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Introduction

Ahlfors [2] and Ahlfors-Sario [3] have extended the theory
of differentials on open Riemann surfaces, and Kusunoki [6] have
developed the theory o f  Abelian differentials on open Riemann
surfaces. Accola [1] has established some results on  bilinear
relations with respect to those differentials. We shall here use
the same notations for the classes of differentials as in Ahlfors-
Sario [3], and discuss relations between those classes of differ-
entials, including the bilinear relations.

In §1 we establish a relation between the class of canonical
differentials and the class of distinguished differentials (Theorem 1),
which asserts that a meromorphic differential q, is  a  canonical
semiexact differential if and only if the real part of q) is dis-
tinguished. An essential tool used there is a method of principal
operator investigated by Sario [10]. In  § 2  we generalize the
notion of the finite bilinear relation, which was defined on Riemann
surfaces of class 0 H D  by Accola [1], to arbitrary open Riemann
surfaces, and extend the results obtained by Accola [1]. Analogous
results have been obtained by Oikawa, but he does not yet publish
them. Section 3 deals with three classes of Riemann surfaces ;
the class Oi c D , the class of surfaces on which m e  1

-
N

in
 hst C 1

l i t  is valid
and the class of surfaces on which r h ,„= r h e n  r„ holds. We give
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there equivalent conditions for each of these c lasses . Finally in § 4,
a  necessary and sufficient condition for the validity of the gener-
alized bilinear relation is given (Theorem 8), which shows that the
differentials of class r h o r N  l',„*, play an essential role in the bilinear
relation. Moreover a  few related results a r e  proved under the
condition 1' 1'h st .

§ 1 .  Canonical differentials and distinguished differentials

1. On an open Riemann surface R  of genus g ( 0 ‹ pc) we
take a  canonical homology basis {A k , Bh}k=i, ,g  and
(0 < p  0 0 ) such that 1) any cycle in R  is homologous to a  finite
linear combination E(p k Ak +qk Bk )+E  r„C„, where Pk, q k  and r ,  are
integers, 2) the intersection numbers a re  characterized by A h x Bk
—8hk, x A k —  B h X  B k —  0 for h, k =1, 2, ••• , g , and 3) any dividing
cycle in R  is homologous to a  finite linear combination E r„C„.

Then, there exist canonical semiexact dif ferentials q ) A k , p„ k  on
R  which are uniquely determined by the conditions

Re (pm = — Re • Bk — hh and Re p A k =  Re S c p B k  O ,
B Ah Ah By

and canonical dif ferentials cp,,, whose real parts are generalized
harmonic measures associated with C., (Kusunoki [6]).

On the other hand, to any cycle c  in  R  there corresponds a
unique real harm onic dif ferential a (C )  of c lass  „  such that

0-(c)*)

for all closed differential co, and to any non-dividing cycle c ' in R
there corresponds a unique real harm onic dif ferential el-(c') of class

such thatho

(ce, n ( c f)* ) =

for all co E 1 ' h s e •

It  is known that

( 1 )

r [a(Ak), ( B k ) ,  cr(C

h o=  Let(Ak), et(Bk)i,
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where the brackets denote the closed linear subspace spanned by
the indicated differentials (Ahlfors-Sario [3]).

A t first we shall show the following relations between these
differentials.

Proposition 1. (Kusunoki [7]) It holds that

99,11, et(Ak)+id-(Ak) *

P B I ,  =  ()V k) +
(pc ,  =  (7(C,) ia (CO*  .

P ro o f. Let {R „} be an exhaustion of R  with regular regions,
and we denote by , ci-m (A k )  etc. the corresponding differentials
on R .  T h en  w e  have

( 2 ) Ak (n 00) .
Bk Bk

On the interiors R „  of compact bordered surfaces we can easily
see that the relations

99Z, = el-(n)(A k ) + ia-m (Ak) *

( 3 ) cp(,;',; =  (5- (n ) (Bk)+ io -m (Bfr) *

0- ( n ) ( C v) CY(n)(C,)*

h o ld . By (2) and (3) we see that lim d ' ( A k )  exists for each k  and
119 . .

lim ((c), (Re ço A  k )* — cr( n (A k )* ) =  0

for any co E r h s e • Therefore we have

( 4 ) (co, (Re qi A  k )* ) =  lim  (co, .6.-(n) (A k r ) 1 0 ) •
A k

Since (R e  A  —  6 --(A k ) *  belongs to r„,, we get

l(Reci" ). Ak .* - 6 - (24k)* I12 — 0

by (4) and the reproducing property of 6-(A k ) *  for r
h s e  •

If {R „} is a  canonical exhaustion, we have, by the definitions

.97-)
(

;), (n 00)

0-(n ) (C ,) a (C ) (n 00) .

