i{a, 8, v}.
Similarly, we have

Proposition 2. 6.

For an extension B of B, there exists an element \ of [ED, A]
such that p*n=aoB. The set of {\} of such elements forms a coset
of [EC, A]oEy which is a subset of {«, B, v}. Furthermore, any
element N of {a, B, v} satisfies the relation p*N=aoB for some
choice of B.



174 Mawmoru Mimura

Assume that @<B=@Boy=706=0 in the diagram

5
x Xy B g vl

Before defining the tertiary composition, we prepare

Lemma 2.7. ([7; Propositions 5.11])
The following diagram is commutative

B
Y «—— Z\JCU
Y

LY

Y\JCZ+—EU.
B -

Proof is given in [7].
So we obtain the commutative diagram

a 3 s
X «— Y «— Z\JCU+~—EV
Y
2.1) 11X li lp llw
Xe—Y\JCZ——EU «— EV .
a ] -9 ES

We assume furthermore that
(i) {a&, B8 v}30 and {8, v, 8} =0,
or
(ii) {a, B, v}=0 and {B, v, 830

The case of (i).

There exist @ and # such that &°4¥=0. By Proposition 2.6
there exists B such that ae3=p*(@¥5)=0. We have B<6=0 for
any 5 by the assumption {8, v, 6} =0.

By Proposition 2.5 we have

—FoE8€i {8, v, 6} =0.
Therefore we can define the secondary compositions
{a, 8,8 and {& —#%, E8}

By Proposition 2.4 and (2.1), these two secondary compositions
coincide as double cosets of
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(2.2)  @&LEV,Y\JCZ] and (E8)(EZ\J CEU, X1.

We define the tertiary composition {a, B3, v, 8} as {a, B, 8} =
{@, —#, E8} which is the double coset of (2.2) under the conditions
{a, 8,7} 30 and {B, v, 8} =0.

The case of (ii).

By the similar arguements, we can define {«, 8, v, 8} as double
cosets of (2.2).

Note that under the conditions {«, 8, v} = {8, v, 6} =0 the above
two cases coincide.

Proposition 2.9.
(0) If one of a, B,y or 8is 0, then
{a, B, v, 8} =0.
(i) If {a, B, v} 30 and {8, v, 8-&} =0,
or {a, B, v} =0 and {B, v, 60&} 50, then
{a, B, 7,8} cE*6 C {at, B, 7y, 806}.
(ii) If {a, B, v} 30 and {8, v°3, & =0,
or {a, B, yo0} ={a, B, v} =0 and {B, v, 60&} 30, then
{a, B, Vs 308} C {d, B, 703, 5}.
(iii) If {a°B, 7,8} 50 and {v, 8, & = {Boy, 5, & =0,
or {a, Boy, 8} =0 and {y, 8, &} 30, then
{aoB, v, 8, & C{a, Bov, &, &}.
(iv) If {8, v, 6} 30 and {v, 3, & =0,
or {B, v, 8} ={aoB, v, 8} =0 and {v, 3, & 30, then
ao{B, v, d, &} C {aoB, v, S, E}.
Before we prove this proposition, we prepare the following
Lemma 2.10.
(i) WoESCyos
(ii) BoyCBoy
(iii) B3,+B8,=B6,+8,
The proof is left to the reader.

Proof of Proposition 2.9.
The proof of (i) and (iv) is clear.
(0) «=0 or 6=0, then the proof is similar to those of (0)
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of Proposition 2.1. Let 8=0, then in the definition of {«, 8,1, o}
we may choose 8=0. By use of Proposition 2.1, we can prove
the proposition. The case y=0 is similar.
(ii) We have
{E(, Y, E(SOE)} < {C_k’, &oEs, EG}
C {@ 796, E€} by (i) of Lemma 2. 10.

This proves (ii).
(iii) We have

{aoB, ¥, &} C {a, Boy, &}
C {«a, Bov, &} by (ii) of Lemma 2. 10.

This proves (iii).

