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Introduction

Ahlfors [2] and Ahlfors-Sario [3] have extended the theory
of differentials on open Riemann surfaces, and Kusunoki [6] have
developed the theory of Abelian differentials on open Riemann
surfaces. Accola [1] has established some results on bilinear
relations with respect to those differentials. We shall here use
the same notations for the classes of differentials as in Ahlfors-
Sario [3], and discuss relations between those classes of differ-
entials, including the bilinear relations.

In §1 we establish a relation between the class of canonical
differentials and the class of distinguished differentials (Theorem 1),
which asserts that a meromorphic differential @ is a canonical
semiexact differential if and only if the real part of ¢ is dis-
tinguished. An essential tool used there is a method of principal
operator investigated by Sario [10]. In §2 we generalize the
notion of the finite bilinear relation, which was defined on Riemann
surfaces of class Oy, by Accola [1], to arbitrary open Riemann
surfaces, and extend the results obtained by Accola [1]. Analogous
results have been obtained by Oikawa, but he does not yet publish
them. Section 3 deals with three classes of Riemann surfaces;
the class Ogp, the class of surfaces on which I',, AT, X ¢ T';¥ is valid
and the class of surfaces on which I',,,=I, A1, holds. We give
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there equivalent conditions for each of these classes. Finally in §4,
a necessary and sufficient condition for the validity of the gener-
alized bilinear relation is given (Theorem 8), which shows that the
differentials of class 1',,~ 1", * play an essential role in the bilinear
relation. Moreover a few related results are proved under the
condition I',, A1) X'k,

hse

§1. Canonical differentials and distinguished differentials

1. On an open Riemann surface R of genus g (0< g<< o) we
take a canonical homology basis {As, Bi}s-y, and {C}.y .,
(0 p< =0) such that 1) any cycle in R is homologous to a finite
linear combination >3( p,Ar+¢qrBy)+> 7,C,, where p,, ¢q, and 7, are
integers, 2) the intersection numbers are characterized by A, X B,
=36,,, A,XxA,=B,%xB,=0 for h, k=1, 2, -, g, and 3) any dividing
cycle in R is homologous to a finite linear combination >)7,C,.

Then, there exist canonical semiexact differentials ®,,, g, on
R which are uniquely determined by the conditions

ReSSBh(pAk ReSAh(ka w« and Re SA,,(/)A" Re th)Bk 0,

and canonical differentials ¢.,, whose real parts are generalized
harmonic measures associated with C, (Kusunoki [6]).

On the other hand, to any cycle ¢ in R there corresponds a
unique real harmonic differential o(c) of class I',, such that

((u, o(C)*) = Sca)

for all closed differential », and to any non-dividing cycle ¢’ in R
there corresponds a unique real harmonic differential &(c’) of class
LA L,X such that

(w, 5(c")¥) = Sc/(o

for all wel’,,,.
It is known that

Ly = [G(Ak)» O'(Bk), O‘(Cv)]

v Lo~ Uit = [o(As), 6(Bw)],
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where the brackets denote the closed linear subspace spanned by
the indicated differentials (Ahlfors-Sario [3]).

At first we shall show the following relations between these
differentials.

Proposition 1. (Kusunoki [7]) It holds that

Pap = (Ap)+i5(Ap)*
Py = 0(Br)+15(Bp)*
Pcy = G(Cv)'l‘io‘(cv)* .

Proof. Let {R,} be an exhaustion of R with regular regions,
and we denote by @4, 6“(A,) etc. the corresponding differentials
on K,. Then we have

(2) Par— Par (= 00).
Bp B

On the interiors R, of compact bordered surfaces we can easily
see that the relations

PR = AR s A
(3) P = 0™(By) +is™(Be)*
P = a™(Cy) +io™(C,)*

hold. By (2) and (3) we see that lim ¢(A,) exists for each k£ and
lim (o, (Re @ 4,)* —6"(A*) =0

for any w€1l',,,. Therefore we have

(4) (o (Re Pap)*) = lim (0, 5™(A)%) = | o
Npoo Ag

Since (Re p,4,)* —a(Ax)*™ belongs to L'y, we get

I(Repap)* —o(A*|I* = O

by (4) and the reproducing property of &(A,)* for I',,.
If {R,} is a canonical exhaustion, we have, by the definitions

PE) — P, (n — o0)

a™(C)) —>a(C))  (n— o).

