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In order to derive Rund's connection in  a Finsle r  space, R.
Sulanke [8] used the concept of direction-dependent affine connec-
tions, and determined the connection uniquely by the system of
axioms, analogous to the case of a Riemann space.

The purpose of this paper is to give a  global foundation of
direction-dependent affine connections, and to discuss axioms
introduced by R. Sulanke. Since there exists, in general, no direc-
tion field in the large on differentiable manifold, we shall first
define the concept of f-relative linear connections, from which a
Finsler connection is naturally constructed. R. Sulanke gave three
axioms to determine Rund's connection uniquely, and remarked
later on [9 ] that the second axiom was a result from the other
two. It is well known that Berwald's connection [1 ] satisfies the
first and second axioms, but not the third. In the final section of
the present paper, we shall show that there are infinitely many
connections of Berwald's type.

§  1 .  A  system of f-relative linear connections

Let P (M , r ,  G) be the principal bundle of frames tangent to
a differentiable n-manidold M , where r  is  the projection P — >M
and G the general linear group GL(n, R). We consider a local coor-
dinate ( x i ) ,  i= 1, 2, •••, n, of M , and then a frame p , (bc,), a=1, 2,
•••, n, tangent to  M  at a point x  is expressed as pa =pia (a/ax')x .
Thus, ( x i ,  p i a )  is thought of as a local coordinate of p  P, which
is called a  canonical coordinate. I n  terms of a canonical coor-
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dinate, the right translation R, of P  by an element g , (gab )  c G
is expressed as (x i , P i a)— )(x i , P`bg".).

Let B(M, y ,  F , G) be the bundle of tangent vectors to M,
where r is the projection B--4M and F  the real vector n-space.
Analogous to the case of P , we have a canonical coordinate (x 1,
1,') of a point b E  B , where b=be(a /a xe) x . B  is  an associated
bundle with P, and G acts on F  by the rule f= fa ea c F--+ga i,fb ea ,
where (ea ), a=1, 2, • • •, n, is  a  fixed base of F  and g=(ga„) c G.
A  point p= (x e, pea ) c P  is regarded as the admissible mapping
F—›B, such that f=fae a —>(xt, p'„ f a ).

Definition. A  system of f-relative linear connections {F (f )}  in
P(M, 7 7 , G) is a collection of distributions F (f):p c  P --4 '(f ), on P
corresponding to any non-zero element f E F, such that the follow-
ing two conditions are satisfied :

R d . P p=  P ",±  F (f)„  (direct sum),
RC 2. R o F (f ),= F (g - lf)„,,

where /3
2, is the tangent vector space to P  at a point p  and P",

the vertical subspace of P .
It is to be remarked that a distribution F ( f )  alone is not a

linear connection in P , because RC 2 differs from the ordinary
condition R ,F „= F „  for a linear connection [6, (5. 2)]. It follows
from RC 1 that any tangent vector X E P. is written in the form
v (f)X + h (f)X , where v ( f )  X E P", and h(f) X  E  F(f), are called the
f-relative vertical part and f-relative horizontal part of X  respective-
ly. If v (f  )X ,  0 , X  is called f-relative horizontal, and if h (f )X
=0 , X  is f-relative vertical. It is easy to show that those v ( f )

and h (f )  satisfy the following equations respectively :

(1. 1) R , v ( f)=v (g 'f)R ,, R , h ( f ), )R,.

In similar manner with the case for a linear connection in P,
we can define the 6(Lie algedra of G)-valued 1-form (0(f ), which
is given by

(1. 2) (0 (f ) F(A )= A ,  A  E  6,
(1. 3) (0(f ) F (f)=0,
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where F(A ) is the fundamental vector field on P corresponding to
an element A E  â .  The 1-form w (f  ) is called the f-relative connec-
tion form [4, (2. 5)]. As is easily verified from (1. 1), w (f )  sat-
isfies the equation [4, (2. 6)]
(1. 4) ( 0 (  f  )„ R g = ad(g -  ') w  (gf),, g  E G.

