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1. BACKGROUND (2-DIMENSIONAL BROWNIAN MOTION).

Consider a standard 2-dimensional Brownian motion with sample
paths t—>x(¢), probabilities P,(B), and expectations E.(f). Given
closed KCR?, the hitting time m=inf(¢>>0: x(¢) €K) is a stopping
time, and in case P. (im<Coo) =1, the hitting probability P,[x(in) e B]
coincides with the classical harmonic measure of the arc BCoK as
viewed from aeR*—K. A point a0k is singular if P,(m>0)=1;
according to BLUMENTHAL’s 01 law, the alternative is P,(m=0)=1.
P.[x(m)edb] is loaded up on the non-singular points of 8K.

KAKUTANI's alternative states that either P. (n<<oo)=1 or
P. (m=o0)=1 according as the (logarithmic) capacity of K:

C(K) =1r>1£ exp[—SKXKZgIb—aIe(da)e(db):'

e(K)=1
is positive or not.
A domain DCR?is Greenian if R*— D is of positive logarithmic
capacity; in that case, P. (e<Coo)=1, e being the exit time inf(z>>0:
() e&ED), and on DX D,

E,.[measure (t<le: x(t)edb)]=G(a, b)db,

G being the Green function for 4/2 and db the element of area.
A subcompact KC D of positive capacity has a Newtonian equilibrium
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S Fox(t)dt

=C(K)E,, | t<<ny

m(w;") <<e(wi) <e+m(wie)
e<<e(wi)

E3

Sf ox(2)dt + Sf ox(t)dt

=C(RE., (f—eo) Vo< (my—e) VP <e<<imm, ’
e<<e(wy) e<e(w;)<<e+m(wi.e)

f* denoting (for the moment) the last leaving time max(z<<my:
x(t)&D) from M-D before the first return to 9K. Multiplying
by ¢, letting ¢|0# under the expectation sign, and using 4), one
finds

C) | fder=E.,1 fox (D), 10)
+E., [ fox(m), m(wi,)>e(wih,)].

But both P, (f>0)=1 and P, (m(wih,)=0)=P,(n=0)=1 since &

is loaded up on the non-singular points of K. 1) is now obvious.

4. PrOOF OF 2).
2) is now to be proved for a self-dual motion: the backward
motion is introduced for this purpose, and at the same time a new

proof of 1) is obtained.

Choose 0<<feC~(M) with Sfde=1 and compose the sample

t
path x with the inverse function £ of f(t)=g fox(s)ds, obtaining
0
a new diffusion 2®=x(f) with G°=f"'G and '=fe.** &(M)=1
and since a time substitution does not change hitting probabilities
such as P.(m<<e) or Green functions such as G, it is legitimate to

suppose e(M)=1 from the beginning, as will be done below.

* a\/b means the bigger of a and b.
*¥) [4,6,10] contain information about such time substitutions.
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Because ¢ was stable, it is possible to define a non-negative
shift-invariant distribution @ of total mass +1 on the class of all

sample paths t& R'—>x(¢) according to the rule:

Qlx(t) Eda, x(t)Edby, -+, x(t,) Edb,)
=e(da)P,[x(ti—t) Edby, -+, x(ta—tn1) Edb,)
—oo<ty<lth<l <tn, a, by, -, boeEM, n>1.

G. Hunt [5] now defines the backward motion [x*(t)=x(—t):
teR', Q], dual to the forward motion [x, Q]. [x*, Q)] is the
diffusion associated with dual G* of G relative to the stable volume
element ¢; it hits each subregion i.0. since Q[x(¢)€&ED, t2=>0] is
unchanged by time reversal: also, it has the same stable distribution

e*=¢ as the forward motion since
e(da)P¥lxe()edb] =e(db) P x(t) eda] **

Both motions have the same Greenian domains, and the associated
Green functions are related according to the rule: G*(a,b) =G(b,a).
[z, Q] is self-dual if it is identical in law to [x*, @]; this happens
if and only if 6=6G*

2) and the new proof of 1) are immediate from the fact that if
e¥ is the stable distribution of hits on 8K via M-D for the backward

motion, then

5) e’=C(K)ef
and
6) e (db) =P., [x(f)edb].

Beginning with the proof of 5), the backward stable mass
e*(db) =e(db) attached to a small volume dbC K can be computed
up to a positive multiplicative constant C(K) (identified later as the
capacity of K) in terms of ef, the backward exit time e¢* from D,

and the backward Green function G*:

) P¥(B) and Ef(f) denote backward probabilities and expectations.



624 H. P. McKean Jr.

e(db) =C(K) E**[measure (t<<c*: x*&dbh)]
—C(K) Sak"l* (da)G* (a. b)e(db).
It follows that

(@) EC(K)SMG(a, Yok (db) =1

at almost all points a€ K relative to ¢. Because (G is smooth on
DX D apart from a pole on the diagonal, p*<{1 on the whole of
K and, as such, is smaller than the equilibrium potential p=P.(1n<Ze)
on D. But also, if pF is the analogue of p* for the closed 1/n
neighbourhood K, of K, then p¥=1 on K (e is positive on opens),
and so p¥>p on the whole of [). As is easy to prove, the stable
distribution of backward hits on 0K, via M-D tends to eff as nfoo,
and now the identification of p* with p on the whole of D follows
by standard methods. 5) is now proved and 6) follows from 1),
but a direct proof 6) is also possible.

Ueno [9: 122] proved that P,[x(m,)Edb] tends geometrically
fast to e;(db) as nloo, uniformly for a€0K; thus, the chain of hits
[x(m,) :n>>1, Q] is mixing, and

Pel[x(f)edb]:liTmS Qlr(m) eda| P[2(7) Edb]

3K

= 1i¢m Qlx(M, +f(whn)) Edb)

=lim Q[x*(n*,)edb),

nhoo

m*, >m*,>etc. being the successive hitting times to 83 via M-D
for the backward motion during the past z<C0). But the 2-sided
chain of forward hits [x(m,):neZ', Q| is mixing under the
(forward) shift, so by G.D. BIRKHOFF's ergodic theorem, it is also
mixing under the backward shift, and by a second application of
BIRKHOFF's theorem,

P lxz(f)edb] = 11;2 Qlx*(m*,)edb]

= liTm Qla*(m,,)edb| =ef (db),
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completing the proof.

The Rockefeller Institute, May 1964.
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