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Introduction. With the Perron’s method in the classical
potential theory Bremerman [8] first treated the Dirichlet problem
for plurisubharmonic functions. The base domains D considered
were mainly bounded domains of holomorphy of the form
{z; V(2)< 0} where V is plurisubharmonic on the closure of D.
His lower solution in D does not necessarily attain the boundary
values even if the boundary and boundary function are nice. In fact
he showed that the lower solution attains (in his sense) the continuous
boundary value only if it is prescribed on the Silov boundary S(D)
of D. A generalization of this result was given by Gorski [10]
for more general domain D and S*(D) (Silov boundary with respect
to plurisubharmonic functions (see Siciak [16])).

In this paper we shall study further such a generalized Dirichlet
problem with various applications to functions of several complex
variables and plurisubharmonic functions. First in §1, for given
boundary function f we define the plurisubharmonic lower solution
Tf and plurisuperharmonic upper solution 7T/ without regard to
the Silov boundary of the base domain and introduce the notion
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Courant Institute of Mathematical Sciences, New York University. This Temporary
Membership Program is supported by the National Science Foundation under Grant
NSF-GP-98.
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of pl-barrier (sec. 1. 2) at a boundary point to see the boundary
behavior of these solutions. If a pl/-barrier exists at a point g,
then our solutions actually attain the boundary value f(g) provided
that f is continuous at ¢ and bounded on the whole boundary
(Corollary 1.1). Relations between Eremerman’s solutions and ours
are discussed in sec. 1.4. The existence of pl/-barrier requires a
severe restriction for the local shape of boundary and has close
connections with the pseudo-convexity in several complex variables.
For instance if the boundary is locally fat at g, p/-barrier does
not exist at g (Theorem 3.1). Theorem 3.4 shows that if every
boundary point of D possesses p/-barrier, then D must be a domain
of holomorphy. Some criteria for the existence of pl-barriers will
be given in sec. 3. 1.

In §2 the maximum principle and removable sets for pluri-
subharmonic functions are discussed. A set E on the boundary
of a bounded domain D C” is called inner (outer) p/-measure
zero if our lower (upper) solution in D for the characteristic function
of E vanishes identically. Sets of inner p/-measure zero characterize
the maximum principle for plurisubharmonic functions (Theorem
2.1). Some examples show that the sets of inner p/-measure zero
are not “small” as in the case #=1, namely sets of real dimension
2n—1 (n>1) happen to be of inner p/-measure zero. In sec. 2.2 a
characterization for the set of outer p/-measure zero and a theorem
of Riesz type will be given. We define in sec. 2. 3 another notion,
the pl-removability. According to Grauert-Remmert [11] an
analytic set of codimension 1 is of p/~-removable. Their proof is
also applicable for a non-analytic set with the same dimension and
we show that a hypersphere (surface) in R* ' C” is of pl-
removable. In terms of p/-removability one can state a generali-
zation (Theorem 2.9’) of the well known theorem on removable
sets for holomorphic functions.

Sec. 3.3 contains some applications of above results. We shall
give an example showing that the Bochner-Martin’s conjecture is
false for a domain of inholomorphy. Such an example was first
given by Bremerman [5] in a tube domain. He gave another
example in a bounded domain (Reinhart region) [6]. Our domain
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is “nearly” shell and the reasoning is very simple from our point
of view. It is noted (Theorem 3.5) that we cannot take a shell
itself as our example, as in the ring domain in C*(#>>1) there
does not exist any plurisubharmonic function which attains the
boundary value 1 and O resp. on the inner and outer boundary.

Finally in §4 we mention about the generalization of our
Dirichlet problem over complex manifolds and discuss on some
classes of complex manifolds as a generalization of the classification
of open Riemann surfaces (cf. Ahlfors and Sario [1] Chap. IV)
As a result different from the case =1 it is noteworthy that in
the exterior of a ball (or polydisc) in C*(#n>2) there does not
exist any non-constant plurisubharmonic function bounded above
Example III 5)).

The author wishes to express his thanks to Professors L. Bers
and H.J. Bremerman for their valuable comments and suggestions.

§1. Generalized Dirichlet problem

1.1. Let D be a domain in the space C” of # complex vari-
ables. A real valued function # on D is called plurisubharmonic
if the following conditions are fulfilled: (a) — co<lu(2)< o (b) u
is upper semi-continuous (c) the restriction of # to any analytic
plane E={z=(z,,-*,2,); 2;=2%+ai (i=1,---,n)} is subharmonic in
EnD. A function v is called plurisuperharmonic if —v is pluri-
subharmonic. We denote by P(D) (P(D)) the set of plurisubhar-
monic (plurisuperharmonic) functions in D. For a real valued
function f on 0D (the boundary of D) we denote by <(f, D)
(Z(f, D)) the set of functions € P(D) (v€ P (D)) satisfying the
boundary conditions :

(1) ETI}MZ)Sf(é‘.) (resp. I?ii_r{lv(Z)Zf(é‘))

where z€ D and ¢€0D. In the following D is assumed to be
bounded, unless otherwise stated. Now we set

(2) Tf(z) = Tpf(2) =limsup[ sup )u(Z’)]

2 -z ue F(f,
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It is known that 7 f€ P(D)if f is bounded above. Replacing P(D)
by the set of subharmonic functions in D C*=R* we get the
usual Perron’s lower envelope Hf in place of T f, where we need
not take “limsup” on account of the harmonicity of Hf. Let Hf
be the Perron’s upper envelope, then we know

(3) i;}fféIf(z)éﬂf(z)éﬁf(Z)ﬁsaL}‘pf, zeD

We can analogously define the function Tf(z) by replacing F(f, D),
limsup and sup in (2) by Z(f, D), liminf and inf respectively.
Tfe P(D) if f is bounded below. We have

(4) inf f<Hf(2) SHf(2) < Tf(z)<supf, z€D
(5) Hf = —H(—f), Tf=—T(—f)

In connection with the functiontheory of several complex vari-
ables our main concern is in the functions 7f and Tf, but above
inequalities will give ous useful estimates.