Therefore we get
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Pc , =  cr(C,) + ia(C,)* .

2. Now we treat the bilinear relation for analytic differentials
in the following form.

Proposition 2. L et p  be a  canonical sem iexact dif ferential of
the f irst k ind, then the bilinear relation

( p  * * )  2 Ê Re p Re p (a  finite sum)
k=1 Ak Bk Ak Bk

holds f o r any Jr E r a s e .
P ro o f . Any canonical differential has at most a finite number

of non-vanishing real periods. If

Re p  x k  a n d Re 99 = y k ,L Bk

99 can be expressed as

( 5 ) (7' = E ( — xilpbk +Y kPA k)
k=1

by the uniquenes theorem for canonical differentials (Kusunoki [6]).
For any qr E r a s e  we have, by Proposition 1 and (5),

(90, **) = E { — xk(&(Bk)+ id-(Bk)*, **)+yk(6-(A,,)+id.(Ak)*, **)}
k=-1

= 2  E  Re p IT P — j  R e p ,
k = 1  Ak Bk Ak Bk

because

       

(Bk )  +1. &( B k ) * , * * )  =  — ( u t, 6-(Bk)* ) + i ( * * , &MX)

= AP' al-r*
Bk Bk

= —2
Bk

By making use of this bilinear relation we get easily

Corollary 1. A ny canonical sem iexact dif ferential of  the f irst
k ind w ithout A  periods vanishes identically.

3. We denote by * F ., and ilp-pr canonical semiexact differentials
with singularities 1 /z r and ilz r (r 2 ) at P  whose real parts are
exact ; and by 451 ,(2  and c-/;p( ) canonical semiexact differentials with
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singularities —1/z o r  — i / z  at P  an d  +1/z o r +i/ z  at Q  whose
real parts have single-valued integrals. Let {R „} be an exhaustion
of R  with regular regions and let us denote by *Pr',  .3514  etc. the
corresponding differentials on R .  W e  have already known that

( 6 ) * P r  114 ; Ikpr (n °°) •

We shall now establish the analogous characterization for 45,,Q  and
CP— p Q  using the following result obtained by Kusunoki Eq.

Let du be a  re al p art  o f  a  canonical dif ferential and d U  a
harm onic dif ferential square integrable outside of a compact set K

a n d  dU *=0 f o r  every  div iding cycle 7 CR— K, then fo r  any ex-

haustion {R„}  o f R  w e have

( 7  ) lim u dU * = 0 .
n ÷ o o  eR t ,

Lemma 1. For any exhaustion {R„} o f R  w ith regular regions,
ive have

(1)% Opo, 4;PQ (n Do) •

P ro o f . We consider the class {S } of analytic functions with
logarithmic singularities — log z , at P  and +log z , at Q, where z,
and z , are local parameters at P  and Q  respectively, and satisfy
the following conditions :

1) real part u is single-valued and has finite Dirichlet integral
over a  boundary neighborhood of R,

2) imaginary part y satisfies dv= 0 for every dividing curve
7, and

3) udv =0, where 13 denotes the ideal boundary of R.

Let

 

— log z i +4 1) +E aW z .1 a t  P
j =i-

+ log z, + 4 2 ' + E  4 2
.5

) 4  a t  Q
j = 1

Op° =- uo + iv,  =

 

T h e n  O pQ  belongs to {S }  because o f (7). Suppose that f  is  a
function of class {S } and
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f =  u+iv =
—log z, + d" +E  4 1 ) ,z1 a t  P{

i

+log z,+a" ) +E  di
2 ) z i  a t  Q .

i

Taking (7) into consideration, we get by direct calculation

0 < DR (u—u,) = lim 210)
Pi ,P2 ->0

( 8 )
— Fun {DR _( , 1 ± , 2 ) (u)-2D R _( , 1 + , 2 ) (u, u0) + D R  _ (p i +  2 ) ( 2 0 }

P PP 2
-
'
.°

<  urn
{

(u—uo)dv— (u—uo)dvo}
C4'1"1-A2) acb,14-A2)

= 27r Re {(d 1 ) — a( 2 ) )— (4' ) — a 2 ))1

where A, and A y  a re  disks about P  and Q with radii p, and P 2

respectively. Hence we conclude that the minimum of Re (a")— d2 ))
is attained for the function j p Q  in the class {S}.

