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In order to derive Rund’s connection in a Finsler space, R.
Sulanke [8] used the concept of direction-dependent affine connec-
tions, and determined the connection uniquely by the system of
axioms, analogous to the case of a Riemann space. )

The purpose of this paper is to give a global foundation of
direction-dependent affine connections, and to discuss axioms
introduced by R. Sulanke. Since there exists, in general, no direc-
tion field in the large on differentiable manifold, we shall first
define the concept of f-relative linear connections, from which a
Finsler connection is naturally constructed. R. Sulanke gave three
axioms to determine Rund’s connection uniquely, and remarked
later on [9] that the second axiom was a result from the other
two. It is well known that Berwald’s connection [1] satisfies the
first and second axioms, but not the third. In the final section of
the present paper, we shall show that there are infinitely many
connections of Berwald’s type.

§ 1. A system of f-relative linear connections

Let P(M, =, G) be the principal bundle of frames tangent to
a differentiable #-manidold M, where = is the projection P—M
and G the general linear group GL(n, R). We consider a local coor-
dinate (x%), i=1, 2, -+, n, of M, and then a frame p=(9,), a=1, 2,
..., m, tangent to M at a point x is expressed as p,=p’, (3/0x"),.
Thus, (x/, p',) is thought of as a local coordinate of p e P, which
is called a canonical coordinate. In terms of a canonical coor-
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dinate, the right translation R, of P by an element g=(g%) ¢ G
is expressed as (&', p',)—(x', p', g%).

Let B(M, z, F, G) be the bundle of tangent vectors to M,
where ¢ is the projection B—M and F the real vector n-space.
Analogous to the case of P, we have a canonical coordinate (x?,
l') of a point b ¢ B, where b=0b'(3/02"),. B is an associated
bundle with P, and G acts on F by the rule f=f%e¢, ¢ F—g* f"e,,
where (¢,), a=1, 2,---,n, is a fixed base of F and g=(g%) ¢ G.
A point p=(x', p',) € P is regarded as the admissible mapping
F—B, such that f=f",—(x', p', f*).

Definition. A system of f-relative linear conmnections {I'(f)} in
P(M, z, G) is a collection of distributions I'(f): pe¢ P—I'(f), on P
corresponding to any non-zero element f e F, such that the follow-
ing two conditions are satisfied :

RC 1. P,=P’,+I(f), (direct sum),
RC 2. Ra['(f)p:F(g_lf)m’

where P, is the tangent vector space to P at a point p and P,
the vertical subspace of P,.

It is to be remarked that a distribution I'(f) alone is not a
linear connection in P, because RC 2 differs from the ordinary
condition R, I",=TI",, for a linear connection [6, (5.2)]. It follows
from RC 1 that any tangent vector X ¢ P, is written in the form
()X +h(f)X, where v(f) X e P*, and h(f) X ¢ I'(f), are called the
f-relative vertical part and f-relative horizontal part of X respective-
ly. If (f)X=0, X is called frelative horizontal, and if A(f)X
=0, X is f-relative vertical. It is easy to show that those v(f)
and A(f) satisfy the following equations respectively :

a1 R,v(f)=v(g )R, R, h(f)=hg /IR,

In similar manner with the case for a linear connection in P,
we can define the G(Lie algedra of G)-valued 1-form w(f), which
is given by

1. 2) o(f)F(A)=A, Ac€G,
1. 3) o(f)I(f)=0,
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where F(A) is the fundamental vector field on P corresponding to
an element A e G. The 1-form o(f) is called the f-relative connec-
tion form [4, (2. 5)]. As is easily verified from (1. 1), w(f) sat-
isfies the equation [4, (2. 6)]
(1. 4) o(f )z Ry=0ad(g™") (&1 ), geG.

The lift I(f),X of a tangent vector X e¢ M, to a point p ¢ P
is by definition the tangent vector to P at p, such that I(f),X is
frelative horizontal and #l( f),X=X. Making use of this I(f), we

obtain the f-relative basic vector field B,(f,) corresponding to f;
¢ F, which is defined by

(1. 5) B,(f1),=I(f ), bf1s

where p e P is regarded as an admissible mapping F—B. Let 0=
p~' = be the basic form on P, then we have

1. 6) 0 B,(f1)=f:.
It is obvious that the following equation holds from RC 2:
1.7 R,B/(f1)y=Bs-1/(& 1) 0

On the other hand, we can define the absolute basic vector
field B(f) corresponding to f e F which is given by the special f-
relative basic vector field B,(f) [6, §5].