Proposition 2.11.
( i ) {a’ B, 9, 81+82} C {a’ 8, Y 81} + {CZ, 8, Y5 82}
(i) {a, B vit7, 8 ={a, B 7, 8 +{a, B v, 8}
(iii) A{et, B,+8,, v, 8} ={a, B, v, 8} + {a, B, v, 8}
(iv) A{ay+a,, B, v, 8 C{ay, By, 8} +{ay, B, v. 8}

Proof.
(i) and (iv) follow immediately from Proposition 2. 3.

We have
{, B, 7, 8 +{a, B, v, 8} ={a, B, 8} + {, B,, &}
={a, B,+8,, 8} by Proposition 2.3
={a, B,+B,, 8} by (iii) of Lemma 2.10

= {Of, Bl+'82’ Y 8} .
So we obtain (iii). The proof of (ii) is similar. Q.E.D.
In the diagram
a B8 v 8 &

X X 4 U vV w

we assume that

{a, 8,9} =1{7,6,&=0 and {8 v, 8}30,
or {a,B,7}30, {7,6,6}30 and {B, v, 8}=0.
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Proposition 2.12.
Under the above conditions we have
—{a, B, v, 8}oE* = ao{B, v, 9, &} .
Proof.
{@, B, v, 8}oE% = {a, B, 8}oE*¢
= —ao{B, & E€} by Proposition 2.2
= ao{B, v, 5, &}.

§ 3. Generalized Toda bracket

In [1] M. G. Barratt defined a generalized Toda bracket
{a, gl’ zl} under the relations aoB,=aoB,=B,oy,+B,ov,=0, where

2y /2

Z
B,/ TP\
¥ a Y/ AN
N /
B\ Z, A

However this higher comp#6sition is a special case of the secondary
composition {a, 8B, v}, where a €[Y, X ], B=8,+B,€[Z, Y]=[Z,, Y]
+[Z,, Y] and y=v,+v,€[U, Z)+[U Z,]<LU Z2)(Z=2Z,v Z,, one
point union of Z, and Z,). So all the properties which hold for
usual {«, B, v} are true for this composition, e.g.,

() faranfg e g 0+ (e 7)
CUNEY-3e JARCY SAR0 S 84
G {a g7yl e - le B )

It is clear that this composition is a double coset of a,[EU, Y]
and (Ev,)*[X, EZ,]+(E7.)*[X, EZ,].

§4. The Hopf homomorphism and the composition

Consider tertiary compositions for spheres :
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gl 5B g B o B
In the above we assume that {a, EB, Ey} 30 and {8, v, 8} =0,
or {a, EB, Ey} =0 and {8, v, 8} 0. Under these assumptions we
may define the tertiary composition {«, EB, Ev, E8} as {&, —E¥,
E®} ={a, EB, E§}. Denote by H the generalized Hopf homo-
morphism defined in [10], then by Proposition 2.3 of [10], we
obtain
H{a, EB, Evy, E8} = H{a, EB, E§}
C {Ha, EB, ES}
= {Ha, EB, Ev, Ed} .
We have proved

Proposition 4. 1.
H{a, EB, Ev, E8} C {Ha, EB, Ey, E8} .

Next we assume that aecB8=Boy=v06=0 and {Ea, EB, Ey} 30
and {EB, Ev, E8} =0, or {Ea, EB, Ey} =0 and {EB, Ev, ES} 50. Then
we can define {Ea, EB, Ev, E8} as {Ea, EB, E8} = {EQ, —E¥, E*8}

Proposition 4. 2.
H{Ea, EB, Evy, E8} C A '{a, B, v} oE®S.
Proof.
H{E«a, EB, Ev, E8} = H{Ea, — E¥, E*3}
= A7 (@oF)oE*S by Proposition 2.6 of [10]
Cc A Ya, B, y}oE*S Q.E.D.

For the generalized Toda bracket, the following proposition
is obvious.

Proposition 4. 3.

EB, Ey EB, E'Y}
H{a, EBI, E,Y/} C {Ha, EBI) E')’/ .

8§ 5. The generalized Hopf homomorphism

The reduced product complex of S® (1>1) is a CW-complex
St with a cell structure
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Stuey - verty -,

so there is one cell in every dimension which is a multiple of #.
We study at first the structure of the suspension space of this
complex, E(S%).

Theorem 5. 1.
E(S2) is homotopy equivalent to \75“"“.

