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Introduction. W ith  th e  Perron's method in  t h e  classical
potential theory Bremerman [8] first treated the Dirichlet problem
for plurisubharmonic functions. The base domains D  considered
w ere m ainly bounded dom ains o f  holomorphy o f  t h e  form
{z ; V (z )< 0}  where V  i s  plurisubharmonic on the closure o f D.
His lower solution in D does not necessarily attain the boundary
values even if the boundary and boundary function are n ic e . In fact
he showed that the lower solution attains (in his sense) the continuous
boundary value only if it is prescribed on the Silov boundary S(D)
o f D .  A  generalization o f th is result w as given by GeIrski [10]
for more general domain D and S* (D) (Silov boundary with respect
to plurisubharmonic functions (see Siciak [16 ]) ).

In this paper we shall study further such a generalized Dirichlet
problem with various applications to functions o f several complex
variables and plurisubharmonic functions. First in § 1, for given
boundary function f  we define the plurisubharmonic lower solution
I f  a n d  plurisuperharmonic upper solution T f  without regard to
the Silov boundary of the base domain and introduce the notion

1 )  This paper was written while the author was a  Temporary Member of the
Courant Institute o f  Mathematical Sciences, New York University. This Temporary
Membership Program is supported by the National Science Foundation under Grant
NSF-GP-98.
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of p/-barrier (sec. 1 . 2 ) at a  boundary point to see the boundary
behavior o f these solutions. If a p/-barrier exists at a point q,
then our solutions actually attain the boundary value f ( q )  provided
that f  is continuous at q  and bounded on the whole boundary
(Corollary 1. 1). Relations between Bremerman's solutions and ours
are discussed in sec. 1. 4. The existence of p/-barrier requires a
severe restriction for the local shape o f  boundary and has close
connections with the pseudo-convexity in several complex variables.
For instance if the boundary is locally Eat at q, p/-barrier does
not exist at q  (Theorem 3. 1). Theorem 3. 4 shows that i f  every
boundary point of D possesses p/-barrier, then D must be a domain
of holomorphy. Some criteria for the existence of P1-barriers will
be given in sec. 3. 1.

In  § 2 the maximum principle and removable sets for pluri-
subharmonic functions are discussed. A  se t E  on the boundary
o f a  bounded domain D C  is called inner (outer) p/-measure
zero if our lower (upper) solution in D for the characteristic function
of E vanishes identically. Sets of inner p/-measure zero characterize
the maximum principle fo r plurisubharmonic functions (Theorem
2. 1). Some examples show that the sets of inner p/-measure zero
are not "small" as in the case n = 1, namely sets of real dimension
2n-1  (n > 1 )  happen to be of inner p/-measure zero. In  sec. 2.2 a
characterization for the set of outer p/-measure zero and a theorem
of Riesz type will be given. We define in sec. 2. 3 another notion,
th e  p/-rem ovability. Accord ing to  G rauert-Rem m ert [11] an
analytic set of codimension 1 is  o f p/-removable. Their proof is
also applicable for a non-analytic set with the same dimension and
w e  show that a  hypersphere (surface) in .122 "- 1 C "  is  of
removable. In terms of p/-removability one can state a  generali-
zation (Theorem 2. 9 ') of the well known theorem on removable
sets for holomorphic functions.

Sec. 3. 3 contains some applications of above results. We shall
give an example showing that the Bochner-Martin's conjecture is
false fo r a  domain o f inholomorphy. Such an example was first
given by B rem erm an [5] in a tube dom ain. He gave another
example in a bounded domain (Reinhart region) [ 6 ] .  Our domain
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is "nearly" shell and the reasoning is very simple from our point
of view. It is noted (Theorem 3. 5) that we cannot take a  shell
itself as our example, as in the ring domain in C " (n>1) there
does not exist any plurisubharmonic function which attains the
boundary value 1  and 0 resp . on the inner and outer boundary.

Finally in  § 4 w e mention about the generalization o f  our
Dirichlet problem over complex manifolds and discuss on some
classes of complex manifolds as a generalization of the classification
of open Riemann surfaces (cf. Ahlfors and S a r io  [1 ]  Chap. IV)
As a  result different from the case n =1  it is noteworthy that in
the exterior o f a  ball (or polydisc) in C " (n>2) there does not
exist any non-constant plurisubharmonic function bounded above
Example III 5)).

The author wishes to express his thanks to Professors L. Bers
and H. J. Bremerman for their valuable comments and suggestions.

§ 1. G enera lized  Dirichlet problem

1. 1. Let D  be a  domain in the space C" of n  complex vari-
ables. A  real valued function u  on D is called plurisubharmonic
if the following conditions are fulfilled :  (a ) —  co<u(z)<00 (b ) u
is upper semi-continuous (c )  the restriction of u  to any analytic
plane E= 1z =(z„ • • , z „) ; z i = z7+ a i t (i =1 , • • ,n)}  is subharmonic in
E r\D .  A  function v  is called plurisuperharm onic if — v is pluri-
subharmonic. We denote by P(D ) (P(D )) the set of plurisubhar-
monic (plurisuperharmonic) functions in  D .  F or a  real valued
function f  on aD  (the boundary o f  D ) we denote by g ( f ,  D)
(g ( f , D ))  the set of functions u E P(D) (v E P(D)) satisfying the
boundary conditions :

( 1 ) u(z ) < f (Z ) (resp. lim v(z) >_ f  ( ) )

where z E D  a n d  E aD . In the following D  is assumed to be
bounded, unless otherwise stated. Now we set

( 2 ) I f ( z )  _ T _ ,  f ( z )  lim sup [  s u p  u(z l]
g (f, D )
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It is known that T fE P(D) if f  is bounded above. Replacing P(D )
by the set of subharmonic functions in  D (C ' = R ' w e get the
usual Perron's lower envelope H f  in place of T f, where we need
not take "lim sup" on account of the harmonicity of H f .  Let
be the Perron's upper envelope, then we know

( 3 ) inf , f < T f (z)< H f (z) < H f (z) < sup f, z ED
an —

We can analogously define the function Tf(z ) by replacing _fi'( f , D),
lim sup and sup in  (2 )  by g (f ,  D ),  lim in f  and i n f  respectively.
Tf E P (D ) if f  is bounded below. We have

( 4 ) inf f <H f (z) < H f (z) < T f (z) < sup f, z  E D

( 5 ) H f —  H ( f ) ,  T f  =  —  T (— f )

In connection with the functiontheory of several complex vari-
ables our main concern is in the functions T f and r f ,  but above
inequalities will give ous useful estimates.