Therefore we get
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Pe, = o(C.)+io(C,)* .

2. Now we treat the bilinear relation for analytic differentials
in the following form.

Proposition 2. Let @ be a canonical semiexact differential of
the first kind, then the bilinear relation

(‘Pi“l'*)=2§$ Re‘PS \Tf—g ‘I’S Rep  (a finite sum)
k=1 J Ap Bp Ak Bpr
holds for any y€T,,.

Proof. Any canonical differential has at most a finite number
of non-vanishing real periods. If

S Rep = x, and S Rep = y,,
Ak Bk

@ can be expressed as

(5) P = kg(—xk%ﬁykqu,,)

by the uniquenes theorem for canonical differentials (Kusunoki [6]).
For any yreI',,, we have, by Proposition 1 and (5),

(P, ¥) = T = 2u0(Ba) +io (B, V) + 3o (AR +io (A% ¥}
:22”5 Re‘P‘S‘Bk‘p—SAk\pSBkRQ‘P,

k=1 JAp
because

(6(Be)+ia(B)*, ¥*) = — (¥, 6(Be)*)+i(¥*, 6(Bx)*)
== wif
Bp B
-2 Sﬂkqf.
By making use of this bilinear relation we get easily

Corollary 1. Any canonical semiexact differential of the first
kind without A periods vanishes identically.

3. We denote by vp, and ¥p, canonical semiexact differentials
with singularities 1/2” and i/z” (r=2) at P whose real parts are
exact; and by ¢pe and ¢pe canonical semiexact differentials with
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singularities —1/z or —ifz at P and +1/z or +i/z at € whose
real parts have single-valued integrals. Let {R,} be an exhaustion
of R with regular regions and let us denote by V%), ¢% etc. the
corresponding differentials on R,. We have already known that

(6) (I;';__)"I"Pn ~?’.:'—"PP7 (”_’OO)-

We shall now establish the analogous characterization for ¢, and
J)pg, using the following result obtained by Kusunoki [6].

Let du be a real part of a canonical differential and dU a
harmonic differential square integrable outside of a compact set K

and S dU*=0 for every dividing cycle vCR—K, then for any ex-
Y
haustion {R,} of R we have

(7) limSRudU*=0.
ARy

%n—poo

Lemma 1. For any exhaustion {R,} of R with regular regions,
we have

o — Pros PP —> Pro (n— o0).

Proof. We consider the class {S} of analytic functions with
logarithmic singularities —log z, at P and +log z, at @, where 2,
and z, are local parameters at P and @ respectively, and satisfy
the following conditions :

1) real part u is single-valued and has finite Dirichlet integral
over a boundary neighborhood of R,

2) imaginary part v satisfies S dv=0 for every dividing curve
Y
v, and

3) S udv=0, where 8 denotes the ideal boundary of R.
8
Let
—log zl+a§)"+i aYz{ at P
=1

S¢P0=uo+ivo= { oo
+log z,+a® +>ayz} at Q.
=1

Then S¢>I,Q belongs to {S} because of (7). Suppose that f is a
function of class {S} and
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p ) { —log z1+a(”+¥ a¥z{ at P
=u+iv =
+log 2, +a®+>X a2, at Q.
J

Taking (7) into consideration, we get by direct calculation

0 < Dg(u—u,) = lim DR—CA1+A2)(u —u,)

py,Py>0
:p lin-:o {DR—(A1+A2)(u) - ZDR—(A1+A2)(u’ uo) + DR—(A1+A2)(uO)}
(8) "
< lim {S (u—uo)dv—s (u—uo)dvo}
A +AL) A +A

P1,Py>0
= 27 Re {(@®—a®)—(a’ —aP)} ,

where A, and A, are disks about P and @ with radii p, and p,

respectively. Hence we conclude that the minimum of Re(a®—a®)
is attained for the function Sd)PQ in the class {S}.
Now let