Proof.
Set T,= \kj S”x .o xS" X * X S*X -+ X §", (§")=8"x -+ xS" the
i=1 i
product of k m-spheres and (S")*— T,=e¢" the open kn-cell. Let f,

be the identification map: (S")*—S?, where S} is the kn-skelton
of S*, and denote by f, the restriction of f, to T,, ie.,

f_k: Tk_>S?—1-

Consider the closed kn-cell E{*=En" X --- X E% contained in eg",
where E% is the upper hemi-sphere of S” and the base point *
belongs to S"—E7%.

Choose a differentiable imbedding of A,=(S")¥—Int E% in
E**1, the closed (kn+1)-cell, so that 0A,=A,nS*=S*""". Obvious-
ly T, is the deformation retract of A, and we denote by 7, the
deformation retraction of A, onto T,.

Set Fp=fpor,|0A,: S '—St ., then F, is homotopic to the
attaching map of ¢*" in S}=S;_,uve*.

We want to show that

EF,=0: S"— E(S;-)).

This is equivalent to that EF, can be extended to E*"*.

Let S*=E*UE*! where E* (E*) is the upper (lower) hemi-
sphere of S**. Then we may divide E**' into two submanifolds
Vit and V! such that Vi (VE*) contains E** (E**) respective-
ly and V¥+'nVir+ti=A4,.

We define a map G,: A,vS"— E(S;_,) as follows:

Gul Ap = Frors: A — Si-y,
G,| S = EF, : S" — E(S7_)).
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Set E(S;-,)=V,vV_, where V, (V_.) is the upper (lower) half
of E(S;-,). By the definition of the suspension of F,, we see that

GAVE) CV,
and GAyVvE™CV_.
G, can be extended to V***' (Vi) as V, (V.) is contractible.

The map thus obtained is an extension of EF, to E**. It follows
immediately the theorem. Q.E.D.

Remark.

This theorem is also obtained easily by use of Satz 20 of [8].

Hereafter we fix the homotopy equivalence between E(S2) and
\/ §™** (preserving orientations).

Let ¢:S2—QS™" be the canonical injection, Q, be the one to
one correspondence : ;. (S"")— z,(QS™**) and p, be the projection :
\/ Sin+1‘_)Sk'n+l.

Now we define generalized Hopf homomorphisms H, (k=1, 2,
-++) as follows:

f_]k = Pk*°E°i;‘°Q°: 7t;+1(S”+1)—> 7r£+1(Slm+l).

Proposition 5. 2.
H,oE = identity.
HypoE=0 (k>2).

Proof.
We have the commutative diagram:

E
7 S") «—— win(S™T)

(5.1) Z}*\ /60
”f(QS”+1)

where ¢/ : S”— QS"! is the natural injection and the relation |S"=7"
holds.
For an element E«a € =;,(S"""), we obtain
(Eciz'oQy)(Ea) = (Eciy'oii)(@) by (6.1)
= Ea € m;,(S™)
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Hence
FI1(Ea) = pl*O(EOi?OQO)OEC(
= pl*(Ea)
= Fa
and HY Ea) = ppyo(Eciz'oQ,)°Ea
= pelE)
=0 for k>2.

Proposition 5. 3.
Hy(a-EB) = H(a)ER.

Proof.
We have the formula

QaoEB) = Qfa)oB.
Therefore we obtain

HyaoER) = (paxoEciy'oQ))(aoER)
= Desl(Eoiy)o(Quo))
= Dulix(Qu@)°ER)
= Ha)EB. Q.E.D.

I. M. James defined in [6] the Hopf-James homomorphism H,
as follows:

Hy= Qg cigolpgotz' oyt wi(S™) — mii(S7),

where £/, is the map (52, S7, Sp_.)—(S¥, S*, %) and Sy—S7_, is
mapped onto S**—=x by degree 1 by #,.

We will study the differences between two such homomorphisms.
Let us consider a condition on a map that

(5.2),: it is a map: (E(S2), E(Sy), E(S:_)— (E(SE), E(S*™), %) and
E(S?)—E(St_,) is mapped homeomorphically onto E(S*)— %
by it.

Obviously the map Eh, satisfies the condition (5. 2),.