1. 2, To see the boundary behavior of I f  and we introduce
the notion of plurisubharm onic barrier as follows. Let be a
point of D .  Suppose there exists a neighborhood N  of and a
function v (z ) defined in D nN satisfying the following conditions :
for given positive numbers &, a  and a neighborhood N'( N ) of
we have

lim v (z ) =  0  zE D nN
( 6 )

v(z) <&, z E D n N ' a n d  v (z )< —a, zEDnN— N'

Then we call v (z ) a  pl-barrier resp. barrier at w ith respect to
D  according as v  is  plurisubharmonic or subharm onic . We note
that if a  usual (superharmonic) barrier co> 0  (e.g. Petrovski [15]
§ 31) exists, cm with a suitable negative constant c  is a  barrier in
our sense. Evidently p/-barrier is a barrier at the same point, but
the existence of barrier does not necessarily imply the existence
o f  p /-b a r r ie r  which will be seen later. N ow  i f  p /-b a r r ie r  (or
barrier) would exist at we can extend it globally, nam ely for
the p /-b a rr ie r  v (z ) there exists a function I(z)E E (D ) having the
properties :
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lim b(z) 0  z E D
( 7  )

L ( z ) <6 , z E D r\N ' and v (z )< — a, zED — N '

Indeed, let

(z ) =
{ max (v (z ) , — a+1 /n ), z E D n N '

„ 
— a+11n, zED— N '

and b(z)= lim z9„(z), then it is seen that 15(z) satisfies our conditions.

1. 3. THEOREM 1. L et D  be a bounded domain in  C " and  f  be
bounded above on D . I f  there exists a  barrier at E a D , then

( 8 ) (z) H f (z) f z E D ,  EaD

Further i f  there exists a pl-barrier a t  '0 ,  then

( 9  ) lim  T f ( z ) < lirn f

P R O O F .  W e  s h a ll  p r o v e  th e  inequality (9) only. Set
A =  lim A O .  W e may assume A <M = sup f  on a D , because if

A=M, (9 )  is already valid by (4).
Case 1. —  0 0 < A . Let a  be a number > 2(M —  A )> 0. For

any 6 > 0  we choose a sufficiently small neighborhood N ' of such
that N 'c N  and f  < A +  6/2, G N' nap where N  is the domain
of pt-barrier at T h e n  w e  t a k e  a  globally defined p1-barrier

G P(D) at sa tis fy in g  the condition (7). Now it is easily checked
that the plurisuperharmonic function

(10) tv (z ) = A +  — v(z)(M — A)Ice

belongs to the class g( f  , D ) .  H en ce  f ( z ) <w ( z ) .  Letting z
we have 1)(z ), 0  and lim T f (z )<A  +8, which implies (9).

Case 2 .  A= — 0 <:) . Choose a>2 6 2 (M ' +1124  M '>  max (M, 0)
and N 'c N  such that f ( ) < - 1 1 6 ,  E N ' n aD . Now instead of
(10) we have merely to consider the function

—1/26—v(z)(M'+1/26)/a

where 19 is a globally defined pi-barrier corresponding those a and
N ',  q.e.d.
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A boundary point will be called pl-regular (regular) if  there
exists a  p/-barrier (barrier) at •"°. Then we have by (4) (5) (8)
and (9) the following

COROLLARY 1. 1. Let f  be bounded on aD and continuous at
E D . I f is  p l- re g u lar (resp. regu lar), then  the following

(11), (12) (resp. (12)) hold :

(11) lim  If ( z )  lim  T  f (z )  f ( 0) z E Dz44-,
(12) lim Hf (z) lim  H  f (z )  f  ( 0) z E D

z-> z->4

COROLLARY 1. 2. Let f  be bounded above on al) and upper semi-
con tinuous at ""0 E D. I f is  regu lar and f ( *0)=-- inf f(>  —  co),
then T f(z)—> f ( - 0), o.

Thus we know that if f  is continuous on aD and every boundary
point is p/-regular (regular), then T f  and i f  (H f  and II f )  attain
the boundary value f  on D .  It is then noted that  H f  and Ï f
coincide by maximum principle and they give a unique harmonic
solution of the classical Dirichlet problem, however I f  a n d  T f
are not necessarily identical each other (see sec. 3. 1). I f  and T f
a re  identical, hence pluriharmonic if  an d  only i f  they take the
same value at a point of D.

As other elementary properties of the operator T  w e have

(13)

T (c f) c T  f  for c >  0 ,  T (c f)  c T  f  for c < 0
T ( f + c )  T f + c  T f + T c  ( c :  const.)
T f+  T g  <  T ( f+  g )  (subadditive)
that is , T  is not necessarily linear (see Remark (ii), sec.
2.1)
I T f— T g l< s u p  f— g-

1. 4. Here we shall compare our upper and lower solutions
with those of Bremerman [8 ]. His procedure is as follows :

( a )  D  is  a  bounded domain o f  holomorphy such that
D—  {z ; V (z)<0} where V  is continuous and  plurisub-
harmonic on the closure D.
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(i9) Boundary function f  is given on the Silov boundary S(D)
of D  and continuous there.

( 7 )  Lower solution u f  is defined by (2) where g ( f ,  D ) should
be replaced by the set i ( f ,  D )  of functions which are
plurisubharmonic on t o  and  are sm aller o r  equal f  on
S(D).