- o —log z,+a§."+2j_‘, ajz{ at P

S FQ = UnH10, = { +log zz+a§.2’+ga,‘.2,’zé at Q,

then we have
Re (a)P —a?) < Re (@i —ai2) < -+ < Re (at’ —a®) ,
because

[ oty = = Dy ) <0
IRy

for m>>n. Hence lim Re(al¥ —a?) exists, and since

0 < Di(tty—u,) = Dg,(tt—t,,)
< 27 Re {(a’ —aP)—(a —aP)}

for any compact set K by (8), there exists a subsequence {u,}
which converges uniformly to a function #’ harmonic on R—(P+@Q)
and Dg_ca+ap(#’)< . We can show that #’=u, immediately.

4. Let us recall that a differential ® on R, harmonic except
for harmonic poles, is called distinguished if

1) o* is semiexact outside of some compact subset of R, and

2) there exist differentials w,,, € L',,, and o, € I',; ~ I such that
®=w,, +o, in a boundary neighborhood of R.



Differentials on open Riemann surfaces 83

There exists a unique distinguished differential with a finite
number of given harmonic poles, the sum of their residues being zero,
and a finite number of given periods (Ahlfors-Sario [3]).

Let # be a harmonic function on a boundary neighborhood
with zero flux over the ideal boundary of R and let Q be a canonical
subregion of R. The principal operator Lo on Q associates to ug,
which is a restriction of # to Q, a function p,, harmonic on a
boundary neighborhood of Q so that p,o—wug is constant on each
boundary component of Q and has zero flux over each dividing cycle
of Q. The principal operator L, on R associates to « a function 3,
which is a limit of p,q as Q tends to R (Ahlfors-Sario [3]). We
say that p,—wu has L,-behavior at the ideal boundary of R. To each
harmonic semiexact differential o with a finite number of singularities
and periods, there corrvesponds a distinguished differential Me) with
the singularities and periods of o and which, in a boundary neighbor-
hood of R, is the differential of a function whose real and imaginary
parts have L-behavior. Therefore we have

(9) Mo)=o
if and only if o is distinguished (Rodin [8]).
Lemma 2. Let @ be a canonical semiexact differential, then
MRep)=Rep.

Proof. Suppose that

S Rep = x,, S Rep =y,
Ak Bk

and @ has singularities

"

Q

z’ at P, (=1,2,-,5).

r

Then we have

o

]

P = ;1 {Re aj1¢’QPj+Im aj1¢QPj+r§ (Re ajr‘l’Pjr"‘Im ajr‘ijr)}
+§ (—XePsp +J’k¢Ak)
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where @ is a point different from all the P;. For a canonical ex-
haustion {R,}, we consider differentials

o — E {Re a;p5p;+Im abgh; + ; (Re a; b, +Im azyr3),)}
+§ (—x:P5p + VP00
on R,, then
(10) PP — @  (n— o).
We form A(Re @) which is, by definition,
(11) AM(Re p) = lim A, (Re @)

where A, (Re®) denote the differentials corresponding to Re o
by the same kind of operators as A on R,. The differentials
Re 9™ — g (Re #) have no singularities and no periods, and they
belong to I',,nI',*¥ on R,. Because R, are canonical regions, the
functions

fo = [ {Re g™ (Re )}

are constant on each boundary component of K,, and we have
solutions Hf» of Dirichlet problems on R, with boundary values
f.. Then dHf» belong to I',, on R, and since

Re p™ —\g, (Re @) = dHFr,

it must be identically zero. Therefore we get the conclusion by
(10) and (11).

5. Now we consider the completions of classes of canonical
semiexact differentials and canonical differentials of the first kind,
that is the spaces spanned by {®4,, Psylezi - and {Pa,s Pag,
Pe.}o=r, - giver,p OvVer the real numbers respectively. We shall
denote them as
(12) Phse = [Pas ‘Pekl:” Ly =[Par> Por> Pc,]

real

Then it can be readily seen that

(13) Pas n Fase = Cl(str’ + l'jkst ’ Fas = Cl([‘k—‘- '[‘k*) .
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These expressions are the counterparts for analvtic differentials of
the expression

Fs = CZ(FM +1 fo)
for harmonic differentials.