Now, if we put é’;:(a/agw,,)e, the set (é",,,) is considered as a
base of the Lie algebra G. Hence the f-relative connetion form
o(f) is expressed by w(f)* 8% From (1. 2) and (1. 4) it follows
that those componets w(f)?, are written in the form [4, (2. 10)]

1. 8) o(f)=p %@+’ Fi(pf )dx®),

in terms of a canonical coordinate (x, p%,), where (p~!%,) is the in-
verse matrix of (p',) and F/, are functions of (x', b), b'=p',f°,
f=f%, Those Fy, are called coefficients of the f-relative linear
connection I'(f).

Next, by making use of (1. 3), we obtain a local expression
of the f-relative basic vector field B,(f,) as follows:

(1. 9) Bf(fl)pzplt“fﬂ( aaxt _pijfk-z(Pf)—az)?>
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at p. Especially the absolute basic vector field B(f) is written in
the form

1. 10) B )=t (5 —PAF R ) ).

In the case of an ordinary linear connection in P, the asso-
ciated connection is defined in the associated bundle B. In the
similar way, we obtain the associated connection in B with the
system of f-relaive linear connections {I’(f)}. In fact, if we take
the mapping K,: P—B, pe P-pf ¢ B, the associated connection
H: b e B—H, is defined by

(1. 11) H=K,I(f), pf=b.

It is to be noted that H is uniquely determined by {I'(f)},
independent of the choice of fe F, which is easily seen from the
equation K, ,,=K,R, , As thus defined H is called the asso-
ciated non-linear connection in B. It is easy to verify that the tan-
gent vector space B, to B at b is decomposed in the form B+
H, (direct sum), where B?, is the vertical subspace of B,. Hence
Xe B, is written in the form v'X+#”'X where v'X e B’ and
W' Xe H,. From (1. 9) it follows that a local expression of X ¢ H,
is given by

(1. 12) X=X'(-2 —bFr, 0 ),
where b=(x", b*).

Similar to the definition of a path in the case of an ordinary
linear connection, we have an absolute path on M, which is a
projection of an integral curve of the associated non-linear connec-
tion H. It is seen easily that an absolute path is a projection of
an integral curve of an absolute basic vector field B(f). Accord-
ing to (1. 10), the system of differential equations representing
an absolute path is

n K
(1. 13) —d‘-;g«+Fﬁk<x", %)%‘il_xtzo.

On the other hand, an integral curve of the f-relative basic vector
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field B,(f,) may be considered, but its projection on M is
meaningless, because of (1. 7). From this point of view, relative
path due to R. Sulanke [8] seems to be defined locally alone.

§ 2. Vertical connections

Let Q(B, 7, G) be the induced bundle from P(M, =, G) by the
projection = of B(M, =, F, G)[4]. The bundle space @ is defined
by Q={(, p)e BXP, = (b)=n(p)}. We consider the closed sub-
manifold Q(x)={(b, p) e @, = (b)==(p)=x} of @ for a fixed point
x e M. Then Q(x) has the structure of a principal bundle over
B(x)={b € B, 7(b)=x} (the fibre over x ¢ M of the tangent vector
bundle B). The group of structure of @(x) is G clearly.

Definition. A wvertical connection in Q is a distribution C: ¢
e @Q—C,, such that every restriction C|Q(x) of C to Q(x) for x e M
are a connection C(x) in Q(x).