U nder these circum stances we know ( [ 8 ] )  t h a t  f o r  any
v  E  (f ,  D ) v (z )< sup f  = M , hence u  f <M , which implies that u f— s(o)
can not take on aD—S(D) any prescribed value greater than M.
Now let f  be a  continuous function on aD which is equal f  on
S (D ) . If j ( - )>M ,  E D—S(D), every element of I ( f , D) belongs
to g ( f ,  D ) hence

u f(z) G T f (z) < Tf (z) < cif (z), z E D.

While in case f <M , T )  can be actually smaller than u f. Indeed,
the following example shows that

(i ) for the constant function f  = M  on S (D )u  f  M  while T )
is  non-constant < M  and takes the value M  on S(D).

(ii) There exists a  boundary point which has a  barrier but
no p1-barriers.

EXAMPLE I. Let P  be a  polydisc :

P = < 1 ,  1z21 < 1} .
then S ( P ) =  z 1 I z2I =1} . W e show first that every boundary
point of P has a  b arr ie r . L e t  —4n 1 ,  I n l < 1 .  Take
a point z t  such that 14 1 > 1 , a rg arg then the ball

1z1- 41 2 +1z2 — t-212 19 2 --=-- Izt — n1 2

lies outside o f P  except Hence with a  suitable constant c> 0
the function

c[(1zi—z112+1z2—n12 ) ' —P-2]
gives a (harmonic) barrier at N ow  w e take a pointE aP
— S (P). Let f— M  on S (P)  and f  be a  non-negative continuous
function < M  on aP such that f = f  on S (P) and f ( ) = 0 .  Clearly
u  f  M , while T f ( <M )  is  non-constant, because by Corollary 1. 2
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11(z )-- .0  fo r z ->" , and since each point E S  (P) is pl-regular
(Bremerman [8 ] ) ,  1 1 - (z )->M  (z ->n  by Corollary 1. 1. Pi-barrier
does not exist at E aP— S(P) (see Remark ( i)  in sec. 2.1).

§ 2. M aximum principle and  removable sets

2 . 1 .  Let D  be a bounded domain in  C " and E  be a set on
D. L e t  XE  be the function which is 1  on E  and 0  on ap— E. We

say that E  is o f inner resp. outer pl-m easure zero w ith respect to
D  if

TDXE(z)--=7 0  resp. T ,X E (z)=- --- 0, z  E D"

THEOREM 2. 1. A  se t E  o n  aD is  o f  inner pl-m easure z ero if
and only  if  th e  follow ing maximum principle holds: if  u  E P(D ) is
bounded above and

(14) l i m  u (z) 0, E aD— E
z4-4-

then w e hav e  u (z )<0  f or any  z  E D.

PROOF. If the maximum principle holds, every element of
g(x E , D) is non positive on D hence TXE - -- 0. To prove the con-
verse take u G P(D ) which is < K  in D and satisfies the condition
(1 4 ) . It suffices to consider the case K > 0 .  Then u/K E g(X E ,  D)
hence u /K < TX,=-0 that is, u < 0  in D.

COROLLARY 2. 1. L e t u  be Pluriharm onic an d  bounded i n  D.
I f  lim u (z )=0  at each point E .  except a set of  inner pl-measure

zero, then

The following two theorems show that the sets of inner p i -
measure zero are not "small" as in the case n=1.

THEOREM 2. 2. L et DR= D f  x  •••x  D  be a polydisc in Cn(n>2)
w here D = f lz i l<R 1 (j=1 ,.•• ,n )  and S (D R )  be the S ilov  boundary

( = V z il=•••=lz .1 - R 1 ) ,  then S (D R )  and aD R -S (D R ) are  o f  inner
pl-m easure zero.

1 )  In case of n = 1 ,  E  is then exactly a set of inner resp. outer harmonic measure
zero.
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PROOF. In  case of aDR—S(DR) it suffices to prove that for
any uE P(D R )  which is bounded above and

(15) urn u(z) < 0 ,  E  S(D R ), z E DR

w e have u(z)<O, z E DR . N o w  fro m  (1 5 ) an d  th e  compactness
there is a positive number r, such that for 6 > 0

(16) u(z) < 6, z E S (D ),r 0 < r  < R

B y the approximation theorem (B rem erm an  [7 ]), for 6 > 0  and
such a  Dr  there exist a  finite number o f holomorphic functions

, • • • if ', in  D R  and positive constants c„ • • • , ck such that

(17) u(z)-6  <  max {c5 log f ; (z)1}

<u (z )+6 , z E Dr  .

By (16), (17) c ;  log If ; (z)1 < 2 6  on the Silov boundary S(D,), hence
c;  log I f ( z ) < 2 6  in L i. .  W e  have therefore u(z )<M , z  E  D, by
( 1 7 ) .  Since r - .1? for 0 , u ( z )  0 , z E DR.

Next we prove that u = TXE (E=S(D R ) )  vanishes identically.
F o r  fixed z E D , u(z„••• ,z „  z )  is p lu risubharm on ic  in
D'R =D f x • x  D _ i . Moreover since every po in t o f aD , has a
barrier, 0  for (z„ • • • , aD/R (Corollary 1. 2), hence u(z„ • • • ,
z, „  4 )= 0  in D i by maximum principle. Since 4  is arbitrary in

, q.e.d.
This example shows that the union of two sets of inner pi—

measure zero is not necessarily of inner p/-measure zero.

REMARK. From above theorems one can see th e  following
facts stated in sec. 1. 4.

( i ) Every point of aP -S (P )  is not p/-regular.
(ii) The inequality actually occurs in (13).
Indeed, let f  be the function defined in sec. 1. 4, then we have

T f (z )<  sup f, z G P  by Theorems 2. 1 and 2 . 2 , hence ( i)  follows
from Corollary 1. 1. As for (ii) we have only to take the functions
f  an d  g  such that f =X s ( p ) , g=X,,,_ s ( p) , then T f =T g=-0 and
T(f + g)-=1.

(iii) There exists a  s e t  which is o f inner p/-measure zero,
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but not o f  inner harmonic measure zero. For instance, D P
(Example I) and E— ap— S(P).