1.2, To see the boundary behavior of T f and Tf we introduce
the notion of plurisubharmonic barrier as follows. Let &, be a
point of dD. Suppose there exists a neighborhood N of ¢, and a
function »(z) defined in DN N satisfying the following conditions :
for given positive numbers & « and a neighborhood N’(CN) of ¢,
we have

limo(z) =0 ze€eDNnN
( 6 ) 27>¢y
v(2)<¢E z€ DNN' and v(2)< —a, 2€ DNAN—N’

Then we call v(z) a pl-barrier vesp. barrier at §, with respect to
D according as v is plurisubharmonic or subharmonic. We note
that if a usual (superharmonic) barrier o >0 (e.g. Petrovski [15]
§31) exists, co with a suitable negative constant ¢ is a barrier in
our sense. Evidently p/-barrier is a barrier at the same point, but
the existence of barrier does not necessarily imply the existence
of pl-barrier which will be seen later. Now if p/-barrier (or
barrier) would exist at ¢, we can extend it globally, namely for
the pl-barrier v(z) there exists a function 9(z)€ P(D) having the
properties : '
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limd(z) =0 z€D
(7) 2
0(2)<¢& zeDNN' and v(2)< —a, zED—N’

Indeed, let

b.(2) = {max(v(z), —a+1/n), z€eDNN
" e i/n, z€D—N'

and #(2)= lim 9,(2), then it is seen that 9(z) satisfies our conditions.

1.3. TuroreM 1. Let D be a bounded domain in C* and f be
bounded above on 0D. If there exists a barrier at §,€0D, then

(8) im Tf(2)<Hm Hf(2) <Iim f(¢), 2€ D, {€3D
E24 1) 2>4 (49
Further if there exists a pl-barrier at &, then
(9) lim Tf(2) < Iim 7(¢)
Fad o) ¢>&o

Proor. We shall prove the inequality (9) only. Set
A= ﬁ@f({,‘). We may assume A< M= sup f on 4D, because if
A—DM.(9) is already valid by (4).

Case 1. — o< A. Let a be a number >2(M— A)>0. For
any & >0 we choose a sufficiently small neighborhood N of ¢, such
that NN and f(£)<A+¢€/2, £ € NnoD where N is the domain
of pl-barrier at ¢,. Then we take a globally defined p/-barrier
v € P(D) at ¢, satisfying the condition (7). Now it is easily checked
that the plurisuperharmonic function

(10) w(2) = A+&é—v()(M—A)/«x
belongs to the class F(f, D). Hence Tf(z2)<<w(z). Letting z2—&,,
we have 9(z)—0 and @ Tf(2)<<A+&, which implies (9).

2>¢y

Case 2. A= —oo. Choose a>28(M’+1/28), M’>> max (M, 0)
and N'C N such that f£(¢)<—1/& ¢€ N'ndD. Now instead of
(10) we have merely to consider the function

—1/26—v(2)(M’+1/28) ]

where 9 is a globally defined p/-barrier corresponding those « and
N, q.e.d.
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A boundary point ¢, will be called pl-regular (vegular) if there
exists a pl-barrier (barrier) at ¢,. Then we have by (4) (5) (8)
and (9) the following

CorROLLARY 1.1. Let f be bounded on oD and continuous at
§.€9D. If ¢, is pl-regular (vesp. vegular), then the following
(1), (12) (resp. (12)) hold :

(11) hj? Tf(z)= lingfl Tf(z) = f(¢&)  2€D
(12) llj? Hf(2) = hgl Hf(z) = f(¢,) z2€D

COROLLARY 1.2. Let f be bounded above on 6D and upper semi-
continuous at &,€0D. If &, is regular and f(¢,)= ianf (= — o0),
D

then If(z)_’f(go)’ z2—§,.

Thus we know that if f is continuous on D and every boundary
point is pl-regular (regular), then Tf and Tf (Hf and Hf) attain
the boundary value f on dD. It is then noted that Hf and Hf
coincide by maximum principle and they give a unique harmonic
solution of the classical Dirichlet problem, however Tf and Tf
are not necessarily identical each other (see sec. 3.1). Tfand Tf
are identical, hence pluriharmonic if and only if they take the
same value at a point of D.

As other elementary properties of the operator T we have

T(cf) =cTf for c>0, T(cf)=cTf for c<0
T(f+c)=Tf+c=Tf+Tc (c: const.)
Tf+Tg<T(f+g) (subadditive)

that is, 7 is not necessarily linear (see Remark (ii), sec.
2.1)

| Lf—Tgl<suplf—gl

(13)

1.4. Here we shall compare our upper and lower solutions
with those of Bremerman [8]. His procedure is as follows:
(¢) D is a bounded domain of holomorphy such that
D=1{z; V(2)< 0} where V is continuous and plurisub-
harmonic on the closure D.
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(8) Boundary function f is given on the Silov boundary S(D)
of D and continuous there.