With respect to the connection C(x), we obtain a operation of
lift, which is denoted by [/, and further the basic vector field
B° (f) corresponding to f e F is defined as follows:

@1 B(f)=dpis f, a=0, p), fi=p7'b,

where dp is the differential of an admissible mapping p and j,, is
the identification of F' with the tangent vector space F,, to F at
fi [4, p. 31

In terms of a canonical coordinate (8", p,) of @(x), components
(0°(x))* of the connection form o°(x) of the connection C(x) are
expressed in the form

2. 2) (0 ()e)%=p " "(dp', +p",C(D)dD"), q=(bp),

where C}, are functions of (x" "), canonical coordinate of b.
Consequently a tangent vector X e C(x), is expressible by

2. 3) X= Xi( aabi _Pjacjkt(b)%>-

§ 3. Construction of a Finsler connection

The definition of a Finsler connection in @ has been given in
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the previous paper [4]. The purpose of the present section is to
construct a Finsler connection from a system of f-relative
connection {I'(f)}, together with a vertical connection C. To do
this, we first prove

Proposition 1. The operations
(W)e=EKh(f )y, (B)=I2'R,

applied to the tangent vector space to Q are projection operators,
where q=(b, p), f=p'b, n is the induced mapping Q—P, (b, p)—
p, and K, is the mapping P—Q, p—(pf, b).

Proof. We have

("= K h(f Yy K h(f Y= K (YR f )y =K h(f o= (h"),,
and
(W)=l =YV i=0IpT=(h"),

Therefore the proof is complete.
Thus, let us consider distributions I and I corresponding
to projection operators A" and A° respectively :

3.1 I, ={XeQ, hi* X=X},
3. 2) I',={XeQ, " X=X}.
In the first place, we shall show that
3. 3) Q=Q",+I* +I", (direct sum),

where @, is the vertical subspace of the tangent vector space @,.
Given X €@, we put

X=wX, X=X,

Y=X-X"-X"
It follows from Proposition 1 that X" e/, and X"eI™,  Then
we obtain

#Y=aX—aK h(fnX—7lveX
= X—Kh(f mX—viX=nX—hWKpX—v7X,

where K, is the mapping P—B used in (1. 11). Putting Z=7X
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—K7X € B, it is easy to see that Z is vertical. Hence we have
tY=aX—h@X—Z)— v X=aX—(h'+v)7X=0.

Consequently, we have the decomposition of X as (3. 3):
X=Y+X"+X", Ye@, X'el, Xel”,.

It is easy to see that (3. 3) is direct sum. Hence the proof of
(3. 3) is complete.
Next, we shall show that

3. 4) R =rr, R,JI*=I",.

Let us consider X eI, g=(b, p). By means of the definition of
', X=Kh(f)X, and, making use of the relation K,_,,R, =R,K,
and (1. 1), we have

K, (g f R X=K, 1&g~ [IRnX =K, 1, Rh(f )X
=R,Kh(fnX=R,X.

Since (pg)"'=g"'f, the above equation shows that R, Xe I'",, and
hence the first of (3. 4) is true. Next, given X € I'",, we have X
=['v'X, and it follows from the property of the /° that

PR, X =107 X=RIFpEX=R,X,

which shows that the second of (3. 4) is true.
Finally we shall show that

3.5 al'y=By, q=(b, p).

It is clear from (3. 2) that zI™,cB’, . Conversely, if we take
any XeB%, itis obvious that Y=[°Xel", and 7Y=X. Thus
we obtain (3. 5).

As a consequence of equations (3. 3), (3. 4) and (3. 5), it is
concluded that the pair of distributions (I™, I'") as defined by
(3.1) and (3. 2) is a Finsler connection in @ certainly.

In the general theory of our Finsler connection in €, we
obtain the induced non-linear connection in B and further the
quasi-connections in P [4]. In the case of the Finsler connection
as above constructed, it is easy to show that the induced non-
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linear connection coincides with H as defined by (1. 11), that is,
(3. 6) #l",=H, qg=(b, p).

and that the quasi-connectons coincide with the original f-relative
linear connections I'(f), that is

@7 7" =I'(f)y q=0, p), f=p7'b.

It is to be noticed that the Finsler connection as above
constructed satisfies the condition F [5], bzcausz this condition
F is expressed by K,I'(f),=H,, pf=>b, which is (1. 11) itself.

Gathering the foregoing results together we obtain

Proposition 2. When a system of f-velative linear connections
{I'(f)}in P and a vertical connection C in Q arve given, the pair
of distributions (I'*, I'") on @ as defined by (3. 1) and (3. 2) is a
Finsler connection satisfying the condition F. The induced non-
linear connection coincides with the one associated with {I'(f)} and
the quasi-f-connections coincide with the original {I'(f)}.