THEOREM 2. 3. L e t D  be a  bounded dom ain in  C n(n>2) and
H  be a hyperplane o f real dimension 2 n - 1  and E = H n a D .  Sup-
pose every point of aD—E has a barrier w ith respect to D , then E
is  o f inner pl-m easure zero. T h is  is not true fo r  n=1.

PROOF. W ithout loss of g e n e ra lity  w e  m a y  assume
H= { z =(z „•••,z „); Re z„= 0 1 .  Let D, be the intersection of D and
hyperplane =  { z  ;  Re z n =x }  parallel to H— Ho ,  then D , is open
(or (P) in fix  and

D =  Ez G Dx , x E some intervals n

The boundary o f each component o f D , is  a  subset of aDr■ "ix •
Let U(z)— TD XE (z ), then 0 <  U < 1  and U(z ) —>O for z.--> EaD— E
by hypothesis and Corollary 1. 2. Now we show

(18) U(z) =  0 , zED, (0 * x E I )

Let Dr y —Dr n { z ; Im z „- - A .  I t  i s  an open set (or (13.) in  Cfl - 1

= {z ; z„ =x + iy }  and

D, -- [ z E Dr y , y E some intervals _I].
Since U (z )  restricted on Dr y  ( x  + 0 )  is  plurisubharm onic with
respect to (z„• • • , z„_,) and equal zero on aDx y ( a D x (aDx nE= çb), we
have U(z)— 0 , zED„y  b y  maximum principle. This holds for any
y  j ,  which prove ( 1 8 ) .  It remains to prove  U (z )= O  on D , if
Do * q ) .  Let zo E D , .  Since U is subharmonic in D R 2 ", there is
a ball N( D ) with center z , and radius 8 such that

O< U(z 0 ) <0 .V  U d w ,„

where coo =  6160,„ denotes the volume of N .  By Fubini's theorem

8
U dc0 2 „  = dx Udw2„_, •

- 8 • Nr■D x

The right hand side is zero by (18), hence U(2. 0) — O.
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2. 2. THEOREM 2. 4. A  set E  on  the boundary  o f  a  bounded
dom ain D  in  C n  i s  o f  outer pl-m easure zero w ith respect to D  if
and only  i f  there  ex ists  a positive plurisuperharmonic function
v (I   Do) in  D  such that v(z)-->+ 00 as z tends to any  point of E.

PROOF. Suppose T D E O ,
 then there is a point zo E D such

that fo r  a  sequence o f  functions v„(z)Eg(X E , D ) v n (z 0 ) <112".
Indeed, fo r  any z* E D  there are sequences {z ,}  and {z (z)} such
that 0,(z 0 )--.6,(n-.00) un,E g.(XE , D ) and 6 ,-0  w ith  z, ->2*. For
large t h e  balls ( D ) with centers z, and same volume co contain
a fixed ball N .  Since u," are superharmonic and > 0

Li te,"(z)dw2 "

By Fatou 's lemma we have

6, =  urn u (z , )>  lim (0- ' 1  te,'; ( Z )d (0 2 "

N

>  CD -  f  liM ( Z )  C I O ?  >
N

inf u(z)c/(02 " >  0 .
N

For 6., -.0, we know that inf zi (z ) is  zero almost everywhere in

N !  Now v(z) =  E  (z ) is positive and plurisuperharmonic (  I   oc)n=i
in D, and for any positive integer N

lim v (z) >  lim v „(z) > N , EE-1 z4 4-

which means v(z)-> +  o c  fo r  z , C o n v e r s e l y  suppose there
exists such a function v(z), then for any positive integer n  v (z )In >
T X , (z )> 0 .  Since there is a point z o E D  where v (z 0 ) < o c ,  TX,(z o)

lim v(z o )In =  0 , therefore TX E -- -=- 0  in D  by minimum principle.

As an easy consequence o f this theorem we get the following

THEOREM 2. 5. Let D  be a bounded domain in C .  L e t

P(z) = (qii(z), - ,P .(z )) (m > 1 )

be a holomorphic mapping of D in to  en  and p(D ) denotes the image
o f D  in  C m . Suppose th at  (a )  F  i s  a  set in  Cm  such that there
ex ists a positive plurisuperharmonic f unction 1- 2  (     o c )  which is
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defined in  some domain G p(D ) and becomes + 0 0  o n  G r\F. (0 )
(p(z) has a lim it E  F when z tends to each point o f  the  se t E ((aD )
w hose outer pl-m easure is positive. T hen p(D )C F.

COROLLARY 2. 5. Let (7, i (z )(j =1,•••,m ) be bounded in  D  and F
be the (m -X )-dim ensional analy tic se t in  Cm such that

F= { w  E Cm ,  wk  a k (k = 1,.•• , X)} (1 < X < m ).

If  y =((p „-•• ,p ) satisf ies the condition (i3), then p(D) F.

Indeed, the set F  fulfils the condition (a)  with the function

f2 (w ) =  - log  (z,v1 - a 1 ).••(wx-ax)1+C

where C= X log (max supIrp f (z)1 + maxla k 1).,' E D

COROLLARY 2. 5'. L e t f  be a non-constant holomorphic function
on D and E= { z  ; f (z )=0}  be an analytic set, then Er\D  is of  outer
pl-m easure zero w ith respect to  D -E .

REMARK. (i) A  finite union of sets E'< a D  is  o f  outer
measure zero if each E . ; is so (cf. (13)).

(ii) Theorem 2. 5 is strictly sharper than Theorem 11 (Kusu-
noki [13]) in  th e  sense that there exists a set E  such that the
harmonic measure o f E  is zero, but E  is not o f outer p/-measure
zero. For example,

D = 11R e z , <1, 1Im (i = 1,2)}
E= { Im  z , = -1, Im  z , = 0}  r\aD

E  is o f harmonic measure z e ro . I f T D XE =0 , there is a func-
tion v E P(D ) such that v < c o  a .e . and v (p)-. 0 0  fo r  p - . E .  We
note that there is  a  po in t p 0 (4 , z D E  r \  { I m  z ,  = 0 } where
v(p 0) <00. Otherwise F  would be o f outer pl-measure zero with
respect to Dr\{ Im  z 2 > 0 } !  Since v(z„ z3) is superharmonic ( OC

and tends to D O  for z 1 -.L ={ 1R e Im  z ,= -1} , L  must be of
harmonic measure zero with respect to Dr\ {z 2 = 4} , which is absurd.