Let A, and %; be maps: (S2, Sp, Sp_.)— (St S*, %) such that

Eh, and Eh; satisfy the condition (5.2),. Then we have the

following commutative diagram :
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7i4:(S™)
Q,
L E
7{QS™)  —— 7 (EQS™)
Lx (Ef)y
FE
7{S2) —> 7;,(ES?)
(5.3) Tise, Dy 5 (Eh)s, (ElY)s
7 {(S&) — 7 (ESH)
ix (Ei)y
E
7{QS"™)  —— 7 (EQSF)
/
Q, s
Zier(S*)

where q,, is the natural map: EQS*+' — St+!,
We have the following exact sequence (see [8]):

* k
[E(S%/S?), ESE] i—» LESZ, ESt] —Z—> [ES:, ES*].

By use of (5.2), we obtain that
*({ERY} —{Eh;}) =0 in [ES?, ES'],
whence there exists an element v of [E(S%/S?), ES®] such that
pry=A{Eh} —{Eh.},
ie., {Eh} — {Eh;} € p*[E(S?/SY), ESE'] .
Accordingly, for an element &€ 7z(S%) we have
(5.4) {Eh}}oEa—{Eh;}oEa = ({Eh;} — {Eh;})oE@
e[ \/ Sjn-f-l’ ES:T]O”;-;-I( \/ Sjn-i»l).
izk

jZk+1
Define homomorphisms H; and HY : 7; (S"*")— 7;, (S¥"*') as
follows :
Hi = Qg'oiohiyoiz'cQ,
H{ = Qgloi ohiyoiz'oQ,.

Then for an element « of =;.,(S""') we obtain by use of the com-
mutative diagram (5. 3) and (5. 4)
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Theorem 5. 4.
W)= Hj(a) mOdf*”iﬂ(!\k IS.MH)’
Y
where f is @ map: \/ S-S
JZk+1

Similarly we get
Theorem 5. 5.
Hfa)= Hya) mod gymi( \/ S™),
where g: \/ SISt izke

jZk+1
Corollary 5. 6.
H,=H, if i<(k+1l)m.
Next consider the Hilton-Hopf homomorphism H,: 7z;,(S"™)—
7ti+1(52"+1)°
The following correspondence defines the Hilton-Hopf homo-
morphism :

i 2P ntly, QHAl J n n 2m 4 ani b4 241
0S*H—— (S" v SM QST X QST X QST X QST I - > QST
where @,,,, is the map : $""'— §"*' vS§"*' which pinches the equator
of S™*', j is a singular homotopy equivalence and p is the projec-
tion on the third factor.

It is well known that puojz'e(QP,. )« H.(QS" )= H, (QS™*").
Since i:S*—->0QS**' is a singular homotopy equivalence, there
exists a map k: S® — S* such that h,: H,(S*)= H,,(S*) and
Qitoigohyoiz'oy=H: m;i (S™) — 700 (S*F). It is easily verified
that Eh satisfies the condition (5. 2),.

Hence we obtain the following theorem, as H, defined in the
above is the Hopf homomorphism H defined in [10].

Theorem 5. 7.

H(a)= H(a) mod flm;.( -\/38’"“) for @€z, (S™Y),
where f/ : \/Sjn+1 —s S+

iz3

In particular,

Corollary 5. 8.
If i<Tn, then
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H(@) = H{a) mod 3} fumin(S™),

where f,:.S"— S,

Remark.
For the higher Hilton-Hopf homomorphism H, defined in [2],
the similar result to Theorem 5.5 holds. (H,=H,).

Lemma 5. 9.
EH(aoB) = EH(a) ES+ E"acE*a-EH{R)
for a€x(S") and B€x(S?).
This is the conclusion from Theorem 6.2 of [2] and Theorem
1 of [3].
Corollary 5.10.
If i<Tn, p<3n and i<3p, then for a€n, (5" and
B € =i (SP7)
H(aoB) = H(a)oB+ E"acE?ac H(B)
mod 31 fiuwms (S™) + Ker (E: mS™) = ms(S™4)),
where f,: S — S
This follows immediately from Corollary 5.8 and Lemma 5.9.

