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1. Introduction

The notion of extremal length was first introduced by Ahlfors
and Beurling [17] and various equivalent or extended definitions of
extremal length were considered by J. Hersch [4], J. Jenkins [5]
and others. Let I' be a family of locally rectifiable curves given
on a domain D of a Riemann surface R, and p(2)|dz| be a con-
formal metric on D with non-negative covariant p(z) such that

S pldz| is defined (possibly ) for all y€ 1. According to Jenkins,

y

p(z) will be said to be admissible for the problem of extremal

length of I' (or briefly “admissible”) when A(p)=SS p(2)dxdy<1,
D

and, putting L,(I")= infs pldz| for each admissible p(z)|dz|, the
YET Jy
extremal length of I' is defined as the square of sup L,(1') when
p

the supremum is taken over all admissible conformal metrics. This
definition of extremal length is equivalent to that of Ahlfors-
Beurling and that of Hersch when p(2) is limited in the same class
of measurability.

By this definition of extremal length we know at once that
extremal length of the family Iy of all locally rectifiable curves
whose p-length are infinite for a certain admissible conformal
metric p(2)|dz| is infinite, because A (I")2= sup L,(U')=L,(I'))= oo.

Especially, if we take the family I, of divergent curves in
R—K (K: compact domain in R) which start from 6K and along
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which a function f(z) (SSR |f’|2dxdy<oo) of the class C' has
-D

not finite limit, the extremal length of 1’| is infinite, because each
curve of I', has infinite length when it is measured by the metric
p(2)ldz|=|f'(2)||dz| (Ohtsuka [7]).

Secondly, we consider a family I', of divergent curves and a
meromorphic function f(z) in K, for which SS <—|fj—>2dxdy

RA1+|f]?

=M(f)< oo (z=x-+1y). The zero points of f(z) in R are at most
enumerable and do not cluster in R. And extremal length of the
family of curves which pass through a zero point is infinite. So,
extremal length of the family of all curves which pass through a
certain zero point of f(z) is infinite. For the remaining curves of
I',, the existence of non-zero limit of f(2) along a curve is equi-

valent to the existence of finite limit of %) along the curve.
z

(4 e

’
d S 1lL%—Izlale are infinite. This means that the curve ¢ has

infinite length measured by an admissible metric p|dz|=

So, if f(z) has not a limit along a curve c, S

1
, VM)
—I-—IIfI_JI‘_Ié |dz|. Therefore, the family of such curves as ¢ has infinite
extremal length, that is, f(2) has a limit along each curve except
a family of curves with infinite extremal length.

Thirdly, we take a meromorphic function w=f(z) for which
M(f)< > as above, and a point w, in the w-sphere at which
S(t):Sglw—w0|<:<_1_-l?f|l_,lf—|2>zdxdyzo<tz log %) The extremal length
of the family 1), of curves in w-sphere which converge to w, is
infinite. Though extremal length of a family of curves is smaller
in general than extremal length of the family of image-curves by
an analytic mapping, the inverse image of 1I';in R by w=f(z) has

infinite extremal length by force of the condition S (t)=0(t2 log %)

(cf. A. Pfluger [8]) This means that the extremal length of the
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family of curves along which lim f(2)=w, is infinite when f(2)
satisfies the above condition at w,.

The above second and third results are, in a sence, extention
of A. Beurling’s theorem [2] to the case of a Riemann surface.
Thereupon, we are going to study the behavior of the family of
curves with infinite extremal length when the curves converge to
an ideal boundary of a Riemann surface. That is, we want to know
how the family of curves is related to the notion of “boundary”
of a Riemann surface. For this purpose we consider, for the pre-
sent, Kuramochi’s compactification (completion) of a Riemann
surface and its boundary, and study the continuity of extremal
length at the boundary and the relation between extremal length
and the capacity of Kuramochi boundary.

