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1. Introduction

The notion of extremal length was first introduced by Abhors
and Beurling [1] and various equivalent or extended definitions of
extremal length were considered by J. Hersch [4 ], J. Jenkins [5]
and others. Let F  be a family o f  locally rectifiable curves given
on  a  domain D  of a Riemann surface R , and p(z)IdzI be a con-
formal metric on  D  with non-negative covariant p (z ) such that

pIdzI is defined (possibly 00) for all 7 G F .  According to Jenkins,

p (z ) will be said to be admissible for the problem of extremal

length of r (or briefly "admissible") when A (p )=  p 2 (z)dxdy<1,
D

and, putting ',p m =  inf pIdzI fo r  each admissible p(z)IdzI, the
Y E r

extremal length o f  r is defined as the square of sup L (F)  when

the supremum is taken over all admissible conformal metrics. This
definition of extrem al length is equivalent to that of Ahlfors-
Beurling and that of Hersch when p(z) is limited in the same class
o f measurability.

By this definition of extremal length we know at once that
extremal length o f th e family P o o f  all locally rectifiable curves
whose p-length a re  infinite for a certain admissible conformal
metric p(z)IdzI is infinite, because X (r)" 2 = sup Lp(r0 ) 1,„(11 0 = oo •

Especially, i f  we take the family r, of divergent curves in
R— K (K : compact domain in R )  which start from a l f  and along
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which a  function f ( z )  (  
R -D

f '1 2 dx dy <00) of the class C' has

not finite limit, the extremal length o f  r , is infinite, because each
curve of r, has infinite length when it is measured by the metric
p(z )Idz 1= f '(z )Ildz i (Ohtsuka [7]).

Secondly, we consider a  family I', of divergent curves and a

which (1 l+f l/
 1 2 )dx dy2 

( z =x +iy ) .  The zero points of f ( z )  in  R  are at most
enumerable and do not cluster in  R . And extremal length of the
fam ily of curves which pass through a zero point is in fin ite . So,
extremal length of the family of all curves which pass through a
certain zero point of f ( z )  is in fin ite . For the remaining curves of
1-'2 , the existence of non-zero lim it of f ( z )  along a  curve is equi-

1 valent to  the existence of finite lim it o f  along the curve.
f (z )

So, if f (z ) has not a limit along a curve c, c. ( -1f ) / 11c1z1 — f  Iclz1
J,  I f  12

and f  f i  I  ld z i are infin ite. This means that the curve c  has
c l+ ifi 2

infinite length measured by an admissible metric

1+IfI 2

extremal length, that is, f ( z )  has a  limit along each curve except
a  family of curves with infinite extremal length.

Third ly, w e take a meromorphic function w =f (z )  for which
M (f )<D 0  a s  above, and a po int w , in  the w -sphere at which

S (t)= 5 (   2  

) 2 dxdy=0(1 .2 log 1 ). T he extrem al length
1.-w01<t i + I f   t

of the fam ily  r , o f curves in w-sphere which converge to wo is
infinite. Though extremal length of a family of curves is smaller
in general than extremal length of the family of image-curves by
an analytic mapping, the inverse image of 1 3 in  R  by w =f (z )  has

infinite extremal length by force of the condition S(t)= o(t 2 log

(cf. A. Pfluger P I  This means that the extremal length of the

meromorphic function f ( z )  in  R ,  for

=M (f )<° o

1 
N /M (f)

If f  I d z l .  Therefore, the family of such curves as c has infinite
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fam ily o f curves along which lim w o is infinite when f (z )
satisfies the above condition a t w,.

The above second and third results are , in  a  sence, extention
of A . Beurling's theorem [2 ]  to  the case of a Riemann surface.
Thereupon, we are going to study the behavior of the family of
curves with infinite extremal length when the curves converge to
an ideal boundary of a Riemann surface. That is, we want to know
how the family of curves is related to the notion of "boundary"
of a Riemann surface. For this purpose we consider, for the pre-
sen t, Kuramochi's compactification (completion) of a R iem ann
surface and its boundary, and study the continuity o f extremal
length  at the boundary and the relation between extremal length
and the capacity of Kuramochi boundary.