Now let

(-P̀k = + iv„ = f

then we have

—log zi +a;,'' +E acn ,zi a t  P

+log z2 +a („z ) + E  c a 4  a t  Q,

Re ((IT -aT ) <  Re (4 '4)1 —  a1) < • < Re (4 1 ) — 42 ) )
because

a R t , 
u„,dv„, — DR ,n _R n (u,,,) < 0

for m > n . Hence lim Re(a„(1 )—a„( 2 ) )  exists, and since

O D K ( U m  Un) D R n ( l i m  Un)

<2n  Re •[(a(1) — 4 ) )— (aT — 49}

for any compact set K  by (8), there exists a  subsequence {u„,}
which converges uniformly to a function u' harmonic on R—(P+Q)
and D R _( 6 ,,+ , 2 ) (u') < 0 0 .  We can show that u'-- no immediately.

4. Let us recall that a  differential C o on R, harmonic except
for harmonic poles, is called distinguished if

1) co* is semiexact outside of some compact subset of R, and
2) there exist differentials 0k m  E

 'k m  and coe , E  P e o n  r' such that
co 07„,, +cog° in  a  boundary neighborhood of R.
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T here ex ists a unique distinguished dif f erential w ith a finite
number o f given harmonic poles, the sum of their residues being zero,
and a f inite num ber o f given periods (Ahlfors-Sario [3]).

Let u  be a  harmonic function on  a  boundary neighborhood
with zero flux over the ideal boundary of R and let 12 be a canonical
subregion of R .  The principal operator L I Q  on 12 associates to uo ,
which is a restriction of u  to 12,  a  function fii a  harmonic on a
boundary neighborhood o f S2 so that ]5 1 0 —  is  constant on each
boundary component of 12 and has zero flux over each dividing cycle
of a  The principal operator Ll  on R associates to u  a function
which is a  lim it of a s  12 tends to R  (Ahlfors-Sario [3]). We
say that fi, —u has L 1-behavior at the ideal boundary of R . T o each
harmonic semiexact differential co with a finite number of singularities
and periods, there corresponds a distinguished differential X ,(co) with
the singularities and periods of co and which, in a boundary neighbor-
hood o f R , is  the differential of a function whose real and imaginary
parts have 1- 1-behav ior. T herefore w e have

(  
9

 )
 

X(w )

i f  and only  i f  w is distinguished (Rodin [8]).

Lemma 2. Let (p be a canonical semiexact dif ferential, then

?(Re (p) -= Re q .

Pro o f . Suppose that

Re q) = xk
A k

and q) has singularities

R e  = Yk
Bk

a t  P i  ( =  1 ,  2 ,  • • •  ,  s).z

Then we have

= {Re a i i 01)Q pi +Im a .0 0
 j

.+E  (Re a p qrpi , + Im a J r 1Trp5 7 )}P r = 2i= 1

+E1 ( — x k P B k + y k (p A k ),-
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where Q  is  a point different from all the P5 . For a canonical ex-
haustion {R, }, we consider differentials

„.;
p ( n)  = {Re a544:7)„5 + 1m a51 + E  (Re a5,'], 4,, + 1m ap lY4r )}

j=1 r=2

( -xP(4+Ykqi`,TD,==
on R„, then

(10) p(n) qi (n 00) .

We form X(Re p) which is, by definition,

(11) X(Re p) = limX. R n (Re p)

where XR n (Re p ) denote the differentials corresponding to Re p
b y  the sam e k ind  o f  operators as X  on  R „ .  The differentials
Re p ( n) — X.,,n (Re p) have no singularities and no periods, and they
belong to "' h e r\ P,,:e on R .  B ecause  R  canonical regions, the
functions

{Re q' — XR„(Re q3 )}

are constant on each boundary component o f Rn ,  and w e have
solutions 111: of Dirichlet problems on Rn with boundary values
f „ .  Then b e l o n g  t o  r h m  on R , and since

Re p ( n) —X,R n (Re p) = d1-11
.47,

i t  must be identically zero. Therefore we get the conclusion by
(10) and (11).

5. Now we consider the completions of classes of canonical
semiexact differentials and canonical differentials of the first kind,
th a t  is  the spaces spanned by .fro, A k ,  B k } , . = = 1 , . , g and

•,g ;,,--1, • ,P  over the real numbers respectively.
denote them as

f<PAk, PBk,
We shall

(12) r kSe E P A k , ' k [ P A k ,  ' P k ,  P C ]  •
rea l rea l

Then it can be readily seen that

(13) r a s  r■ r c l ( r  + , as k+ r k*) •
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These expressions are the counterparts for analytic differentials of
the expression

= C/(rha + Ito)
for harmonic differentials.

Theorem  1. 1 )  A  meromorphic dif f erential p  i s  a  canonical
semiexact dif ferential if  and only  i f  R e p  is  a  distinguished dif fer-
e n tial, 2) p  belongs to 11 ,  i f  an d  only i f  Rep belongs to r honrht,
a n d  3) p  belongs to r, i f  an d  only  i f  R ep belongs to I .

