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W . Feller [5 , 6 , 7 ] determined all the diffusion processes in one
dimension, since A. Kolmogorov introduced the d iffusion equation
in  1 9 3 1 . Stimulated by his work, which is o f analytic character,

followed the works of E. B. D ynkin, K. Ito, H. P. McKean, Jr., and
D. R ay, and completely determined one dimensional diffusion in a
satisfactory correspondence between probabilistic an d  analytic pro-

perties. T h e  study o f  th e  Brownian m otion b y  P . L é v y  and the
rigorous set-ups fo r  probabilistic treatment by J. L. Doob seem to
have had prepared a  necessary background for these works.

Approaches to such a so lution have been tried in the case of
multi-dimensional diffusion on the basis o f  these researches, though
it seems to be fa r from completion in any sense. A . D. Wentzell [36]
tried to find all the diffusions determined by the equation of type

(0 .1 ) 8u  (t, x)=  A u(t, x ) ,  x E  D , t [0, 0 0 ),at

where D  is a domain in  a  sufficiently smooth manifold of N  dimen-
sions' )  a n d  A  is  a n  elliptic operator on D , both D  and A  having
sufficient regularities. H e proved that any sufficiently smooth function

1 )  Wentzell assumed that D  is  a domain in the N-dimensional Euclidean space RN.
But the same treatment is possible in  sufficiently smooth manifolds without any change.
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u in  th e  domain o f th e  generator, which is a contraction of A, of

a  strongly continuous sem igroup of nonnegative linear operators

{T 1, t>0} on C (D ) with norm II Tdi<1 necessarily satisfies a boundary

condition of type

(0.2)L u ( x ) - = 0 ,  xE0D,

N-1

Lu (x) ai
0 2 u  

(4 +
N-1

O i t  L u (x )= ] ( x )  ZO` (x) (x )
1,3=1 8E;OV, 1-1 0E1

(0. 3) + r (x )u (x )  + 8 (x )  lim A u (y )± ,a (x ) au (x )
On

x+ H u (y )— u (x ) — . ( y )} ii. ( d Y ) . 3 )

= 1  aE;
N - 1  au

Moreover, he proved that this type of boundary conditions are also

sufficient to determine all the rotation invariant diffusions on a solid
sphere in  R 3 o r  a  circular disc in  R 2 .

H ere, in  this paper, we will first prove that we can obtain the
semigroup {T  t > 0 } o n  C (D ) determined by the diffusion equation
(O. 1 )  and Wentzell's boundary condition (O. 2 ) , if  th e  equation of
type

(a — A )u (x )= 0 , xE D
(0. 4)

(0  —  L)u (x ) q ,(x ) , xEO D

is solved for sufficiently many functions q) on the boundary OD, where

L  is taken to be an  operator given by (O. 3 ) .  T h is equation will
be reduced to a n  integro-d if f eren tial equation  on the boundary : 4 )

N 1

•,kjr(x) —
-  

tr"(a, x)  .  .  ( x )  E  (oz, x ) (x )
OEla$-; 8E1.

2) Precise assumptions on D and A  and definitions of C(D), C(D) and C 2 (D ) etc.
are referred to §2. A-  is  the closure of A  in C(D), where A  is considered to have
C 2 (T3) as its domain.

3) Precise conditions on terms in  (O. 3) are referred to §4.
4 )  This method is an  exension of Feller's idea in  [5 ], where D  is an  interval and

the integro-differential equation (O. 5) is replaced by a system of two linear equations of
two unknowns.
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(0.5)+ r ( c y ,  x )* (x )  +  a l ;,1*(Y) —* - N i = 1
1 (X )W Y )}

1) ( 0 Z ,  d y ) ) = 9 ( X ) ,  X G  OD.

This type of equations are known to be solved in some special cases.

In  constructing the semigroup on  C (D ) ,  which is essentially

the diffusion on D , we make use of a certain class o f  semigroups
{57, t > 0 } ,  a > 0 , o f  non-negative linear operators on C ( D )  w ith

norm IlYt'll< 1 .  This means that there is a class o f Markov processes
on the boundary  8D corresponding to these semigroups. Moreover,
there is a kind o f du ality  in appearance between one of these semi-

groups, that is , {51) , t>0 } , and the sem igroup {T, t>0} on  C (D ),
which corresponds to  the diffusion on D .  This duality naturally

leads to a conjecture that the Markov process on  th e  boundary

corresponding to {.%), t>0 }  i s  the trace on OD o f th e  dif fusion on

D  and other semigroups on C (aD ) in the class are Markov procseses
of some such kind» This probabilistic interpretation will be justified

in a special case (the reflecting diffusion), where L  is given to be

the inward-directed normal derivative 8/0n, by introducing an additive

functional named the local tim e on the boundary , which plays, in

some respects, a similar rôle to that of the local time of P. Lévy [20] ,
H. F. Trotter [31] and K. Ito-H. P . McKean, Jr. [16] in one dimen-

sion. In fact, it will be proved that the diffusion on D  determined

by the equation (O. 1 ) and the boundary condition of type

r(x )u (x ) +  8 (x ) lim  A u (y )+ (x ) = o , xEap,On

can be constructed by a modification of the reflecting diffusion making

use of this local time on the boundary.

The analytic construction of semigroups on C (D ) and C(OD)

5 )  This duality will be naturally extended to the class of sem igroups {Se, t>0} ,
a > 0 ,  and the class of diffusions on D  associated with sem igroups {Te, t>0} , P>0, where
T e has boundary condition (L — s)u= O. Duality for their Green operators is expressed
by (5 . 8)— (5. 9). A  more intuitive explanation will be found in  [33].
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will be treated in Chapter II (§4—§6), and probabilistic justifications

will be contained in Chapter III (§7— §9). Chapter I (§1 — § 3 ) is de

voted to the preliminary results which are used in these chapters. The

main part of this paper consists of the rigorous proofs of the state-

ments in [28, 33] and a part of [30] , while some developments in

details are added anew.

In  two dimensions, the diffusion satisfying Wentzell's boundary

condition was constructed by Wentzell himself [37] under some

additional conditions, and by N. Ikeda [12] using stochastic deffer-

ential equations. M. Fukushima and N. Ikeda investigated the con-

nection between diffusions and Markov processes on the boundary

from  a m ore probabilistic point of view! )  A  decomposition o f a

certain class of M arkov processes to the minimal process and the

Markov process on the boundary will be m ade in [29] . A  deeper

analysis of the Markov process on the boundary will be done by

M. Motoo in  [24] and subsequent papers using the notion of the

sweeping-out of additive functionals. Under some conditions, he has

succeeded a probabilistic construction of diffusions from the minimal

process and the Markov process on the boundary. We remark that

M . I. V iik , i n  a  series o f  papers including [34] . made an in-

vestigation for elliptic equations, which is similar to Wentzell [36]

and a part of this paper, in the Hilbert space set-up independently.

The authors wish to note here that early in 1957-8 K. Ito and

H. P . McKean, Jr. made a series of instructive lectures and discus-

sions, which, together with the book [14] of K. Ito, really brought

about the flavour of the new trends in the theory of Markov pro-

cesses at that tim e. Friends in the Seminar on Probability, especially

N. Ikeda, M. Motoo and H . Tanaka willingly joined in discussions

w ith the authors during the research of this problem. S. Ito  and

A. Orihara kindly answered questions about differential equations

and Lie groups, respectively. The authors express their thanks to

them all.

6 )  Their results can be seen in  [8].
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Chapter I. Preliminary

§ 1 . The Hille-Yosida theorem

First, we restate a version of the Hille-Yosida theorem [10, 39]
for our present u s e . L e t  K  be a com pact metric space and  C (K )
be the space of all real valued continuous functions defined on K
with norm =max I f (x )  I .  We call a  system o f linear operatorsTE K
{T 1 , t> 0 }  ac tin g  o n  C ( K ) ,  simply, a  sem ig rou p  on  C (K ) i f  it
satisfies 7; T =  TH-s, To= th e identity,

->0

any fE  C (K ) ,  an d  T if> 0  fo r  any f > 0 .  T he generator 03 of a
semigroup is defined fo r such f  that the right hand side of

0f —lim  1  ( T i f — f ) 7

t_.0 t

exists. The domain of 03 is denoted by Z(03).

Theorem 1.1. I f  { T ,  t > 0 } i s  a semigrottp o n  C (K ) ,  then
the generato r 0  satisf ies the f o llo w in g  conditions.

(1. 1) Z ( ( )  is  a dense subspace o f  C (K ).

Let a>0.

(1.2) F o r  any  f E C ( K )  there  is  a unique elem ent u o f  Z (0 )

satisf y ing (a—  ( )u = f.

H ence, ( a — )  is  d e f in e d  o n  C (K ) for a> 0.

(1. li(a—)-111<1/te.
(1. 4) (a —03) - V > 0 fo r  f> 0 .

Conv ersely , i f  03 i s  a  lin e ar o p e rato r satis f y in g  (1 . 1) and i f
th e re  is  a  non-negativ e num ber a ,  su c h  th at  (1. 2)—(1. 4) ho ld  fo r
a l l  a>ao, th en  0  is  the generato r of a sem igroup on C(K), w hich
is un iquely  de term ined  by  0.

(a— )' is som etim es denoted by Ga and is called th e  Green

7 )  By lim u n = u  or in  C (K ) we mean lim uil =O.
n-->

lim iiTtf — f 11 = 0  for
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operator o f th e  semigroup. It is given by

-
G af—  :e a t T 1f d t .

C o r o lla r y . L e t  OA  be the g e n e rato r o f  a  s em ig r o u p  on C(K).
I f  constant 1  is  in  Z (0 i )  a n d  if  1 < — c  f o r  som e constant c ,  then
i' — + c  i s  the g e n e rato r o f  a  s em ig r o u p  on  C ( K ) ,  w here  Z (0 )

=Z(03').

P r o o f .  Since 0  is  a  generator, {(a —c) —031 - I= {a— (0 + c ) } '
= (a  —0 is defined on C (K )  and non-negative for any sufficiently

la r g e  a . C o n d it io n  01< —c im plies (a  —03') 1 = (a — (0 + c))1 =
— (01 + c ) > a ,  a n d  hence a (a —03') - ' l< (a  —  ) - 1 (a —13')1= 1,

implying 11 (a  —0Y) - '11<l/ce. Thus, 0 ' is  the generator o f  a  semi-

group on  C ( K )  by Theorem 1. 1.

T heorem  1. 2.8 ) i )  L e t  B  b e  a  linear operator de f ined  on a

subspace Z ( B )  o f  C ( K )  tak in g  va lues in  C ( K )  a n d  satis f y  the

f ollow ing conditions.

(1. 5) Z ( B )  is  dense in C (K ) .

(1. 6) I f  f  in  Z ( B )  tak es a positiv e  m axim um  a t  x  in  K 0 ,
th e n  th e re  is  a p o in t  x ' in  K  su c h  th at  f ( x ' ) = f ( x )
and B f(x ')< O , w here  K ,  i s  a  f ix e d  o p e n  and dense

subset o f K .

Then , t h e re  i s  a  c lo se d  e x te n s io n  o f  B ,  a n d  h e n c e  th e re  is  the

sm allest closed extension B .  B  also satisf ies (1. 6).

ii) L e t B  sat is f y  (1. 5) and the f ollow ing tw o conditions.

(1. 7) I f  f  i n  Z ( B )  tak es a positive m axim um  a t  x  in  K,
th e n  th e re  is  a  p o in t x ' in  K  s u c h  th at  f ( x ' ) = f ( x )
and Bf (x') <0 ;

(1. 8) T he range of œ 0— B  is dense in C (K )  f o r  sonic iyo> 0.

8 )  This has been proved essentially by Wentzell [36, Lemma 1  and Theorem 2]
and K. Ito  [14, Theorem 39. I].
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T hen, B  is  the generator o f  a s em ig ro u p  on C (K ) , w hich is uniquely
de term ined  by  B.

P ro o f .  i )  L e t  {u„} be a  sequence in  Z (A ) such that limu„=0
and limBu„ exists. In  order to show that B  has a closed extension,

it is sufficient to prove lim B u „ = 0 . Assum e that lim Bu„ takes a

positive value . K o  being dense in K ,  there is an  xo E K , such that

lim B u ,,(x 0) > 0 .  Since Ko is  open and the convergence in C ( K )  is
uniform , there a re  an  o p en  neighbourhood U  o f  x o contained in
Ko an d  p o sitive  numbers e  and no such that B ii„ (x )> e  for xE  U
and n> n o .  B y ( 1 .5 )  we can take an h (B )  such that h (x 0 ) > 1
a n d  h ( x ) < 0  fo r  xEK—  U .  P u t  u„' =u„+s(1+ ilBh11) 1 h. Since
lim u„=0, u ( x 0)  is positive and greater than u ( x )  fo r all xEK— U
an d  sufficiently la rge  n ,  an d  hence, u,, takes a positive maximum
at some ponit in  U , and  never in K— U .  By (1. 6 ), there is a point
x„ at which ur„ takes the positive m axim um  and Bu„' (x„) < 0 .  But,
since

B uax )= B ii„ (x )+ e(1 + 1 1 B hp - i B h(x )> B u ,,(x )— e> 0

fo r xE  U  and n> n o ,  x „  is not contained in  U , which is absurd.
Therefore, limBu„ can take a positive value nowhere. Similarly, we

can prove that —lim/3u„ can not take a positive value , and  hence

0.
K—>,0

Now, we prove that B u (x o )< 0  when u E Z ( f_.3) takes a positive
maximum at point x o in  K o . Assume B u (x0 )> 0 , take a  sequence

{u„} in  Z ( B )  such that lim u„=u and lim B u„= B u , and  put u ---u „
11—>co

+s(1 11/3hp - l h  by taking e , U  and h  in  th e  same way as  above.