Problem 5.11.
Is it true or not that
H(aoB) = H(a)oB+E" 'acE*'acH(B)?
Hereafter the notations of generators of =}, are refered to
[10].
Example 5.12.
H(o'ow,) = 0w, = &% for o € wly and o, € mi; .
Proof.
Let =6, p=13 and =29 in Corollary 5. 10, then
H(o’cw,,) = H(o")ow,, + E*¢’°E*¢’cH(w,,) mod G
= 0w, +40%300,, by Lemmas 5.14 and 12.15 of [10]
where G = foymo(S®)+ fismo(S®) + Ker (E @ 7,(S?) — m,(S7))
= {13308} =0
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and 40%30927=0.
By Proposition 3.1 of [10] we have

N0 = 7169017 = 016073
= &k by Lemma 12.15 of [10].
As E*: 7,(S®) — =,(S*) is a monomorphism, we obtain
H(U,OQ’M) = 'Sfa .
This relation will be used in [11].

§ 6. Some elements given by the higher compositions

This section is an application of §2 and §4 and the preparation
for the forthcoming paper [11].

In Lemma 12.18 of [10] Toda obtained the element A of =3}
such that

H(\) =3 and EXA—2uF = £ Ay,
by use of Lemma 11.17 of [10].
Consider the secondary composition {v,;, 2v,,, v,s} Which is well
defined since the order of v3 is 2 for »>5. By (3.10) of [10]

{205 20555 w5} and (—1) {2v,, vy, 2vp have a common element.
We have

{2020, vogs 2vs6} C {24y, 2up5, vy by Proposition 2.1

= E"¢ by the definition of & in [10]
= 2(vy500,) by (7.10) of [10]
=0 by (7.20) of [10]

Therefore we have
{Vzo: 21’23» st} =0 mod {”200023} =0.

Let a cell complex K=S5%ue” have the characteristic class 2v,, of
¢”’. By Proposition 1.7 of [10], there exists an extension Ext (v,,)
€[K, S*] of u,, and a coextension Coext (v,)€ m(K) of v, such
that Ext (v,)oCoext (v,,)=0. By Proposition 2.6, there exists an
element v of #,(S*) such that p*y=oc,0Ext (v,). The set {y} of
such elements forms a subset of {o,, v,, 2v,,}. It is easily checked

that secondary composition {o;, v, 2v,,} contains 0. Thus the
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following tertiary composition is defined »
{013, EXt (vy), Coext (ve)} = {0445 v2gr 205 vas} C 75(S¥).
By Lemma 4.2,
H{oy, vas 2055, var} = A7 {012, vyes 2ua}0vsg = 135,
since we have
H{oy, vigy 205} = 20, = HAvpy.

So we choose an element A, from this tertiary composition {o.;, v,
2”23: ”ze}'

As H(\,)= H(\)=13s;, we obtain
A=, mod Ex3} = {Ela’ 2, 77130}‘7‘14} >

(6.1)
H(\) = H\) = vis .

Lemma 6.1.

There exists an element a of =3 such that Ea=rn,or, mod viox};
+ 72'?30/613, H(C() = POk, and 2a=0.

Proof.

We choose an element « from {u%, 2¢,, «,,}. We have

H(C() € H{U%, 20,3, /Cu}

= — A7 (vE02¢,)0xk,, by Proposition 2.6 of [10]
= yyok, mod 2yok, =0

and 2a € {vi, 20y, £6,,} 0205
= —2o{2s,, Ky, 25} by Proposition 2.2
> — V30K, 0 by Corollary 3.7 of [10]
= vgon, 0Ky, by (10.23) of [10]
=0 by (5.9) of [10].

That is 2a=0 mod 2273} + viomito,,=0.
By the definition of z, we have
7308, € 7,0 {vy, Ext(7,,), Coext (re15)}
= {9 vy, EXt (9,,)} oCoext (x,,) by Proposition 2.2
C {Vgr 2"14» "14} ’
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since we have by Lemma 5.12 of [10]

{7, vor EXt (o)} [S* = {m, vy, 7} = 48
Therefore we obtain
7,07 € {03, 2045, K5}
DE{u%, 2t,,, £y} .
In the exact sequence
E

7Y —> wh —> 7ls,
we have by Proposition 12.20 and Lemma 5. 14 of [10]
A7sl = {A(opom)}t = {Almsops)t = {(AcH)(oop,)} = 0.
So E is a monomorphism and we obtain
70%, € {vE, 2015, 6,5} . Q.E.D.