If y  is  a  canonical differential, then Re p  is distinguished by
Lemma 2 and (9). If CO i s  a  real distinguished differential, there
i s  a  canonical semiexact differential rp w hose rea l part has the
same singularities and periods as (0, which is seen by the uniqueness
theorem for canonical differentials. Then we have Re p = X(Re p) by
Lemma 2, and therefore Re p  is a distinguished differential. Hence
it must be equal to CO b y  the uniqueness theorem for distinguished
differentials. 2) and 3) are seen by (1), Proposition 1 and (13).

Corollary 2. 1 )  R  is  a R iem ann  surf ace  o f  class ODD if and
only  i f  r,=r,*---r a , 2) R  i s  a  R iem ann surf ace  o f  class OKD i f
and  only i f  " k t = r k s , =  r a s e  an d  3) r h,n l. c 1j,`, holds if  and only
i f  1' =  k t= 1 ' as r'  r

a s e  •

P ro o f . R  belongs to OHD if  an d  only if  l' h = l '„ „  and we get
1) by 3) of Theorem 1. R  belongs to OKD if and only if h s e — r  h e

because r„s e = _Cho h s e n  7 here e means orthogonal direct sum,
and rhse= F

 h e  i f  and only if  r a s e =  k s e = r kst .  From 2) of Theorem
1 it fo llow s that F aS n rase =  ' k s e  =  l e s t  if  an d  on ly  i f  r h o n  r t=
F ho n 1:/2  .  We have -rho nr hst =  ho  F it  if and only if 'h e  hst C h

*
O•

Indeed, taking orthogonal complements of the both sides of the
latter relation, w e get rhterh. D F , 0 . H e n c e  r ho = rho n (r  lime"' ) =

hmer hor\-1-14 ,  a n d  it  c a n  b e  re a d ily  s e e n  th a t  P -1- (Ah), &(Bk)] =
F O I-0F .  The converse is alm ost trivial.

B y 2) and 3) of this Corollary we see

C orollary 3. (Oikawa) In  order that R  be a R iem ann surface
o f  c lass 0 „ ,  it is  n e c e s s ary  a n d  su f f ic ien t that R E O „  and
['he n r C c
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§ 2. Generalization of finite bilinear relation

6. Accola [ 1 ]  defined th e  finite bilinear relation on open
Riemann surfaces of class OHD• We shall here generalize the notion
to arbitrary open Riemann surfaces and define it as follows. Let
R be an arbitrary open Riemann surface and let co and a  be elements
of 1'  R  which have only a  finite number of non-vanishing A
periods. Then we say that the f inite bilinear relation holds for co
and a ,  if the following relation holds :

(14) (0 ), (TA') E
k = 1  Ak 

C°
A l e a)1

rr
 B k

(a finite sum).

We denote b y r h A  a n d  r n ,„ the spaces spanned by {c7-(A k )I k =,,
and {(3-(Bk)}k,,

 g  respectively, where g  is the genus of R , and by
PhA and P„B  the spaces spanned by the a-( A h) and &(Bk ) respectively,
where the 8-(Ak ) *  and (5-(B k ) *  a re  th e  period reproducers in  rho

(Rodin [8]).

Theorem 2. (Oikawa) The following three conditions are equiva-
lent

1) The f inite bilinear relation holds for any co G r ho and a E rkse

w ith a f inite num ber o f non-vanishing A  periods.
2) A ny  6,0  E r k s e  without A  periods vanishes identically.
3 )  r

hon
r  hst hA e

P ro o f . 1) implies 2) : If p  is an  elment of r k s e  
with a  finite

number of non-vanishing A  periods, we have

IIP112— i(P , P *
)

--- —2 (Re p, Im  p*)-2 i(R e p , Re p *)

—2i(Re p, p*)

— 2i E  .ç R e <T, k ip
 B k )k Ak B k

because Re q E rho n r hst and q  G_ r k s e ( r h s e •  Therefore IIP112 - 0  if
p  has no A  periods. If p  of class r e e has no A  periods, we can
show analogously that p=.0.

2) implies 3) : We always have F
kor\ r

hst
)  r h A  _ hIA • Suppose

that co belongs to [ ' h o
 r  h s

4,̀, and is  rea l. If w _L l'hA  ED PIA ,  co has
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no A  periods and w ' 1 .  T h e r e fo r e  (0+ i(0* has no A  periods,
and it must be identically zero because (0+ i(0* E  k „ .  For a complex
(0 of class rho r\  h we can show that the real and imaginary parts
of (0 are zero respectively, if (0 is orthogonal to rh A eP h I.