Theorem 1. 1) A meromorphic differential @ is a canonical
semiexact differential if and only if Re® is a distinguished differ-
ential, 2) @ belongs to 'y, if and only if Re @ belongs to I',,A 1'%,
and 3) p belongs to 'y, if and only if Re belongs to 1',.

If @ is a canonical differential, then Re® is distinguished by
Lemma 2 and (9). If o is a real distinguished differential, there
is a canonical semiexact differential ® whose real part has the
same singularities and periods as », which is seen by the uniqueness
theorem for canonical differentials. Then we have Re @ =\(Fe ) by
Lemma 2, and therefore Ke @ is a distinguished differential. Hence
it must be equal to o by the uniqueness theorem for distinguished
differentials. 2) and 3) are seen by (1), Proposition 1 and (13).

Corollary 2. 1) R is a Riemann surface of class Oy, if and
only if U'y=0%=01,, 2) R is a Riemann surface of class Oy, if
and only if V' =01,.=0,,, and 3) U',, A U',% ¥, holds if and only

. v 1Y x 1
lflkscﬁlkse_‘lasf\]‘ase'

Proof. R belongs to Oy, if and only if 1',=1",,, and we get
1) by 3) of Theorem 1. R belongs to Ok, if and only if 1',,,=1",
because ', =1",, P L.~ 1¥, here & means orthogonal direct sum,
and I'),, =TI, if and only if ', =1, =1%. From 2) of Theorem
1 it follows that L',snl',,, =0, =1.* if and only if I',,~ L% =
UpnAl,X. We have Uy~ I EX=1,, A '} if and only if I',, A1, X C ',
Indeed, taking orthogonal complements of the both sides of the
latter relation, we get I'(®l,> 1. Hence I'),=I, AL, Bl =
L@y~ 'k, and it can be readily seen that [&(A,), 6(B,)] =
P~ T%. The converse is almost trivial.

By 2) and 3) of this Corollary we see

Corollary 3. (Oikawa) In order that R be a Riemann surface
of class Ogp, it is necessary and sufficient that Re€O,, and
Fhef'\ [‘Il;': C th‘
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§ 2. Generalization of finite bilinear relation

6. Accola [1] defined the finite bilinear relation on open
Riemann surfaces of class O,;,. We shall here generalize the notion
to arbitrary open Riemann surfaces and define it as follows. Let
R be an arbitrary open Riemann surface and let  and o be elements
of 1, on R which have only a finite number of non-vanishing A
periods. Then we say that the finite bilinear relation holds for o
and o, if the following relation holds :

(14) (0, 0%) = ) Lkm SBkﬁ—SAk&jBkco (a finite sum).

k=1

We denote by I',, and I',; the spaces spanned by {6(Ae)}i= g
and {6(Bj)}-,, ., respectively, where g is the genus of R, and by
4 and I, the spaces spanned by the &(A,) and &(B,) respectively,
where the 5(A,)* and &(B,)* are the period reproducers in I,
(Rodin [8]).

Theorem 2. (Oikawa) The following three conditions are equiva-
lent :

1) The finite bilinear relation holds for any o €1',, and o€ 1’
with a finite number of non-vanishing A periods.

2) Any pel',,, without A periods vanishes identically.

3) DinllE=L,a @05

Proof. 1) implies 2): If @ is an elment of Iy, with a finite
number of non-vanishing A periods, we have

lpll? = —i(p, ™)
= —2(Re p, Im p*)—2i(Re @, Re p*)
= —2i(Re p, p*)

- -2x({ peel, o], 0, Re)

because Repel', A1,k and el cl',,,. Therefore ||p|’=0 if
® has no A periods. If ¢ of class I' ¥ has no A periods, we can
show analogously that @=0.