(v) Lower solution «f is defined by (2) where &(f, D) should
be replaced by the set £(f, D) of functions which are
plurisubharmonic on D and are smaller or equal f on
S(D).

Under these circumstances we know ([8]) that for any
vel(f, D) v(2)< 2?01))sz, hence uf<M, which implies that uf
can not take on dD—S(D) any prescribed value greater than M.
Now let f be a continuous function on 9D which is equal f on
S(D). If f(&)>M, t€dD—S(D), every element of £(f, D) belongs
to F(f, D) hence

uf(2) < TR Tf(2)<af(z), zeD.

While in case f<<M, Tf can be actually smaller than »f. Indeed,
the following example shows that
(i) for the constant function f=M on S(D)uf=M while Tf
is non-constant <<M and takes the value M on S(D).
(ii) There exists a boundary point which has a barrier but
no pl-barriers.

ExampLE I. Let P be a polydisc:

P = {]z|<1, Izzl<1} .

then S(P)={|z,|=|2,/]=1}. We show first that every boundary
point { of P has a barrier. Let {=(¢,, &), |&, =1, |¢,|<1. Take
a point 2¥ such that |z¥|>>1, arg zf= arg ¢,, then the ball

Izl-lez'{‘lzz_gleSPzE |z>1k_§1|2
lies outside of P except ¢. Hence with a suitable constant ¢>>0
the function
c[(lzl_zi“|2+lzz_§z|2)_1_P_2]
gives a (harmonic) barrier at {. Now we take a point ¢,€0P
—S(P). Let f=M on S(P) and f be a non-negative continuous

function <M on &P such that f=f on S(P) and F(&)=0. Clearly
uf=M, while Tf(<M) is non-constant, because by Corollary 1.2
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If(z)—»O for z— ¢, and since each point € S(P) is pl-regular
(Bremerman [8]), T/(z)—M (z—¢) by Corollary 1. 1. P/-barrier
does not exist at £ €9P—S(P) (see Remark (i) in sec. 2.1).

§2. Maximum principle and removable sets

2.1. Let D be a bounded domain in C* and E be a set on
dD. Let Xz be the function which is 1 on E and 0 on 0D—E. We
say that E is of inner resp. outer pl-measure zero with respect to
D if
TpXp(2)=0 resp. TpXg(z)=0, z€DV

THEOREM 2.1. A set E on 0D is of inner pl-measure zero if
and only if the following maximum principle holds: if ue P(D) is
bounded above and
(14) [imu(2) <0, £€dD—E

z2>¢

then we have u(2)<<0 for any z € D.

Proor. If the maximum principle holds, every element of
F(Xg, D) is non positive on D hence TXp=0. To prove the con-
verse take u € P(D) which is <<K in D and satisfies the condition
(14). It suffices to consider the case K_>0. Then u/K € F(Xg, D)
hence u/K<TXz=0 that is, «u<<0 in D.

COROLLARY 2.1. Let u be pluriharmonic and bounded in D.
If limu(2)=0 at each point § €0D except a set of inner pl-measure
2—);’

zero, then u=0.

The following two theorems show that the sets of inner p/-
measure zero are not “small”’ as in the case n=1.

THEOREM 2.2. Let Dp=D%x -+ xDE be a polydisc in C"(n>2)
where D¥={|z;|<R}(j=1,---,n) and S(Dg) be the Silov boundary
(={lz|=+=12,/=R}), then S(Dg) and 6Dr—S(Dy) are of inner
pl-measure zero.

1) In case of n=1, E is then exactly a set of inner resp. outer harmonic measure
zero.
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Proor. In case of dDr—S(Dg) it suffices to prove that for
any u € P(D;) which is bounded above and

(15) Hr_?u(z)go, ¢e€S(Dg), z€Dg

we have #(2)<0, z€ D,. Now from (15) and the compactness
there is a positive number 7, such that for €0

(16) u(z)<¢&, zeS(D,), r,<<r<_R

By the approximation theorem (Bremerman [7]), for €>0 and
such a D, there exist a finite number of holomorphic functions
fis fr in D and positive constants c,,-:-,c¢, such that

(17) u(z)—€ < max {c;log | f{(2)]}
<u(2)+&  z€D,.

By (16), (17) c;log | f;(2)|<2¢ on the Silov boundary S(D,), hence
c;log |f;(2)|<2¢ in D,. We have therefore u(2)< (3¢ z€ D, by
(17). Since r—R for £€—0, u(2)<0, z€ Dg.

Next we prove that u=TXg(E=S(Dg)) vanishes identically.
For fixed 2%€¢ DF, u(z,,--,2,.,, 23) is plurisubharmonic in
D%=DFfx---xDE .. Moreover since every point of 0D, has a
barrier, #—0 for (z,,--,2,_,)—0D% (Corollary 1.2), hence u(z,,:--,
Z,-1, 29)=0in D% by maximum principle. Since 2z} is arbitrary in
DR, u=0, q.ed.

This example shows that the union of two sets of inner p/-
measure zero is not necessarily of inner p/-measure zero.

ReEMARK. From above theorems one can see the following
facts stated in sec. 1.4.

(i) Every point of 6P—S(P) is not p/-regular.

(i) The inequality actually occurs in (13).

Indeed, let f be the function defined in sec. 1. 4, then we have
THa)< sup f, 2€ P by Theorems 2.1 and 2.2, hence (i) follows
from Corollary 1.1. As for (ii) we have only to take the functions
f and g such that f=Xg,p,, g=Xsp_spy, then Tf=Tg=0 and
I(f+g)=L

(iii) There exists a set which is of inner p/-measure zero,
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but not of inner harmonic measure zero. For instance, D=P
(Example I) and E=dP—S(P).