Using lim  u  and u ( a 0) = max u ( x )  in  p lace of lim u„=  0, we can

make a  similar argum ent as above, leading to a contradiction.
i i )  We prove that f > 0  and ( o — B)u— f imply u > 0 . By (1 .8)

we can take  v ( B )  and g  such that g > 1  a n d  (a o —B)v =g.
Since (co o — B )(z i+ ev )= f+ eg> 0  fo r  any e>0, —  (u +  e v )  does not

take positive maximum by (1. 7) , and hence u + v> 0  , which implies



536 Ken-iti Sato a n d  Tadashi Ueno

u > 0 . Thus, (a o — B)u= 0 implying u= 0, ao —B maps Z (B ) one to
one and onto the range 91(ao — B ). T h en , (a o —B) - '  is defined on

B) , linear and  non-negative. Moreover, it is bounded because

- Ilf Ilg < f< Ilf lig  a n d  (tro—  B ) '>  0  im p ly  — 11f II (ao — B ) ' g <
(a a — B) - 1 ( a o  —  B ) 'g , that is, II (a  B) - i f  11< (ao — I f
91(ao — B ) being d en se  b y  (1. 8) a n d  (a o —B) - ' being bounded,

(a o — B )u = f  has a  so lu tio n  u  fo r  any fE  C ( K ) .  B y the former
half of the proof with K o replaced by K , B  satisfies (1 . 7 ). Thus,

(cro —B) - '  is defined o n  C (K ) ,  non-negative, an d  maps C (K )  one
t o  o n e  a n d  on to  Z (B ) .. Clearly, ( a o — B) -1 11— ikao — B) - 1<00.
Write G. ° f o r  (a o -

L e t a, satisfy 0< (a, — ao) iiGaa ll< 1 .  F o r any f E C ( K )  an d  a
-

satisfying ao < a < a i the N eum ann series u = Go,o f  +E (ao —  a ) "  G i f
n=1

is a solution of u+ (a — ao)Ga o u =Ga of .  But, applying (a o —B) to the
both hand sides, we know that u  is also a  solution o f  (a — b )u = f.
Besides, B  satisfying (1. 7), u  is  the un ique so lu tion , and  hence
(a —B) - ' is defined on C (K ),  and maps Z (B )  o n e to  one and  onto
C ( K ) .  It is also non-negative a n d  bounded. W e w rite G «  for

Moreover, IIG..11< 1 / « .  In  fact, if u = (a— B) - l f  takes a
positive value, there is a n  x0 E K  such that max u (x )==u (x 0)  and

x€ K

B u(xo)<O , and hence

1 1 1 max u (x ) = u (x0 )< (a  B )t i (x o ) f(x0 )< Ilf II,a

where f C ( K )  an d  a o < a < a i . Similarly, min u (x )> —— ( 1 /a) Ilf II,
i f  u  takes a negative v a lu e . These inequalities imply Ilud< (1/a )lIf
and hence IIGOEII--- II (a — B) - 1 11< l/ a .

We obtain a  similar result i f  w e  replaee ao an d  a, by a , and
a , (a l < a 2<2a 1) respectively, because II Gc, ill < (a — tEi)/tri<

—  « i ) / c c i < 1  f o r  ai<ce<a2, and the corresponding Neumann series
converges again. Taking, for instance, a,,,=2a„_ 1 — (a,/2) (n=2, 3, • • •)
an d  repeating similar observations, we have a  system o f  operators

{G., cr>tr o}  on C (K )  satisfying (1. 1)-(1. 4) with 3 replaced by B.
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Thus, f i  is the generator of a semigroup on C (K )  by Theorem 1. 1.
R em ark . In  the above proof we h ave  proved that (1 . 5 ) and

(1 . 6 ) imply that

(1. 9) if  f  in  Z (B )  takes a positive m axim um  at x  in  Ko
then B f(x )< 0 .

Similarly (1 . 5 ) an d  (1. 7 )  imply (1 . 9 ) with K , replaced by K.

C o ro lla ry » Suppose t h a t  63 i s  the g e n e rato r o f  a  semigroup
on C (K )  and t h a t  M  is  a  bounded operator on C (K ) .  D ef ine 03'
on Z(03 ) by 03'f---- Olif+ M f .  I f  either M  o r  13 ' satisf ies (1 .7 ), then
IN  g en erate s  a  semigroup on C (K ).

P ro o f. Clearly 03  satisfies (1 . 7 ) , a n d  hence, i f  M  satisfies

(1. 7), so does 0+  M  by the preceding remark. Since Z (0 3 ')  Z (6 )
is dense in C (K ) ,  it is sufficient to prove that 061 satisfies (1. 8).
M  being bounded, we can find a positive a° su ch  th a t G ,M  II<

-
iiGadi • < 1 .  Then, a Neumann series u=GŒof+ E (G . ,M ) 'G a of

is a solution of u—Gcco Mu=Ga of  and hence it is also a solution of
(a s — 03 — M )u =  (as— 0 3 ')u = f  for any fE C (K ) ,  completing the proof.

§ 2 .  Solutions of parabolic and elliptic equations

L et D  be a domain in an N-dimensional orientable manifold of
class C -  and  have com pact closure D .  T he boundary OD o f D  is

assumed to be non-empty and to consist o f a  finite number of con-

nected components, which a re  ( N— 1)-dimensional hypersurfaces of
class C. L e t  a n  elliptic differential operator A  be given on D  by

8   (
a "  ( x ) v  a

—

( x )Au(x)— 1   O U ( ) )
a ( x )  a x i ay,

(2. 1)
+Eb i  ( X )  

a u  
 ( X )  C (X ) l i ( X )

i=1 a

9 )  Similar results are found in [10] and [27].
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where a 1 ( x )  i s  a  c o n tra v a ria n t tensor o f  o rder 2 ,  o f  c lass C ''',")

symmetric and strictly positive definite at each point of D , b '(x )  is
a  c o n tra v a ria n t tensor o f  order 1  an d  o f c lass  C " ,  c (x )  is  a  non-
positive function in  C °."(b ), and a (x )= d e t(c e i(x )) - '. x 1 ,•••  a re
local coordinates of x  in  a  coordinate neighborhood U . The volume
measure m  on D  is given by

m (E )= E
-i/ a (x ) d x '• • •d .e , E c U n D .

T h e  (inward-directed) no rm al derivative au/8n and  the surface
measure Zt on aD a re  also associated with a " .  T hat is , if  we take
such a coordinate system T r ( x ) = (  • • - ,  :-x " )  that 8D  is characterized
by = 0  and D  b y  7 x">0  in  U , and  if the values o f a "  and a  in
the system a- a re  denoted by and a, respctively , w e have

(x ) = 1
i N  ( X ) ( x ) ,  x E a D  n u,au au 

an ; _iv a N N ( z )

(E )= -1 / a (x ) v a N N ( ) ci:V•••(1 , E C 8 D n U .

T he definitions o f A , m , -1"ri, and a/an do  not depend on the choice
of local coordinates, and in  and can be extended for any measur-
able subset of D  and 8D  respectively, uniquely in  a  natural way.

N ow, consider th e  C auch y problem  fo r  parabolic differential
equation

8u. (2. 2) (t ,  x ) =  A u (t ,  x ) t> 0 , xE  Dat

with boundary condition

au(2. 3) r ( x ) u ( t ,  x )+ (t, 4 = 0  t > 0 ,  x 0 D

1 0 )  We say that a function or a tensor is o f class C , i f  it is n-times continuously
differentiable. Moreover, i f  its n-th derivatives satisfy the uniform Holder condition
with exponent (0 < tc< 1 ) in a set E, it  is called to be of class Ca ,  in  E .  C, (E ) and
C 0 (E ) are the sets of all real-valued functions o f  class C m  and of class Cm, x in E,
respectively.
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where r ( x )  is  a non-positive function in C 2 "(8D ). The fundamental
solution of th is prob lem  has been constructed  by S. I to  [17, 18]
extending the method o f E . E . L e v i.  W e cite a part of his results
in the following Theorems 2. 1-2. 3.

Theorem 2. 1 . i) 'T h e re  is  a  f u n c tio n  p ( t , x , y )  de f ined  on
(0, 00) x D xh , a n d  continuous in  y  f o r  .f ix ed (t, x ) E  (0 ,  0 0 ) X  D.

F o r any  fEC(T15)

u (t, x )= p(t , x , y )f (y )m (dy )" )

is  co n tin u o u s i n  (0, 00) X D ,  c o n tin u o u s ly  d if f e re n tiab le  in  t>0 ,
belongs to  C ( D )  as  a  f u n c tio n  o f  x  and  is  the  un ique  so lu tion  o f
th e  equation (2. 2) satis f y ing  th e  boundary  condition (2. 3) an d  the
initial condition

lim u ( t ,  x ) = f ( x ) ,  u n if o rm ly  in  x E D ." )

S uch a  f unc tion  p(t, x , y )  is  unique.

ii) p (t, x , y )  is non-negativ e an d  satisfies

p(t+ s, x , z )=_p(t, x , y )p (s, y , z )n i(dy ),

x , y )m (d y )<e c t, w h e re  C= max c(x ).

M oreov er, c(x).---- 0 and  y ( x ) -= 0 im ply

x , y )m (dy ) = 1.
D

T h e  function p(t, x , y )  is  c a lled  the f u n d am e n tal so lu tio n  of

the Cauchy problem for the equation (2. 2) with boundary condition

(2 . 3 ). M aking use o f th is function w e can solve a more general
equation in the following.

11) Since m (D )  = 0 , we may write SD  in  stead of .

12) This holds since the coefficient of au/ an  in  (2 . 3 ) is positive on aD and D-  is
compact.
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T h eorem  2. 2 . L et f (x ) ,  h ( t ,  x )  an d  go(t, x) be bounded conti-

nuous functions o n  D , (0, 00) x D  and (0, 00) X O D , respectiv ely . I f

there  ex ists  a  n u m b e r ,= ( t 1 , t 2)  f o r  any  positiv e t ,  an d  t, (t1<t2)

su c h  th at h E C '''( [t1 , t ] X  D )  an d  C ° " (  [ t 1 ,  t2] X am, then

u (t ,  x )= Tip ( t  x, y)f(y)711(dy)

(2. 4) x, y)h(t —  s, y)m(dy)

+ : a 7s a p p(s, x, y)§o(t— s, y)7ri(dy)

ex ists an d  is

(2. 5) continuous o n  (0, 00) X D ,  continuously  dif f erentiable

in  t> 0 ,  an d  o f  class C 2 ( D )  an d  C 1 ( 25)  as  a  function

o f  x.

u (t ,  x )  satisfies

(2. 6) ( — A )u (t, x ) = h (t, x ), t> 0 ,  x E D .

(2. 7) —  +1—n )u(t, x )  = ( t ,  x ),  t > 0 ,  x E  OD,

(2 . 8) lim u ( t ,  x )= f ( x ) , boundedly in  x E D ." )

Conv ersely , a  f unc tion  u (t ,  x )  o n  (0, 00) x D  satis f y in g  (2. 5)—

(2 . 8 ) is necessarily  represented by  (2. 4).

W e  re m a rk  th a t  th e  above theorem s a r e  sharpened in  th e
following lemmas, which we prove in  the appendix.

L em m a 2. 1. p ( t ,  x, y )  is  c o n tin u o u s  in  (t, x , y )  o n  (0, 00)

x D X  D.

L em m a 2. 2 . I f  h (t ,  x ) is bounded an d  m easurable o n  (0, 00)

X D,

u (t, x ) = t 4,p(s, x, y)h(t —  s, y) m  (dy)
0 D

1 3 ) A ctually , (2. 8) holds uniformly on Ï .
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is  con tinuously  d if f eren tiab le  i n  x E D .  M o re o v e r, w e  h av e , f o r

an y  positiv e  T,

i t  (2. 9) m ax  su p  ( t ,  x ) 1 < 0 0  ,
i i I I , 0< t  ‹T  a 4 . )

w here a ; (x )=  ( .4 ) , .4 )  is a coordinate sy stem  in  Ulf ( 1 < j < M ) ,

a n d  ULT i = D.
i=1

Integrating p ( t ,  z , y ) in  t ,  w e have the G reen function for an
elliptic equation.

Theorem 2.3. I f  at least o n e  o f  min c (x ) < 0 an d  min r (x )  < 0
,Ea D

holds, then
-

g (x , y ) p ( t ,  x, y)dt
0

is f in ite  unless x =  y .  F o r an y  fE C ° . " (D )  an d  çoE 0 , "(aD)

(2 . 1 0 )  u ( x ) - -  g (x ,  y ) f (y )m (d y )±  g (x ,  y ) (y )7 -'11(dy)

ex ists an d  satisfies

(2. 11) uE C i (D )  C 2 (D )

(2. 12) —  A u (x ) =  f(x ) , xE  D , •

(2.13) _ ( +  
 a

7- + 
an

) u ( x )  ç o ( x ) ,  x E 6 1 ) .

Conv ersely , a  f u n c tio n  u w hich satisf ies (2. 11) - (2. 13) is neces-
sarily  represen ted  by  (2. 10).

Corollary. L e t  c  ( o r - i - ) ,  f  a n d  ça s at is f y  th e  c o n d itio n  in
T heorem  2. 3. I f  v (t ,  x )  is  a  f u n c tio n  satis f y in g  (2 . 5 ) an d  i f

( :  A . )v ( t ,  x )  =  f (x ) , t> 0 , x E  D,

a
a
n ) v ( t ,  x )  ç o ( x ) ,  t > 0 ,  xE6D ,

limy (t , x) = 0,b o u n d e d l y  in  x E D ,

th e n  lim v (t ,  x )= u (x )  ex ists an d  u (x )  satisf ies (2. 11) - (2. 13).
t
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Now we consider the solution of two typical types of problems

for elliptic equations an d  introduce some notations for the use in
Chapter II. T h e  results stated below a r e  found in  the standard
references such a s  [2] and  [22] . They are  also found in  S . Ito [18] .