2) implies 3): We always have I',, A I, *> 1, P I,%. Suppose
that © belongs to I, A I,* and is real. If o Ia®I%, o has
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no A periods and o*_| I')%. Therefore w+i0* has no A periods,
and it must be identically zero because o +io* € I'y,,. For a complex
o of class I'),n1',%, we can show that the real and imaginary parts
of » are zero respectively, if o is orthogonal to L.,

3) implies 1): Suppose that w € I',, and o€ I',,,, and both have
only a finite number of non-vanishing A periods. We decompose
® so that

® = o,+w,, where o €l A% and wo,€l,,.

Then we have

SAk(D - SA/;COI - ak(a))
and
(15) (0, ) = (@1, ™).
We see that o, +>) ay(w)s(B,) belongs to I',, by 3), because it be-
longs to I'), A L', % z:nd has no A periods. Moreover, o-+; a(o)6(B,)

€'y, and this has no A periods, where «,(o) denote the periods
of o along A,. Therefore we have

- (0’+; ayc)s(By), of +; a(w)a(Be)*™)
= (o, + ; alw)a(By), o+ ; ay(o)o(Be)*)
=0.

Expanding this result and using the relation (15), we get

o= 3Ll Lol

Corollary 1 shows that the conditions of Theorem 2 are satisfied
if the genus of R is finite.
Using the decomposition
Fhse = th @ ]'1hse n ‘[‘h;l;
= Fhm @ ‘[‘he n J'—‘I:l:’ @ FS n ‘Phsef\ [‘hst

it can be proved in the analogous way as in the previous Theorem :

Theorem 3. (Oikawa) The following three conditions are equiva-
lent :
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1) The finite bilinear relation holds for any w€ Us ALy, and
o€, with a finite number of non-vanishing A periods.

2) Uusnla. are spanned by the ¢,,.

3) FS n l‘hsp n 1‘h;‘«; = FhA@Fhﬁ .

A Riemann surface of finite genus satisfies the three conditions
of this Theorem if and only if L), A L% 1% holds. Indeed if
U AL,EC Lk holds, then U'ysA L, =1, and it is spanned by the
Pa,. Conversely, for any wé€ s 1, A1',% we have

ol = — (o, ®**) =0
by 1) of the Theorem, which implies L', A1, %1%,

7. Now we construct normal differentials after Accola [1],
using the &(B,) instead of the «(B,). Let

#(Bg) = 0,+7, where 6,€el)% and =,€ (I %)*.
Set
(16) ¢p = —0,—16F,

then ¢, € '.*, and
J,, &= @n oA = (—o(Ba), 5(A)) = by

We can prove the following Lemma completely in the same way
as Lemma 6 in Accola [1].

Lemma 3. If L', =01, AL, then the 0, are complete in I,%.
Using this Lemma we establish the following Theorem quite
analogously as Accola [1] did for Riemann surfaces of class Ogy,.

Theorem 4. If the @, span U,sALU,,, then the ®pa, span
Uus A Viseo Conversely, if U,,,=1U, AL, holds and the pa, span
U's A Lus., then the @, span U',s AL,

For completeness we sketch the outline of the proof. Suppose
that ;e X C XA L., and o | 6, for any k. Then we have o* €', 4,
that is, ¢* | I',%. Since =,_| I'}%, we have o_| 6,+7, for all k&,
that is, o* | I')%. Hence

™
o € th N Fii.:)/\ J'hse ’
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and o must be identically zero by the assumption. Which asserts
the Lemma.

To prove the Theorem we suppose that ¢ of class I';s A1,
has no A periods. Then

(P bw) = —(P, 0)+i(P¥, 6,%)
= —2(Re p, 6,)—2i(Im , 6%)
=0.

By the assumption we conclude that ¢=0, which means that the
Pa, span L';snl',,. If @ of class I';s~',,. is perpendicular to
all the ¢,, we have

2(p, 60p) = (P, 0,)+(9%, 6%)
= —(’P, 4)12)
=0.
Hence we see that @ nas no A periods by the above Lemma, and
the conclusion yields.

8. As sufficient conditions in order that the conditions of
Theorems 2 and 3 be satisfied, the following results are obtained.