’
Choose elements o*"’ € 732, o*” € z1¢, o*' € 733 and o¥ € 71§ from
the following secondary compositions

" e {012 Y1o» Cabs
o’ € {61 802y, 02},
¥ € {015, 40,,, 0‘29}1
and 0¥ € {0, 204, Ou}, -
Denote that ¢F=E" "c¥ for n>16 and ¢*=E~¢¥
Lemma 6. 2.
(1) H(e*")=¢,, mod 2¢,, and 8s*"' =40,0p,, mod 8c,,°p,
(2) H(c*")= 131+ 1,08, and 2% =p,00,, mod o,,0 En32+ wit020,
(3) H(c*')=15,+8&, and 20* =Eo*" mod ¢,;0 Ex3i+m}5004,
(4) H(o¥)=0, mod 20, 20%=Es* mod 0,0 Ex3+ mioo,
and 16c¥,= 20,400, .

Proof.
By Proposition 2.6. and (7.21) of [10], we have

H(O‘*/”) € H{Ulz» Vig» “;22}1

= — A (04,005)08 5
=, mod 2&,, .
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And

1777
8c*" € {012» Vigs §22}1°8"34
= UlzoE{”ls) Eas 8"32}

Consider the stable secondary compositions <y, ¢, 82> .

For an odd integer x,

x{8¢, v, &> = (8¢, v, (8¢, v, a>>

see p. 90 of [10]

= (8¢, v, 8, v, 0> +<8t, v, 8¢, v, o

= {8, 80, o>
3 4p.

Next we have

by Lemma 5.13 of [10] and G,=0

{2a, 8i, v>, 8, v>—<2a, <8, v, 8>, v

—{20, 8, {v, 81, v>> =0

whence <&, 8¢, v>=16p.

By use of these relations and Jacobi identity for the stable

secondary composition, we have

8t v, &>+, &, 8D +<E, 8, vp» =0 mod 8G,,,

v, &, 8> =8¢, v, {H=4p

mod O,

mod 8G,; .

Thus we have proved the relation

8ot = 40,,0p,,
By the definition we have
H(c*") € H{oy,, 8ou, 0w},
= — A 0,3°80,)00,
= ”7%70029
= v31+ 720,
We have
20+ € {014, 80as G2} 10205
C {01 80, 204}
D {614 8041, 2055} 005

D L1400 -

mod 8,00, .

by Proposition 2.6 of [10]
by (10.10) of [10]
by Lemma 6.4 of [10].

by Proposition 2.1
by Proposition 2.1

4
Thus p,,co,,=26*" mod 01,0 B3 + m}35020,,.

Similarly we have

By Proposition 2. 2.
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H(cr*/) € H{als, 40y, 0‘29} 1
= — A" ¥(0,,9403)004, by Proposition 2.6 of [10]

=1)300073, by (10.10) of [10]

=D+ &, by Lemma 6.4 of [10],
2% € {6155 4022, O30} ,°2t,

C {o1s> 802, 020}, by Proposition 2.1

D> E{c,,, 80y, 0},

B Eo*" .

So we obtain Eo*’=2+* mod 0‘,507r§-21+7z;},g°o‘30.

H(c¥)=0, mod 2s,, is obtained in the similar way by use of
Proposition 2.6 of [10].

We have

20% € {015, 2043, 0311920
C {016 402, 030}, by Proposition 2.3
D E{oys, 404, 05},
> Es*,

whence 20%=_FEos* mod o,,0Ex%+n¥oo,
= {016%P2> 016°C235 P15°031> Avy} .
Also we have

160?‘6 E {o‘,e, 26,5, 030}10161,38
=049 {20622, 045, 1605},
C046° {2023, O35 161,3.,}1
C 046°{045, 204y, 16¢5,};, by Proposition 2.1
D 20,50 {02, 204, 8t5,}, by Proposition 2.1
D 2616%Ps »

where the indeterminacy is o}s0 End+ o ,0mia016e,, =0,
ie., 166%=20,°p,,.

KyoTo UNIVERSITY.
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