T h eo rem  2 .4 . i )  F o r any  constant a > 0  an d  fE C ° '" (D ), the
solution u in  C2 ( 15)  o f

(a— A )u (x )=  f (x ) ,  x E D
u (x )= 0 , xE8D

e x is ts . S u c h  u is  un ique  and  w e  d e n o te  it  b y  GT i nf." ) " )

ii) 1, considered  a s  a n  o p e rato r i n  C (D ),  is  linear, non-
negativ e  a n d  b o u n d e d . I f  a  is  p o s itiv e , 11G ' < 1 / a .  S i n c e  the
d o m ain  o f  de f in ition  C °'" (D ) i s  dense  i n  C (D ), G V ° is uniquely
ex tended to the w hole C (D ) .  H enceforth G r  denotes this extension.

iii) G r  is non-negativ e  a n d  Gc,mi ' f  v anishes o n  OD f o r  each
fE C (D ).

iv) F o r  {G r', a > 0 }  th e  reso lv ent equation  holds, that is,

—Groni n + (a—  [3 )G r  G r  = 0  f o r  an y  a,

y )  F o r  any  f E C (D )  an d  x E D

lim aGTi n f(x ) =  f(x ) .
CO— >co

M oreov er, the conv ergence is uniform  in  x E D  i f  f  v anishes on D .

C o ro lla r y  to  iv ) . T he ran g e  o f  GV", t h a t  i s ,  {6 f i fE C (b ) }
does not depend o n  th e  choice o f  a>0.

T heorem  2 . 5 . i) F o r an y  constant a > 0  an d  çoEC(OD), the
solution u in  C (D )  C 2 (D )  o f

(a—  A )u (x )= 0 ,  x E D
u(x )=ço(x ), xEOD

e x is ts . S u c h  u is  un ique  an d  w e  deno te  it b y

14) min indicates that this is the minimal resolvent in the sense o f Feller.
15) More precisely, it can be proved that G T M ilifE C 2 ,‘(5 ).
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ii) H a, considered  a s  a  m apping  f rom  C ( D )  i n t o  C (D ) ,  is
linear, non-negativ e an d  bounded w ith  norm  one.

iii) H ag , does no t tak e  a  non-negativ e m axim um  [non-positive
m in im um ] in  D , u n le ss  it  is  a constant function.

iv) I f  f la ip  is not constant an d  tak es a non-negativ e m axim um
[non-positive m inim um ] at point xo on aD, an d  if  H aço is dif f erenti-
ab le  at  x o ,  then

a I la y o (x 0 )< 0  [> 0 ] ." )

an

v) I f  ço is  in  C '" (a D ), I la ço  is  in  C z (b ) ." )

The property iv )  i s  due to  Giraud, Hopf, and Oleinik in case

.1- -L ço(x0)> 0  [ < 0 1 .  B u t  th e  proof in  [26 ] can  b e  ap p lied  in this
case w ith o u t an y  ch an ge . v )  is reduced to  T heorem  2 . 4 , i) by
an appropriate extension of go. to Iii. W e rem ark  that v )  i s  a special
case of Theorem 9. 3 in Agmon-Donglis-Nirenberg [1] .

Now, we add some properties of the closure o f A.

Lem m a 2. 3•18
)  A ,  considered as  a  lin e ar o p e rato r d e f in e d  on

Z (A )= C 2 (D ) ,  h as  the  sm allest closed ex tension A . I f  u  in  Z (A )
is tw ice continuously  dif f erentiable in  som e neighbourhood o f  x  in
D , then  i i i i (x )= A ii(x ) .

Proof. S in c e  A  satisfies (1. 5) and (1. 6) in  Theorem 1. 2 with
K  and K o rep laced  b y  D  and D , respective ly , it has the smallest
closed extension A . F o r  u  in  (A) there is a sequence {u„EZ(A )

C 2 ( 15) }  satisfying u„-->u and Au„--->Au. I f u  is twice continuously
differentiable in a neighbourhood U  o f x ,  then w e have, for any h
in ( D )  w ith  support contained in  U,

o h ( y ) A u „ ( y ) m ( d y ) = u .A 'h ( y ) u ( y ) m ( d y ) ,

16) This remains true if /-/„ ço is replaced by a function u  in C(D) nC 2 (D )  satisfy-
ing (a —  A )u < 0  [> 0].

17) More precisely, we have TI„ ço E C ' , (D ) .
1 8 )  Cf. Wentzell [36, Lemma 1].
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where A ' is the formal adjo in t of A .  Letting we have

11(y )A u(y )m (dy )—  A 'h (y )u (y )m (dy )

h ( y) ( v) m (clv),

implying that A n ( y) = A u (y) in  U.

Lemma 2.4. F o r  a n y  f E C ( D ) ,  y9E c(an) a n d  cr> 0 . G r f
and H„ço be long  to  Z (A ), and satisfy

(2. 14) (a — A)C;T i n f =f

(2. 15) (a — A)11„ço=0.

P roo f. F o r f  in  C° . "(D), G7 i n f  belongs to C2 ( D ) =Z ( A )  and
hence (a —  A ) GV Y  (a —  A ) Gr f  = f  by Theorem 2 . 4 .  But, C°."(D)

being dense in C(75) and C r  being bounded, (2. 14) holds for any

f E C ( D ) .  Sim irarly , we can prove (2. 15) for any goE C (aD ), since

(2 . 15) holds fo r  a ll ço i n  C 2 '" (8 D )  by Theorem  2 . 5 , and H  i s

bounded and maps a dense subset 0-(an) of C (D ) into C2 (D).

Making use of A we determine the range R ( G r )  in the follow-

in g . This is mainly fo r its own sake, rather than fo r later use.

Proposition 2 .1 .  9 1  ( G '')  i s  e q u a l  t o  { u E Z ( i i ) j [u ], ,= 0 } ,
w h e re  [u ],, is  the restriction o f  uE C (D ) on  the boundary  ap.

Proof. Since 9t(GV") does not depend on a > 0 ,  we fix a positive

.  W e note that y  in  Z ( A )  is constant 0  i f  it satifies (a — A )v =0
and vanishes on D .  In  fac t, at point x E D  where v  takes a positive
m axim um  [negative m inim um ] A v ( x ) < 0  [ > 0 ]  by Theorem 1. 2

and the remark, and hence (a — A )v (x )>0  [< 0 ] ,  contradicting to

(Œ — A )v =0 . u E N (G '" )  belongs to Z ( A )  and satisfies [u] op= 0  by

Theorem 2. 4  and Lemma 2. 4. Conversely, le t u  belong to ZCA)

an d  satisfy [u] op= 0. v -=6 7 1”(ce-71)zt— u satisfies (a — A )v=  0  by

Lemma 2 .  4  a n d  vanishes o n  aD, a n d  hence y = 0 ,  implying

u = G V "  — :2175 u E D I(G 7 ').
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§3. Approxim ation of the in te g ra l 
D

f (x )r ii  (d x )a

The inverse matrix (a u ( x ) )  o f  (a " (x ) )  is a symmetric, strictly

positive definite covariant tensor o f order 2 .  The length of a curve

C, which is of class C1 piecewise, is defined by

( 3 .  1 ) K C )  _ (a t i ( x G o ) dx' dxiG0r2 
c t 2,Jo (i, CIA d

where C  is given by

C : AE [O, 1] — 'XGO E D .

1 (C ) does not depend on the choice o f  coordinate sytem  (x l(À ),

x 2 (A), • • •  x " (2 )) .  The infimum d(x, y )  of the lengths o f all curves

contained in  D  which connect x  and y and of class C' piecewise,

satisfies the postulates for distance and is called the distance between

x  and y determined by a " .  W e w rite d (x ,O D )=  inf d (x ,y )  and
YEaD

D 0 = {xE I)! d (x , D ) <p} . The purpose in this section is to prove

th a t  
1

f (r ) m (d  x ) approximates f ( x )  ( d  x )  when p--).0.
P DP

S. Ito [17] proved that for any x i E aD  there is a neighbourhood" )

U  o f  x , and a coordinate system -c-r (x )=  ••., ,TN) in  U  satisfying
the following conditions: aDn U and D  n  U  are characterized by
7EN=O an d  .]tw>0, respectively; aN i ( X )  (x ) =  A T ; (x )  ( x )  =  1
or 0 on O D nU  according as i = N  or i# N ,  where Z ( x )  and "b1 (x )
are the values of a "  and ai1 in  th e  system d. Such d  is called a

canonical coordinate sy stem , and U a cadonical coordinate neighbour-
hood.

The topology given by the distance d (x , y ) is the same as the
original one. Namely we can prove

L e m m a  3 .1 .  L e t  {x„; n=1, 2, ••.} C D  a n d  x0E 25. W e have
d(x„, x0)---)-0 i f  a n d  o n ly  i f  (1 < i< N )  f o r  th e ir loca l co-
ordinates.

P r o o f .  L e t U  be a coordinate neighbourhood o f .xo ,  and a (x )

19) In  the topology relative to H.



546 K en - i t i  S a t o  and Tadashi U eno

= (x 1 ,•••,xN ) b e  a  canonical coordinate system  i n  U .  F o r  each
y E U n D  satisfying jyi —41 >e  fo r some 1, w e h ave  d ( y ,  x 0) > K e

where K  is  a positive constant independent o f y . In  fa c t, fo r  each
curve

C: A E [0, 1] --->x(2) D

from  x o to  y  a n d  o' f class C 1 p iecew ise , w e have

d'  
" i '

 d xk 0)11/2 ci2
l(C )> V  .1±‘T a i k(x(2))O j , k = 1 d

> K  'Idx ` (2 )1 cL I> K Iy i

Thus, d (x „ , x 0 )-->0 im plies that x „  is contained in  U  for all suffici-
ently large n ,  and that xf,--->xt; fo r i=  1 ,  2 ,  • • • ,  N .  To prove the con-
verse, put V= {4 z i  —  < 6 ,  1 < i< N }  for sufficiently sm all ô  and
le t  V c  U .  F o r e ach  zE  V n D  w e have

d (z , x o )< K ' ( E (zi —  x io) 2) 1/2

where K '  is  a constant independent o f z .  For, i f  we define a curve
C ' from  x o to  z  by

C ' : AE [0, 1] - -x (2 )  =  (xt+ '1(z' — .x ) , 1 <i<N )
then

d (z , x o )< 1 (C ')= E  aii(x(À ) ) (zi — it)) (zi — xi0)} d2
N

0  i , , i= 1

1/2

<K '(E (z ' —  x ) 2 ) 1 / 2 .

H ere w e shou ld  take a  a s  a  canonical coordinate system  in case
x 0 E 0D , so  that C ' is  a  curve contained in  T). Thus xl„-->4  1 < i

< N , im ply d(x„, xo)-->0.

L e t  U  b e  a  canonical coordinate neighbourhood and  i i(x )=

(

- 1
X  • • •  - N,  )  be a  canonical coordinate system . W e write

(3. 2) V (p,r, xo; =  x E 1 5 f lU I NE 1 (Ti — 4) 2 <7-2 , O<Y N

for x 0 E a D n  U  a n d  sufficiently small p and r> 0 .

1=1
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Lem m a 3. 2. Fo r any  V (p,r, x 0 ; a.) w e have

(3 .3 ) Ern d(x,8D) _  l i m  d (x , a D)
— N 1  f or .x V.

d(x, ap)—oN N O X

P r o o f .  Since aNN(x) = 1  for x E a D  and uN N ( x )  is continuous,
there is, for any e> 0 ,  a  8  such that .<8 and x E  U  imply
< 1 + e .  Define a  curve C ( x )  for x E  V  by

C (x )  : 2 E  [0, 1] --->y (A) = (5) 1 ( 2 ) ,• • •  ,  y " ( 2 ) ) ,

y l  = N -I GO x -  N -1  y N  =  N

W e have

i iN N (x )

(3. 4) d (x , aD )<i(c (x ) )  = 0 --NN( y (2))"2:ec/2< (1 + e) 1/2 2 .1,

i f  x E  V  and x^r<8.
Let i i ( x ) .= ••, I N )  be a  coordinate system in  U  defined by

( i < i < N - 1 ) ,  N N,

where k  i s  a  positive n u m b er. T h e  values of a 15 in  th e  system a
a t  x E 8 D n  U  are

ai i (x ) = (x ) ( i ,  j# N )  ,

aiN (x) =a,w (x ) = 0  ( i# N ) ,

a N N ( X )  
=

T iN N ( X )  =  1.

Thus, the eigenvalues Ze i (x), •••, a ( x )  o f  th e  m a tr ix  (a i i ( x ) )  at
x E 6 D n  U  are  given by

(3. 5) t i i ( x ) (1<i<N -1), & N (x ) = aN  (x ) = 1,

where -ei,(x ), •••, -ciN (x) are  th e  eigenvalues o f  (a o ( x ) ) .  L e t V, be
a  s e t  o f  ty p e  (3 . 2 )  satisfying V c V 1 .2 0 ) F o r  a  sufficiently small k
w e  have a1(x )>1, x E 0 D n  V I b y  ( 3 .  5 ) .  T hus fo r  any
e> 0  there is such a  d'> 0  that y- N

- ( 8 '  and y E  V1 im p ly  a 1(y )> 1— e,
1 < i < N .  Hence, the following estimation holds for any curve C '(x ),
w hich  is contained i n  171 n  { y  ly '< 8 '} ,  s ta r ts  a t  x  and  ends a t  a
point on  D .

2 0 )  V  is the closure of set V.



548 K en - i t i  S a t o  an d  T ad as h i U eno

i (C '( x ) )  = (  y ( 2 ) )  d.51i d 5 P  t112 d

0 j  = 1 C12 cIA )

P i> ( 1 02/2 0 {,  i ( t ( 2 ) ) 2}1/2
d 2

> ( 1 — e)1 01 d Y
d
N

/1
( 2 )

> ,)1/2 =  ( 1  € ) ,/, :e .

O n the other hand, w e can prove that d (x , aD) i s  the infimum of

/ (C ' (x ) )  of such C ' ( x )  that we have mentioned above when xE V
and a,'"< a" b y a  sufficiently small 8 "> 0 . T hus w e have

d (x ,a D )> , (1— e)'/2[r"

i f  xE V and .7<8" • T h i s  com bined w ith (3. 4) im p ly  the second
equality in  (3. 3).

By Lemma 3. I ,  d (x , aD) --->0 implies Y"--->0, and hence we have

also  the first equality in  (3. 3).
C o ro lla r y . I f  V = V(po, ro, xo; is  a  s e t  o f  ty p e  (3. 2), then

f o r  su f f ic ien tly  sm all p>0 th e re  a re  p' ( p )  a n d  p "  p" (p ) such
that

(3. 6) V (p',ro, xo; d) CDpnVOEV(p",ro, xo; a)
and

lirn Pl i m   p " = 1 .
p • O  p p

P r o o f .  I f  w e  w r ite  I30 —  {xE V Id(x ,aD )— p} an d  define p'=
min..7eN and p"=max..T.N, (3. 6) is  c le a r . (3. 7) follows from Lemma
xE13 0,x EB ,,

3.2.