Theorem 5 (Oikawa) 1) If L', A% % holds and the vector
sum Uya+ 1,5 is closed, then the three conditions of Theorem 3 are
satisfied, and therefore 1',s AV, is spanned by the ¢,. 2) If
L=, AL, holds and the vector sum U, ,+1,5 is closed, the three
conditions of Theorem 2 are satisfied.

Proof. To prove 1), we show that 1) of Theorem 3 holds.
Suppose that w€ I'sA ', and o€ 1',,, have only a finite number of
non-vanishing A periods. By the assumption we have

Al Al
‘[‘hse N Fs =1 ho@lﬂht n Fhse I 1 S
= Fho

l‘hm @ J“ho n 1‘17:)

I

and
Lpee = L'ym®Ls, N ‘h;t
= l‘hm®11he N th@l‘s n L. N Fhst
L@l A LDy A L.

I
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Let
= @, +w, where w €L, ATk w,€l,,;
o =o,+0, where o, €L, Tk, 5,6, P, ALk
and

® = coﬁ—; a(w)a(B,) where ay o) = SA ®;

o =o,+2) ak(a)d‘(Bk) where C(,,(o-) = S o,
& Ak

then o’ and ¢’ have no A periods and
o', o’ € 1—‘ho n FI?:)-
On the other hand, because I',4+1',5 is closed and L'y, AT~ L%

has no non-zero elements, it is easily seen that o', '’ €I',4. There-
fore it holds that

(a), 0-*) = (wn o¥)

SR P Mo L WS

To prove 2), we suppose that w€l,, and «€I',,, have only
a finite number of non-vanishing A periods. Let

o = o, +w», where o el'yynlX*, o,el,,
and
o = o,+ 2 aw)s(B,)
k
(T, = O'+ 2 ak(o')é'(Bk) .
k
Then o’ belongs to 'y, by the assumption that I',,+1,5 is closed,

and ¢’ is semiexact and has no A periods, that is, ¢’ is orthogonal
to I'%. Therefore we have

(0’/, 0'/*) = 0 ’

and expanding this we get the finite bilinear relation for » and o.

§3. Some classes of Riemann surfaces

9. We have already treated the classes of Riemann surfaces
on which I'),A1*cl¥ or I',,=0,, A, holds. The surfaces on
which T,,=TI, AT, holds were discussed by Accola [1] and
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' ALXc X holds were taken up by Oikawa in his unpublished
study. A Riemann surface of class Ogp is a surface on which
Ly hs=1{0} holds. If ')~ L',%={0}, then I'\,AL,~EC LY, and if
L, ALU%clk then I'),=0",,~1,,. But the converses are not true.
These three classes of Riemann surfaces seem to be important
when we discuss on differentials of some classes, because we get
rid of some complexities. We give here the summaries of equiva-
lent conditions.

Proposition 3. A Riemann surface R belongs to Oxp if and
only if one of the following conditions is fulfilled :

1) J"hmzl‘hw

2) L=

3) Any element of U, with exact real part is identically zero.

By I'),=1,®L ALY we get 1), and because L'y, =1 @ 1.~
¥, we get the condition 2). It is obvious that I',, A I',*¥={0} is
equivalent to 3).

Proposition 4. The following conditions are equivalent :

1) 1‘hm:l‘hef\r

2) Uy AlEALs=1{0}.

3) Lhpenl Ayt

4) hsp“l o@l‘hef\ he’

5) Fimf\l hse:l Izof\FhO'

6) Any element of U,sAL,,. with exact real part is identically
zero.

We have already shown that I',, A1, X1 is equivalent to
the condition 5). We have orthogonal decompositions

Fhe N Fhs’l; = l‘he N ‘l‘ht@l‘he n Fhst N l.‘S ’
Lo nls = U@l A Ls A L5
By the former of which we get the condition 2), and the latter of
which shows the equivalency of the conditions 1) and 2). Taking

the orthogonal complements of the equation 1) we get 4), and 6)
is immediately seen by 2).

Proposition 5. The following conditions are equivalent :
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1) Fhm:l‘hef'\l‘h("

2) LunlnEAl,={0}.