The lift 1( f),,X  of a tangent vector X  E .M  to a point p  c  P
is by definition the tangent vector to P  at p, such that l ( f ) ,X  is
f-relative horizontal and rcl( f ) , X = X .  Making use of this l( f ) , we
obtain the f-relative basic vector field B 1 (f 1)  corresponding to
c F, which is defined by

(1. 5) B f(f i)„=1(f  )p

where p c  P is regarded as an admissible mapping F.--)B . Let e=
p - 1 7  be the basic form on P , then we have

(1. 6) 0 B f(f0=fi.

It is obvious that the following equation holds from RC 2:

(1. 7) R9131(fi)p=-Bg-if(g-1.fi)„o.

On the other hand, we can define the absolute basic vector
field B ( f )  corresponding to f  E F  which is given by the special f -
relative basic vector field B 1 (f )  [6, § 5].

Now, if we put Â-'„= ( a / a e b ) e ,  the set (ib a)  is considered as a
base of the Lie algebra J. Hence the f-relative connetion form
w (f )  is expressed by w(f)ab k"„. From (1. 2) and (1. 4) it follows
that those componets w (f)a„ are written in the form [4, (2. 10)]

(1. 8) w (f  )b=p - l at(d1, „̀+p , „ F.,',(Pf)dxk),

in terms of a canonical coordinate (x i, p a ), where (p- 'a,) is the in-
verse matrix of (P i a) and F i l l, are functions o f (x`, V = P i a f a ,
f = f a e ,  Those F .,'„ are called coefficients of the f-relative linear
connection 1"(f).

Next, by making use of (1. 3), we obtain a local expression
of the f-relative basic vector field B 1 (A )  as follows :

(1. 9) Bf( f a
a
x , Fiki(Pf)  al3pk
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at p .  Especially the absolute basic vector field B (f )  is written in
the form

(1. 10) B(f)p=p'afa(axa --p i bFika n a
a
p t )-

In the case of an ordinary linear connection in P , the asso-
ciated connection is defined in the associated bundle B .  In the
similar way, we obtain the associated connection in B  with the
system of f-relaive linear connections { r ( f)} . In fact, if we take
the mapping K 7 : p  c  P—›pf c B, the associated connection
H : b c B-41, is defined by

(1. 11) H,= pf=b.

It is to be noted that H  is uniquely determined by {r(f)},
independent of the choice of fc F, which is easily seen from the
equation Kg _i„, K,R„_, A s  thus defined H  is called the asso-
ciated non-linear connection in B . It is easy to verify that the tan-
gent vector space B, to  B at b is decomposed in the form B",+
H, (direct sum), where B", is the vertical subspace of B ,. Hence
Xe B ,  is written in the form viX+hi X where v 'X  c B ", and
hi Xe H , .  From (1. 9) it follows that a local expression of X c H,
is given by

(1. 12) X = X i  b")  a  
•( a

ax ' abk
where b= (x', b").

Similar to the definition of a path in the case of an ordinary
linear connection, w e have an absolute path on M , which is a
projection of an integral curve of the associated non-linear connec-
tion H .  It is seen easily that an absolute path is a projection of
an integral curve of an absolute basic vector field B ( f ) .  Accord-
ing to (1. 10), th e  system o f differential equations representing
an absolute path is

(1. 13) d'xi dx"\  dx-1 dxk+ F i x '
'dt2d t  )  d t  d t  = 0 .

On the other hand, an integral curve of the f-relative basic vector
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field B r ( f i )  may be considered, but its  projection on M  is
meaningless, because of (1 . 7 ). From this point of view, relative
path due to R. Sulanke [8] seems to be defined locally alone.