L em m a 3 .3 .

(3 .8 ) 1lim  p f ( x ) i n ( d x )
0 D

 f ( x ) i i i ( d x ) ,

f o r  f E C ( D ) .  M oreov er, f o r  a n y  com pact su b se t  { fA , A EA } o f

C (D )  th e  convergence of  11m
 1

fk ( x ) n i ( d x )  is unif orm  in  AEA.
p . 0  p D

P r o o f .  S ince aD is com pact, we can take such non-negative

(3 .7 )
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functions hi  ( x ) ,  1 < j< M ,  in  C ( D )  th a t  E  It i ( x )  1  in  a  neigh-

bourhood of ap  an d  th at each  h ; h a s  support contained in  a  se t
= V(p 5 ,1-5 , x f ; a•; )  o f  t y p e  (3 . 2 ) .  W e  w r ite  -d 5(4  =  (Y 1, • • • , „T N ) ,

fixing j  for a w h ile . T ak in g  p ' =  p ' (p )  and p "  =  p "  ( p )  a s  in  Corollary
to Lemma 3. 2 and w riting  V 5 (p ')=V (p ',r 5 , x 5 ; -di ) ,  w e have

1
19 . , , , f (x )11 5 (x )m (d x )

at)
f (x )h 5 (x )Z  (d x )1

1 f ( x ) h ; (x )nt(dx )—   1 f ( x ) h 5 ( x ) i n ( c l x ) 1
p D, 11)(p')

1 f ( x ) h i( x ) m ( d x ) 1  ç' f ( x ) h i (x )n t(d x )I
p v J(p') P' (p')

+1 1, f ( x ) h i( x ) n t ( d x ) —  f ( x ) 1 1 ; (x )Z (d x )1 .
P v , (p 0 op

W riting 11 ( f , p ) , 1 2 ( f ,  p )  and I 3 ( f ,  p )  fo r the first, second and third
summands of the righthand side, and putting

R j j i ) 2 A
N-1

w e have

where

1 ( f  p ) < 1 11fIlm(vi(p") — ( P' ))

1 d x 's i••  V a ( x )
Rj

1 - 2 ( f  P )< ( 1 — 1°' )   f ( x )  I h i ( x ) in ( d x )
P P v J o ' )

< 0 _   II f   1, Ç 'cl.-7 0 1  • V ii(x ) c l:t 1 •••dze - 1 ,
p o Rj

I 3 ( f ,  P) 4 f ( P i ( x ) )  h i  (P i  (x ))  Va(P ; (x ))

d.1-1 . • • d T t ',
p o

F 5 ( x )  =  ( iv  (7x4  , • • xN - 1  0 ). H en ce  L ,  /, an d  / , vanish when
p-4). Since

E  f (x )h .,(x ) ( d x ) —  f ( x ) in  ( d x )
j=1 6D OD

i =1
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and f ( x ) I i i ( x ) i n (d x )=  f ( x ) i i i ( d x )
1=1 O p D

for sufficiently small p ,  w e have (3 . 8 ).

I f  {f,„  A E A }  is  a compact subset o f C ( D ) ,  { fA , A E A }  i s  equi-

continuous uniform ly o n  D ,  an d  hence /3 (fA , p )  converges t o  0

uniform ly in  A E A .  The convergence of L ( fA ,  p )  and 12(fA, P)
also uniform in  A E A  because {ilfil, A E A }  is bounded.

L em m a 3 .4 .  S u p p o s e  t h a t  {V(p i , r 1 , x i ; i ) , 1 < j < M }  cover
8 D .  I f  w e  d e n o te  th e  p ro je c tio n  (re lativ e  to  Tr j )  o f  p o in t  x E V 1

t o  ap  b y  P 5 ( x ) = -(61 (Y,•••,:t" - 1 , 0 )  a n d  i f  a  c las s  o f  f unctions
{fp E C (D ), p > 0 } is bounded an d  satisfies

(3 .9 )  l i m  sup Ifp (x )— fo (P i (x ) )1 =  0, 1 < i < M ,
p->0 x (V (p,r

th e n  w e  have

li
m (

1 
D p

f o (x )n i (d x )—  fp (x ) -131(dx))= 0.p 

T he proof is sim ilar to  that o f  Lemma 3 . 3 ,  w here {fA, AEA}

is  rep laced  b y  {L, P > 0 }  .  S in c e  { f p ,  p > 0 }  is bounded, L ( fp, p)
and /2 ( f ,  p )  tend to  0  when p--->0, and so does / ( f ,  P )  b y  (3 . 9 ).
Thus w e have the conclusion.

L e t p ( t ,  x ,  y )  b e  th e  fundamental so lu tio n  in  Theorem  2. 1.
Concerning the integral of p(t, x , y )  on the strip  D o ,  the following
estimation holds.

L em m a 3. 5. T h e re  is  a positiv e  po  s u c h  th a t  f o r an y  T > 0

1 
J

p ( t ,  x , y )in (d y )< K t - '1 2

p O p

and

p (t, x , y )' -i i i (d y )< K t - '1 2

OD

h o ld  u n if o rm ly  in  0 < t< 7 , 0<p<po an d  x E D .

T he proof is referred to the appendix. Combining this lemma
and Lemma 3 . 3 , w e have

are
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Lemma 3. 6. F o r a n y  T >0 ,  w e hav e

(3. 10) lim  1   tc/.5 p ( s ,  x  y ) m ( d y ) = : a pds p(s, x , y );)-i(dy ),
p—>0 p o Op

w here  the conv ergence is  u n if o rm  in  0 < t < T  an d  x E  D.

P ro o f. F o r a n y  e> 0  w e can  take  positive num bers t o an d  p o

such that

1 c 1 4  p (s , x , y ) iii(d y )<€ ,
p  o

and

t °p ( s ,  x ,  y ) Z . ( d y ) < e0 6D

uniform ly in  0<p<p o a n d  x D  by L em m a 3. 5. O n  th e  other
hand, p(s, x , y )  being continuous in  (s, x, y )  o n  (0, 00) x r) by
Lemma 2. 1, { p(s, x , -), sE [t o , T ] , x E D ) is  a compact set in C(D),
and hence

. 1 p(s, x , y )m (d y )= p (s , x , y )T 7 -1(dy),
p-->0 p Op oD

uniformly in  se [to, T ]  an d  x e r )  by Lem m a 3. 3. T hus w e can
take pi > 0  such that 0<p<p i  implies

1p1-  D p(s, x , y )m (dy ) p(s, x, y)Tit" (dy) e

6D

uniformly in  sE  [t o , T ]  and x E r j .  Hence we have

1 ' ds p (s, x, y ) nt(dy ) p(s, x, y)711.(dy)1
p 0 Dp 0 ap

Jo< 1p ( s ,  x , y )in(dy ) p(s, x, y)Tti(dy)
p  o 0 ap

Ç' a ‘ ( ' ' ' ' )ds1 1p ( s ,  x , y )m (d y )—  p(s, x , y )iit(dy )i
pD , , 6D

<2e + {max (t, to) —to}  T
e <3e,

uniformly in  0<t<7 ], xE ii5  an d  0<p<min(po, p i ) ,  completing the
proof.
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Chapter II. Analytical c o n s t r u c t io n  o f  th e  diffusion

To find the diffusion determined by

au = A u and Lu (x ) =0 , .rEaD,
at

it is sufficient to construct the semigroup on C (D ) with the Green

operators {Ga} such that

(ce—X.)G.zi=u and LG au (x ) =0 , xa  D.

Since (a— A) (Ga u — GV" u) = 0, Gam is written as

G. It= GTh ' u+ 0, 9= [Ga u] op .

In  order that LGOE u = 0 is satified, the following equation should hold.

LGV" u+ LHOE ço 0.

And hence, ço is obtained by

yo--= — (LHa) - 1 LGV" u.

Thus, Ga should be given by

u= G« i '' — HOE(LH)'LGV" u

by a  purely formal computation, which will be rigorously justified

in §4—§5. L i la ,  considered as an operator, has a closed extension

LHa , which is the generator of a semigroup on C (aD ), if an equation

of type

—  L  )

can be solved fo r sufficiently many ç9. LHa is  the generator of a

Markov process, which will be called the Markov process on the

boundary o f o rd e r  a . The equation (A— LHOE)* = ço will be reduced

to an integro-differential equation and will be solved in some special

cases in §6.

§ 4 .  Operators induced by Wentzell's boundary cond itions

L et A  and D  satisfy the conditions at the beginning of §2.
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F or each x  in  O D  we assign a class o f  functions {E!(y), i=
1, •••, N }  in  C 3 ( D )  satisfying :

i) there is a neighbourhood U , o f .x such that the restriction

o f  {E,t (y ) }  to  U.(--) D  is a  canonical coordinate system.

ii) $1.'(y )>-0  for each y E D ; E ( y ) = O  ( 1 < i < N )  if and  only

if y—x.

Consider
N-1 N-1 Ou xE u ( x ) = E a

a 2 u
L u ( x ) = 1a ( x ) (  ) + (x ) (x )

0$16V i=1

± r( x ) u ( x ) + 8 ( x )  Jim  A u (y )
(4. 1) YED,Y-).

,U (x )  
a
a

i
nt  ( i ) 1 1 z ( y ) — u  ( X )

N  (x)v:(Y)/ v. (dY ),

where ( a " ( x ) )  is symmetric and non-negative definite, r (x ),  8 (x )
and — p(x) are non-positive, and I), is a a-finite measure on  D  satis-

fying

1, ({ x } ) = 0

(4. 2) 1) (D — U ,)<00

N

N-1
E „  (y )+ E (E (y ) ) 2 1 v .(d y ) ‹. .•

L u (x ) exists at any point x  in OD, i f  u  is in  C 2 (D ) .  In fact, the
N-1

integrand o f  t h e  la s t te rm  b e in g  0 ( e ( y ) )  + E 0 ( ! ( y ) ) 2 f o r

uE C ( U ), the integral exists by (4 . 2 ). The other terms in  (4. 1)
clearly exist fo r uE e ( D ) .

Now, we assume, throughout this paper, condition

(L. 1) L u ( x )  is continuous in xGOD, i f  u  is in  C2 (Ï5).

Sometimes, we also assume one o f th e  following conditions:

(L. 2) 1 , (D )  = .0  for each xe0 D  such that — 8(x )+ ,a(x )= 0.

(L. 2') —  r (x ) — 8(x) + p (x) +  (D ) > 0 , for any x  a D .

Let Z ( L )  be a  linear subspace o f C ( D )  satisfying
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(4. 3) L u (x )  exists fo r  each x  and is continuous in  xE &D,
i f  u  is in  Z (L ) ; 2 1 )

(4.4) C 2 (D )  c  Z (L ) C'''' (D )

L et L  be th e  operator defined on Z (L )  by

u— >Lu (x ), xE  OD.

F o r  a > 0 , let (L IL ) b e  th e  s e t  o f  functions {vEC(OD)1Hocto
Z ( L ) }  and  let LI-1« be the operator defined o n  Z (L H «) by

çø-->(LH«)ço= L CH « .

Clearly, C '" (a D ) is contained in  Z (L H .)  by Theorem 2. 5, v) and
(4 . 4 ). W e  no te  that Z (L )  can be chosen i n  different ways, as
long as it satisfies (4. 3) an d  (4. 4).

Lemma 4 .  1 .  I f  ç9 in Z (L H « )  tak e s  a p o sitiv e  m ax im u m  at
x 0EaD.

L H .§0(x0)< 0.

I f ,  m oreov er, L  satisf ies (L . 2 ') an d  i f  a > 0 , w e  have

LH«g9(x o ) <0.

Especially , L H «1 (x )< 0  f o r each  x E a D , i f  a> 0  an d  (L. 2') holds.

P ro o f. L et u = H «ço . Since u  coincides with ç9 on OD, we have
N-1 a 2 u au E (  a) • • (x0 )< 0, (x 0 )= 0  ( i= 1 ,• • • ,N -1 )

0$1,

and r ( x ) u ( x ) < 0 .  Since (a— A )u (x ) = 0  fo r each xE D ,

8(x 0 )  lim A u ( y ) = a ( x 0 )  lim  a u (y )— a (x o )u (x 9 )< 0 .
yED.

Since u  takes a positive m axim um  a t x o a s  a  function on  D  by
virtue of Theorem 2, 5, iii), we have p (x0) (au/an) (x0 )< 0  and

N  - 1  au
i t (  y )  U ( X 0 )  ( 1 0 )  $ ix o ( Y )  =  1'1 (  Y )  — 1 1 ( X 0 ) <

0 .
i =1 A

Thus L li5ço(x 0 ) = L u(x 0 ) < 0 .  I f  a > 0 , then 1-1«y2 is not a constant

2 1 )  We neglect the term whose coefficient is zero. For instance, if aii(x )=13 1( x )=0
and 1.) ( r . ) )< 0 .0 ,  then L u (x )  exists for all u in C l(D ).
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function, a n d  hence does not take a positive m ax im um  in  D .
(au/ an) (so) < 0  and u (y ) — 11(x0)<0 for each y ED by Theorem 2. 5,
iii)  a n d  iv ) .  Thus,

Ou L u (x 0 )< (r (s o ) - Fcea(S0))11(s.0)+ tt(so) 
O n

(so)

+ D (u (y )— u (xo ))v , o (dy)<O ,

if one of /2(50, — r(x0), —a(x0) and v .„ (D ) is positive by (L. 2')
Corollary. L H  h a s  the  sm allest closed ex tension L I L  .  I f  ço

in (L IL ) tak e s  a  positiv e m ax im um  at  'G O D , LH a,o(x)<0.
This is clear by Lemma 4. 1, Theorem 1. 2 and the remark to

Theorem 1. 2.

Now, we consider th e  se t o f functions Z(LG2'n) =  ffE C (D ) I
Gcl , " ° fE Z (L ) }  and define LGT i  fo r fE Z (L G T i n) by

f—>. (La )f =  L  (G r f) .