In terms of a canonical coordinate, it is easy to show that

3. 8) th 2 X:Xi( ai?i —bijki(b)T?)k__pjaiji(b) 8?)’0 >,

3. 9) Iy > X:Xl<aibi~—pia Cjki(b)ﬁﬁa‘r)y

where (x’, b, p,) is the canonical coordinate of g=(b, p). Compar-
ing the general expressions of Xe/™, and €/", we see that, in
place of coefficients F%, coefficients »’F}, appear in (3. 8) and
(3.9), which shows that the condition F holds for the Finsler conne-
ction as above.

On the other hand, the condition of homogeneity (Cond. H)
is essential for a Finsler connection [5], and, however, the condi-
tion does not always hold good for the Finsler connection as above.
This condition is expressed by the fact that any w-basic vector
field B*(f) is positively homogeneous of degree 1, and any A-basic
vector field B’(f) is of degree 0.

Proposition 3. The necessary and sufficient condition for the
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Finsler connection as given in Proposition 2 to satisfy the condition
of homogeneity is that any basic vector field B(f) of the vertical
connection C is positively homogeneous of degree 1 and any f-basic
vector field B,/ f,) of the system of f-velative linear connections
{I" (1)} is Rt-invariant, that is,

3. 10) B.,(f)=B/(f), ze R

Proof. 1t is clear that I’ (operation of lift with respeet to C)
and / (the one with respect to (I, I'")) satisfy the equation [v'=
. It follws from (2. 1) and the definition of B"(f) that B"(f) is
equal to B°(f). Therefore the first condition is necessary. Next,
we shall first show that

(3.11)  B'(f)e=KB{fy q=@0, p), f=p~'b.

In fact, it follows from (3. 1) that K,B/(f.),eI™",. Let 6" be the
h-basic form of the Finsler connection [4], and we know from
(1. 6) that

0" (K, B,(f1),) =0 "2(K, B 1),)=p""<K,B{ f1),
=p7'z f(fl)p: ‘9Bf(f1)p:f1-

Therefore (3. 11) is proved. By means of the relation 2,K,=K,,,
it follows from (3. 11) that

FZIBI( fl)z) :zth( fi )q =B( fl )zq = -_K—sz zj( S)w

and, acting the induced mapping 7 on the above equation, we have
(3. 10) directly. The sufficiency of the conditions will be shown
without difficulty.

§ 4. On axioms given by R. Sulanke

To illustrate the notion of relative covariant derivative, we
take a tensor T of (1, 1)-type, which is a mapping qe Q—T(q) ¢
FRF*. The fi-relative covariant differential of T with respect to
the system of f-relative linear connections {/'(f)} is by definition
(K,B,,(f){T), where g=(b, p), f=p~'b, and B, (f) is the f,-relative
basic vector field corresponding to fe F with respect to the f;-
relative linear connection I'(f;). It follows from (1. 9) that the
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covariant differential is expressed by

(4. 1) BB, (SN T)= Th f)p. pibre.Re,

where g=(x', ¥, p',), and T=T%e,Qe"T',= T p~'ip?,. Coefficients
T (f1) of the right hand of (4. 1) are called components of the
frrelative covariant derivative of T, which are respresented by

4. 2) Tiur)="L0 — T B prn + T Fiof)— T Fiaf).

On the other hand, the absolute covariant differential of T is by
definition (K,B(f)),(T), where q=(b, p), f=p~'b, and B(f) is the
absolute basic vector field on P. Coefficients T'%.(p~'b) are com-
ponents of the absolute covariant derivative of T.

With respect to the vertical connection C, we also have the
covariant differential of 7, which is defined by B*(f )T )=B(f)T),
and further, we have the covariant derivative 7|, of T.

Now, let a Finsler fundamental metric function L be given.
Then, the vertical connection C is uniquely determined by the
hypothesis that the connection be symmetric and the covariant
derivative of the metric tensor G induced from L as usual vanish,
that is,

%%Tj—gz x—8uC =0,
where g;; are components of the metric tensor G. Then C;, are
given by

h n 1 dg,;
4. 3) Cin(x", b")=gy Ctlk=’2’ a%ij .

In order to determine the system of f-relative linear connec-
tions {I'(f)}, R. Sulanke requires the following three axioms:

1. The f-relative linear connections ave symmetric, that is,
F jlk= F )Ci je

II. The extremal of the variation problem of the length
integral coincides with the absolute path, namely



On R. Sulanke’'s method 365
Fi(@", BbbE=n (", I,
where v/, are Christoffel’s symbols constructed from g;;.