2. K u ram och i boundary and extremal length

Let R  be an open Riemann surface w ith  positive boundary
and be its regular exhaution, and we suppose R — R , is con-
nected. W e consider a  function N n (p, q )  of p  in  R n — R , which
satisfies the following conditions.

(1) N n (p, q) is harmonic in R n — R , except a point q ER n —P,
i n  a  neighborhood o f  w h ich  N „(p, q)+ log I p— ql is
harmonic."

(2) Arn (p , q) is continuous and equals zero on SR,.

( 3 )  The normal derivative aN
n ( p,  q

)
—  0 on aRn .an

According to Kuramochi [6] we put

D'IR<„, 0 _,r ,„(N ,„(p, q), N n (p, q))

N ,, i (p, q)  a  A 7- n (p, q)ds+Ç q )+ lo g  p— q 11
812n+aRo an .

a N „(P, q)ds

= q )+ lo g  p—
a

N n (p, q)ds
B y r ( q ) an

an

1 )  We use the letter p, q  not only to represent the point of R but also the
uniformizing parameter at p, q.
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where v ,.(q) i s  a  disk centered at q  and with radius r  in  a para-
metric disk of q. 2 ) W e define D te n - R o (N ,,, i (p , N „(f i, q)) by

lirn D R n — R o —  r
Cq)( N „ i ( P ,  q), N i (p ,  q))= lim 27r(N„_ 1( p ,  q )+ lo g  p—'40 P-)9

and D'Il-e n _R o  (N „ (p , q)) by

lim DR  ,  ( q ) (N  (p , q)) lim 2 7 r(N „(P , q )+ log 1p— ql)
1,49

Then, for in <  n

0 D I 2 m -1 2 0 (N n (p ,  q ) — N ( p , DRn_Ro(N„(p, q)— N i (p, q))
<2n  l i n n _R o (N n (p, q)) — D% + i - Ro (N .±i(P, q)). 3 )

And, since N ( p ,  q)>G , n (p , q) in  R„,—R o ,

DZ n _R o (N „(p , q)) l! m271-(N„(p, q)+ lo g  p—q1)

> lim  {G,,, (p, q )+ log — q =  L >  —  co
A-).9

where G,,,(P, q) is Green's function in R„,—R, with pole at q. From
these inequalities D 'iL_R o (N n(P, q)) decreases monotonely when n
increases and is lower bounded. So I p Ro (N n (P , q ) )1  converges
and  lim DR„,_ R o ( N „ ( p ,  q )— N (p , q ) )= 0 , that i s ,  {N „(p , q)}„

verges in mean in R„,—R o . And since N „(p , q)= 0  on SR ,. H ere ,
since m  i s  a rb itra y , {N „(p , q)} converges uniformly on  every
compact set in R — R ,. We denote the limit function by N (p , q)
and call it N-Green's function of R— R , w ith  pole a t p .

Using this N-Green's function Kuramochi compactified R  as
following. L e t  {qi } be a  sequence of points in R — R , which has
no points of accumulation in R — R ,. When p  stays in any compact
set, {N (p , q1)} 1 is, from some i on, a uniformly bounded sequence of
harmonic function of p  and it forms a normal fam ily . A sequence
{qi }  of points of R — R , having no accumulation point in R — Ro ,
for which the corresponding {N (p , q1)} 1 converge to  a  harmonic
function, is called fundamental. Two fundamental sequences are
called equivalent i f  their corresponding N (p , q )'s  have the same

2) T h is  modified Dirichlet integral D *(u, y )  is equal to ordinary one when u, v
are harmonic.

3) About this calculation, see K uram ochi [6] p. 6.
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limit. This has the usual properties of an  equivalence relation
and the class of all fundamental sequences equivalent to a given
one determines an ideal boundary point of R .  The set of all such
ideal boundary points are denoted by B.

We define a distance of q„ q,ER—R, as

a(q„ q 0 =  sup
PER, —  Ro

N(p, q1 )N ( p ,  q , )   I
i.+N(p,

By completion of R—R, as a metric space with the above metric
we reach the above compact space R—Ro + B .  Thus, R—Ro + B  is
a complete metric space and the subspace R—R, is  homeomorphic
to itself with original topology. B is  a closed subset of R—Ro +B.

Here, we prove the following proposition.

Proposition 1» The fam ily  ¶J o f curves, c, w hich converge to
the ideal boundary  o f R and each o f which does not converge to any
point of B has inf inite extremal length.