2. Kuramochi boundary and extremal length

Let R be an open Riemann surface with positive boundary
and {R,} be its regular exhaution, and we suppose R—R, is con-
nected. We consider a function N,(p, ¢) of p in R,—R, which
satisfies the following conditions.

(1) N,(p, q) is harmonic in R,— R, except a point ¢ € R,— R,
in a neighborhood of which N,(p, ¢)+ log |p—¢q| is
harmonic.”

(2) N,(p, q) is continuous and equals zero on dR,.

(3) The normal derivative %jﬁi}=0 on JR,.

According to Kuramochi [6] we put
Dlﬂ;”-Ro-v,(q)(Nn-n‘(p» q), N.(p 9))
0
Noi(br @) No(5, @)ds+ |
n Jov,

- {N,.i(p, @)+ log | p—ql}

S AR p+0R, r

2 N,(p, q)ds
n

= N.i(p @)+ log | p—ql} 2 N.(p, 9)ds
90, (D on

1) We use the letter p, ¢ not only to represent the point of R but also the
uniformizing parameter at p, gq.
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where v,(q) is a disk centered at ¢ and with radius » in a para-
metric disk of ¢.* We define D}, _r (N,.:(p q), N,(p, q)) by

lim Dy, —r,-1,caNosi(5, 4), No £, 9)=lim 22(N,.. {5, ¢)+ log | p—q])
and D3,-g, (N.(5, q)) by

lim Dg, - ry-i,cor (N 5, 9)) = lim 27 (N, (2, q)+ log | p—ql)
Then, for m<n

0= Drp-r,(Na(: @)= Nosi( 8, 0)) = Dr,-r,(NW (8 @)= Nouii( 55 9))
<27 AD%,-r, (N, (P, )= D% i-r,(Nosi (5, )7

And, since N, (p, ¢)=G,.(p, q) in R,,—R,,

D%, r,(N.(D, q) = lim 27 (N, (D, ¢)+ log | p—ql)
;1}2} {G(b, @)+ log | p—q|} = L > — o0,

where G,,(p, q) is Green’s function in R,,— R, with pole at g. From
these inequalities D%, _r (N,(p, q)) decreases monotonely when »
increases and is lower bounded. So {D%,_ g, (N.(#, 9))}. converges
and lim Dy, (N, (p. 9)=N,..:(5, 9)=0, that is, {N,(p, )}, con-

verges in mean in R,,—R,. And since N,(p, ¢)=0 on dR,. Here,
since m is arbitray, {N,(p, ¢)}, converges uniformly on every
compact set in R—PRF,. We denote the limit function by N(p, q)
and call it N-Green’s function of R— R, with pole at p.

Using this N-Green’s function Kuramochi compactified R as
following. Let {g;} be a sequence of points in R— R, which has
no points of accumulation in R—R,. When p stays in any compact
set, {N(p, ¢;)}; is, from some i on, a uniformly bounded sequence of
harmonic function of p and it forms a normal family. A sequence
{g:} of points of R— R, having no accumulation point in R—FR,,
for which the corresponding {N(p, ¢;)}: converge to a harmonic
function, is called fundamental. Two fundamental sequences are
called equivalent if their corresponding N(p, ¢)’s have the same

2) This modified Dirichlet integral D*(«, v) is equal to ordinary one when %, v
are harmonic.

3) About this calculation, see Kuramochi [6] p. 6.
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limit. This has the usual properties of an equivalence relation
and the class of all fundamental sequences equivalent to a given
one determines an ideal boundary point of R. The set of all such
ideal boundary points are denoted by 5.

We define a distance of ¢,, ¢.€ R—R, as

B N(p’ ql) N(P: 42)
5 _ —
(qu q2) peSRlllPRo 1+N(]5, Q1) 1+N(p’ 42)

By completion of R—R, as a metric space with the above metric

we reach the above compact space R—R,+B. Thus, R—R,+B is

a complete metric space and the subspace R— R, is homeomorphic

to itself with original topology. B is a closed subset of R—R,+B.
Here, we prove the following proposition.