3) Ll CCHE+ 1),

4) Fhse =Cl/ (Fhe + Fho)~

5) Any element of class Ly, with exact real part is identically
zero.

By taking orthogonal complements of L',k=1"%  LI'¥, we get 4),
and by taking orthogonal complements of the relation 3) we get
rxasn,, >, AL, which means 1).

10. Accola [1] showed that I, =111, is equivalent to
that if w€1'y,, o€ '), and » has a finite number of non-vanishing
A and B periods, then
A7) (o o*) = ZS (oS &—5 as ©  (a finite sum)

Ap Bk Ap Bk

r=1

ohlds. By which we know that the validity of the relation (17) is
independent of homology basis, though the validity of the gener-
alized bilinear relation depends on, and even the validity of the
finite bilinear relation seems to depend on homology basis.

We get analogous equivalent conditions for the classes Oy,
and of surfaces on which ', A 1,*C1'* holds.

Theorem 6. A Kiemann surface R is of class Oy, if and only
if the relation (17) holds for w€l',, with a finite number of non-
zero periods and for any o€l

Proof. Suppose that R € Oy,. If w€ 1, has only a finite
number of non-zero periods, set

o = 0+3] {apo (Br)— Bus (Ap)}

© and B”:S o. Then o €l',,, and because o€ I,
Ap Bk

by Proposition 3, we have (o’, ¢®)=0. Expanding this yields the
result.

Conversely, if the condition holds, any element o of class
. A% must be identically zero, because ||o|*= — (o, o**)=0.

where «,= g

Theorem 7. A necessary and sufficient condition for I'), A1, *

hse

<k is that the relation (17) holds for w€Ll's A L'y, with a finite
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number of non-zero periods and for any o€ 1l',,.
Proof. Suppose that I',, A1, ¥ C ¥ and set

o = +k2 {C(kd' ((Bk) - ﬁk(Ala)}

where «a,= SA » and Bk:g o. Then o’ € U'sA ', =1, by Proposi-

k Bk
tion 4, and (o, c*)=0. Conversely, for any c€l'y,, AlXA s we

get ||lo||’=0 by the condition.

§4. Generalized bilinear relation

11. Let R be an open Riemann surface, {R,} an exhaustion of
R, and let A,, B,, -, Ap.>» Bxw> =+ be a corresponding canonical
homology basis such that A,, B,, -**, Apm> Buxn is @ basis modulo
o0R, on R,. For a fixed oc€'y,, the generalized bilinear relation
is said to hold if for all we€l',,, we have
(18) (o, o-*)———liml(v_‘,”)g (DS 6‘——5 68 ®
Ap  JBg Ar  JBp

npoo p=1
(Accola [1]).
We define linear operators 7T, on I',,, as follows. For any

g€y,

pCn

(19) Ty = SV {Bu(Ar) — uo(By)}

=1

where a,,=SA ¢ and B,FS o. Accola [1] defined linear operators
k Bk

T, using the «(A,) and o«(B,) in place of our &(A,) and &(B.),

and gave a necessary and sufficient condition that the relation (18)

holds for a fixed o €1',,.

Theorem 8. The generalized bilinear relation (18) holds for
all w€ly, and o €T, if and only if, for any =€ Uy~ LY, we have

|Tr—l|—>0  (n— co).
In other words, the worms ||T,|| are bounded as n tends to .
Proof. Sufficiency. We have orthogonal decompositions
Fho = [‘hm@ljhof\ 1‘hs>5
Lhee = Upe®Llpse A Ui
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Let
= w,+w, where o, €1'WA LY, ©,€1,,;
o =o,+0, where o, €l L%, c,€1",,.

Then we have

(@ o) = (o, of) = lim (To,, o)

— lim §j (Bur (Ap) — au(By), oF)

ey oo

- lim >: {ai(or, 7 (Bo)— Bular, (A5}

npoo

L
=llng cog o‘-—S J'S ®.
nree k=1 JAg  JBE Ak Bk

The necessity can be readily seen because any 7€l A~ I',F
can be approximated arbitrarily closely by finite combinations of
the 6(A,) and &(B,), and for any &(A,) (6(B,)) it holds that

llo(Ap)— To(AIF = 0

for sufficiently large »# by (18).
If R is of class Oyp, then we have

1‘he n l‘hst = Fh and Tn = Tn .