2. 3. Here we mention about another closely related notion.
A  closed set F  in C" is called pl-removable if F  is nowhere dense
and for each point E F  there is a neighborhood N  of such  that
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every plurisubharmonic function bounded above on Nn(Cn—F)
possesses a unique plurisubharmonic continuation onto N n F .  A
finite union of p/-removable sets is p/-removable.

THEOREM 2. 6. Let D be a  bounded domain bounded by a finite
number of surfaces r i . Suppose th at  E J  D is pl-rem ov able and
each point of r i —E (=O ) is regular, then E  is  o f inner pl-measure
zero w ith respect to D.

In fact, let U(z)— TD XE (z ), then 0<  U < 1  and under our as-
sumption U (z ),  0  for E ap— E. Define U (z )= O outside of
DuE, then U  is  plurisubharmonic outside E .  Indeed, U  is con-
tinuous on BD— E, a n d  o n  any analytic plane L = {z i = i +ta i }
through aD—E there is a  disc with center t = 0 and disjoint
with the closed set L n E , on which the mean value property holds
as U(0)= O. S in ce  E  is p/-removable, U is plurisubharmonic in C"
hence U--= - 0 by maximum principle.

THEOREM 2. 7. (G rauert-Rem m ert [11]) A ny  analy tic  set of
codimension 1 is  o f pl-removable.

THEOREM 2. 8. A  hypersphere (surface) S  o f  re al dimension
2 n -1  in  Cn is  o f pl-removable.

PROOF. We may assume that S is the intersection of sphere
S= {z ; +  • • • +  z„I 2 =e } a n d  a  hyperplane H= {z ; Re zn =r1,
Ir'l < r .  Let E= {z i =  + a i t} (i=1,•••,n) be any analytic plane,
then for S n E  there corresponds at most two points in t-plane,
because for , (N.E and H n E  there correspond respectively a circle
C= { jtj 2 E  la i r +2 ReEece i t + E 1412= r 2} and a line L= {Re cti
=r'—Re 4 } i n  t-p lane, hence fo r  S n E — (S ‘n E )n (H n E ) there
correspond C nL, i.e. at most two points. Now let u(z) be pluri-
subharmonic in the neighborhood N( ( C ") o f a  p o in t  E S and
bounded above. Since u  is subharmonic in N n E  except at most
two points, u is subharmonically continuable onto N n E .  Thus by
definining at each z G SnN

u (z) = hm u (z'), E N — S=/.9.
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and using the same argument as in [1 1 ] we know that S is p i -
removable.

THEOREM 2. 9. Let E be a pl-removable s e t  contained in  domain
D  in  C " .  Then any  pluriharm onic function bounded in  D — E pos-
sesses a  un iqu e pluriharm onic continuation onto E.

PROOF. Let z o b e  any point of E .  Since the problem is local
it is sufficient to take an open ball B c J D  containing z , and prove
that any pluriharmonic function 11 (z ) bounded in  B —  B E (+(1))
i s  pluriharmonically continuable onto B n E .  A s E  is  non dense,
we can choose B  so that aB—E  I  4). Now since E  is  p/-removable
n (z )  can be continued onto B (- NE as a  plurisubharmonic and pluri-
superharmonic function, which a re  denoted by 11 , ( z )  an d  ..(22 (z)
respectively. Note that 3 f 3 r\E  is  o f inner p/-measure zero with
respect to B  by Theorem 2. 6. Applying Theorem 2. 1 to 111 - 112

we have

121(z) — 1-22(z) < 0, z E B

But since 121 (z)-11 2 (z)— f2(z) for z E B— BnE it follows that 121 (z)
 0 2(z), z EB by maximum principle. That is, 11,  gives a unique
pluriharmonic continuation of 1 1 , q.e.d.

A  function u  w hich is, plurisubharmonic a n d  plurisuper-
harmonic is not only continuous but also infinitely differentiable
(a s  it is harm onic in  R "") and  satisfies th e  p artia l differential
equations

a 2u
a Z J a k

that is , u  is  pluriharmonic. A function u of class C 2  is locally the
real part of a holomorphic function if and only if u  satisfies above
equations. Hence we have the following theorem equivalent with
Theorem 2. 9, which is regarded under Theorem 2. 7 as a generali-
zation of the classical theorem on removability, namely

THEOREM 2. 9'. L et E  be pl-removable, then every holomorphic
function bounded in D—E possesses a unique holomorphic continuation
onto E.

—O, j, k  =1,••• ,n
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§ 3. Pl - barriers and pseudo - convexity

3. 1. We shall state some criteria for the existence of p i -
barriers. Let D  be a domain in C" and be a boundary point of D.

THEOREM 3. 1. I f  D  is locally  strictly  convex, that is , i f  there
ex ists a  neighborhood N  of  such that lies entirely  in
one side of  (2n-1)-dim ensional plane through th e n  is  p l- re g u lar.
If  D C 's (n>1) is locally flat at  t h a t  is, N  r\D is  a half  sphere,
then is  n o t  p l-re g u lar.

In  fa c t, there exists a  non-singular linear transformation
E a i k z k +b i  ( j=1 ,••- ,n )  for which the supporting plane and

are carried respectively into the hyperplane Re and the origin.
We may assume that the image of N r\ l ) - -  lies in the half space

{Re e K O }  . Then for a suitable positive constant c

v(z ) = c R e  =  c  R e ( aik z k +b i)
k 1

is a pluriharmonic barrier at The last statement follows from
Theorem 2. 3 and Corollary 1. 1, q.e.d.