3 ) implies 1) : Suppose that w  E F„ and o- E rhs ,, and both have
only a  finite number o f non-vanishing A  periods. We decompose
® so that

(01 + w2 , w h e r e  (01 E rho r h s t ,  a n d  (02 E ' h m  •

Then we have

' = ak(o))
A k A k

and
(15) (0), G"

*
)  =  (

0
1 c r

*
) •

We see that (01 + E  a k ((0)0--(B k )  belongs to 1
1
 kA  by 3 ), because it be-

longs to P
h o  n

r
 l i s t  

and has no A periods. Moreover, o +  a k (0-)d(13 k )

E  ks e  and this has no A  periods, where a k (Œ) denote the periods
of 0- along A  . Therefore we have

—(a-+E a k(0- *B  k ), + E  &O&M k r )

= (wi + E  a k(CO)a- ( B  k ) ,  G
.* + E  k(0- )0- (B kr)

= 0 .

Expanding this result and using the relation (15), we get

(6), ,*) E (of Cr a).
k Ak B k A k B k

Corollary 1 shows that the conditions of Theorem 2 are satisfied
if the genus o f R  is finite.

Using the decomposition

hse rhm e hse r  IC
=  h m  e r  he n  rht rs f-N r  h s , f \  ' h s

it can be proved in the analogous way as in the previous Theorem :

Theorem 3. (O ik a w a ) The following three conditions are equiva-
lent :
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1) T he f inite bilinear relation holds f o r an y  co E P s  r h s e  and
0-E r „ ,  w ith a f inite num ber o f  non-vanishing A  periods.

2) F a S I ' a s e  are  spanned by  the PAh•
3 ) I S n r  h .!=  h A

A  R iem ann surface of  f inite genus satisf ies the three conditions
o f  th is T heorem  i f  an d  only  i f  " h e  r - \ rh s*, c rh* h o ld s . Indeed if
1:,,, r \  r h s*,, Ph*, holds, then l n  = and it is spanned by the'as r

a s e  
 r

 kse

\ s t( R A I , .  Conversely, for any r  
r

 he r\  
r

 h w e have

I10)112 =  — (0), 0)* * ) =

b y  1 )  of the Theorem, which implies Phst c

7. N ow we construct normal differentials after Accola [1 ] ,
using the (5--( B h )  instead of the 0-(B k ). Let

&(Bk )  —  O k ± T k  where k  E l' h 'A a n d  T k  E ( 11hI)1  •
Set

(16) çble — 19 k — iet•

then (Pk E r k s
l , and

(i)k = (ci)k d -
( A

1,)
*

) ( — (B k ), et(Ah)*)8 h k  •

We can prove the following Lemma completely in the same way
as Lemma 6  in Accola [ 1 ] .

Lem m a 3. I f  l ' h , n = r h , r \ r „ ,  th e n  the Oh  are  complete in  rh,4'
Using this Lemma we establish the following Theorem quite

analogously as Accola [ 1 ]  did for Riemann surfaces of class OHD •

Theorem  4. I f  t h e  p h  s p a n  r as n  r a s e )  th e n  th e  P A k  sp an
aS  r■ -rase • Conversely, i f  l ' h „, = r„, r  \ I an d  th e  TPA , span

then the p h  spanr as n r  a s e , r  as r■I' a s , •
For completeness we sketch the outline of the p ro o f. Suppose

that 6' E C ritn  r h s e  and cr 9 k  for any k .  Then we have 0-* E r h A ,

th a t is , OE* "  uhl .  Since Th i_r„,„ w e have 0- _i_Ok +T k  fo r  a l l  k,
that is , 0-* r„ t. Hence
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and 0- must be identically zero by the assumption. Which asserts
the Lemma.

To prove the Theorem we suppose that p  o f class 1 aS ase
has no A  periods. Then

(P, 'Pk) =  — (q), 0 k ) +i( P * ,  k * )
= — 2(R e p, 0 k ) -2 i( Im  p ,
= 0 .

By the assumption we conclude that p-=0, which means that the
(
7' A  span a S r \  a s e  •  If  p  o f class 17 as n r  a s , is perpendicular tok 

all the q3.k , we have

2 (qj = k )+(P *  et)
=  ( P
= 0 .

Hence we see that (p nas no A  periods by the above Lemma, and
the conclusion yields.

8 .  A s  sufficient conditions in order that the conditions of
Theorems 2 and 3 be satisfied, the following results are obtained.

