Remark on coefficient fields in complete local rings

By

J. N. Mordeson

(Communicated by Professor M. Nagata, April 20, 1965)

Let $R' \supseteq R$ be complete local rings (not necessarily Noetherian) of prime characteristic p such that R' dominates R . Denote the residue class fields of R' and R by K' and K , respectively. Let g be the natural homomorphism of R' onto K' .

In [2, p. 92], it is proved that under the assumption $R'^{pr} \subseteq R$ for some positve integer *n*, there exists a coefficient field of R which is extendable to one of *R'* if (1) $g(R^{\prime\mu} \cap R) = K^{\prime\mu} \cap K$ (*i*=1, 2, …) and (2) there exists a p-basis *B* of *K'* such that $K'^{pr}(C) = K$ where $C = \{b^{\mu} \mid b \in B, e = e(b) \text{ is the exponent of } b \text{ over } K\}.$

Our purpose is to note the following two extensions of this result for *K '* pure inseparable and of arbitrary exponent over *K .* Neither depends on *R '* being integral over *R.*

- Theorem 1. Suppose $\bigcap R'^{p'}[R] = R$. If (1) $g(R'^{p'} \bigcap R) =$ $K'^{pi} \cup K$ ($i = 1, 2, \cdots$) and (2) there exists a *p*-basis *B* of K' such that $K'^{pi}(C) \supseteq K$ (*i*=1, 2, …), then there exists a coefficient field of *R* which is extendable to one of *R'.*

The assumption $\int_{1}^{\infty} R'^{p} [R] = R$ implies the maximal perfect subfield $P = \bigcap_{i} K'^{p_i}$ of K' is contained in K . The following considers the case $P \supseteq P \cap K$. Let

Theorem 2. Suppose $g(P' \cap R) = P \cap K$. If (1) of Theorem 1 holds and (2) there exists a set $D \subseteq P \cap K$ and a *p*-basis *B* of *K'* 638J *. N M ordeson*

such that $K^p(D, C) = K$, then there exists a coefficient field of *R* which is extendable to one of *R'.*

That these two theorems extend the result in $[2, p. 92]$ is a consequence of the following: K^{\prime} ^{*p**} $(C) = K$ implies K^{\prime} ^{*p** $(1) = K^{\prime}$} (C) and since $K'^{pr} = K'^{pr+1}(B^{pr}) \subseteq K'^{pr+1}(C)$, we have $K^p(C) = K$. For Theorem 1, $K^p(C) = K$ implies $K^{p'}(C) = K$ whence $K'^{p'}(C) \supseteq K$ $(i=1,$ 2,…). Clearly, $R'^{P} \subseteq R$ implies $\bigcap_{i=1}^{\infty} R'^{P} [R] = R$. For Theorem 2, we can take *D* to be the empty set and clearly $K'^{p} \subseteq K$ implies $g(P' \cap R)$ $= P \cap K$ since $g \cap R^{\rho} = P \subseteq K$ here. Thus, by Theorem 2, the assumption $R'^{pr} \subseteq R$ in [2] can be replaced by $K'^{pr} \subseteq K$ whence R' need not be integral over *R.*

Proof of Theorem 1. By (1) there exists a set of representatives B_0 of B in R' such that for all $b \in B$, $b'' \in K$ implies $b''_0 \in R$ where $b_0 \in B_0$ and $gb_0 = b$. By the existence lemma in [2, p. 91], there exists a coefficient field k' of R' containing B_0 . Clearly, k' contains a set of representatives $C_0 \subseteq R$ of C by the choice of B_0 . By (2), $g k^{\prime p'}(C_0)$ *K*. Thus, there exists a field $k \subseteq \bigcap k'^{p^*}(C_0)$ such that $g k = K$. Since - $C_0 \subseteq R$ and $\bigcap_{i=1}^{\infty} R^{i}$ \in $[R] = R$, $k \subseteq R$. Q.E.D.

Proof of Theorem 2. By hypothesis and (1) , there exists a set of representatives B_0 of B in R' such that $R'^{p'}[B_0]$ $(i=1, 2, \cdots)$ contain sets of represenatives D_0 , $C_0 \subseteq R$ of *D*, *C* respectively. By (2), there exists a subset $G \subseteq D \cup C$ which is a p-basis of *K*. Hence, $R'^{p'}[B_0]$ contains a set of representatives $G_0 \subseteq R$ of *G*. The remainder of the proof follows as in the proof of Theorem 27, [3, p, 306] , from the inclusion $R'^{p^i} [B_0] \supseteq R^{p^i} [G_0]$ and from the completeness of R' and *R .* Q.E.D.

If *K* is separable algebraic over $(P \cap K)(C)$, then (2) of Theorem 2 holds. It follows that *B* is an algebraically independent set over *P* and thus over $P \cap K$. Hence *C* is an algebraically independent set over $P \cap K$. By footnote 14, [1, p. 378], $D \cup C$ is a p-basis of $(P \cap K)(C)$ where *D* is any *p*-basis of $P \cap K$. Since *K* is separable

algebraic over $(P \cap K)(C)$, $D \cup C$ is a *p*-basis of *K* by footnote 14 or Theorem 8, [1] .

REFERENCES

- [1] S. MacLane, "Modular fields, I." Duke Math. j. 5 (1939), pp. 372-393.
- [2] M. Nagata, "Note on coefficient fields of complete local rings," Mem. Coll. Sci. Univ. Kyoto 32 (1959-1960), pp. 91-92.
- [3] O. Zariski and P. Samuel, "Commutative Algebra," vol. II, D. Van Nostrand, Princeton, N. J., 1960.

Creighton University