P ro o f . From the definition, we know N(P, q)=N(q, p) for
p, qE R — R ,. So, for a fixed PER,—R,, N (p, q) has finite Dirichlet
integral over R—R, as a function o f q. From the definition of
8-metric, c EJ m ean s th at, for a certain p E R,—R,, N(p, q ) has
not a  lim it along c as a function of q, that is, there are at least
two non-equivalent fundamental sequences on c. The fam ily of
such curves {cp }, along each of which N(p, q ) has not limit, has
infinite extremal len g th . And, by continu ity (harmonicity) of
N(p, q ) about p  (q E R —  + B ), i f  N(p, q) has not lim it along c
as a function of q for a certain p, then it has not a limit along c
for all p' which are sufficiently close to p .  Since R1 —R, is separ-
able, we can choose countable number of points, {p i }, which are
dense in  R,—R„ and corresponding family o f curves {cpi }. For
any pER,—R o , each curve of {c p }  belongs to a certain {cp i }  from
the above continuity. Thus, i s  the union of countable number
o f {cpi }'s and has infinite extremal length."

4) This proposition was proved by M. Ohtsuka in a more general method [7].
1 — 15) — 5  E—, where Ai is  the extremal length o f ( cp i l  (Ohtsuka [7]).

297 —  i =12,
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This proposition says, in  other words, that each curve of a
family with finite extremal length converges to a point of B  except
curves o f a  subfamily with infinite extremal length. We study,
in the following, accessible points and capacity of sets of points of B.

3. Extremal length and the capacity of a set of Kuramochi
boundary

L e t A  be a  closed set in B  and A m  be its neighborhood ;

A m —{p E R—R o + B ;  8 ( p ,  A )< 1 }. And let com , „ b e  a  harmonic

function in R—R o — A m
6) such that com n = 0 on aRo , 0,„,„= 1 on aA„,r\R„

a.and mn — 0 on aRn — A n . Then, the Dirichlet integral D„,„(0)„,„)
an

—  D R n - R o - A , n (C O m n ) equals to the reciprocal  1 of extremal length
I tn n

of the family r m n  o f curves which join aR, and afi n z , and increases
monotonely with n  and has finite lim it. A n d , th e  inequality
Dm ,, (COm „  C O m  n + i ) ‹  D m „ i (0),n „± i ) —D„,„(c),n n )  holds. Thus, com „ con-
verges uniformly on every compact set in R—R,— A m . We write
com = lirn com „. Then,

.17- , • c o

1 ulna D m n (W m n ) D R -R o -A n i (0 )m )  —

where Xm  is extremal length o f the family I' m  o f  curves which
join aRo and aA,n  ( [3 ]  P . 1 ) W e put An(co.)=DR-R o -Am(com). Since
X,n increases monotonely with m, D„,(0),n ) decreases monotonely.
According to Kuramochi, we call lim D m (c m ) capacity of the set A.

w 4 . 0

I f  it is positive, 0.4n converges to a harmonic function (0A  uniformly
on every compact set in R— R, and D R _R o (wA ) =  lim D . ( 0 ) . ) .  W hen

the family r A  o f  curves which start from aR0 and converge with
respect to the filter {A m } has finite extremal length X A ,  the capa-

city o f A  is positive because lim Dm (com ) = lim  1 1   >0 .
Xrn

Proposition 2. Let A  be a closed set in B  w ith zero capacity.

6 )  W e suppose RonAm=0 and A .nR .+ (b , and we take as the domain of
the connected component which has common boundary with Ro.
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Then, extremal length of  the fam ily  PA  o f  curves" which separate
A  and aR, in  R— R, is  zero.

P ro o f . We consider the fam ily r t  { 7 }  o f  level curves of
coA, i.e. coA—c on 7 for 0 < c < 1 .  This is a subfamily of the family
P I .  B y  the definition o f extremal length xt o f P t , there exists,

any & >0, an admissible metric pldz I for which Xt pidz1)2
7

2
= pc/041

4 )  ,  where (DI is a  conjugate harmonic function o f  CO A•
7

W e  ta k e  (.0A + 1 4  a s  a  lo c a l param eter. Then, b y  Schwarz
inequality

2
( pdo),*1 ) ‘ç, dco:li , p2dcei = DR-n o (c0A) , p2d0A,"

and integrating with respect to coA ,  we get

—  = (X (14 — E)5 1 do) A DR -R 0 ( 0 A) doAda) A D R - R o (c° A ) •
o R— Ro

<5 being arbitrary, we have Xl̀ ‹D R _ R o (wA).
And since F O* ( F ,  extremal length XI o f I I  is smaller than 4 .
Therefore, i f  DR _R o (0)A ) = 0, then X1=0.