§  2 .  Vertical connections

Let Q(B, Tr, G) be the induced bundle from P(M, rc, G) by the
projection 7 of B(M, 1-, F, G) [ 4 ] .  The bundle space Q is defined
by Q= {(b, p )  B x P , (b )=7 r(p )J. We consider the closed sub-
manifold Q(x), { (b, p ) c  Q, r (b)=70Y = XI of Q  for a fixed point
x  E  M  Then Q(x) has the structure of a principal bundle over
B(x) ,  {b E B, r(b)=x} (the fibre over x E M  of the tangent vector
bundle B ) .  The group of structure of Q(x) is G clearly.

Definition. A  vertical connection in Q  is a distribution C : q
E Q—>C,, such that every restriction CI Q(x) of C to Q(x) for x c M
are a connection C(x ) in Q(x).

With respect to the connection C(x), we obtain a operation of
lift, which is denoted by 1e, and further the basic vector field
BC ( f )  corresponding to f  E F is defined as follows :

(2. 1) Be( f gcl pj f i f  q =  ( b ,  p ) ,  f ,= p - lb,

where d p  is the differential of an admissible mapping p  and I f , is
the identification of F  with the tangent vector space F f i  to F at
A [ 4 , P. 3].

In terms of a canonical coordinate pt a ) of Q(x), components
(wc(x))a, of the connection form wc(x) of the connection C(x ) are
expressed in the form

(2. 2) (wc(x),)a,,,p- Ndp',+p),C,i,c(b)dbk), q=(b,p),

where C,i, are functions of (xh, bk), canonical coordinate o f b.
Consequently a tangent vector X  E C(x), is expressible by

(2. 3) x=-_-.7c(  a
  — p i C ,(b)  a

  ) .abt "

§  3 . Construction of a Finsler connection

The definition of a Finsler connection in Q has been given in
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the previous paper [ 4 ] .  The purpose of the present section is to
construct a  Finsl e r  connection from a  system o f  f-relative
connection { r( f)} , together with a vertical connection C .  To do
this, we first prove

Proposition 1. The operations

(hh),= Kf h( f )72, (hv ),= lc g v'it ,

applied to the tangent vector space to Q  are projection operators,
where q=(b, p), f= p - - 'b, )2 i s  the induced mapping Q—>P, (b, p ) ,
p , and Kir is  the mapping P—*Q, p--)(p f, p).

Proo f . We have

(h 7 )2 , = K f h( f )72 Kr h(f ))2= KA( f )h( f ))2= K fh( f )7) , (11%,

and

(h") 2 , =leg v'tl' qv 't =legv't = (hv),.

Therefore the proof is complete.
Thus, let us consider distributions F ' and Tv corresponding

to projection operators h ' and hv respectively :

(3. 1) Ix c Qq , h ' X= X} ,
(3. 2) Tr, =  {X  (2,, hv X= X} .

In the first place, we shall show that

(3. 3) Q,,Qv g+ ±Fv, (direct sum),

where Q ", is the vertical subspace of the tangent vector space (4.
Given X c Qq , w e put

X v=h"X ,
Y = X— X' — Xv.

It follows from Proposition 1 that X ' c r ' ,  and Xv 6 Then
we obtain

it Y= TrX —  K f h( f ))2X — rX
=TrX—Kf h(f)72X—v'fi.X=77-X—h'Kp9X-717TX,

where K 7 is the mapping P—*B used in  (1. 11). Putting Z=icX
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—.Kir)2x  c 13,, it is easy to see that Z  is vertical. Hence we have

tY= Tr X —+ 7 1 ) t X =  O.

Consequently, we have the decomposition of X  as (3. 3) :

X = Y+ X"± X " , Y E  Qv g , X" c  T " , ,  X" c

It is easy to see that (3. 3) is  direct sum. Hence the proof of
(3. 3) is complete.

Next, we shall show that

(3. 4) R,Pv,= r r„.
Let us consider x E r",, q , (b, p ) .  By means of the definition of
T"  K fh (  f  ) ) 2 X ,  and, making use of the relation —K o _ i f R , =RA;
and (1. 1), we have

K , f h (g - - 'f)72R,X=Kg _, f h (g - 'f)R 02X  , K,_, I R,h(f))7X
= R ,K i h(f)72X , R,X.