II1. The absolute covariant derivative of the metric tensor G
vanishes, namely

aibz - %gbif FY— g Fiv—guF =0,

where we put F'y(x*, b")=0b'F/(x" b").

Later on, R.Sulanke show [9] that the axiom II is a result
from the other two.

As for the axiom III, it is well known that both of Cartan’s
and Rund’s connections satisfy the axiom, while Berwald’s connec-
tion does not so [1]. We will be concerned, in the sequel, with
deriving connetions, which do not satisfy the axiom III. Putting

WY Pu=ga=8—"8uF g F\—g.F),

we say that a connection is of Berwald type, if P,; does not
vanish. It must be supposed, of course, that P, be positively
homogeneous of degree 0 and symmetric with respect to the first
two indices.

Suppose that P,; be the tensor determined by the given
Finsler metric L, and we shall show that a connection of Berwald’s
type is determined uniquely by L, such that (4. 4) and the axiom
I hold. To do this, we put

. 5) Qun= 1 (Punt-Pas— Py,

It follows from (4. 4) and the axiom I that

4. 6) 7wt CouF i —C i Fh—CoF 5 — Fipo=Q, .
Contracting (4. 6) by the element of support b*, we have
(4.7 Ts10— CinF o= Fyo= Qi50,

where we denote by the index o the contraction by 4*. Moreover,
contraction of (4. 7) by &’ gives
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(4. 8) Toto™ Foo= Qioo-

Thus we have F,,=7,,—Q., and, inserting these in 4. 7), we
obtain

F. H0=T jio— Qijo_ Cijl(rolo— leo)'
Consequently we have from (4. 6) that

(4 9) Fjllc = -{?jik - Ql-ﬂc'— lele-io + CjilQl-ko + ClctlQl-jo
+ Qb-oo( lelc Czih, - Cjiz Cklh, - Clclz leh);

where we put

(4- 10) If jtlc = rjtlc + lekrt-lo'— Cjtlrolk_— thlrolj
- TohO( lek Cztlz - Cjiz Cklh - thz le,,).

Consequently we have

Proposition 4. Suppose that a tensor P,, be given by the
Finsler metric L, such that P,; be symmetric with respect to the
first two indices and positively homogeneous of degree 0. Then a
connection of Berwald’s type satisfying (4. 4) and the axiom I is
uniquely determined by L, coefficients of the connection F), being
given by (4. 9).

In particular, if we put P,;,=0, coefficients of the connection

. as defined by (4. 10) are obtained, which coincide with
Cartan’s ', [3] or Rund’s P*, [7] or Sulanke’s P/}, [8].

If the desirable axiom II is further imposed, it follows from
(4. 8) that @,, must vanish, and hence we have from (4. 5) that
P,;, must satisfy the condition

(4. 11) 2P100_P00t=0'
Thus we have from Proposition 4

Corollary. Assuming that P,, be the tensor such as mentioned
in Proposition 4 and satisfy (4. 11), a connection of Berwald’s type
satisfying (4. 4) and axioms I, II is uniquely determined by the
Finsler metric. Coefficients of the connection F}, are given by

(4 12) Fjik= -th;c'— Qi-ﬂc'— lelch‘fo +Cjtle-ko + Crcile-jo-
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In the case of the connection given by L. Berwald, the tensor
P, is equal to —2 A,;, (Symbols used by E. Cartan) [2], [3],
[7], which satisfies (4. 11) clearly, but it seems somewhat com-
plicated. In the following we shall give two examples of a
connection of Berwald’s type.

A. Pm=gulk-

Following E.Cartan, we denote by [, covariant components of the
unit vector having the same direction with the element of support
b'. It is obvious that this P,; does not satisfy (4. 11). From
(4. 9) we obtain

(4. 13) Fl= F}ik + %‘Ajik — %(5% +0l,—gal).

This connection satisfies the axiom I, but not II and IIL
B. Py=As.

It is clear that this P, satisfies (4. 11). In this case, we have
from (4. 12) that

(4. 1) R

This connection satisfies both of axioms I and II, but not IIL
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