THEOREM 2.3. Let D be a bounded domain in C"(n>2) and
H be a hyperplane of real dimension 2n—1 and E=HnaD. Sup-
pose every point of 0D—E has a barrier with respect to D, then E
is of inner pl-measure zero. This is not true for n=1.

Proor. Without loss of generality we may assume
H={z=(z,,++,2,); Rez,=0}. Let D, be the intersection of D and
hyperplane H,={z; Rez,=x} parallel to H=H,, then D, is open
(or ¢) in H, and

D =[zeD,, x€some intervals ]

The boundary of each component of D, is a subset of dDNH,.
Let U(z2)=TpXg(z), then 0<<U<1 and U(z)—0 for z—¢€0D—E
by hypothesis and Corollary 1.2. Now we show

(18) Uk) =0, ze D, O=+x€l)

Let D,,=D,n{z; Imz,=y}. It is an open set (or ¢) in C*’
={z; z,=x+iy} and

D, =[z€D,,, yesome intervals J].

Since U(z) restricted on D,, (x==0) is plurisubharmonic with
respect to (z,,+,2,_,) and equal zero on dD,, 0D, (0D,nE=¢), we
have U(z)=0, z€ D,, by maximum principle. This holds for any
y€J, which prove (18). It remains to prove U(z)=0 on D, if
D,=4=¢. Let z,€ D,. Since U is subharmonic in DC R*, there is
a ball N(C D) with center z, and radius & such that

0< U(z,) < wq SN Udo,,

where wo=f dw,, denotes the volume of N. By Fubini’'s theorem
N

gN Ude,, — S

The right hand side is zero by (18), hence U(z,)=0.

5_ dx|  Udo,,.

8 JNADyx



On the generalized Dirichlet problem for plurisubharmonic 133

2.2. THEOREM 2.4. A set E on the boundary of a bounded
domain D in C" is of outer pl-measure zero with respect to D if
and only if there exists a positive plurisuperharmonic function
v (=) in D such that v(z)— + o as z tends to any point of E.

Proor. Suppose T,Xz=0, then there is a point z,€ D such
that for a sequence of functions v,(2)€ F(Xgz, D) v,(2,)<1/2".
Indeed, for any z*€ D there are sequences {z,} and {«?(z)} such
that u?(z,)—>&,(n— o) ut€ F(Xg, D) and & —0 with z,—2z* For
large v the balls (<C D) with centers z, and same volume » contain
a fixed ball N. Since u* are superharmonic and >0

ut(z,) > ot S-Nuﬁ(z)dmz"

By Fatou’s lemma we have

6. = lim u(2) > lim o~ | wi(2)do”
N300 N

PEYS)

>0 lim up(2)de > w"g inf 4 (2)de™ >0 .
N v

JN e

For & —0, we know that inf «}(z) is zero almost everywhere in
N! Now v(2) = iv”(z) is positive and plurisuperharmonic (== o)
n=1

in D, and for any positive integer N
lim0(2) > lim0,(2)> N,  ¢€E
> n=1 23¢

which means v(z)— + o~ for z—¢. Conversely suppose there
exists such a function v(2), then for any positive integer # v(2)/n>
TX:(2)>>0. Since there is a point z,€ D where v(z,)< oo, TXz(z,)
= IL‘B v(z,)/n=0, therefore TXz=0 in D by minimum principle.

As an easy consequence of this theorem we get the following

THEOREM 2.5. Let D be a bounded domain in C". Let
P(2) = (P(2),,Pm(2))  (m>1)

be a holomor phic mapping of D into C” and @(D) denotes the image
of D in C”. Suppose that (¢) F is a set in C™ such that there
exists a positive plurisuperharmonic function Q (Z=oo) which is
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defined in some domain G DOp(D) and becomes +  on GNF. (B)
®(2) has a limit € F when z tends to each point of the set E(CoD)
whose outer pl-measure is positive. Then (D) F.

COROLLARY 2.5. Let 9;(2)(j=1,-+-,m) be bounded in D and F
be the (m—\)-dimensional analytic set in C” such that

F={weC” w,=a,(k=1,-,\)} a<six<im).
If p=(p,,,p,,) satisfies the condition (8), then p(D)F.
Indeed, the set F fulfils the condition («) with the function
Qw) = — log (w,—a,)-(wy,—a)| +C
where C=2X\log (mjax s;tgg) [p;(2)] +r{1ax|akl).

COROLLARY 2.5. Let f be a non-constant holomorphic function
on D and E={z; f(2)=0} be an analytic set, then EnD is of outer
pl-measure zero with respect to D—E.

REMARK. (i) A finite union of sets E;C 6D is of outer pi-
measure zero if each E; is so (cf. (13)).

(ii) Theorem 2.5 is strictly sharper than Theorem 11 (Kusu-
noki [13]) in the sense that there exists a set E such that the
harmonic measure of E is zero, but E is not of outer p/-measure
zero. For example,

D= {|Rez;| <1 [Imz;|<1, (i =1,2)}
E={Imz, = —1, Imz,=0}niD

E is of harmonic measure zero. If T,Xz=O0, thereis a func-
tion v€ P(D) such that v<[co a.e. and v(p)— o for p—FE. We
note that there is a point p, (2}, 23)€ F=Dn {Im 2,=0} where
v(p,)<oo. Otherwise F would be of outer pl-measure zero with
respect to DN {Im z, >0}! Since v(z,, z3) is superharmonic (Z=c<)
and tends to o for z,—L={|Rez,|<1, Imz,=—1}, L must be of
harmonic measure zero with respect to Dn {z,=23}, which is absurd.