T h eo rem  5 (Oikawa) 1) I f  [ ' h e n  r h st  C rht  holds and the vector
sum  l ', A + Fh ,  is closed, then the three conditions of Theorem  3 are
satisf ied, and therefore aS ase is  sp ann ed  by  the  p k . 2 ) I f

h m  
r

 he n  r h o  holds and the v ector sum  h A + hB  is closed, the three
conditions of Theorem 2 are satisfied.

P ro o f . To prove 1 ), we show that 1) o f Theorem 3 holds.
Suppose that co E r s n  r h e e  and 0- E r „ e have only a finite number of
non-vanishing A  periods. By the assumption we have

' l i s e  r■ rs == rhoer4 f l  r l i s e r■ rs
= r ig)

= rh.EDrhon F i t
and

hse rhmerhse lise
rh.erhe r■ 'i 'sl i s e  r h s t

=  rh.EDrhe e  rho n -F4 •
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Let
= ± CO2 where w i E rho r , r,',140 , 2 E r h n, ;

0- = 0-, +0-2 w h e r e  a-, E r ho r \ c r ,  E  r h m e r h e  r\ he

and
co' (01H- a k (o)a- (B k ) w here cek(co) =

Ak

=  + E  &O&(B k) where a k (CT) cr
Ak

then a  and Of  have no A  periods and

a  , E rho n  rZ •
On the other hand, because r h A+rh B  is closed and rher\ rhonr7,0
has no non-zero elements, it is easily seen that co', E r h A .  There-
fore it holds that

(.• ,* ) =  (w i• Œt)

=
k Lk Bk Ak B k

To prove 2 ), w e suppose that w E ho a n d  0- E r
h s e  

have only
a  finite number of non-vanishing A periods. Let

co (01 + co, w h e r e  w, -  rho 1.-\ rhs!, , (62 E 'h m

and
a  =  + E  ak(co»(Bk)

--= 0- + E a h (0-)e)-(Bh ) .

Then w' belongs to F hA by the assumption that rh A ± r,B  is closed,
and is semiexact and has no A periods, that is, 0-' is orthogonal
to re,. Therefore we have

o-'*) = 0

and expanding this we get the finite bilinear relation for w and 0-.

§ 3. Some classes of Riemann surfaces

9 .  We have already treated the classes of Riemann surfaces
on which r h e r , rh st C Fht  or Ph.= r  her\ rho holds. The surfaces on
which r„„, = he l ' h o holds were discussed by Accola [ 1 ]  and
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' h e f\ 1 h C  F  holds were taken up by O ikawa in his unpublished
study. A  Riemann surface of class O K D  is  a surface on which

'h e  n r h st  fo l h o ld s . I f  "'he r\ Phst fob  then r h e ,,F„*, C  F , , and if

rhe hst C then r h n , = Fher\ r h o • But the converses are not true.
These three classes of Riemann surfaces seem  to be important
when we discuss on differentials o f some classes, because we get
rid o f some complexities. We give here the summaries o f equiva-
lent conditions.

P r o p o s it io n  3 .  A Riemann surf ace  R  belongs to O K D
 i f  and

only  if one of the follow ing conditions is f u lf illed:
1) h .= h . •

2) " hoeh o  •

3 )  A ny  elem ent of  F a s e  w ith  exact real part is identically  zero.
By l ' h e = rkst we get 1), and because 1' hse hoe r  hse

rh t, we get the condition 2). It is obvious that l'henrhst= {O} is
equivalent to 3).

P r o p o s it io n  4 .  T he follow ing conditions are equivalent :
1) l 'h . =  ' he r\ s
2) r  -PC s = {O}.
3) F„e n r h st c r ht .

4) F'h„=-Fhoerhe he •

5) Fhar\ n FA •
6) A n y  e le m e n t o f  aS r  r a s , ,  w ith exact real part is identically

zero.
W e have already shown that F,, 8 c r h*e  is equivalent to

the condition 5). W e have orthogonal decompositions

' heh s t  —  he n  'h ' 'he  F  hst 'S
r,,8 n rhmerh, n rs n r  h s t

By the former of which we get the condition 2), and the latter of
which shows the equivalency of the conditions 1 ) and 2). Taking
the orthogonal complements o f the equation 1) we get 4), and 6)
is immediately seen by 2).

P r o p o s it io n  5. T he follow ing conditions are equivalent :
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1) r h m — r h e r , r 1,0 .
2) l' h e (\ r h.t  l ' 1,0 = {0} .
3) rhe,-rhs*, C C/ (1'4 + Frt).
4) rhse=C1(rhe+ rho).
5 )  A ny  elem ent of  class F exact real part is identically

zero.
By taking orthogonal complements of = 1'4 r , r /z , we get 4),

and by taking orthogonal complements of the relation 3 )  w e get
11:+r „,„ D r her ',w h ic h  m e a n s  1).