Since ( p g ) i= g - i f ,  the above equation shows that R,X E rh„, and
hence the first of (3 . 4) is  true. Next, given X c Tv,, we have X

Pg v'X , and it follows from the property of the I ' that

le„v'tR,X= P„v't X= R,P,v't R , X ,

which shows that the second of (3. 4) is true.
Finally we shall show that

(3. 5) q=(b, p).

It is clear from (3 . 2 ) that trv , B " ,  .  Conversely, i f  we take
any X E. /3 % , it is obvious that Y= 1°,X c Tv, and fc Y= X .  Thus
we obtain (3. 5).

As a consequence of equations (3 . 3), (3 . 4) and (3 . 5 ) , it is
concluded that the pair of distributions ( I ' ,  T ") as defined by
(3.1) and (3. 2) is a Finsler connection in Q  certainly.

In the general theory o f our Finsler connection in  Q , we
obtain the induced non-linear connection in  B  and further the
quasi-connections in P  [ 4 ] .  In the case of the Finsler connection
as above constructed, it is easy to show that the induced non-
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linear connection coincides with H  as defined by (1. 11), that is,

(3. 6) q=(b, p).

and that the quasi-connectons coincide with the original f-relative
linear connections T( f ), that is

(3. 7) 72Th ,= F ( f ),, q=(b, p),

It is to be noticed that the Finsler connection as above
constructed satisfies the condition F  [5], 132caus2 this condition
F is expressed by K  (  f  H„ p f= b , which is (1. 11) itself.

Gathering the foregoing results together we obtain

Proposition 2. W hen a system of f-relative linear connections
{['(f)}  in P  and a vertical connection C in  Q are giv en, the pair
of distributions (r", F ')  on Q as defined by (3. 1) and (3. 2) is  a
Finsler connection satisfying the condition F. T he induced non-
linear connection coincides with the one associated with {F (f)}  and
the quasi-f-connections coincide with the original fr ( f ) } .

In terms of a canonical coordinate, it is easy to show that

(3. 8)I X = X '  a
a
x , — b) F ,k ,(b)  a

a
bk — ,(b)  a a

p ,,,L ) ,

(3. 9) Ta , 9 X= X' ( a
a
fr( b ' )  a; a ),

where (.7e, b', p a ' )  is the canonical coordinate of q=(b,p). Compar-
ing the general expressions of X E Eh, and E rv q , w e see that, in
place of coefficients F ' k , coefficients b3F ,', appear in (3. 8) and
(3.9), which shows that the condition F  holds for the Finsler conne-
ction as above.

On the other hand, the condition of homogeneity (Cond. H)
is essential for a Finsler connection [5 ] , and, however, the condi-
tion does not always hold good for the Finsler connection as above.
This condition is expressed by the fact that any v-basic vector
field Bv(f )  is positively homogeneous of degree 1, and any h-basic
vector field B'( f ) is of degree O.

Proposition 3. The necessary and sufficient condition for the
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Finsler connection as given in Proposition 2  to satisfy the condition
of  homogeneity is that any basic vector f ield B c (f )  of the vertical
connection C is positively homogeneous of  degree 1 and any  f-basic
vector field B 1 ( f 1 )  o f  th e  system  of  f -  relativ elinear connections
fr  ( ) )1  is R tinv ariant, that is,

(3. 10) _131(f1)=B1(f1), z c  R .

Proo f . It is clear that 1" (operation of lift with respeet to C)
and 1 (the one with respect to (Tv, P ))  satisfy the equation /c7./-=
/7)'. It follws from (2. 1) and the definition of B' ( f ) that B"( f  ) is
equal to Be( f  ). Therefore the first condition is necessary. Next,
we shall first show that

(3. 11) B "(f 1), , K 1 131 (f 1)„, q=(b, p), f =p - 1 b.