Z (L G 7 ')  contains 0 ."(1 5 ) and hence it is dense in  c(r)) by virtue

of Theorem 2. 4 and  (L. 1).

Lemma 4. 2. LG V" can be uniquely  ex tended to a non-negative,
bounded linear operator on C (D )  tak ing v alues in  C(OD) f o r each
a>0

W e write LGVn fo r the extension.

P ro o f.  L et u  be non-negative and contained in  Z( L ai» )  . If

GVt'u is of class 0  in  a  neighbourhood o f y ED, then A G r u (y )

— A .G ru (y )= a 6 7 ru (y )— u (y ) by Lemmas 2. 3  an d  2. 4. Noting

that G r u  vanishes on OD and is non-negative, we have

L i u (x ) = --ô (x )u (x ) (x ) 0
8
72 G r u ( x )+ DG r(y )v .,(d y ),

which is non-negative at each x E a D .  Thus LGIVn is  nonnegative,
and hence —  LGVnilu ll<LGV"u<La i l llu il fo r each u in  Z ( L a ) ,
implying boundedness o f  LGg' i n w ith  n orm  IILGVnil=

(LG T i n ) being dense in C (D ) L G T I 'l can be extended uniquely to

a  non-negative bounded linear operator LGVI 1 o n  C (b ).
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C o r o l la r y .  T h e  ran g e  o f  L G ." ' d o e s  n o t  d e p e n d  o n  a>0.

M oreov er w e have

(4. 5) L G'inf  + (a —  (3) LGoT i n f  = 0  ,  f E C (D ) .

T h is is clear from  th e  resolvent equation for {G ''}  and the de-

finition of L GV

L em m a 4 .3 .  Fo r an y  ç o E C (O D )  and cr, ,e>.-0, w e  have

(4.6)H „ , ç o  — Haça + (a —  0)GTV"1-1,3ço = O.

P r o o f .  L et u s denote the lefthand side o f (4 . 6 ) b y  u , .  The
mapping ç9,-- 9, is clearly bounded a n d  linear from  C (O D ) into

C ( b ) .  If ço is in  C 2 '"(0D ), u , belongs to C2 (D ) ,  because liaço and

Hoço is in  C 2 (D )  by Theorem 2. 5 , v) and G V 'lf io ço is in  C2 ( D )  by

Theorem 2. 4, i). Hence, fo r ç9G C 2 " (8 D ) , w e  have (a— A ) u ,=0

by an  easy calculation and it results from [up] op 0  that u 0  by

Theorem 2. 5, i). Thus, u ,  0  for each §9G C (6 /3 ) , since C 2 . "(8D)
is dense in c(aD), completing th e proof.

L em m a 4 . 4 . Z (L lia ) does not depend on a > 0 .  I f  w e denote

the com m on dom ain by w e  have

(4.7)L H a ç o  +  (a —  0)LGV "Hoço= 0,

for any a, and ,Ga
P r o o f .  L e t V  b e  in  Z ( L I /0). By definition of Z(LH , )  HoçO

belongs to 0-(am, and hence GV '' HI i s  in  C A D ) c  Z (L )  . Thus,

we can apply L  on  the both sides of /10,y2=1-43y9— (a —19)GVnHoço,
and obtain

(4. 8) L I-L co=L Ila ço— (a-19)L G rH ogy , E

F o r any q, E Z ( L H 3)  there is a  sequence {ça„E Z ( L H a) }  such that

and LHaço„--->Lliaço. But, (p,,-->cp implies H aq,„-*Hoço and hence

L C : i nHaço.=LGV 'Haço. - - ->LGV "H3o. Thus, by (4. 8), LIIG,ço, converges
to L H a q,— (a— 0 ) L G rH a ç2 as n-->D0. This means that V  in Z ( L H a)
belongs to Z ( L H „)  an d  that (4 . 7 ) holds. Interchanging a  and 6',
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w e have Z(LHOE) c Z (L h ro) ,  completing th e  proof.

L et Z ( L )  be the set of all functions w hich can be w ritten in
the form

(4. 9) E Q :V i+ E 1 / 0 ,, , ,„  f i E C ( b ) ,
1=1 J-1

where m and n  are non-negative integers and ai>0, (3 ;> 0  (1 < i< m ,

1 < j< n ) .

Lemma 4. 5. 0 . " (D ) is  c o n tain e d  in  Z (L ) . T h e re  is  a linear
•-•

operato r L  de f ined  o n  Z ( L )  satisf y ing

L u = L u ,  f o r u  G  C '"(D )

L G V " f =L G :In f , f o r f E  C (D ) ,

LI-Lço= LHaço, for ço EZ .

S uch  a n  o p e rato r L  is  unique.

P ro o f. For an y  u  w ith expression (4 . 9 ) we assign
11

(4. 10) L u = E LGZ i n f i+E L I-10,ço) .

In  order that L u  depends only on u ,  not o n  th e  choice o f th e  ex-

pression, it is sufficient to prove that

(4. 11) u = E G Z i n f +E H o i qv=0J-1

implies E  L G V "f i+E L 1-10 3 q i = O. S in c e  E çoi  i s  the boundary value
=1 5=1

of u  and u = 0 , w e have
11

(4. 12) E coi =0.J-1

Since (a— AT)GZ i nf i=f i+ (a—  ai)G f i

and (a— AT)Hai g9;= ( a —  19.0143149i

follow from Lemma 2 . 4 , w e have, using  (4 .5 ) a n d  (4. 7),

L G r'f i+ E 1, 110i g2 i =  (L G V Y + (a—  ai)L G G V 'f i)i=1 5=11 = 1

+ E (LH„ ço, + (a—  j )ç a , )
5=1
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= LGV" {Efi+ E (a— ai)Gr:»fi-I-E(a-13. ) 11(33 ço; } + LIL,(Eço)

= L G er  (a— A )IE G V "fi+  E 1 1 0 3 çoi l + LI-1.(Eq))— 0,

b y  (4 . 1 1 ) a n d  (4. 12). L U f = L G f ,  L l I a ç o — L I I “ o  and the
uniqueness of L  a re  clear by definition of L.

If u is in  C '" ( 5 ) ,  [u ],, is in  0 . "(OD)E -i ,  and hence IL  [u]aD
belongs to M r ) )  by Theorem 2. 5 , v ) .  Since u-1/,[u]op vanishes
on OD and is in  C2 ( 5 ) ,  there is a  v C (D ) such that u—H.f_ul an
=GT i n v by Proposition 2 .1 .  Thus, we have Lu=L(H «[u]ap+GVny)
= LI-Ia[u] aD+ LGT i n LHa[u] aD+ Lu, completing the proof.

Z ( L )  i f  a n d  only  i f  u (A ) and

,  then u  is in (A )  b y  (4 . 9 ) and

= E ç o iE i.i=1
an d  [U ] aD ei) ,  then, we have u — GLni n f+ H .[I ]a D  by some fE C (D )
similarly to the last paragraph of the proof of Lemma 4 .5 , and hence

u G Z ( L ) .  W e note that u in  Z ( L )  is expressed by

u—GV"(a— A)u+ IL  [u] ,D, a > 0 ,

which we can prove by applying a—  A  to the both sides of u = G f
+IL,[u] a l )  by Lemma 2. 4.

Semigroups on  C(OD) and construction of the diffusion

T h e o re m  5 . 1 .  i) L e t  a > 0 .  L H «  is  a  generator o f  a  semi-
group on C ( D ) ,  i f  a n d  only  i f  there  ex ists  a  num ber 2>0 such
that

R e m a rk  4 . 1 . u belongs to

[U]D . In  fa c t , if  u E Z (L )

Lemma 2. 4, and w e h av e  [U ] a p Conversely, i f  u E Z (A )

(a— A)u(x) = 0 xE D ,
(5. 1)

(A -- go(x), x E O D

h as  a  solution u E Z (L )n e (D )  f o r  each  (p in  a  d e n s e  subset o f
C (D ).

ii) I f  L H «  generates a  semigroup o n  C(OD) f o r so m e  a > 0 ,
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th e n  L ila is  a ls o  the  g e n e rato r o f  a sein ig - roup on C (ÔD )  f o r  each

W e call the semigroup on C(OD) with generator L H . the semi-

group on  C ( D )  o f  o rd e r a ,  an d  denote it by {S 'i% t>0}  The
Green operator o f  { S }  is denoted by

cp- 5
e- A'SNodt, 2>0.

0

P r o o f .  By Theorem 2. 5, i) a n d  th e  definition o f  Z (L lia ),

the equation (5. 1) is equivalent to

(5. 1') (A— L 11.)1r=y 9, ik E Z (L H .).

T h e  solution u  o f  (5 . 1 ) is  g iven  by  u----.-H c o k . I f  (5 . 1 ) has a
solution for each q, in  a  d e n se  subset o f  C(OD ), o r  equivalently,

9i (2— L I-h) is dense in  C ( D ) ,  then L H . satisfies (1. 5), (1. 7) and
(1. 8) of Theorem 1. 2 by Lemma 4. 1, an d  hence LHa generates

a  semigroup o n  C (aD ) .  Conversely, if is  th e  generator,

L H « ) is  c ( p) fo r  a ll positive A, and hence, 942— L I / a )  is

d en se  in  C (OD ) ,  completing th e  proof o f  i). F o r any cr and
L H 5  is  L H .  p lu s  a  bounded operator by Lemmas 4. 2 an d  4. 4.

Noting Corollary to Lemma 4. 1, we see that Corollary to Theorem

1. 2 is applicable to our c a s e .  Hence, we h ave  i i ) ,  an d  th e  proof

is complete.

C o r o lla r y . L H «  i s  th e  g e n e rato r o f  a se m ig ro u p  o n  c ( n),
i f  an d  o n ly  i f  th e re  is  a  num ber 2>-0 su c h  th at the  equation

(a —  A )u(x )=0, x E D ,
(5. 2)

(A — r,)u(x ) 49(x ), xE aD ,

h as  a so lu tion  uE Z (L )" )  f o r  each  cp in  a d e n se  se t o f  C ( D ) ,  or,
equiv alently , the  equation

(5. 2') (A— LIL)11p=q,

h as  a so lu tion  V rE Z (L H «) f or each  yo in a dense set.

2 2 )  Note that 5 )(Î)C Z (A -).
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P ro o f .  Suppose that u  belongs to Z (L )  an d  satisfies (5. 2).
Then, u =  I- u] op an d  [u] E i  by Remark 4. 1, an d  hence, [u],,
satisfies (5. 2 '). Conversely, if Jr is the solution of (5. 2'), we have
H a *E Z (L ),  and Ha.* is the solution o f (5. 2). (5. 2') has a  solu-

tion for all go in  a  d en se  se t, if  an d  only i f  (5. 1') does so. Thus

the proof is complete.

Lemma 5. 1. L et L  satisfy  (L. 2') and  a>0." )  I f  LH« generates
a  sem igroup o n  C(&D), then

L H«*=ç2(5. 3)

has a unique solution f or each yoEC(aD), and  hence L II; 1 is def ined
o n  C (aD ). — L H 0,- 1  is non-negativ e an d  bounded.

Proof. S ince constant 1 belongs to Z (L I-L ) and L II« 1 (x )<0
at each x E a D  for positive a by (L. 2 ') an d  Lemma 4. 1, L II«+k
is  th e  generator of a  semigroup o n  C (& D ) b y  th e  corollary to
Theorem 1. 1, where — k =s u p L IL 1 (x ) .  Thus, — L Hok  { k — (L H«

xE8D

-1-k)} *=q) has a unique solution *  for each go E C ( D )  by Theorem

1. 1. —L1108
- 1  is clearly non-negative an d  II — LII„- '11<k - ', completing

the proof.

We sometimes write K ô fo r  — L H ;', i f  it exists.

Lem m a 5. 2. I f  u  in  Z (î) satisf ies

( a —  u  0, on D ,

(2 -2 )u  = 0, on ap,
f o r  som e a > 0  an d  2 >0 , th e n  u =0 . M o re o v e r, i  c e >0  a n d  i f  L
satisf ies (L. 2') 2 3

)  a n d  L II«  is  a  generator, then

(a  — A.) u = O. on IT),
0, on ap,

im ply  u= 0.

2 3 )  The condition " (L . 2 ')  and a > 0 "  can be replaced by any one of conditions
"  -  (x )> O  fo r  each xE aD " and " —7 (x ) (x) + v z (D) > 0  for each xE aD and c is
not identically zero." In fact, all we have to use is LI/a1<0..
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Z 's

P ro o f. L e t  (a — A )z i= 0  a n d  (A— L )1 1 = 0 . Then  it = H« [it] OD

and [u ]  E Z  by Rem ark 4.1. Thus, (A — L H «) [u] ap= (A— L )u .--- O.

Since A>O, this implies 0  by the property of L H a  stated in
the corollary to Lemma 4 . 1 .  Now, let ce> 0  and let L  satisfy (L. 2').

If (a — A )  = 0 and Lu = 0, we have L Ha [u] an= 0, and hence [u1,9 =

by the uniqueness of the solution of (5 . 3 ) in  Lemma 5 . 1 .  In  both

cases, we have it = Ha[u] a p =  .

Lemma 5.3. F o r  an y  u E C (D ),  w e  have

(5.4)l i m  (aGVn + .H.[u] aD ) = u
t t co

P ro o f. Fix 13>,-0, and put v= u — H o [u] a D . B y (4 . 6 ) , w e have
t r a a m i ,, u  cuGThwo  [ i s ]  00—  U +

=(aGV" u+ IL  [ U ] OD —  l t )  13G : I nH5[u] OD •

Since 7, vanishes o n  D , a G i nv—v converges uniformly to 0  by

Theorem 2 .  4 ,  v ) .  Moreover, Gen H a [u ], ,  also converges to 0 , and
hence aG f i nii+Ha[u]ao converges to u.

Lemma 5. 4. (a/an)HOE1 diverges uniform ly  and m onotonically
t o  —00, w hen  a--->00.