2.3. Here we mention about another closely related notion.
A closed set F in C" is called pl-removable if F is nowhere dense
and for each point ¢ € F' there is a neighborhood N of ¢ such that
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every plurisubharmonic function bounded above on NN (C*—F)
possesses a unique plurisubharmonic continuation onto NnF. A
finite union of p/-removable sets is p/-removable.

THEOREM 2.6. Let D be a bounded domain bounded by a finite
number of surfaces V';. Suppose that E C 3D is pl-removable and
each point of U';—E (=) is regular, then E is of inner pl-measure
zero with respect to D.

In fact, let U(z)=T,Xz(2), then 0<<U<1 and under our as-
sumption U(z)—-0 for z—¢&€dD—E. Define U(2)=0 outside of
DVUE, then U is plurisubharmonic outside E. Indeed, U is con-
tinuous on dD—FE, and on any analytic plane L= {z;=¢;+ta;}
through ¢ €9D—FE there is a disc with center #=0 and disjoint
with the closed set LNE, on which the mean value property holds
as U(0)=0. Since E is p/-removable, U is plurisubharmonic in C”
hence U=0 by maximum principle.

THEOREM 2.7. (Grauert-Remmert [117]) Any analytic set of
codimension 1 is of pl-removable.

THEOREM 2.8. A hypersphere (surface) S of real dimension
2n—1 in C” is of pl-removable.

Proor. We may assume that S is the intersection of sphere
S={z; |z|*+-++|2,/’=r"} and a hyperplane H={z; Rez,=7r'},
|7'|<r. Let E={z;=2'+ai} (i=1,---,n) be any analytic plane,
then for SNE there corresponds at most two points in #-plane,
because for SAE and HNE there correspond respectively a circle
C={lt1?2 |a;]*+2 Re 2 2%t + 3 |28|°=7r"} and a line L= {Re a,t
=7'—Re 2} in t-plane, hence for SANE=(SNE)Nn(HNE) there
correspond CN L, i.e. at most two points. Now let #(z) be pluri-
subharmonic in the neighborhood N(CC*) of a point £ €S and
bounded above. Since # is subharmonic in NN E except at most
two points, # is subharmonically continuable onto NNE. Thus by
definining at each ze SAN

u(z) = li/_mu(z'), 2ZZeN-S
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and using the same argument as in [11] we know that S is pl-
removable.

THEOREM 2.9. Let E be a pl-removable set contained in domain
D in C". Then any pluriharmonic function bounded in D—E pos-
sesses a unique pluriharmonic continuation onto E.

Proor. Let z, be any point of E. Since the problem is local
it is sufficient to take an open ball B D containing z, and prove
that any pluriharmonic function 0(z) bounded in B—BNE (==¢)
is pluriharmonically continuable onto BNE. As E is non dense,
we can choose B so that dB— E==¢. Now since E is p/-removable
Q(2) can be continued onto BN E as a plurisubharmonic and pluri-
superharmonic function, which are denoted by Q,(z) and Q,(2)
respectively. Note that 0BNE is of inner p/-measure zero with
respect to B by Theorem 2.6. Applying Theorem 2.1 to Q,—Q,
we have

0,(2)—0,(2) <0, zZ€B

But since Q,(2)=0,(2)=0(2) for 2z€ B—BNE it follows that Q,(2)
=0,(2), z€ B by maximum principle. That is, Q, gives a unique
pluriharmonic continuation of Q, q.e.d.

A function # which is, plurisubharmonic and plurisuper-
harmonic is not only continuous but also infinitely differentiable
(as it is harmonic in R?*) and satisfies the partial differential
equations

Tu__ o jk=1,n
02,02,

that is, # is pluriharmonic. A function « of class C, is locally the
real part of a holomorphic function if and only if # satisfies above
equations. Hence we have the following theorem equivalent with
Theorem 2.9, which is regarded under Theorem 2.7 as a generali-
zation of the classical theorem on removability, namely

THEOREM 2.9’. Let E be pl-removable, then every holomorphic
Junction bounded in D— E possesses a unique holomor phic continuation
onto E.
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§3. Pl-barriers and pseudo-convexity

3.1. We shall state some criteria for the existence of p/-
barriers. Let D be a domain in C” and ¢ be a boundary point of D.

TureorREM 3.1. If D is locally strictly convex, that is, if there
exists a neighborhood N of ¢ such that NNnD—¢ lies entirely in
one side of (2n—1)-dimensional plane through ¢, then ¢ is pl-regular.
If DT C* (n>>1) is locally flat at ¢, that is, NN D is a half sphere,
then ¢ is not pl-regular.

In fact, there exists a non-singular linear transformation
&,= Va2 +b; (i=1,---,n) for which the supporting plane and ¢
are carried respectively into the hyperplane Re &, =0 and the origin.
We may assume that the image of NnD—¢ lies in the half space
{Re £,< 0}. Then for a suitable positive constant ¢

v(2) =cReé& = cRe(i]al,,zk—l—bl)
k=1

is a pluriharmonic barrier at ¢ The last statement follows from
Theorem 2.3 and Corollary 1.1, q.e.d.