In fact, it follows from (3. 1) that K A (  ,)„ E r  a . Let be the
h-basic form of the Finsler connection [ 4 ] ,  and we know from
(1. 6) that

01' (I f f l3  f(1.1),)=13 -1 7 7 1•(K fB f (f i),)=13 - 1 7 K iB f (f i),
--P - 1 7d3f(A),=6Br(Pv=fi.

Therefore (3. 11) is proved. By means of the relation 1,4K , , -K f ,
it follows from (3. 11) that

hzB"(Pq= fi)zq= f B 21( fi )p,

and, acting the induced mapping 7) on the above equation, we have
(3. 10) directly. The sufficiency of the conditions will be shown
without difficulty.

§  4. On axioms given by R. Sulanke

To illustrate the notion of relative covariant derivative, we
take a tensor T  of (1, 1)-type, which is a mapping q E Q--›T(q) E
FOF*. The f , -relative covariant differential o f T  with respect to
the system of f-relative linear connections f r ( f  )1  is by definition
(K,131 1 ( f ) ) ,(T ) , where q=(b,p), f = p - , b, and B f i (f  ) is the f i -relative
basic vector field corresponding to f  F  with respect to  the f,-
relative linear connection [ ' ( f 1 ). I t fo llo w s fro m  (1 . 9) th at the
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covariant differential is expressed by

(4. 1) (R—A r,( f ))g(T )=T ( f i)P , - l a pi,bk ea0e h ,

where q= (xi , b1 , p i a ) , and T= T a b e aC)eb C o e f f i c i e n t s
(f1) of the right hand of (4. 1) are called components of the

f r r e l a t i v e  covariant derivative of T , which are respresented by

(4 . 2) ari F i k (pf
1
 )bh +7' j F i k (P f 1 ) —  7 F  I c ( P f 1 ) *f1,A I,- a x k ab, 

On the other hand, the absolute covariant differential of T  is by
definition (K f B ( f  )),( T ) , where q= (b, p ) , f= p - , b , and B( f ) is the
absolute basic vector field on P .  Coefficients T;,,r(p - '1)) are com-
ponents of the absolute covariant derivative of T.

With respect to the vertical connection C ,  we also have the
covariant differential of T, which is defined by Bp( f  ) (T ) - -  B c ( f ) (T ) ,
and further, we have the covariant derivative T 1,1„ of T.

Now, let a Finsler fundamental metric function L  be given.
Then, the vertical connection C  is uniquely determined by the
hypothesis that the connection be symmetric and the covariant
derivative of the metric tensor G induced from L as usual vanish,
that is,

a g —gl C l 'k—glZ C 1k= O,abk

where g,, are components of the metric tensor G .  Then C l k  are
given by

(4. 3) C,A(x", b")=g, 1 C1
1
k = 1 -

2  .

In order to determine the system of f-relative linear connec-
tions f r ( f  )1 , R. Sulanke requires the following three axioms :

I. The f-relative linear connections are symmetric, that is,

j k  F k I i .

II. T h e  ex trem al o f  th e  v ariatio n  problem  o f  th e  length
integral coincides with the absolute path, namely
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F,'„(e , b')blbk =7 ; k (X , b')b'bk ,

where 7 ; 7, are Christoffel's symbols constructed from

III. T h e  absolute covariant derivative of the m etric tensor G
vanishes, namely

ag"  —

ag"ax' ab'
where we put F' „(x", b').

Later on, R. Sulanke show [9 ]  that the axiom II is a  result
from the other two.

As for the axiom III, it is well known that both of Cartan's
and Rund's connections satisfy the axiom, while Berwald's connec-
tion does not so [1]. We will be concerned, in the sequel, with
deriving connetions, which do not satisfy the axiom III. Putting

14. 4) —  5g° I ' —g,,F,z,c— F;kyax.
we say that a  connection is o f B erw a ld ' type, i f  P ,,„  does not
vanish. It must be supposed, of course, that P„ k  be positively
homogeneous of degree 0  and symmetric with respect to the first
two indices.