C o r o l la r y .  If  a p o in t p  o f  B has zero capacity , there ex ists a
f am ily  o f  curves in  R— R, which separate R o and the point p ,  and
whose p-length converges to  z ero for all admissible m etric pldzI.

Proposition 3. Fo r a closed subset A  o f  B  w e have

1 
=  l i M

D R— Ro (a )A )

P ro o f .  S in c e  w e  h a v e  a lr e a d y  s h o w n  th a t  D R_R o (COA)

=  i i t i l  1  >
, i t  is sufficient to prove the opposite inequality.

7, 1 - )  Xm XA

I f  DR_R o (coA)— 0 the proposition is trivial, so we suppose DR_Ro (c0A)

7) Each curve of consists o f countable number o f connected components, and
we suppose r I  contains level curves roA=c.

8) cho.1=DR-R0(coA) for almost all c  of the interval (0,1) (See Kuramochi [6]
p. 14.)
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= lim D„,(0),n )> 0  and denote it by d .  First, we consider the ex-
÷ 0 0

tremal length X, of the fam ily r o o f  level curves, y : 0A— c, where
0)", is  a conjugate harmonic function o f 03 A • F o r  any &>O, there
ex is ts , fro m  th e  definition o f X 0 , a  m etric  p id z I  such  that

p2 d x d y  1 a n d  (  p  c lz ) 2 > X „ — & . T ak in g  0)A  +i(01` as  a
R— R07

local parameter, we have

<  PC1( A) 2& O A  P W C O  <  P W C O A
7

except a possible subfam ily o f  F , w ith infin ite extremal length.
Integrating both sides of the inequality w ith  respect to  d o l ,  we
have

( X , - 8 ) 1  d 4 =  d ( X ) — & )<5 p2d(oAdc0I_-si: 1aR oR —  1 2 0

Since & is  a rb itra ry  w e  have Xo < —
1

. A n d  1 'O " A  except a set
d

of curves with infinite extremal length, because, 00A  has not value
1 on a closed set of a positive capacity except A  ([6] p. 55). So,
X A—‹—Xo and

1 1 
XA <  7 = „a /JR _ R o ( 0 )  A) '

and we complete the proof.
B y  th is  proposition, w e can define the capacity o f a  closed

set A  by the reciprocal of extremal length X A  instead of DR-R o (c0A).
From proposition 1 and 3, we have

Proposition 4 .  L e t A  be a  closed subset o f  B  with positive
capacity, then A  contains at least one accessible point.

4. An application

W e divide the boundary B  in to  tw o parts. One of them is
the set B a  o f  a l l  accessible points of B , and the other is the set
B o o f  a l l  non-accessible points. The proposition 4 shows that the
set B ,  i s  o f inner capacity zero, that is, B , does not contain any
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closed set with positive capacity. If a point p  E B a ,  there exists
a curve 7 converging to the point p  and connected components,
vn (7), of the neighborhoods, V ( p )  of p .  And the system {v(7)}

Asatisfies the conditions such that vn (7) vn + ,(7), v „ ( 7 ) P  and
each of { v (7 ) }  contains an end part of 7 from a point of 7 on.

We consider a Riemann surface R  whose boundary B  does not
contain a point whose capacity is positive. Kuramochi calls such
a point "singular". Let w =f (z )  be a meromorphic function on R

(

then, it is either a continuum or one point. We - denote by 8M(p, 7)
the diameter o f M (p, 7 ) measured in w-sphere b y  the spherical
metric. Let C  be a  disk on w-sphere and f - 1 (C ) be its inverse
image in R  consisting o f  countable number o f connected com-
ponents. From the definition of &M( p, 7 ), we have easily

Lemma 1. I f  diam eter of C , 8 (C )<8„, there does not ex ist a
p air o f a  point p  of B  and a curve 'yconverging to p  such that
3 M (P, 7)›ao and v n (7) are contained, from  a certain number n, on,
in one component of f - 1 (C).