Proposition 1.° The family N of curves, ¢, which converge to
the ideal boundary of R and each of which does not converge to any
point of B has infinite extremal length.

Proof. From the definition, we know N(p, ¢)=N(q, p) for
P geER—R,. So, for a fixed p€ R,—R,, N(p, ¢q) has finite Dirichlet
integral over R— R, as a function of ¢. From the definition of
d-metric, ¢ €M means that, for a certain p€ R,—R,, N(p. q) has
not a limit along ¢ as a function of ¢, that is, there are at least
two non-equivalent fundamental sequences on ¢. The family of
such curves {c,}, along each of which N(p, ¢) has not limit, has
infinite extremal length. And, by continuity (harmonicity) of
N(p, q) about p (g€ R—R,+B), if N(p, ¢g) has not limit along ¢
as a function of ¢ for a certain p, then it has not a limit along ¢
for all p’ which are sufficiently close to p. Since R,—R, is separ-
able, we can choose countable number of points, {p;}, which are
dense in R,—R,, and corresponding family of curves {c,}. For
any p€ R,—R,, each curve of {c,} belongs to a certain {c,;} from
the above continuity. Thus, 9 is the union of countable number
of {c»;}’s and has infinite extremal length.”

4) This proposition was proved by M. Ohtsuka in a more general method [7].

5) -leg “in' where 4; is the extremal length of {cy,} (Ohtsuka [7]).
=14
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This proposition says, in other words, that each curve of a
family with finite extremal length converges to a point of B except
curves of a subfamily with infinite extremal length. We study,
in the following, accessible points and capacity of sets of points of B.

3. Extremal length and the capacity of a set of Kuramochi
boundary

Let A be a closed set in B and A, be its neighborhood ;
={peR—RO+B; 8(p, A)<-1—}. And let @, , be a harmonic

m
function in R—R,— A,.* such that ,,,=0 on dR,, ®,,,=1 on dA4,,NR,

and %’=0 on 0R,—A,,. Then, the Dirichlet integral D, (®,,)
n

=Dg,-r,-A,(®m,) €quals to the reciprocal of extremal length

mn

of the family I',,, of curves which join 0R, and 0A4,,, and increases
monotonely with # and has finite limit. And, the inequality
D, (0 — @ pi) = Do i i (@ps i) — Dyan(®pn,) holds. Thus, «,, con-
verges uniformly on every compact set in R—R,—A,,. We write
@, = lim [N Then,

nyoo

’I,LIB Dmn(comn) = DR—RO—Am(a)m) = Tl“ >
where ), is extremal length of the family 1, of curves which
join R, and 94,, ([3] p. 1) We put D, (0,)=Dg_g,-a,,(®.). Since
A, increases monotonely with m, D,,(w,) decreases monotonely.

According to Kuramochi, we call lim D,,(o,,) capacity of the set A.

m-yoo

If it is positive, o, converges to a harmonic function w4 uniformly
on every compact set in R—R, and Dg_g (04)= lim D,,(o,). When
the family 'y of curves which start from R, and converge with
respect to the filter {A4,,} has finite extremal length M4, the capa-

city of A is positive because lim D,,(o,)= llm lz > =>0.

-y o0 1300 x

Proposition 2. Let A be a closed set in B with zero capacity.

6) We suppose Ro(\A,=¢ and A,NR,=+¢, and we take as the domain of @,
the connected component which has common boundary with R,.
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Then, extremal length of the family ') of curves™ which separate
A and OR, in R—R, is zero.

Proof. We consider the family I'f={y} of level curves of
wa, 1.e. wga=c on v for 0=<c¢< 1. This is a subfamily of the family
I'%. By the definition of extremal length A§ of I'f, there exists,

2
any & >0, an admissible metric p|dz| for which 7»3“—8<<S p]dzl)
Y
2
=( S pdcoj’;), where o% is a conjugate harmonic function of wa.
Y
We take was-+iw%¥ as a local parameter. Then, by Schwarz

inequality

2
(1, pdos) = | dox| pdot = Des(wn)| Pt
vy / vy b Y
and integrating with respect to o4, we get

\f—¢& = (xg‘—e)gld@A = DR—RO((UA)SS

pldoldos < Dg_g, (04) -
Ry

& being arbitrary, we have M < Dr_g (wa).
And since U'¥C I'%, extremal length A% of 1% is smaller than A\§.
Therefore, if Dg_g (04)=0, then A%=0.