P ro o f. Since we have H ,1 =  H 1 —  (a—  1)(;-"nlia 1 , b y  (4. 6),
tr> 13 im plies H „  l< H e  1 , an d  hence (a/an)H,,1 is  monotone non-

increasing in  a .  Moreover, Theorem 2 . 4 , v ) implies H c l ( x ) 0  for
x D  when ce—).00, with 19  fixed in  th e  above equality, N ow, we

note that there is a  function uGC 2 ( D )  satisfying

(5.5)[ u ]  8 0  = 1  and —
a t c

u (x )<  — K ,an

for any fixed K > 0 .  In  fact, ( H ,1 )" .  belongs to C 2 (D )  and satisfies

a ( Hx0 1)"0(x) =no' ( Hao 1)" 0 - 1 (x) • - -
a 

I-1 ,1(x )an an

— no  a
a
n 11.01(x)<—noig fp l :n 11.01(x)1, x E a p .

Since i n f  (a / a n )H ,1 (x ) > 0  by Theorem 2. 5, iv ), it satisfies (5.5)
' f a!)
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for sufficiently lagre no and fixed  a . Take su ch  a  neighbourhood

U  o f  aD  relative to D  that u(x)>1/2 holds on  U  and U  has a

smooth boundary. Since the convergence H« 1—>0 on D  is monotone,
it is uniform  on  au—aD by Dini's theorem, and hence I1, 1(x )
< u ( x )  on au and te>211Auji for sufficnently large a .  Thus, by

(A— a) (H«1 —  u) (x ) au (x) — A u (x )> ;  j jA u l l> 0 ,  x E U ,

H« 1—u never takes a positive maximum in U , and hence IL 1(x)
< u ( x )  in  U , implying (a / an) H al(x )<(a /an)u(x )<—  K , x E O D  ,
foi sufficiently large a>0, completing the proof.

C o ro lla ry . I f  L H « is  a  generator an d  (L . 2 ) holds, then

lim II= 0, for A>0.

P ro o f . I f  8 (x ) or te (x ) is positive at xGaD,

L H «1 (x )=  r (x) + a8(x)d -p (x) H al(x ) {H al(y ) -1 } 1 ,(d y )
D

diverges monotonically to — co be Lemma 5. 4. But, condition (L. 2)

implies v ( D )  = cc and hence { .11.1(y )—  14 d y ) decreases to — co,
D

i f  8 (x )=  p(x ) = 0. T h u s , ( L H « 1 ( x ) ) ' converges monotonically to
0, and hence uniformly on aD, if by Dini's theorem. Thus,

w e  have 1 = —  (L H«1) - ' I L 11,1<ll (L Hal) - 1  (A — LH« 1), which
implies

K 1 <ll(L H a1 ) - 1 11. (2—  LH,1) = II (L H al) - 1  II -->0, as a—> 00,

completing the proof.

R em ark  5. 1. U nder the  assum ption that L H «  is  a generator,

CG-->os

i f  8(x)— p(x) =0  f o r  a l l  xG aD  an d  1).X D ) is bounded in  xEaD.
P ro o f . W e  have L l(x )  =  r (x )  b y  8 (x )= 0 , and hence r  is

bounded. By assumption L H « 1 (x ) is bounded both in  a  and x,
since
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I L 111(x )1 = 1r(x ) {H«1( y) —1} p.,(dy) I
D

<sup I r(x )1+  sup v,(D) =K<00.
rE8D .rE8D

Hence, 1> IA —LH 111 - 1  (A ---- L H .)1 , which implies Kr 1> II2 — LH 1
>(2-F-K) - i> 0 , completing th e  proof.

Theorem 5. 2 . L e t  AI: b e  the restriction o f  A t o  the subset
{ it! uG Z (f ,) and L u= 0}  o f  ( A ) .  I f  L H «  is a generator

and (L. 2) holds, then  k z  is  the generator o f  a sem igroup on C ( Ï ) .

The Green operator G« of the sem igroup is giv en by

(5. 6) Gau = Gr u+ H„K `a,GIn i n u, u E C ( D )  .

Thus, we have obtained th e  semigroup on  C ( D )  determined

by A  and L .  This is a  special case o f a  little more general

Theorem 5. 2'. L e t  AZ-A b e  the restriction  of A t o  the set

Z(121-2-0 = { ulu Z ( L )  and L u= Au} , '1> A . I f  L H «  i s  a generator
and (L. 2 )  holds, then  Az-A i s  the generator o f  a  sem igr oup on

C ( D ) .  The Green o p e rato r G  of the sem igroup is giv en by

(5. 7) G r  u +  I C ;,L G r  u ,  u C ( D )  .

P ro o f. Since Kr= (A— LH«) - '  exists fo r  each À>0 an d  ty>0
by Lemma 5. 1, we can define G  on C (D )  b y  (5. 7). G u  clearly

belongs to Z (L ), and  moreover, to Z ( A ) ,  since

(A— f )  = (2 u + (A — K L G `r u

—  L GV ° u + (2—  1.11«)K L Gr u= —  L Gr u+ L Gru= 0  on D .

Now, we verify the conditions (1. 1)-(1. 4 ) in Theorem 1. 1 for
For any ce> 0  and uE C(D) , G u  is  the unique solution of (a — A)z,

u  contained in  Z(Alt_A), since

(oz — A ) u (oz  —  A ) G:In u + —  A ) 11« u  u

and the uniqueness follows from Lemma 5 .2 .  Thus, = (a— 271-2_0 - 1 ,
implying (1. 2). G ,_ > 0  i n  (1. 4) follows from evident inequalities
GTi n>0, HŒ>0, Kr>0 and L GV n>0 and (5. 7). To prove liGa<l/ty
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in  (1. 3), w e note that the following equality holds:

aGV " 1+ Hc,1 = 1 + GV° c,

since the boundary values of the both sides coincide and w e  have

the same value when we apply a— A on the both sides. Hence, we
have

(A— L H .)1= A— LI-1.1= A+ aL G aTi n 1— Ll— LGT i nc

2+ ozLG: i n 1 — r —  te-1--n GV° DG:in c ( y) id.,(dy) >-aLGV ° 1.

Then, app lying K r on the both ends, w e have

1= Kr (A— L H .)1>aK aG V ° 1

T h is ,  c o m b in e d  w ith  «G I ' + lic, 1 < 1 ,  im p l y  aW ,1= aG: i n 1
+ L G I'' l< 1 , and hence (1. 3).

To prove (1. 1), it is sufficient to verify aG eo'' u-->u w hen a-->00
for each u  in some dense subset o f C (D ), for instance, Z (L ) .  Since
the first summand of the rigththand side of

II ozGc, u — u II = IlaGr u + aH„ KfLGV° u — u 11

<IIaG u +H [u ] aD— u!J iitrKi,LGT i n u —  [u] DJapli

converges to  0 by Lem m a 5. 3, w e have only to  prove aK r L Grnii
[11] O D  fo r  u E Z ( L )  .  W riting u =G v +H o ç o  fo r  fixed  0 , where

vE C (.6 ) and <a= [u],,,Gii, and noting that

G u = G V n G n inv + G H ç o  1 (G 1nv + H oa— p
w e have

licEK(LGV "it —  [1 1 ] OD ii—La, K(L(Grnv —  GT i nv + Ho Ç9) —

K ( G r v  —  G r V " v +  Ho 0.) +  a  (Ç2 21(`;̀ ,0 — 4911

S a  liK V I(f L G ir"v  + d1911 qvli) +11 a
a

where we have used IQ (A — L11.)ç2=yo for ço S ince IIKc;,11--->0 by
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th e  corollary to Lem m a 5. 4 a n d  !I LGTi n 1 1 1  =  i l L G r  1
— (a— 0) LG G r  111< ii-LGV nf o r  a > jjaK U,G 1: i n u— [u] aDli
converges to 0, completing the proof.

Remark 5 . 2 . Suppose that LHOE is a generator and (L. 2') is
satis f ied . In  order that A z _A  be a  generator it is  necessary  that
lim ill(cl1=0 hold.

->

Proof. By assumption, G„' in (5. 7) can be defined and satisfies

(a — A.E_À) - 4  a s  in  th e  proof o f  Theorem 5. 2'. If is  a

generator, aGu-->u (a—  - 00) for u E C (D ) , and hence we have

aKtLG,',11n u—[u] 60 a-->00,

noting that G u  is reduced to K l,L G :' u  on D .  Put u =1 /0 y9 and

q9=-K,1Z1. W e have

aKTLG 1
0',11'1 u= aK°X (GT,' Ha

 ( L L — IC LBO 4 —(A—L Ha) ço}a — a— 0

K ( 2 —  LEO IQ 1 —   "  ça—  K 1 .a — a-19 a-19 a-19

Since alCLGTinu--->[u]ap= ça and --->l, w e have I<1, 1-->-0, whicha - 19
implies Mc) ; 111-->0.

Remark 5. 3 . There is a freedom o f choice in defining Z (L )
and hence Z (L )  as we have noted in §4. But, the following assertion
holds. L e t L i  b e  also  an operator of type (4. I )  and satisf y  (4. 3)
and (4 . 4 ). Suppose th at L i  i s  an extension of L .  Then, if  L  H .
is  a g en erato r, w e  h av e  Z (L )=Z (L i )  and L =L i.

Proof. S ince LGT i n=L 1 G:Vn is obvious, we have only to prove

LHŒ=L X H Œ. The range of A —  Lila being dense in C(8D ) for A >0,
L i  H . is also a generator. (A —  Li 11.)' is an extension of (2 — L
because L i  H .  is an extension of L  .  But, since (A— L 11.) - 1  has
domain C(0 I)) , we have (A —  L IL O' (A  —  L  11.) - 1  and hence, L i  H .
=LHOE.
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W e have obtained a  class o f sem igroups on C (D ) with gene-
rators 21- 7,-A ( 2 > 0 ) ,  if there is a sem igroup on C ( D )  with generator

LFL  fo r  some a > 0 .  A converse problem may be of some interest.
Here, we formulate a  result.

Theorem 5. 3. Suppose th at , f o r  each  2>0, ./11.-_A i s  the gene-
rato r o f  a  semigroup on  C ( D ) .  T hen, L H« i s  the  generato r o f  a
semigroup o n  C(OD) f o r  each a > 0 .

Proo f. By the corollary to Theorem 5.1, it is sufficient to prove

that (a —.A.- )u= 0  and (2—L ) u = ço has a solution u  for each ç i n  a
dense subset o f C(OD) for some fixed a > 0  and 2 > 0 .  Let 2' 42.

Take any f  in  Z (L )  satisfying (2'— E)f=0 and write v —  1 f2—  2'
Since Az-A is  a  generator, there is a  w  such that (a — A )w=
— (a—  -14.)v an d  (2 —  E ) w  O. Then, u= v  +  w  satisfies (a—  -A.- )u=
(a— A ) v +( — A ) w  0  and (2 — 2)u = (2 — f,)v + (2 — Î)w  =  (2—L)v

—  2') [7)] aD ( 2 ' —  L)v  = [f] op . Since is a generator { u  Z (L )

1(2' —  Î)u 0}  is dense in C (D ), implying that L Ha is a generator.

Remark 5. 4. In the above proof, we have really proved that

i f  Az_), generates a  sem igroup  o n  C (D )  fo r some 2> -0 , and if
{ u lu e Z ( L/ \ )  an d  (2' — L )u=0) is  d en se  in  C (D )  for some 2'
then LHŒ is  a  generator. Probably the second assumption can be

dropped, but it is not yet proved.

Now, we prove some equalities connecting { G }  and { K } .

The resolvent equations fo r { G }  and {K }  a r e  obtained by putting

2= te or t = j  in  th e  following.

Proposition 5. V ' )  I f  E E L  an d  L110  a re  generators o f  semi-
groups on  C (aD ) , th e n  w e  hav e , f o r any  À  an d  p > 0 ,

(5.8) G u — Ggu (ce— [3)GG"A - u + P) u i  = 0,
uEC(D ),

(5. 9) /kg,— 4 v + (À — ,u)k,Ktu, ço+ (a—  O)G',̀, f v =o ,
Ç,Ec(aD),

2 4 )  Some of these relations are obtained also in [12, 25] under a different set-up.
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(5. 1 0 )  Ke,;(p— K(p+(2-41)1(`'AK g+K (L Ho— L HOE)K ,B,(p-=0,
çoGC(a13),

w h e re  G  is  d e f in e d  in  (5. 7 )  and K`;,= H a K . A b o v e  e q u alit ie s
hold ev en w hen À  o r  p =0  i f  K S ' o r K t? ex ists.

P ro o f. If we apply a and A — Î  t o  th e  le f th a n d  sides of
(5 . 8 ) and (5 . 9 ) , then the result is 0. But the solution u C(D)
of (a—A.5u= 0  and (A — Î )u = 0  is unique and is constant 0  for cr> 0
and 2 > 0  (also fo r A =0  i f  K ; exists) by Lemma 5 . 2 , and  hence

(5 . 8 ) and (5 . 9 ) are proved. As for (5 . 10), the boundary value of
th e  le ft hand  s ide  o f  ( 5 .  9 )  being K̀g,ço — K (p+ (A— ii) K K ,19+
(a — (3)1M G V n H o g y a ,  it is sufficient to verify (a —

— (L1-10— LHa)K,flv. But, this is clear by (4 . 7 ) with y2 replaced by

§ 6 .  A  reduction to an integro-differential equation

The problem of constructing the diffusion determined by A  and
L  is reduced to solve the equation of type (A— L 1-1«)*=4o. But this

equation is essentially an  integro-differential equation given on the
boundary D. T o  show this we prepare

Lemma 6. 1. 2 5
)  L e t  K  b e  a  P-dim ensional compact m anif old

o f  class C 2 a n d  le t { 7 ,  t>0 }  b e  a sem igroup on C ( K )  w ith gene-
ra to r O .  L e t  (71(y )GC 2 (K ) , 1 < i < P )  be  ex tensions o f lo ca l co-
ord inates in  a  neighbourhood of a  po in t x G K  s u c h  th at  1, 71(y)
( 1 < i< P )  and E (v i(y )) 2 be long  to  Z (Q 6). M oreov er, le t 71(y) =0,

1 < i< P ,  i f  and o n ly  i f  y = x .  T hen, w e hav e

(6. 1)

O f (x )= (x )  a  i  ( X )  ± (x ) -le (x )  +  (x ) f (x )
i =1 012 072 - i  = 1 a72`

ff ( y ) — f ( x ) —  l

aZ (x )v i  (y )} ) - , -.(c ly ),

f G e ( K )  n $ ( ) ,

2 5 )  A  similar result is obtained by K. Yosida [38]. The proof o f this lemma is
a modification of Wentzell's method of seeking the boundary condition,
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w here (a' I ( x ) )  is non-negativ e def inite, 7 (  )  ic  non-positive, and
is a  m easure on K  such that

U) <c)°, (Y))2P.(d.Y)< 00

f o r  any  neighbourhood U  o f  x.