Here we shall give an example stated in sec. 1. 3 such that I f
and T f  attain the same boundary value f ,  but do not coincide each
other. Let B  be a ball in C" (n> 1 ) .  Take a function u  which is
harmonic but not pluriharmonic in  B .  For instance, u—(Re 2'1)2

—(Re z2 )2 . Let f  be the restriction of u on aB, then since B  is locally
strictly convex, T f  and T f  (in B ) attain the boundary value f  on
a B .  Suppose TfL------ T f ,  then clearly

T f — T f - - - H f = 1 - I f = u  in B

hence u  must be pluriharmonic, which is a contradiction.

THEOREM 3. 2. I f  D is locally strongly pseudo-convex at that
is, if  there is a neighborhood N o f  an d  a  strongly plurisubharmonic
function co in  N  f o r which Nr\D can be expressed as { z ; (0(z )<0} ,
then is  p l- re g u lar.

Since co is twice continuously differentiable, the eigenvalues of
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the hermitian matrix ( a2 / z 1 3 ) have a positive lower bound,
s a y  m , in  a  neighborhood N '( N )  of Hence fo r  a  suitable
positive constant c  and 0

< < m

v(z) = c[co(z) - 8 1zi —  1 I2], z  E N '
i= 1

is  a p1-barrier a t  - = a -„•••, "„).

COROLLARY 3. 2. Suppose there ex ists in  N  a  Cc.,-function c13(z)
act.satisfy ing Levi-Krzoska condition such that ;(a)  ( j= 1 , - . . ,n )  do
az;

a 24 )
not vanish simultaneously at (b) E ejL>C1 f o r any complex

a Z J Z k

ao (0,••• ,0) satisf y ing E at (c) Dr■N= 1z ;az•
1 ( z ) < 0 1 .  Then is  p l- re g u lar.

Indeed, it is known (e.g. [12]) that under these conditions there
exists a strongly plurisubharmonic function w such that w = A .) E
where u  is  a positive function in some neighborhood of

3. 2. THEOREM 3. 3. I f  every  boundary  p o in t  o f  a  bounded
dom ain D  in  C " is pl-regular, then D  is  a  dom ain of  holomorphy.
The converse is not true.

PROOF. Let z °— (4,•••,4) be a point of D and set

u(z ) =

Let f  be the restriction of u  on D .  U nder our hypo thesis and
Corollary 1. 1. the function v(z)— T D f ( z )  attains the boundary value
f  on D .  H en ce

w(z) = u(z)— v(z)

i s  plurisubharmonic in  D  and w (z ), 0  fo r  z — >E aD , therefore
w < 0  in  D .  Moreover w (z ) O. In  fac t s in ce  in f f>0, v(z)>0
in D and w(zo)---- —v(z0) < 0 .  Thus the domains

Dn = ; w(z)+1/n<0} , n  = 1, 2,• ••

are relatively compact in D  and pseudo-convex. Since
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D= lim  D„
11-> co

D  is  pseudo-convex, that is, a domain of holomorphy by a cele-
brated theorem of Oka. The converse statement is false, for
instance the Example I in sec. 1. 4.

THEOREM 3. 4. ( I )  D C "  is  a  dom ain o f  holomorphy if and
only if  there exists an exhaustion {D„} of D, i.e. D =  \ I  D „
such  that ev ery  po in t o f SD? ,  is pl-regular (w ith respect to D„).
(II) For any  dom ain D cJJ  there ex ists an exhaustion {D„}  of D
such that every  point of SA, is pl-regular except a pl-removable set
(inner pl-measure zero).

PROOF. (I) A  domain o f holomorphy can be approximated by
strongly pseudo-convex domains { D „} . Each point of ap„ is p i -
regular (Theorem 3. 2). Conversely if there exists such an exhaus-
tion, each D„ is a domain of holomorphy by Theorem 3. 3, hence
D= lim D,„ is a domain o f holomorphy by Behnke-Stein's theorem.

( I I )  L e t  {DJ be an exhaustion o f D such that each D„ is a
finite union of balls in  D , then by Theorem 3 . 1  o r  3 . 2  every
point of ap„ is p/-regular except a set on ap„ consisting o f inter-
sections of the balls, which are p/-removable by Theorem 2. 8 and
o f inner p/-measure zero with respect to D„ by Theorem 2. 6.

3. 3. As a simple application of our Dirichlet problem we shall
give an example o f domain D ( C "  (not a domain o f holomorphy)
for which the following facts hold :

(a) T here ex ists a  plurisubharmonic f unction in  D  which is
not plurisubharmonically continuable onto the envelope E(D) o f holo-
morphy o f D.

(b) A  plurisubharmonic function does not necessarily  attain its
supremum on D at  the Silov boundary S(D) o f D.

(a ) is the disproof to the modified Bochner-Martin's conjecture
[ 4 ]  fo r  which Brem erm an [5] gave first an example in a tube
domain. He gave another example [ 6 ]  in  a  bounded domain
(Reinhart region).
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EXAMPLE II. L e t  B p s ta n d s  fo r  a n  o p e n  ball w ith center 0
a n d  r a d iu s  p. L e t  B;R=BR - P ,  ( 0 < r  < R ) .  W e  ta k e  a  finite
covering IN51 of such that each N 5  i s  a  ball and the union
N=UN ;  is contained in some r ing  domain B,/.1 ( 0 < r 1 <r, R <R ,) .
Now our domain is

(19) D (= DR ) = N  r\B R .

L et a  and  /3 denote the  inner resp. outer boundary o f  D  and f  be
th e  function defined as

f  =  1  o n  a, f  =  0  on f .

There exists a  p/-barrier at every boundary p o in t o f  D  except a
p/-removable se t  F  o n  a  which consists of intersections of spheres
N 3 .NI- 3 . Therefore

(AZ) = T p f (z ) E P(D)

approaches th e  boundary value P O  fo r  z--> EaD— F, hence U  is
non-constant. Clearly U  cannot be continued plurisubharmonically
onto th e  envelope E (D )=B R  o f  holomorphy o f  D  on  account of
m axim um  principle, which sh o w s  (a ) . Since t h e  Silov boundary
o f  D  is R, (b) has been also shown.