1 0 .  Accola [ 1 ]  showed that =  " 1 e  r' r „ ,  is equivalent to
that i f  w E r „ ,  0- E r „ „  and co has a finite number o f non-vanishing
A  and B  periods, then

(17) (co, 0-*) E w — 6-- Co( a  finite sum)k=1 Ak Bk Ate Bk

o h ld s . By which we know that the validity of the relation (17) is
independent o f homology basis, though the valid ity of the gener-
alized bilinear relation depends on, and even the validity of the
finite bilinear relation seems to depend on homology basis.

W e get analogous equivalent conditions for the classes 0 „
and of surfaces on which I',,,c  1 holds.

T h e o re m  6. A  Riemann surface R is of class 0 „  if and only
if the relation (17) holds for co E  l',,„  with a f inite num ber o f non-
zero periods and for any  cr E rh„

Pro o f . Suppose th a t R E  0 , 9 • I f  w E 1 h s e
 h a s  o n ly  a finite

number of non-zero periods, set

. + E  {cee(Bk) —  k (3"(Ak)}

where cek = 0 )  and re k  = N .  Then (0' E " h e ,  and because 0- G  ho
Bk

by Proposition 3 , w e have (a, o-*) = 0. Expanding this yields the
result.

Conversely, if the condition holds, any elem ent 0- o f class
he nr h s t  must be identically zero, because Ho-1r= —(c, 0-**)=0.

T h e o re m  7. A  necessary and sufficient condition for F„e r \

C ,r,„*, is  th at the relation (17) holds fo r  w Er s  n r hse w ith  a finite
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number of non-zero periods and f or any  (3- E r h e e .
P ro o f . Suppose that Ph e r \ F„*e c r„4:, and set

co' =  0 +  faket ((Bk) — Sk(Ak)}

where cek = co and O k =  .f CO. Then co'  E rs n r h e—rh ,„ by Proposi-AkB k
tion 4, and (a , 0-*)=0 . Conversely, for an y  0- E r h e n r h s t n r s  w e
get H0-I12 = 0  by the condition.

§ 4. Generalized bilinear relation

11. Let R  be an open Riemann surface, {R „} an exhaustion of
R , and let A „B „ •••  ,A , B p ,„„••• be a  corresponding canonical
homology basis such that A„ B„ ••• , A , B pc „, is  a  basis modulo
aR„ on R .  F o r  a  fixed cr E rh se , the generalized bilinear relation
is said to hold if for a ll  co E l'„, we have

PCs)
(18) (w, a.*) = lim E w f o —

k-=1 A k  J B k A k  JB k

(Accola [1]).
We define linear operators "T„ on 

F h s e
 a s  fo llow s. For any

E P h ,
PC„)

(19) = E  {130 -(Ak) — aka*(Bk)}

where a k d  c r  and O k =  a .  Accola [1 ] defined linear operators
Ak Bk

Tn u s in g  the c (A k )  and a (B k )  in  p lace of our a-(A )  a n d  (5-(B * ),
and gave a necessary and sufficient condition that the relation (18)
holds for a fixed 0- E l'„e .

Theorem 8. T he generalized bilinear relation (18) holds for
all w E ['h, an d  0- E r„, if  and only if , f o r any  TE r„ r \  Ph st , we have

(n co).

In  other words, the norms are  bounded as  n  tends to co.

P ro o f . Sufficiency. We have orthogonal decompositions

rho rhmerho rhst
r

 h s e  =  r  h e e
r

hse r \  it •
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Let
+ @ ,  w h e r e  c o , E 1

'ho r\-rhst co2 E r hm ;

=  (7 1 +  0 - 2 w h e r e  a., G '/ ,se r\  rrt , 0 - 2 E I: he •

Then we have

(., 0 -*) (0)i, G-n linn ( t o „  a -t)
PC,)

lim  E (40--(A k ) — a het(B h), 0-nk=1
PC,,)

lirn E ice k (o.1 , 0- ( B k )* )—  O k (c r l, 0- -(Ah)*)},- ,

iim  E 0, 1. 0 - - .
k=i Ak Bk Bk

The necessity can be readily seen because any 7. E l'hst

can be approximated arbitrarily closely by finite combinations of
the a- (A k )  and (5.-(B k ) ,  and for any (3-(A k ) (6--(B k ) )  it holds that

116- - ( Ak) — To- - (Ak)112o
for sufficiently large n  by (18).

If R  is  of class OH D ,  then we have

r he n  n st  r n a n d  T„ = T .

Hence our Theorem reduces to Theorem 10 and Corollary 11 in
Accola [1 ].