Proo f. For f  in Z(03) n e ( K ) ,

6 f (x ) -1 im (T , f(x ) —  f(x ))
t

. 1 f(y )P (t, x , d y ) —  f(x ))t-).0 t K

P 8
=lim [r ( t ) f ( x )  + E  (t) J .  (41=1 072'

where

I f ( y )  - f ( x )  ( x ) ( y ) } (y)1 d y )]
s = i

r(t) = t - -1 (P (t, x, K) —1) = t - 1 (T ,1 (x ) — 1 )< 0

( t ) = 72̀ (y )P (t, x , d y )= (x ) (x ) ) ,

V (t, E )  =t1 E 72' (Y) 2P ( t ,  x ,  d y ) ,  E  B (K ) . " )

Ei=1

By assumption lim r(t)= Q 31(x)— r(x) and lim  (t ) = 07/(x) (x )t_).0
exist. Moreover, there is eo> 0  such that

p(t, K )< lim p(t, K ) + 1
t-).0

= 1 1 M  i T i ( E ( 7 1 ) 2 ) ( X )  (E(V  ) 2)  ( X ) }  + 1
1-->0 i=1 i=1

(72`) 2) + 1, for t<e 0 .

Putting

g (y ) =  { f (y ) — f(x )—  P
 a

a
f
v ,  ( x)V (y)}

z " ( ( y ) v i  ( y) (y ) 2}
we have

2 6 )  B ( K )  is the topological Borel field of K.
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a2 P )
j (x )z i i  ( Y ) + r (f, .Y) (y) 2

- 1

1 •=i 0721

r( f ,  y )  being continuous in K—  {x}  and 4 E 7 /  ( y ) 2)  around x ,  the

second summand of g ( y )  can be continuously extended on K .  Let

q, be a  mapping from K—  {x}  into KX  R P '  defined by

(y , (.31) )  K X R P 2 ,

and let M  be the closure of the image 9(K—  { x}  ) in K X R 1'2 . 1171
is compact for — 1< z`l (y ) < 1 .  Define

1  P  f ( P
G(Y , Z") ' (x )Z ` i  r (  , Y )  iEvi(y)1 1

2 &ef t i=1

on ep(K—  {x}), and extend it continuously on M , and denote it by

the same notation G(C), C E M .  This is possible by what we have
noted about g ( y ) .  Clearly, g(y ) = G (9( y )) , y E K —  { x }  . Define

N (t, E ) =v (t, 9 - 1 ( E ) ) ,  E C M .   S ince N (t, M ) = v (t, K —  { x}  )<
I3 ( E  ( V 9 2)  ( X )  + 1  for sufficiently small t ,  there is a sequence {t„\ 10}

such that {N (t„,•)}  tends to N ( • )  in weak star. Thus, we have

u ( x )  = 1 r ( t  f  ( x )  + U .)  
a
a

f
v , ( x ) G(C)N (t., dC)

11 -> O C 111

(6.2)
=  (x ) f (x )  + (x)  aafv, (x )  +L G (C )N (d C ).

j j

Writing v (E) = N (9(E)), E  cK —  { x }  , we have

G(C)N(dC) G(C)N(dC) + G(C)N(dC)
mn(y—r) mn[Y=f.)

/frinty—} { 2 i,J=1. av' avi
1f  . (x) N (dc) G(c)N (dc)

P a 2  f  ( x ) ( ' 1 Z j i  N (d C ) G (9(y ))v (dy )
1,5=1 aV i  a72i ) m n  Y = ‘q 2 K-{x}

a2
E• & i (x ) . (x )+ ,ç g(y )v (dy )  6 7 2 `  a • 2 7 7 K-{x}

E•  d " (s ) av
a .f  ( s )+ I f ( Y )  — f  (s )=1 K

P -1
anf ( X )  Y ) 1  iEv' (y) 21 (d y )  ,

1=1 u72' 1=1
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where
Ft" ( x )  - - - „(y=4 Z i i N ( d C ) .

P ) —1
Putting (E ) = ( Y) 2 I v (dY )

and noting (6. 2) and  (6. 3) we have (6. 1). It is clear by defini-
tions that y ( x ) < O ,  ( " ( x ) )  is non-negative definite and p satisfies
the conditions stated in  the lemma.

Lemma 6. 2. L e t  L  be V an." )  T h e n , th e re  is  a semigroup on
C ( D )  w ith  generato r L H -c, fo r  an y  a > 0 .  If y, belongs to 0 ."(8D ),
then

a_a 
1-1«  ço(x) = —

On
H«ço(x)an

8q.(6.4) =  E  a " ( t y . (x ) +  E igi (a, x) (x )
8V.86.1x

) )i ( y 1•-Py-.(oz,x) ço (x )+ H q , ( y ) —ço ( x ) —  ( xso i = 1  ay.
P. (a , cl,Y),'" x E 8 D ,

w here (all (a, x ) )  is non-negativ e def inite, y (a , x )< 0  and rd- (a ,dy)

is  a o--f inite m easure on OD satisf y ing

(6.5) P ( a ,  OD— U )< 0 0 ,
N-1

Uxnal, i i ( e ! ( Y ) ) 2 P.(ce, dY)<°° •

f o r  an y  n e ig h b o u rh o o d  U  of x .

Proo f. S ince there is  a  u n iq u e  s o lu t io n  o f  th e  equation

(a— A )u =  0  o n  D ,  (A—  oan )u = ç o  o n  8 D , f o r  ço G C
°
'' (O D ) by

Theorem  2. 3, there is a  semigroup o n  C (0  D ) with generator
8—

On
HOE by Theorem 5. 1. Since  E ( y )  satisfies the conditions in

a Lemma 6. 1
'  

O nH „, can be represented by (6. 1) for cp in  C2 (81J)

n Z ( L I I « ) .  But C 2 . " ( OD) being contained in  Z(LH c,) c Z ( L H .)  as
we have noted just before Lemma 4. 1, (6. 4) holds for C2'"(8D).

27) W e p u t  (a/an) Cl (D).
28) Recently, S . A . MolCanov [23] proved that the first term in the right side of

(6.4) can be omitted, and he represented v.(ce, •) in a more concrete form.
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Lemma 6. 3. Fo r any  giv en zi ( d y )  satisf y ing (4 . 2 ) an d  any

ce> 0 ,  th e re  is  a  a-f inite m easur D .,(a,dy ) satisf y ing the condition
(6 . 5 ) w i t h  (a, • ) replaced by  r) (a, • )  such that

(6. 6)
8 D

Ç6K  Y )D . dy)=
D  

49( Y ) (dy)
N-1

i f  ço E C O D ) an d  q, ( Y ) = 0 ( E ( ( y ) ) ) ,
N-1

P ro o f. F ix an  x e O D  and put 72(y) =  [E  ( ( y ) ) 2]  .  Each
i-1 8D

belonging to C 3 ( 0 D ) ,  z i ( y ) E c o m  a n d  hence ça • 72 belonge to

Cs (O D ) CC ' (O D ) fo r  any ço E C 3 (aD) , implying H«(q7 • 72) E  (D) .
Thus, noting that ça • 72(x) = 0 an d  (0 / 0 !) (ça • 72) (x ) =  0  (1 <i<N —  1) ,

functional

0 (50) = p H« (49 • 77) ( Y )v.(dY )

N -1  a11- -L((p•72)(y) — (49 • 77) (x) aE. H.(49 • 77) (x ) El ( Y )} 2.)(ClY )
D

can be defined on C' (OD) . (y o) is clearly linear, non-negative and
bounded, because 0 (1 )  is finite. C 3 ( 8 D )  being d en se  in  c (Ôp),
ow can be extended to a  bounded, linear an d  non-negative func-

tional on C (O D ) uniquely, and hence represented a s  an  integral

ø (ç2) —D (Y ) P (4 ),  §oG C (D )

by a  bounded measure p  on OD in  virtue of Riesz' theorem.
Now, define i.1 (a, d y )  by

1%. E ) ( Y ) - 1  P(dY )

which is clearly a  a-finite measure o n  OD an d  satisfies (6 . 5 ) with

P(ce, • ) replaced by “ c e ,  •  ) .  I f  çaG C (a D )  an d  ça vanishes in  a
neighbourhood of x ,  then p i - 1  can be considered a s  in  C' (OD ) ,  and
hence

8 D

o,(y)r). dY ) or' (y )P (dY ) =  G9 71- 1 )80-{s}

11.40 (y)v.(dy) •
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N - 1

L e t  be in  cop) and satisfy ço(y) = 0 0 ' , . ( y ) 2 ) ,  y - -->x . Then, we
i=1

can find a sequence {q,,,} cCs(aD) tending to ço such that the support

o f y2„ does not contain x  and kon ( y )1 < K v (y ) .  W e have

(1.1') =  IL T .(Y )v = (d .Y ),
8D

and this formula becomes (6. 6) as 17—> c x )  by the dominated conver

gence theorem, since

0 (

N - 1

E V X ( Y ) 2 ) .
i=1

FLLÇ on(Y) 1 < H Œ I (Y )< K H Œ v (Y ) = (Y ) )

Theorem 6 .  1 .  Fo r an y  g iv e n  L ,  w e  have

N - 1

Lrfaço=LH,,,ço= oz"(a, x)  a 2
.

ço  
. (x )

i =1

N - 1 aq, (6.7) E  (a, x) (x )+ r(rx ,x )ço (x )

N - 1  a,
+ L { Ç , (y)—v(x)— a (x)E1( y )}v.,(a, dy ),

f o r  çae o , Ko m  and . T E D ,

w h e re  ( a " (a , x ) )  is non-negativ e def inite, r (a ,x )< O ,  a n d  1.),(a, • )

is  a  a-f inite  m easure on aD satisfy ing'

N-1
(6. 8) v,(a,aD— v))2), (a, dY) <  C C '

,O D  i=1

f o r an y  n e ig h b o u rh o o d  U , o f  x.
P ro o f. First, we note that the following quantities are finite.

7-(a, x ) i, ( H O E  1 (y )  —1)id(dy),

(6.9)
(a ,  .X ) D (11.$! ( y )  — e(3 )))1 )(dY ) •

In fact, the integrands of (6. 9) and their derivatives with respect

to f (1 < i< N —  1) vanish at x  and the integrands belong to 0 ( 75),
implying that the integrals are finite by assumptions on v .

Now, we compute L II,“0  fo r çaE 0 -(a D ) by definitions
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N - 1 a 2 N _ i aço 
L H « ç a ( x ) = L H « ç 0 ( x ).-= E t t " ( x ) . Ç9 . ( x ) - (x )

i, i -1 aV W j - 1 a E

(6. 10) +  r(x )go(x ) + (x) lim  A (H Œ ) (Y ) + p (x ) 8  H ( x )
yED,y-›. an

aaix (x )(H .q , (y )— Ç o (x )  E   V x ( Y )) 1'..(dY ) •
D

Since (a — A) 1-1«q (x) =0  fo r  x G D ,  the forth summand is given by

(6.11)a ( x )  11m A ( r i a g 9 ) ( y ) =  (x )
yED, y->x

The fifth summand can be rewritten making use of (6. 4) by Lemma

6 . 2 . As for the last summand, the integral restricted to D  is given

in the following, making use of Lemma 6. 3 and (6. 9).

D(1--/..ço(Y ) — ço(x) —E: 0
8;  ( x ) V .( y ) ) ) ) .( 4 )

= i)11«{y9— ça(x) a8;  (x )e f } (y )v x (dy )

(6. 12) { 11-l(y ) — 1}  ço(x ) (dy )

a
a;   ( x ) . [ H « $ ! ( y ) — V x ( y ) }  v ( d y )

O D

a _
l(p(y ) — N-1 OEX

q,(x) —  E (x ) ( y )}  D. (er, clY )
=1 
N - 1

a ç o  +F(a,x )ç o (x ) ( a ,x ) . ( x ) .
j - 1

Denote the retriction on aD o f 1) ( • )  b y  [1).]8D(.) and put

a" (a, x ) = a" ( x )  + p (x )d " (a, x )

13' (a, x )  =  ( x )  + (a, x ) (a, x )
(6.13) r (a, x )  r (x) +aa(x) + p ( x ) r ( ,  x) + (a, x )

•) = [v .]8p(•) + tt(x )P.(a, •) +D .(a, •) •

Thus, (6.4) a n d  (6 . 9 )-(6 . 12) imply the representation ( 6 .  7 ) .  By
definition (6. 13) the properties of (a" (ce , x )) and 2i (cu, -) mentioned
in the theorem and that r (a, x )< 0  are clear, completing the proof.

By the above theorem, to solve the equation
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LH«)1P—q,

for (p  in  a  set dense in  C (aD ) is reduced to solve an  integro-differ-
en tia l equation

N -1 02 ,.F.,
21k ( X )  - (a, x)  a$ ,:raeir (x )

N -1

(6. 14) (a, x ) ( x )  r (t r,x)11fi (x)

+  ilk (y ) — *(x ) (x )(Y )} )).(a, dY )
6D

= çO ( X )  , X  G6D,

for s o  m a n y  in  C (OD ).

To consider some examples, we prepare

Lemma 6 .  4 .  I f  L H «  is  a generator o f  a sein igroup on  C O D ),
th en  L 'H « is  also  a generator, w here

L 'u (x )=L u (x )+r'(x )1 1 (x )+8 ' (x )  lim  A z t ( y ) ,  x  ap,
yE D, y->x

and r ' ( x )  and 8' (x ) are non-positive continuous f unctions of  x E 8D ,
P ro o f . Since r '  and a  a re  continuous, L ' satisfies (L. 1 )  and

we can choose Z ( L ')  =Z ( L ) n  { u lu E 0 ( D )  and A u  can be extended

to a  function in  C ( D ) ) .  Thus we have Z (L lia)=Z (L 'H O E) and

(H« yo) (x) L H «ço(x ) + (x )H ay o(x ) + 6' (x ) lim  A H « (y )

=L H«ço(x)+1-'(x )ço(x) ± c d ( x ) q ) ( x ) ,  for çoE Z (L H «),

a n d  hence, L '1 1 « =L H « +r' +a8 '. B y app ly ing th e  corollary to

Theorem 1.2 fo r  Z =L HG, and M =r' +aa' , we complete the proof.