Hence our Theorem reduces to Theorem 10 and Corollary 11 in
Accola [1].

Corollary 4. If U, =1 A Uy, it is necessary and sufficient
for the validity of the generalized bilinear relation that ||T,r|| are
bounded as n tends to oo for any € L'y LLE.

12. Concerning a canonical homology basis with which the
generalized bilinear relation is valid for any w€1',, and o € l',,,, we
obtain

Theorem 9. Suppose that 1',,~L,F U} holds on a Riemann
surface R. Let {R,} be an exhaustion of R and A,, B,, -, Axn»
By, a corresponding canonical lhomology basis with respect to
which the generalized bilinear velation holds. Then for any €
UsAUese, we have
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i MR

¢, P —> P
(n— ).
(¢» ¢k)¢Ak —_— P

(SIS I
M3

Proof. By the assumption, we have L,gALl =01, =I%C
Py, and

~ ()
T, = le {8r5(Ap) — at,5(By)}
where ak=SA @ and B,= SB @. Let
k k

T.p = 0(P)+7.(P)
where 0,(p)e % and ()€ ',%)*, then

2

0.(p) = —Iz=21 gy,

here ¢, are the differentials defined in (16), and
. ) . o(n)
0n(¢)+19n((p)* = _‘E ak(9k+16t) = I; ak¢k .
By the validity of the generalized bilinear relation, ||7,7|| are
bounded as #— o, and we have

p(n)
lim 3 €5 A Use

npoo p=1

Again by the generalized bilinear relation, an element of 1',sA I’
without any A periods is identically zero, and we have

ase

()

llm Z ak¢k = — llm 2 (¢) q)Ak)()bk -

nypoo p=1

For any @,y el ;sAL,,., we get
lim Z —(rp, Pap) s V) = (@, P).

This shows that 72(«[», br)Pa% converges weakly to . If the
k

generalized bilinear relation is valid, the @t span I';s AT',,., which
is seen by Theorem 2 and Corollary 2, and this weak convergence
is, in fact, strong convergence (Karlin [4]).
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13. Finally the following Theorem gives another equivalent
condition for the validity of the generalized bilinear relation on the
surfaces on which I',, A, C ' holds.

Theorem 10. Under the condition T',, A L, X Tk, the gemer-
alized bilinear relation is valid for any o €Ly, and c €y, if and
only if

p(n)
(20) % Y@, 2P (P PiPr} — P (> e0)

holds for any p€ ' ;sAL,,.

Proof. By the assumption, @, Re @ and Im @ belong to I';) A Tk,
and the norms of

T.p = ’; {(S >&(Ak)—<SAk¢)6(Bk)}
= 2 540 2D (A~ (2, PaD)o (B}
rasen = ([ oo (s

and

~ p(n)

T(Imp) = 3 {<SB,, Im (,D)o-(A,,) -—(Lklm <,D>o-(B,,)}
are bounded as #n— . Therefore

lim %) {(S Re ?)‘PA;,— ( SAkRe 7’) ¢Bk} €Ly,

nopoo p=

and this has the same real periods as @. Hence it is equal to @
because of Proposition 4. Further, —ipel',*=T,,, and
pCnd

lim 2 {(S Im ‘P)WA,,— (SAkIm @)?’Bk} €Ly,

nyoo p=1

and this has the same real periods as —i@. Thus we get the
necessity.

Suppose next that I',, AI',*c %, but the generalized bilinear
relation does not holds for some o €I',,,. Then there exists a = of
class Iy X =0T, A1} such that }‘133 ||Trl|=cc by Corollary 4.

Let @=r+ir*, then @€'y, and lim ||T,®||=cc. Hence
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[1]
[2]
T3]
[4]
[5]
[6]
[7]
[8]
el
[10]
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"
= o ,

n—poo k=1

i

lim \\%z (P, PP an— (P, Pat)Pas}

assertion has been completely proved.

KyoTro UNIVERSITY
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