Furthermore we can prove that U does not have any  plurisub-
harmonic continuation onto B,R  ( 0 < p < r 1 ), a proper subset o f E(D).
Indeed, otherwise th e  function U  defined a s  0  outside o f  B R  i s
then plurisubharmonic and bounded above outside of B r i ,  b u t such
a  function m ust be a constant (sec. 4. 2), which is absurd.

We note that one can choose above domain D arbitrarily close
to  r in g  domain B r, b u t  cannot take B ! ' itse lf by th e  following
reason.

THEOREM 3. 5. L e t D  be a  bounded domain in  C "  such that
every point of aD  is  p l-re g u lar. Let B  be a closed ball contained
in  D . T hen

(i) f o r  any  non-negative continuous function yo on aD there
ex ists a function co(z) E P(D— B ) which attains qo on aD and 0 on B .

(ii) there does not exist any plurisubharm onic function on D—B
w hich attains 0  on 3D and 1  on aB, prov ided that n >1 .
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PROOF. (i) It suffices to take co(z)= TD _B f ( z )>O , where f=.93
on aD and f  =0  on B .  (Corollaries 1. 1 and 1. 2)

(ii) Suppose there exists a  function 12(z )EP(D— B ) which is
0  on  ap  and 1  on B .  B y  ( i )  there is a  function 0.)E P(D—B)
which is 1  on aD and 0  on B .  T h e n  the function

v (z) = max (12 (z), w (z )) E P(D—B)

attains 1 on  a(D— B). y  is  non-constant, because i f  v=- 1, SZ or co
would take the maximum 1  in D— B, hence reduce to a constant.
Since

D—B D „= {v(z)-1+1/n<0}

and D„ are relatively compact pseudo-convex domains, D— B must
be a domain of holomorphy. However this is false i f  n > 1 , for
every holomorphic function in D— B is holomorphically continued
into B.

§ 4. Some classes of complex manifolds

4 . 1 .  First we mention about the generalization o f our Diri-
ch le t problem onto complex manifolds. S ince th e  plurisubhar-
monicity is  invariant under one-to-one holomorphic mapping and
pt-barriers are defined locally, almost all our results can be carried
over complex manifolds (cf. [ 8 ] ) .  Furthermore the base domain
need not be relatively compact.

Let X  be a non-compact complex manifold and D  be an open
set on X . We shall consider the compactification of X , for instance,
by adding the Alexandroff point A_ and define our lower and
upper solutions on D . Let f  be a function defined on the boundary
aD ((X ) o f D and a t the point A .  W e denote by g* (f , D ) be
the set of uE P(D ) which satisfy the boundary condition (1) and
the condition :  for &>0 there exists a compact set K  on X  such that

u (p )<f (A ,.,)+& , p E D n (X -K )

Now T o f  is defined by (2 ) by using g *  instead of F. W e can
then analogously prove the fundamental inequality (9 )  for the
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present D, where 5D should be read the boundary o f D in X.

4. 2. As a generalization of the classification of open Riemann
surfaces (cf. A h lfo rs -S a r io  [1 ]  chap. IV) we shall consider some
classes of complex manifolds which are invariant under one-to-one
holom orphic mappings. For each n  ( > 1 )  we denote by On,„  the
class of non-compact complex manifolds of dimension n  on which
there does not exist any non-constant plurisubharm onic  function
bounded above.

EXAMPLE HI. The following manifolds belong to classes 0;:,
(n= 1, 2,•••) ;

1) Complex n-dim ensional space C"
2) Complex manifold removed a  p /-rem o v ab le  set (e.g. an

analytic set of dimension at most n - 1 )  from a compact
one.

3) Open Riemann surfaces of parabolic type (n = 1 )
4) Product X>< Y  o f X  G On and Y G O'pzz
5 )  Exterior o f  a  ball (o r polydisc) in  C" ( n > 2 ) .  (compare

with Y " in  Example IV)
We shall prove only the case of polydisc in 5 ) .  The following

proof is essentially due to T. N is h in o . Let P= j = 1 , • - • , n }
b e  a  p o ly d is c . W e show that C"— P E O .  Suppose there exists
a non-constant p lu risu b h a rm o n ic  function V  bounded above in
C"— P and take two points a = (a, ,• • • , b=(bi,•••, b „) such that
V(a)=l= V (b). We may assume a, 1> 1 .  Then the analytic plane

n-1 : z ,  =  a „ z a t (— 2,•••,n), ce2 ce3 ..•ce„ - 0

contains the point a and 7r, P = ¢3. By 1) (or 3)) we have V= V (a)
on 7r1 .T o  show V (a)=V (b) we proceed as follows.

Case (i) < 1 .  Then some b  (e.g. b2 )  is greater than 1  in
absolute value. Now there is an analytic plane 7r2 through the
point b  such that 7c2 r■P = (I) and z 1 n7r2 +  for instance,

7 r2 : z l=  b 1 + z2 =  b2, bk+Okrr (k — 3,- • n)

where Ri  = ai — b, and Sk = ak — b k + a k to  with t o = (b2— a2 ) / a 2 . Then
V= V  (b) on 7r2  it follows that V (a)= V  (b), which is absurd.
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Case (ii). l b , 1 > 1 .  Then there is a  p o in t  c=(c„•-•,c„) E 7r,
such that I cd > 1 , hence there exists an  analytic plane 7r, which
contains the points c  and b*=(b„ c„ b 3 ,...) and 7r,r\P = (15. Finally
we take an analytic plane 7r 4 fo r  which the points b*, b En-4 and

r P  g5. Then  w e have V (a)= V  (c)—  V  (b*)= V  (b), which con-
tradicts our hypothesis. q.e.d.

W e note that since C n  E 0 „  the following statement gives a
generalization of Liouville's theorem

Ev ery  bounded holom orphic f unction on X EO„n, reduces to a
constant.

4. 3. Characterization of O .