C o ro lla ry  4. I f  l'h ,n  =  " h e  n  rho , it is  necessary  an d  sufficient
f o r th e  v alidity  of  the generaliz ed bilinear relation th a t  111"0-11 are
bounded as  n  tends to  co  f o r any T E l' h o r \

 
L'hst •

1 2 . Concerning a  canonical homology basis with which the
generalized bilinear relation is valid for any co E IA , and a G

h s e )  w e
obtain

T h eo rem  9. Suppose th a t  l' h e n r h st Cl'n*, holds on a R iem ann
surface R .  L e t {R n }  be  an  ex haustion o f  R  an d  A„ B„••• ,A,„„„
B i ,„„••• a  corresponding canonical hom ology  basis w ith respect to
w hich th e  generaliz ed bilinear relation holds. T h e n  f o r an y  ço E
ras ase, we have



D if f erentials on open Riemann surfaces 95

1 P )

- E (93, PA*k )(t)k
z  k = i

1  Pc")
— E  (P ,  4>k)PAt .7)2 k = 1

(n co).

P ro o f .  B y  th e  assumption, we have 
aS n  r a s e  

— Il
kse

=  r
 lest C

" ' b o n  rz, and
PC,,)— X {130 -(Ak)—cee5-(Bk)}

where cek =  p  a n d  k =  p . L e t
AhJ R k

0  a(P)+T  a(P)

where 0 ( (p) E r /A and 'i-((p) G (1',A)-L, then
PC,,)

n ( P )  =  —E CY/Az
k= 1

here 6k  are the differentials defined in (16), and

n (q ))+  ie  n (P )*
PCn)

— E  ,(19 k + i0 t )
pc„)

=  E  czkOk •
k= 1 k= 1

B y  the validity o f th e  generalized bilinear relation, I IT T H  are
bounded as n—> co, and we have

PC',)

lim  E  CYleckkE 
r

 aS  f \  r a s e  •
e = 1

Again by the generalized bilinear relation, an element o f r a s  n r a s e

without any A  periods is identically zero, and we have

lim E  k  =
PCn) 1 PCn)

lim E (pAt),;bk =
k---1 2 k = 1

For any (p,  E r a s  r„se , we get
P(n) 1

(pA*k )(Ok, , k) = (P, .
k = i  z

This shows that —
1

E ipop.at  converges weakly to * .  If the
2  h

generalized bilinear relation is valid, the p A *k  span ras n  r a s e ,  which
is seen by Theorem 2 and Corollary 2, and this weak convergence
is, in fact, strong convergence (Karlin [4]).
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1 3 . Finally the following Theorem gives another equivalent
condition for the validity of the generalized bilinear relation on the
surfaces on which r

 he r\ C f ,  holds.

T h e o re m  1 0 . Under the condition h e  r rh st c F , ,  t h e  gener-
alized bilinear relation is v alid f o r any  co E r ho an d  cr E P„,e , if  and
only  if

1 PG')(20) — E {(P, P B V P A k — (P ,  P A P . }4 k=1
(73 —> p c ')

holds f o r any  cv -  aS ase •

P ro o f . By the assumption, q ) ,  Re 93. and Im  q, belong to ho 1\
11

 g
,

and the norms of

t s '  g P)& 0 0 -0 ,,,,P)e-ok)}
1 Pc"'
— {(P, '994 )()- (24 0 — (9', P A :)c ) - (Bk)} ,
2

t ( R e = { ( e p ).6 --(A k )—
 ( L k fee 4) ) C r(B k )}

and
PC,,) (

t ( I m  (p )  =  E  K )  1-m  P )d - (Ak) — )6-(13k)}
k-= 1B k J A k

are bounded as 00• Therefore
PG,) r

lim E k) Re qi)(pA k — (  Re p ) p k }  E r k s e

k=1 B k Ak

and this has the same real periods as (p. Hence it is equal to (73
because of Proposition 4. Further, E rk s

*
,
, = r

 k s e  and

lim hn p)pA k — ç h n P ) P , k } E I l kse
Ir=1 Bk Ah

and this has the same real periods as  — iyo. Thus we get the
necessity.

Suppose next that r he n r  hst  F ,, t h e  generalized bilinear
relation does not holds for some 0 E rh s e .  Then there exists a T  of
class ho hst 11P h r\ P  ht  such that lira T„ , 7-11 0 0  by Corollary 4.

Let q, = - + i ,iT*, then and lim(7) 'kse I 1 T.,,P11-- - c>0. Hence
s-9•.>
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li  1  Pc"'lim  E  {(§0
,  P B : » A k — (P , A D 9 9 ,8 k 1 =  00

•2 k  =1

The assertion has been completely proved.
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