Here we shall give an example stated in sec. 1.3 such that T £
and Tf attain the same boundary value £, but do not coincide each
other. Let B be a ball in C*(n>>1). Take a function # which is
harmonic but not pluriharmonic in B. For instance, u=(Re z,)*
—(Re z,)°. Let f be the restriction of # on 0B, then since B is locally
strictly convex, Tf and Tf (in B) attain the boundary value f on
dB. Suppose T f=Tf, then clearly

Tf=Tf=Hf=Hf=u in B
hence # must be pluriharmonic, which is a contradiction.

THEOREM 3.2. If D is locally strongly pseudo-convex at ¢, that
is, if there is a neighborhood N of ¢ and a strongly plurisubharmonic
Sfunction o in N for which NN D can be expressed as {z; »(2)< 0},
then ¢ is pl-regular.

Since o is twice continuously differentiable, the eigenvalues of



138 Yukio Kusunoki

the hermitian matrix (0°%/02;0Z;) have a positive lower bound,
say m, in a neighborhood N (CCN) of ¢. Hence for a suitable
positive constant ¢ and 0<76< m

0(2) = cla(2)=8 2 |2~ £il7], z€ N’

is a pl-barrier at &=(&,,*--,&,).

CorOLLARY 3.2. Suppose there exists in N a C.—function ®(2)
satisfying Levi-Krzoska condition such that (a) gﬁ (j=1,--,n) do
z

> ’

02;0Z,

&,,-+,&,) ==(0,---,0) satisfying Zgg&:O at ¢ (¢) DnNN={z;
i

®(2)< 0. Then ¢ is pl-regular.

not vanish simultaneously at & (b) 3 £E,>0 for any complex

Indeed, it is known (e.g. [12]) that under these conditions there
exists a strongly plurisubharmonic function » such that o=u®€C,,,
where u is a positive function in some neighborhood of ¢.

3.2. THEOREM 3.3. If every boundary point of a bounded
domain D in C" is pl-regular, then D is a domain of holomorphy.
The converse is not true.

Proor. Let 2°=(z},---,2%) be a point of D and set
u(z) = Z |z;— 207
i=1

Let f be the restriction of # on dD. Under our hypothesis and
Corollary 1. 1. the function v(z)= T, f(2) attains the boundary value
f on dD. Hence

w(2) = u(2)—v(2)

is plurisubharmonic in D and w(2)—0 for z—{€dD, therefore
»<0 in D. Moreover »(z)==0. In fact since inf f>0, v(2)>0
in D and w(2,)= —v(2,)<0. Thus the domains

D, = {z; 0(2)+1/n<0}, n=1,2,-

are relatively compact in D and pseudo-convex. Since
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Dn< D,,,, D=limD,
n-yo0
D is pseudo-convex, that is, a domain of holomorphy by a cele-
brated theorem of Oka. The converse statement is false, for
instance the Example I in sec. 1.4.

TueoreM 3.4. (I) DC" is a domain of holomorphy if and
only if there exists an exhaustion {D,} of D, i.e. D,ZD,.,, D=\J D,
such that every point of 0D, is pl-regular (with respect to D,).
(I1) For any domain D C”" there exists an exhaustion {D,} of D
such that every point of 0D, is pl-regular except a pl-removable set
(inner pl-measure zero).

Proor. (I) A domain of holomorphy can be approximated by
strongly pseudo-convex domains {D,}. Each point of oD, is p/-
regular (Theorem 3.2). Conversely if there exists such an exhaus-
tion, each D, is a domain of holomorphy by Theorem 3.3, hence
D= lim D, is a domain of holomorphy by Behnke-Stein’s theorem.

(II) Let {D,} be an exhaustion of D such that each D, is a
finite union of balls in D, then by Theorem 3.1 or 3.2 every
point of dD, is pl-regular except a set on 9D, consisting of inter-
sections of the balls, which are p/-removable by Theorem 2.8 and
of inner p/-measure zero with respect to D, by Theorem 2.6.

3.3. As a simple application of our Dirichlet problem we shall
give an example of domain D C" (not a domain of holomorphy)
for which the following facts hold :

(@) There exists a plurisubharmonic function in D which is
not plurisubharmonically continuable onto the envelope E(D) of holo-
morphy of D.

(b) A plurisubharmonic function does not necessarily attain its
supremum on D at the Silov boundary S(D) of D.

(a) is the disproof to the modified Bochner-Martin’s conjecture
[4] for which Bremerman [5] gave first an example in a tube
domain. He gave another example [6] in a bounded domain
(Reinhart region).
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ExampLE II. Let B, stands for an open ball with center 0
and radius p. Let BR=B,—B, (0<»r< R). We take a finite
covering {N,;} of BF such that each N, is a ball and the union
N=\JNj is contained in some ring domain Bf (0<»,<r, R<R)).
Now our domain is

(19) D(= Dg) = NN By.

Let « and B denote the inner resp. outer boundary of D and f be
the function defined as

f=1 on a f=0 on B.

There exists a p/-barrier at every boundary point of D except a
pl-removable set F on a which consists of intersections of spheres
oN;. Therefore

U(z) = Tpf(2) € B(D)

approaches the boundary value f(¢) for z—¢€0D—F, hence U is
non-constant. Clearly U cannot be continued plurisubharmonically
onto the envelope E(D)=By of holomorphy of D on account of
maximum principle, which shows (a). Since the Silov boundary
of D is B, (b) has been also shown.