Corollary. If a point p of B has zero capacity, there exists a
family of curves in R—R, which separate R, and the point p, and
whose p-length converges to zero for all admissible metric p|dz|.

Proposition 3. For a closed subset A of B we have

‘= lim, = L
oy Dg_g,(04)

Proof. Since we have already shown that Dg_g,(04)
= lim %g-;— it is sufficient to prove the opposite inequality.
1300 m A

If Dr_g,(04)=0 the proposition is trivial, so we suppose Dr_g, (®a)

7) Each curve of I'} consists of countable number of connected components, and
we suppose [} contains level curves w =c.

8) dw¥=Dg_gry(w4) for almost all ¢ of the interval (0,1) (See Kuramochi [6]
p. 14.)
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= lim D,,(»,,) >0 and denote it by d. First, we consider the ex-

tremal length A, of the family 1’ of level curves, v: w%¥=¢, where
w} is a conjugate harmonic function of ws. For any &>>0, there
exists, from the definition of A,, a metric p|dz| such that

SSR_R p’dxdy<1 and (Syp|dz|)2>>»‘.—-8. Taking ws+io} as a

local parameter, we have

Ae—E < ( gypd(uA>2 < Syd(uA SyPZde = Sypzd(oA

except a possible subfamily of I') with infinite extremal length.
Integrating both sides of the inequality with respect to do%, we
have

(x\,—e)gm deo = d(n,—&) < SS prdoado’ < 1

R-R,

Since € is arbitrary we have xog%. And ') 1'4 except a set
of curves with infinite extremal length, because, w, has not value
1 on a closed set of a positive capacity except A (|6] p. 55). So,
A.Aé)\.o and
AIA g l = ——L,__._ ’
d DR—RO(Q’A)
and we complete the proof.
By this proposition, we can define the capacity of a closed
set A by the reciprocal of extremal length X, instead of Dz_g (wa).
From proposition 1 and 3, we have

Proposition 4. Let A be a closed subset of B with positive
capacity, then A contains at least one accessible point.

4. An application

We divide the boundary B into two parts. One of them is
the set B, of all accessible points of B, and the other is the set
B, of all non-accessible points. The proposition 4 shows that the
set B, is of inner capacity zero, that is, B, does not contain any
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closed set with positive capacity. If a point p€ B,, there exists
a curve v converging to the point p and connected components,
v,(7v), of the neighborhoods, V,(p) of p. And the system {v,(vy)}
satisfies the conditions such that v,(y)>v,..(y), N\v,(v)Dp and
each of {v,(v)} contains an end part of v from a point of v on.
We consider a Riemann surface R whose boundary B does not
contain a point whose capacity is positive. Kuramochi calls such
a point “singular”. Let w=f(2) be a meromorphic function on R

such that SSR<1_'|_JTJ'CIZ)2dxdy<oo. We put M(p, )=\ 7@,

then, it is either a continuum or one point. We denote by SM(p, v)
the diameter of M(p, v) measured in w-sphere by the spherical
metric. Let C be a disk on w-sphere and f '(C) be its inverse
image in R consisting of countable number of connected com-
ponents. From the definition of 8M(p, v), we have easily

Lemma 1. If diameter of C, 8(C)<8,, there does not exist a
pair of a point p of B and a curve v converging to p such that
SM(p, v)>6, and v,(v) are contained, from a certain number n, on,
in one component of f'(C).