Suppose that P „  be th e  tensor determined by th e  given
Finsler metric L, and we shall show that a connection of Berwald's
type is determined uniquely by L , such that (4. 4) and the axiom
I hold . To do this, we put

(4. 5) Q i j l t - = .  2
1

 ( P i j l t  Pik .) -  PAO.

It follows from (4. 4) and the axiom I that

(4. 6) t j k .

Contracting (4. 6) by the element of support bk, we have

(4. 7)

where we denote by the index o the contraction by bk. Moreover,
contraction of (4. 7) by b i gives
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(4. 8) roto— Foto —  Q loo•

Thus we have F 0 1 0 = 1 0 1 0 — Q 0 0 , a n d , inserting these in (4. 7), we
obtain

Flip =  7- ,f i o — Cip(r .9' 0 —  (Y•00) •

Consequently we have from (4. 6) that

(4. 9) j / o j 0 Q i i i• jk —  C j Ik( 21. 0 +  C j l q  • k o + 0 1 Q '  • io

±  Q4 (  C  ., CI —  C  j l

where we put

(4. 10) F lk — r k  +  C 1
0

1. 0  C 1 0 10 — C0111°'

Consequently we have

Proposition 4 .  Suppose th at a  tensor P i . *  b e  g iv e n  b y  the
Finsler metric L , such that P i j k  be sym m etric w ith respect to  the
f irst tw o indices and positively homogeneous of degree 0. T hen a
connection of Berwald's type satisfy ing (4 . 4 ) and the axiom  I  is
uniquely determined by L , coefficients of the connection FJ,, being
given by (4. 9).

In particular, if we put 0, coefficients of the connection
F j

t k a s  defined by (4 . 1 0 )  a re  obtained, which coincide with
Caftan's F i * t k  [ 3 ]  or Rund's P,*`„ [ 7 ]  or Sulanke's P A  [8 ].

If the desirable axiom II is further imposed, it follows from
(4 . 8) that Q100 must vanish, and hence we have from (4 . 5) that
P i j k  must satisfy the condition

(4. 11) 2 P 1 0 0 — P 0 0 1 =

Thus we have from Proposition 4

Corollary. A ssuming that P i p ,  be the tensor such as mentioned
in Proposition 4  and satisfy (4. 11), a connection of Berwald's type
satisfying (4. 4) and axiom s I ,  I I  is uniquely  determ ined by  the
Finsler m etric. Coefficients of the connection F i i k  are given by

(4. 12) F i tic = F i ik —  JR — C
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In the case of the connection given by L. Berwald, the tensor
P i » , is equal to —2 A 1 5 1 0 (symbols used by E. Cartan) [2 ], [3 ],
[7 ], which satisfies (4. 11) clearly, but it seems somewhat com-
plicated. In  the following we shall give two examples of a
connection of Berwald's type.

A. P IJk = .

Following E. Cartan, we denote by /k covariant components of the
unit vector having the same direction with the element of support
b1 . It is obvious that this P .  does not satisfy (4. 11). From
(4. 9) we obtain

(4. 13) F i l k - F i tk+ A i k - Wi lk+aV i —gi kr).

This connection satisfies the axiom I, but not II and III.

B. A iJk•

It is clear that this Po , satisfies (4. 11). In this case, we have
from (4. 12) that

(4. 14) Fi's= 21  A .

This connection satisfies both of axioms I and II, but not III.
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Note :  In 1 9 3 7 , A Kawaguchi gave the method of metrisation of a non-metri-
cal linear connection (Ned. Akad. Wet. Proc. Ser. A 40, 596-601). By means of this
method, we can obtain metrical connections from two non-metrical ones given in
the final section of the present paper. It is  easily  show n  that th e  connection
obtained as thus from B coincides with the famous connection of Cartan, but not
the one from A.