Furthermore we can prove that U does not have any plurisub-
harmonic continuation onto BR (0< p<7)), a proper subset of E(D).
Indeed, otherwise the function U defined as O outside of B is
then plurisubharmonic and bounded above outside of B, , but such
a function must be a constant (sec. 4.2), which is absurd.

We note that one can choose above domain D arbitrarily close
to ring domain BZF, but cannot take BF itself by the following
reason.

THEOREM 3.5. Let D be a bounded domain in C” such that
every point of 0D is pl-regular. Let B be a closed ball contained
in D. Then

(1) for any non-negative continuous function @ on oD there
exists a function o(2)€ P(D— B) which attains @ on 8D and 0 on 6B.

(ii) there does not exist any plurisubharmonic function on D— B
which attains 0 on D and 1 on 0B, provided that n™>1.
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Proor. (i) It suffices to take w(2)=Tp_5f(2)=>0, where f=¢
on 0D and f=0 on dB. (Corollaries 1.1 and 1.2)

(ii) Suppose there exists a function Q(2)€ P(D—B) which is
0 on 0D and 1 on 9B. By (i) there is a function »€ P(D—B)
which is 1 on @D and 0 on dB. Then the function

v(2) = max (2(2), (2))€P(D—B)

attains 1 on d(D—B). v is non-constant, because if v=1, Q or o
would take the maximum 1 in D— B, hence reduce to a constant.
Since

D-B = \:J D,, D,= {v(z)—1+1/n< 0}

and D, are relatively compact pseudo-convex domains, D—B must
be a domain of holomorphy. However this is false if »_>1, for
every holomorphic function in D—B is holomorphically continued
into B.

§4. Some classes of complex manifolds

4.1. First we mention about the generalization of our Diri-
chlet problem onto complex manifolds. Since the plurisubhar-
monicity is invariant under one-to-one holomorphic mapping and
pl-barriers are defined locally, almost all our results can be carried
over complex manifolds (cf. [8]). Furthermore the base domain
need not be relatively compact.

Let X be a non-compact complex manifold and D be an open
set on X. We shall consider the compactification of X, for instance,
by adding the Alexandroff point A. and define our lower and
upper solutions on D. Let f be a function defined on the boundary
oD(C X) of D and at the point A.,. We denote by F*(f, D) be
the set of # € P(D) which satisfy the boundary condition (1) and
the condition: for € >0 there exists a compact set K on X such that

u(p) < F(A)+6 peDAX—K)

Now T,f is defined by (2) by using &* instead of . We can
then analogously prove the fundamental inequality (9) for the



142 Yukio Kusunoki

present D, where oD should be read the boundary of D in X.

4.2. As a generalization of the classification of open Riemann
surfaces (cf. Ahlfors-Sario [1] chap. IV) we shall consider some
classes of complex manifolds which are invariant under one-to-one
holomorphic mappings. For each »n (1) we denote by O?, the
class of non-compact complex manifolds of dimension # on which
there does not exist any non-constant plurisubharmonic function
bounded above. ‘

ExampLE III. The following manifolds belong to classes O},
(n=1,2,);

1) Complex n-dimensional space C”

2) Complex manifold removed a p/-removable set (e.g. an
analytic set of dimension at most #—1) from a compact
one.

3) Open Riemann surfaces of parabolic type (n=1)

4) Product XxXY of X€Oj}, and YeO3,

5) Exterior of a ball (or polydisc) in C* (n>2). (compare
with Y” in Example IV)

We shall prove only the case of polydisc in 5). The following
proof is essentially due to T. Nishino. Let P={|z;|<1,j=1,---,n}
be a polydisc. We show that C*—Pe€0?. Suppose there exists
a non-constant plurisubharmonic function V bounded above in
C"—P and take two points a=(a,,,a,), b=(b,,--+,b,) such that
V(a)==V(b). We may assume |a,|>1. Then the analytic plane

T2 =a, 2;=a;+a;t(j=2,,n), aa,a,30

contains the point @ and =, \ P=¢. By 1) (or 3)) we have V= V(a)
on =,.To show V(a)=V(b) we proceed as follows.

Case (i) 16,|<1. Then some b; (e.g. b,) is greater than 1 in
absolute value. Now there is an analytic plane =, through the
point b such that =,nP=¢ and =,N=,==¢, for instance,

772: 21 = b1+BI'T, 22 = b2’ Zk = bk+Bk'T (k = 3,...,71)

where 68,=a,—b, and B,=a,—b,+«a,t, with t,=(b,—a,)/«,. Then
V=V(b) on =,, it follows that V(a)= V(b), which is absurd.
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Case (ii). |b,|>>1. Then there is a point c¢=(c, ,c,) € n,
such that |c,|>>1, hence there exists an analytic plane =, which
contains the points ¢ and b*=(b,, c,, b,,---) and =, P=¢. Finally
we take an analytic plane =, for which the points 6*, b€ =, and
z,"P=¢. Then we have V(a)=V(c)=V(b*)=V(b), which con-
tradicts our hypothesis. q.e.d.

We note that since C"€O0;,, the following statement gives a
generalization of Liouville’s theorem :

FEvery bounded holomorphic function on X € Op, reduces to a
constant.

4.3. Characterization of Oj,.

THEOREM 4.1. A complex manifold X belong to Oy, if and only
if any one of the following conditions is fulfilled.

a) (Maximum principle) Let G be any domain on X and u be a
plurisubharmonic function bounded above on G and satisfies

imu(p)<m  for any q€3G(C X)

then we have u(p)<m throughout G.
B) Let G be any domain on X and g be the function which is
0 on 0G(C X) and g(A.)=1, then Ts;g vanishes identically,

Proor. Compare [1] p. 204 and the proof of Theorem 2. 1.