THEOREM 4. 1. A  complex manifold X  belong to 07„ if and only
i f  any  one of the follow ing conditions is fulf illed.

a) (Maximum principle) Let G be any domain on X  and u  be a
plurisubharm onic function bounded above on G and satisfies

l i m u ( p ) < m  f o r a n y  q Eac( x)
P 4 9

then w e have u (p )G m  throughout G.
13) Let G be any  dom ain on X  and g be the function w hich is

0  on G ((X )  and g ( A ) = 1 ,  then T g  vanishes identically ,

PROOF. Compare [ 1 ]  p. 204 and the proof of Theorem 2. 1.

COROLLARY 4. 1. L e t G  be any  dom ain in  X E 07, z a n d  f  be
holomorphic in  G .  I f  l i m  ( P ) I < m  f o r  a n y  q E aG , then there

holds that either f  is unbounded in  G , or Ifl < m  throughout G.

For a paracompact manifold X  we have further the following
characterization. L e t {X } =0 b e  an  exhaustion (X„ of X
where X „ are relatively compact domains. Let g„ be functions on
ax (x =x „-- -.g o )  which is 1 on ax„ and 0 on ax -0 .  One sees easily
that the sequence of functions

un (p)= T x g„ (n  = 1, 2,--)

is monoton decreasing, hence converges to a  limit function
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U(p) — lim u n (p)EP(X—X0),0 <  U <  1 .

THEOREM 4. 2. A paracom  pact X  belongs to 07„ if  and only  if

PR O O F. First we show under the condition U=-- - 0  that any
plurisubharmonic function u  bounded above on X  reduces to a
constant. Let m = sup u . m <M = sup u  unless u  is  a constant.

Since the function (u—m)1(M—m) belongs ¶f* (g, X )  ( n  1, 2,...)
it is dominated by Un in  X  .  Hence for n  Do we know that
u < m  in X— X 0 , hence u < m  in X , which implies that u  must be
a constant.

To prove the converse we first show that i f  U 0, we have

(20) M  = sup U (p) = 1
1--Tco

For fixed n  (> 1 ) consider the compact set X „ — X ,. From
the upper semi-continuity of U's there exists a number vo (>n ) such
that for given 9 > 0

U (p )< U (p )< M + & > v o), PE X. - - X„-, •

For any uE g * (g ,,  X ) we have u/(M-1-&)<U,/(M+&)<1 in X ,
— X „ hence u/(M+&) belongs g * ( g „ ,  X ) , which implies that

Uv(P) < u n  (p), p  E
M +6

H ence U(P)/(M+&)<Un(P), P E .  Letting we know
1< M , consequently M=1.

Now we show that X  00;:, if Li  I   0. Take a domain X (  X 0)
which is the image of the domain B R —DR  ( B R )  D R : domains in
Example II) lying in some local coordinate. Then

w n(P)= ix n _TcX ,(P) (n >1 )

is  non-constant, where g ,  i s  1  on ax„ and 0  on L et u E
g*(g n , X ) ,  then v (p )=  max (u (p ) , 0 ) extended as 0  on X0 —X,
belongs g * ( g ,  X„—X ),  hence u (p )< v (p )< w „ (p ) ,  p e X .  Con-
sequently U „(p)< Iv,,(p) pE  X ') . Since w„ is non-constant < 1
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U(p) <  U (p ) < m = sup w„ < 1, pE X,
- -To

Therefore i f  X E  G „  then by Theorem 4. 1 we would have

u (p )< m < i, p  E X—X,

which contradicts with (20).

COROLLARY 4. 2. I f  there exists a  continuous plurisuperhar-
monic function .(p ) defined outside of a compact set on X such that
w(P) , + 00 only i f  then X E 0 / .

PROOF. With a  suitable constant c > 0  we may take the sets
{p;

 6 ) ( P ) —  c< n }  a s  above X .  S in c e  fo r  a n y  u E g* (g„,
u (p )< ((p )— c )/ n , p

0 <  u(p) < un (p)< (w(p)—

Hence U (P )= -0  for which implies X E 0;')z •
We note that the converse of this statement is true for n = 1.

4. 4. Finally we refer to classes of complex manifolds defined
in terms of holomorphic functions. We denote by OnA  (resp. On")
the class o f complex manifolds of dimension n  on which there
does not exist any non-constant holomorphic (resp. bounded holo-
morphic) functions. Clearly

O O B , 074 A (n  =  1, 2 • • ) .

H ow ever there is generally no inclusion relation (Example V)
between 0"A  and  0",„ except the case n = 1  where 0:4 = 0  (Behnke-
Stein  [2 ] ) .  W e shall first show that the inclusion O O B  is
strict.

EXAMPLE I V .  Under the same notation as in Example II,

Y "  C"— (BR — D R ) E O nA B  a n d  0 0';„ (n >  2)

Indeed, let g  be a non-constant continuous function on ay"
( C") and g(iloo) < 0 . ,  then  by the generalization o f Theorem 1
mentioned in sec. 4. 1, the function T y n gE P (Y ") attains g  on a Y"
except a  p/-removable set. H ence it is  non-constant, moreover
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bounded above (<  sup g )  which means Y" O .  N o t e  that we
ay"

can choose Y "  arbitrarily close to  the exterior o f  a  ball which
belongs to 0;;, (5), Example III), but these two are not equivalent
under one-to-one holomorphic mappings. As for n=1

Y1 = C1 —S

belongs to 01
A 8  but not to q ,„  where S  is the generalized Cantor

set which has linear measure zero, but positive capacity ([14] p.
145-149; [1 ] p. 252-253). We note that

Z" = C" -  x (C1 — Y . ')

gives another example such that Z" E0 nAB  a n d  0O .  Z "  is  a
domain o f holomorphy while Y" ( n >2 )  is  not. C '— Z "  is non-
compact while C"— 17 "  is  compact in C".

EXAMPLE V .  From a complex manifold Wo E O  (n >2 ) remove
a  set which is the im age of a ball B R  in some local coordinate
and insert the domain D R  (o f (19)), then we get a complex mani-
fold  W such that

W  E 01 and W O ;

On the other hand, the space C" belongs to but 0 O .
As for class IgA B few results are known even in case of n=1.

Here we just note that Corollary 4.1 is not valid generally on
X E 0 "A B .
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