Let {C b e  a set of spherical disks in w-sphere with radius

I which cover w-sphere and such that any disks with radius —1

3n
is contained in a certain one of them. We denote by T o  the set
of points, p ,  of B a  such that any component o f f -1 (C  i )  does not
contain v,n (7 ) completely for any m and 7  converging to p ,  and

by Sn the set of points, p ,  of B a  such that aM (p, 7)> I- fo r  all
n

7 converging to p .

Lemma 2. s n c r\

P ro o f . Let p  be a point of Sn . I f  f - 1 (C,n , i )  contains a sub-
sequence {V (7 )}  (m > m 0)  for a path 7 converging to p ,  then we

have m (p , 7 ) 1  by the definition of Sn . But a(c,„ i )= _
1

< _
1

.
' 3 n  n

This contradicts to lemma 1, and p  must belong to T m  i . This
is valid for all i,  so we have S„ A T,„, i , q.e.d.

such that I f
)  

2

1+ I f r  
dx d y  <0 0 . W e put m ( p ,  7 ) =  f (v .(7 )),



158 Tatsuo Fuji'i'e

From lemma 2, \J S,,C  f -\T,„, i . Now we shall prove the

following theorem which is, in a sence, an extension of Peurling's
theorem to the case of a Riemann surface.

T h e o r e m . A t each accessible point, except the union of countable
number of sets of accessible points whose inner capacity is zero, there
exists a contracting system o f  components of the neighborhood for
which the cluster set of meromorphic function f(z) such that

çç f /
I 2

i? 1 ±(
1

1
1

.1, 12)  d xd y < 0 0  is one point.

P ro o f. W e suppose that there exists a number n, such that
Sn o  contains a  closed set F  of positive capacity. Then A

also contains F .  Let {C i } b e  a  set of disks with radius  1 and
5n,

\I (interior of Ci ) covers w-sphere. We denote by Gi ;  components

of f - 1 (C1). Then, since E c o ,  we can find

a Gi ; =G such that coF r ., >  O. Then, FnG  contains a poiut p  o f B a .

Let {0  2be disks, , with rad iu s   and  centered at the center
5n,

o f Ci . We choose, in the same way as above, a component G ' of
I f ' ( C ) }  i such that coF ,w >  0  and G ' contains G .  Since the ex-
tremal length o f th e family r '  o f curves which separate ac, and

ac  is finite ( 27r — ),  the extremal length o f th e family 1' of
log 2,

curves which separate OG and aG' is finite, because each curve of
1" contains an im age of a curve o f  r  by an analytic mapping
w = f (z ) .  Hence, 1' contains either a closed curve 70 in G'—G, or
a  curve whose end parts converge to  accessible points p l  and p,
o f G' — GnB. In  the first case, w e have 8 (p ,a G / )> 8 (p , 7°)>O,
and v„ ,(p ) G i fo r  m>ils(p, ac'). In the second case, if p i =kp
(i = 1, 2), then 8(p, aG')>0. W e suppose p i = p , and consider a
family r *  of curves which join ac and ac . Each curve o f r* is
an inverse image of a curve o f a  family 1-'* ' which joins aci and

OC b y  an analytic function f ( z )  such that M (f )=
R  1+ If12
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1dxdy<oo, and the extremal length of 1'*' is positive
2  

log 2).
7r

So the extremal length of the family r*  is also positive." But,
since B  does not contain a singular point, the extremal length of
the family of curves which separate p  and SR, is  zero by Pro-
position 2. Therefore, we can choose, for the point p , a curve 7
converging to p  and a system {v„,(7)} which is contained in G'
from some number mo on, because if ac' always meets v,n (7), the
extremal length o f r* must be zero. In the case of p2 =p , we
have the same result. Thus, in all case we can find, for the point
p, a curve 7 converging to p  and a system {v„,(7)} contained in
G' from some In, on.

4Therefore, for such {v„,(7)}, 8m(p,7)< by lemma 1. But,
5no

since pE S n o  8m (p, 7)> —
3

. This is a contradiction, and we con-
no

dude the theorem.

Ritsumeikan University
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