CorOLLARY 4.1. Let G be any domain in X€O} and f be
holomorphic in G. If lim |f(p)|<m for any q€0dG, then there
holds that either f is m;;;(mnded in G, or |f|<m throughout G.

For a paracompact manifold X we have further the following

characterization. Let {X,}r., be an exhaustion (X,=X,,,) of X
where X, are relatively compact domains. Let g, be functions on

0X,(X,=X,—X,) which is 1 on dX, and O on 0X,. One sees easily
that the sequence of functions
Uup) = Ix,8. (n=1,2,)

is monoton decreasing, hence converges to a limit function
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U(p) =1lim U,(p)e P(X—-X,), O0<ZSUL1.

THEOREM 4.2. A paracompact X belongs to OF, if and only if
U=0.

Proor. First we show under the condition U=0 that any
plurisubharmonic function # bounded above on X reduces to a
constant, Let m= supu m< M= supu unless # is a constant.

Since the function (u m)|/(M—m) belongs F*(g,, X)) (n=1,2,--)
it is dominated by U, in X,. Hence for #— oo we know that
u<m in X—X,, hence «u<m in X, which implies that # must be
a constant.

To prove the converse we first show that if U==0, we have
(20) M=sup U(p) =1

X-Xo

For fixed » (C>1) consider the compact set X,—X,_,. From
the upper semi-continuity of U’s there exists a number v, (C>#) such
that for given & >0

UpSU(p)SM+é (v=v) peX,—X,.,.

For any u€ F*(g,, X!) we have u/(M+&)<U,/((M+¢&)<1 in X,
—X, ., hence u/(M+¢) belongs F*(g,, X4.), which implies that

U.(p) ,
Ma+c <U.(p) pEX..
Hence U(p)/(M+&)<U,(p), p€X,. Letting n—sc, we know
1< M, consequently M=1.
Now we show that X ¢ O7, if U==0. Take a domain X} (= X,)
which is the image of the domain Br— Dy (Bg, Dg: domains in
Example II) lying in some local coordinate. Then

w,(p) = Tx, z;8n(p) (n>1)

is non-constant, where g, is 1 on 90X, and O on 0X{. Let u€
F*(g,, X.), then v(p)= max (u(p), 0) extended as 0 on X,—X}
belongs F*(gh, X,—X}4), hence u(p)<v(p)<w,(p), p€X,. Con-
sequently U,(p)<w,(p) p€ X,. Since w, is non-constant <1



On the generalized Dirichlet problem for plurisubharmonic 145
U(p) S Un(p) S m =_Sug w, < 1’ pe XI_XO
X170

Therefore if X € O}, then by Theorem 4.1 we would have
Up)<m<1, peX-X,
which contradicts with (20).

COROLLARY 4.2. If there exists a continuous plurisuperhar-
monic function o(p) defined outside of a compact set on X such that
o(p)—>+ oo only if p— A.., then Xe€O3,.

Proor. With a suitable constant ¢_>0 we may take the sets
{p; wo(p)—c<n} as above X,. Since for any ue F*(g,, X.)
u(p)é(a)(ﬁ)—C)/n, j)EX,',=X,,—XO.

0 UMK U (D)< (o(p)—0)/n, peX,

Hence U(p)=0 for n— oo, which implies X € O0j,.
We note that the converse of this statement is true for n=1.

4. 4. Finally we refer to classes of complex manifolds defined
in terms of holomorphic functions. We denote by O% (resp. O%p)
the class of complex manifolds of dimension # on which there
does not exist any non-constant holomorphic (resp. bounded holo-
morphic) functions. Clearly

O:z C Ohs 04&E0%p (n=1,2,-).

However there is generally no inclusion relation (Example V)
between O% and Op, except the case n=1 where O =¢ (Behnke-
Stein [2]). We shall first show that the inclusion O}, 0%y is
strict.

ExampLE IV. Under the same notation as in Example II,
Y*"=C"—(Brx—Dr)€04p and (0, (n>2)

Indeed, let g be a non-constant continuous function on 9Y™”
(CC™ and g(A.)< oo, then by the generalization of Theorem 1
mentioned in sec. 4.1, the function Tyng€ P(Y™) attains g on YY"
except a p/-removable set. Hence it is non-constant, moreover



146 Yukio Kusunoki

bounded above (<sup g) which means Y"¢0O;,. Note that we

ay™”
can choose Y" arbitrarily close to the exterior of a ball which

belongs to O}, (5), Example III), but these two are not equivalent
under one-to-one holomorphic mappings. As for n=1

Y'=C-S

belongs to O4p but not to O),, where S is the generalized Cantor
set which has linear measure zero, but positive capacity ([14] p.
145-149; [1] p. 252-253). We note that

Zn — Cn—1 X (Cl _ Yl)

gives another example such that Z"€O7%; and ¢0Oi,. Z" is a
domain of holomorphy while Y” (#n>2) is not. C”"—Z” is non-
compact while C*—Y” is compact in C”".

ExampLE V. From a complex manifold W,€ 0% (#=>2) remove
a set which is the image of a ball Br in some local coordinate
and insert the domain Dy (of (19)), then we get a complex mani-
fold W such that

Weo, and W¢O:,

On the other hand, the space C” belongs to O but ¢OY.
As for class Oy few results are known even in case of n=1.

Here we just note that Corollary 4.1 is not valid generally on
X€0ys.
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