Let {C, ;} be a set of spherical disks in w-sphere with radius

1 which cover w-sphere and such that any disks with radius §1—

n n
is contained in a certain one of them. We denote by T, ; the set
of points, p, of B, such that any component of f~'(C, ;) does not
contain v,,(y) completely for any m and ¢ converging to p, and

by S, the set of points, p, of B, such that SM(p, «y)g% for all
v converging to p.

Lemma 2. S, /"\ Tip i

Proof. Let p be a point of S,. If f7'(C,, ;) contains a sub-
sequence {v,,(v)} (m_>m,) for a path v converging to p, then we
have SM( p, «y)g% by the definition of S,. But 3(C,, )= 31_n<%

This contradicts to lemma 1, and p must belong to T,, ;. This
is valid for all i, so we have S, N\ T, » q.ed.
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From lemma 2, \/S,C\J/\ T, ;. Now we shall prove the

following theorem which is, in a sence, an extension of Beurling’s
theorem to the case of a Riemann surface.

Theorem. A? each accessible point, except the union of countable
number of sets of accessible points whose inner capacity is zevo, there
exists a contracting system of components of the neighborhood for
which the cluster set of wmeromorphic function f(z) such that

ggk(T_'FJTJ'fP)z dxdy<loo iS one point.

Proof. We suppose that there exists a number #, such that
S,,o,3 contains a closed set F of positive capacity. Then [\ T,,:

also contains F. Let {C;} be a set of disks with radius SL and
nO
\ (interior of C;) covers w-sphere. We denote by G;; components
of f7'(C;). Then, since VGU DR—-R, ;mgimpgmp we can find
a G;;=G such that op~g_>0. Then, FA\G contains a poiut p of B,.
Let {C;} be disks, C/, with radius 2 and centered at the center
nO
of C;. We choose, in the same way as above, a component G’ of
{f7Y(CH}; such that wr~z>0 and G’ contains G. Since the ex-
tremal length of the family 1V of curves which separate dC; and

0C/ is finite <=I§L2), the extremal length of the family 1' of
g /

curves which separate oG and oG’ is finite, because each curve of
1V contains an image of a curve of I' by an analytic mapping
w=f(2). Hence, I' contains either a closed curve v, in G'—G, or
a curve whose end parts converge to accessible points p, and p,
of G—GNB. In the first case, we have 8(p, 0G')>8(p, v,)>0,
and V,,(p)G’ for m>1/8(p, 9G’). In the second case, if p;==p
(:=1, 2), then 6(p, 3G’)>0. We suppose p,=p, and consider a
family I'* of curves which join G and dG’. Each curve of 1'* is
an inverse image of a curve of a family 1*' which joins dC; and

o0C/ by an analytic function f(z) such that M(f)= SS <1—_Ll%|c?>2
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dxdy< oo, and the extremal length of 1*" is positive (gzi log 2).
T

So the extremal length of the family 1™ is also positive.” But,
since B does not contain a singular point, the extremal length of
the family of curves which separate p and 0R, is zero by Pro-
position 2. Therefore, we can choose, for the point p, a curve v
converging to p and a system {v,,(y)} which is contained in G’
from some number m, on, because if G’ always meets v,,(y), the
extremal length of 1™ must be zero. In the case of p,=p, we
have the same result. Thus, in all case we can find, for the point
p, a curve v converging to p and a system {v,,(y)} contained in
G’ from some m, on. .

Therefore, for such {v,,(7)}, SM(p, V)< : by lemma 1. But,

0

since p€S, s SM(p, n/)gi. This is a contradiction, and we con-

0

clude the theorem.

Ritsumeikan University
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9) Since |{;-1ce-eppnn(HZikn) dedy < MCF )<,

1+
the metric po|dz| =ﬁ—ﬁ TJ—%FMZ] is admissible for I'*.

ldw] ~ 1 (Tan“gzn——’l‘an“%)>0.
0 0

. . 1
And f dz| = f
o y‘é‘r*sv”“ I y'lenm'\/M(f)S“/'H|w|2—\/M(f)