Exam ple 1 .  I f  L  is given by

L u(x )=  a
  u(x ) +r (x )u(x ) --Es(x) lim  A u(Y ),an Y ED. y->x

where r  and  8 are non-positive and continuous a n d  if  we choose

(L ) = { u l u e  ( 1 5 )  n  ( D )  and A u can be extended to a function

in C (]3 )} , then 27 -1-i_A is the generator o f a  semigroup on/  C (D )  for
each 2>0.
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In  fact, by Lemma 6. 2 (a/an)H« is a generator, and hence LH«
is also a  generator by Lem m a 6. 4 for an y  a > 0 .  Since L  satisfies
(L. 2), A A  is  a  generator by Theorem 5. 2' for each A>0.

Example 2 .  Consider the case where aD is a compact Lie group
and each translation of aD can be extended to an  isometric trans-
form ation o f  D .  L e t  A  b e  invariant un der the transformations
induced by translations of a .  L e t a" (x ), (3 '(x ), and ,u (x ) in  L
be constants and let  r ( x )  a n d  8 (x )  be continuous in  x E 8 D .  Let

)  an d  {E (y )}  satisfy i (E )  = v , ( x - 1 ( E ) )  a n d  ' , (y )= E (x - 1 (y ) ) ,
xE & D , y E D , where e  is  the neutral elem ent o f  aD and x - ' ( - )  is
the transformation of D  induced by the translation of aD determined
b y  x - 1 E8D : OD. Then, A L-A is  the generator of a
semigroup on C (D )  for each 2>0, i f  L  satisfies (L. 2 ) .  Moreover,
if w e assume only (L. 2 ') for L  and require ô to be a constant, then
(L. 2 ) is necessary and sufficient in  order that A i-A  be a  generator.

In fact, if r = 8 = 0, then ce`qa, x), 3` (a , x ), and r (a , x )  in (6 .7 )
are  constants, and 1), (a ,  •  )  is  translation invariant, and hence, by a
theorem  o f  G . Hunt [11, P .  279] LH« i s  th e generator o f  a  semi-
group on C ( D ) .  Therefore, L H « i s  a  generator even if  r  and
do not vanish, by Lemma 6. 4. If L  satisfies (L. 2), is  a gene-
rator by Theorem 5. 2'. L et L  satisfy (L. 2') and let ô  be a constant
and it_A  be a  gen erato r. I f  ,u a>o, (L. 2 ) is  sa tisfied . W e have
liK;JI--.0 as b y  R em ark  5. 2. T h u s , i f  /2=8= 0 , then by
Remark 5. 1 v ( D )  is not bounded in  x , and  hence v., (D )  is always
00, completing th e  proof.

A s concrete examples, consider a  circular disc in  l e  o r a  solid
sphere in R 4 w ith  rotation invariant A  and L . A s another example,
le t  D  b e  a  s e t  {(x, x2, x3) I x 2i ± x K l ,  0 < x 3<27-c} i n  l e  where
(x i , x 2 , 0 )  is  id en tif ied  w ith  (x i, x2, 2 n ) .  aD i s  a  2-dimensional
to ru s . L et A  and  L  be invariant under the rotations around x r axis
and translations along x r axis.

W e note a  little m ore general result is obtained in  ca se  aD is
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a torus [33, p. 5371 by making use o f  [27 ] .

Example 2  can be extended to the case where a D  is  a  homo-

geneous space, since Hunt [11, pp. 286-2931 has obtained a corres-

ponding result about homogeneous space. In this case, the conditions

on A  and L  are more restrictive to a certain extent.

A  similar result is obtained in the case o f the Brownian motion

in the half space o f R " in  [321.

Chapter I I I .  Local tim e a n d  th e  M a rk o v  process

o n  th e  boundary

To inquire the probabilistic meaning of the M arkov process on

the boundary, we consider in  this chapter the reflecting diffusion,

that is, the diffusion determined by

au au — A u  a n d  (x )=  0, " E N .).at an

In  this case, local time on the boundary t ( t ,  w )  will be defined by

t(t, w) — lim  1   . t (x.,(w ))ds," )

p->0 p

which has some properties similar to the case of one dimension, as

will be proved in  §7. Then, xt-i ( , ) ( w )  will be proved in  §9  to

be a M arkov process on the boundary with the generator  a H.,an
where t ' ( t ,  w )  is  the right continuous inverse of Î ( t ,  w ) .  This

means that the M arkov process on the boundary of order 0  is the

trace on  the boundary of the trajectory of the reflecting diffusion,

and that t ' ( t ,  w ) is  a time scale suitable to describe this motion.

Moreover, the diffusion determined by

aua u— Au and r (x ) ir (3 7 ) + 8  (x ) lim  A u (y )+ (x ) = 0 ,  ,1-, aDat yED, y - . 1 an

will be constructed from the reflecting diffusion using t ( t ,  w )  in §9,

2 9 )  X E  is the indicator function of a set E.
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Some lemmas related to certain  differential equations a n d  t(t, w)
will be proved in  §8 a s  a  preliminary to §9.

§ 7 .  Local time on the boundary of the reflecting diffusion

L e t  p+ (t, x, y )  b e  th e  fundamental solution of the Cauchy
problem for the parabolic equation

Ou ( t  x )=  A u (t , x ) ,
at

t > 0 ,  x E D

with ref lecting barrier condition

Ou(7 .1 ) O n - ( t  x )=  0, t> 0 , xE8D,

where A  contains no  constan t term :

(7. 2) Azt(t,  ) - -  
  

0  
 (

a ii(x )1 /  a (x )
z.z=i-v a ( x )

Oz+ E b' (s)( t '  x ) .z-1 Ox' 

{T  t > 0 }  defined by

(7. 3) T t+ f ( x ) = 1 , -1 - (t, x, y )f (y )m (dy )

fo r  t> 0  an d  T o+f (x )=f (x )

are  non-negative linear operators on C (D ) ,  and form  a  semigroup

on C (D )  in  th e  sense of §1 by virtue of Theorem 2. 1.

Let W  be the set of all functions w defined on [0, +ooj, taking

values in  D u  {4} , where A is adjoined to D a s  a n  isolated point,
and satisfying following conditions:

1. There is such a C(w) E [0, 4- c>c] that w(t) E h - fo r 0 < t< C (w ),

and zv (t) for C (zv) < t <  + co .
2. w (t )  is continuous in  t  for 0<t<C(w). We sometimes write

s t ( w ) =w ( t ) .  L et B , and B  be the smallest Borel fields of subsets
of W, which make {x„ sE [0, t ] )  a n d  {xs , sE  [0, -I- 00)} measurable,
respective ly . For each  w  W  and  t> 0 ,  w e  h av e  a  sh if ted  p ath

Ou 
Oh i
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E  W  d e f in ed  b y  ze.);' (s) -= z v ( t +s) , s E  [ 0 ,  +  ] A  mapping
is c learly  B-measurable.

Theorem  7 .1 .  T h e re  is  a  M ark ov  process X =  (x 1 , W. B t,
x E  D u  { 4 } )  w i t h  {p (t, x ,y ) m ( d y ) }  a s  a  sy s te m  o f  tran s itio n
p ro b ab ilitie s , th at is , th e re  is  a sy stem  of  m easures  { P ( • ) ,  x E D u

{M I  on ( W , B )  s u c h  th a t  P ( B )  i s  B (D u { 4} )-m easurable i n  x
f o r  e ac h  B , P ,( x o ( w ) = x ) = 1  f o r  e ac h  x E D ,  E , ( f ( w ) I B 1) =
E ,,( f ) " )  ho ld s  f o r  each  B -m easurable bounded function f  w ith
probability  one , and

E ,(f (x  t)) = d)+(t, x , y )f ( y )  ni. (dy ) , f e C  (D ) .

S uch a  M ark ov  process is unique." )  M o re o v e r,  X  is conserv ativ e,

that is ,

(7 .4 ). / - )  ( C e ( w )  =  +  0 0 )  = 1 ,  f o r  x E  D.

T h e  transition  operators o f  X f o rm  a  sem igroup o n  C (D ) a n d  its
g en erato r is  A z , w h ere  L =8 /8 n  and  ( L )  = C 1 ( ) .

W e ca ll X  the  re f lec ting  dif f usion on D  determ ined  by  A .

P r o o f .  First, let us prove that the generator of 7 .  i s  A .  Since
(a— A ) u =0  an d  Lit= ço can  be so lved  fo r dense ç5, in  C ( D )  b y
Theorem 2 . 3 , Az generates a  sem ig ro up  on C (D )  by Theorems 5. 1

and 5 .  2 .  L et G :  be its Green operator. S ince çoEC°'"(8D ) implies

u E C i(D ) and u=1-L K A o, f EC '"(D ) implies 11,KT  a  Ggiinf E  ( D )

an
by Theorem 2 .  4 ,  ( i ) .  H ence, G :f  belongs to C2 (D) ( D )  and

satisfies (a— A )G :f =f  in  D  and   a  G :f =0  o n  8 D  for each  f E
On

C °."(D ). Therefore, we have

G : f ( x ) = _ e  `"p+(t, x , y )d t) f (y )m (d y )
D 0  

by Theorem 2 . 3 , since ca'p+(t, x , y ) is  the fundamental solution of

30) Es ( . )  is  th e  integration by measure P s ( • ) .

31) More precisely, P s  is un ique i f  W , B t  an d  B  are  fixed.
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th e  C au ch y  problem o f  au/at= (A —  a)u w ith  boundary condition
& u / n = 0 .  T his im plies that G :  is  the G reen operator o f  T i+ , and
hence the generator o f  Ti+ is  2I- z.

For the existence of  P . o n  t h e  space o f  continuous path
functions W , it is sufficient to prove

1(7 .5 ) l i m  sup —  (1 — p+ (t, x, y )m (dy )) = 0  for e> 0 ,
t4,0 t U ,(e )

by v irtue o f  a  result o f D ynkin  [4] and K inney [19] , w h ere  Ue (x)
=  { y E A  d (x , y )<E }  . Now, fix  an  x o E D  and  find such a function
f E C 2. "(15) that satisfies af /an =0 , 0 < f < 1 ,  vanishes everywhere in

D— UE/2(xo), an d  is constantly 1  in  some neighbourhood V  of X .
It is easy to  find  such  an f  i f  x o i s  in  D .  For x 0 D ,  choosing
sufficiently small a  an d  b > 0  an d  OGC 2 '" (  [0 , + 0 0 ))  which satisfies
0 < 0 < 1 ,  0(z ) = 1  fo r  0 < z < a ,  an d  0(z) = 0  fo r  z > b ,  we obtain

N —1
such an f  by putting f (x ) = 0 (E — .T0 2)  0 (7 e ) ,  w here ( )  and

( )  a r e  canonical coordinate system s o f  x  an d  x o ,  respectively.
Noting that f  belongs to the domain of the generator o f {T,+} since

f (Î )  a n d  Lf = af/ an = 0  by Lemma 4. 5, that A f (x ) = A f (x ) =
for x E  V , and that xu , ) > f  for each x E  V, w e have

sup  1  II- P+ (t, Y)nl(d.Y)}
1- E V  t

1<sup {1 (t, x, y ) f (  y )  (dy )}
.Ev  t
1 (t, x , y )f (y )tit(dy )}  + A f (x )1

= cvL  t

+-(f - -  Tu) ±Afil
which converges to 0 w hen t  tends to 0 .  Since D  is compact, (7. 5)
has been  proved . T h e  uniqueness o f  X  is assured by K . I to  [15,

p. 35 ] a n d  ( 7 .  4 )  follows from p+(t, x, y) in (dy ) = 1, w hich  is
D

obtained by (7 . 1 ) , (7 . 2 )  and Theorem 2. 1, ii).

T h e o r e m  7 . 2 . There is a sequence of  positive num bers { p„W }
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su c h  th at fp. (t, w ) conv erges to a  continuous, non-negativ e additiv e

f u n c tio n al t ( t ,w ) o f  X  un if orm ly  o n  an y  c o m p ac t tim e  in te rv al

w i th  Px-probability 1 f o r  an y  x E D , w h e re  {p„ }  d o e s  n o t d e p e n d

o n  th e  choice o f  x E D , and

(7. 6) tp(t, w) 1  i x,,,,(x.s(w))els, p > 0 .
p o

t (t , w ) sa tisfies

(7 .7) Ex(t(t, w)) = t (14  p+ (s, x, (d y ) ,  x D.
0 ap

S uch an  ad d it iv e  f u n c tio n al t ( t ,w ) is  u n iq u e  u p  to  Px-probability

0 f o r  a l l  x .  M oreov er,

(7. 8) P x (limt (t, w ) =  00 ) =  1 , if . I G D,
f—)Doo

(7. 9) P„(t(t, w ) > 0  f o r all t> 0 )= 1 , if  an d  only  i f  xE8D,

an d  t ( t ,w ) increases at t  on ly  w hen  x ,(w ) is  o n  th e  boundary .

t(t, w ) is called  the lo c al tim e  o n  th e  boundary  for the reflect-
ing  diffusion X.

B y  an  add itive functional of X , w e  m ean  th a t 1 ( t, w )  i s  B i -
measurable and that

(t (t +s, w ) i ( t  w ) + t (s ,  w )  for all t , s > 0 )--1 , x E r j,

holds.

Proof." )  P u t  ep(t, 4  =  Ex (tp(t, w ) ) .  Then, w e  have

(7. 10) l i m  sup Ek(ltp(t, w) w)12) =0.
P O ' 4, 0 E D

In  fac t, n o tin g  th a t c ,(t , x ) converges to c14 p+ (s, x, y)7ii(dy)0 ap
uniformly in  x ED  and 0 < t < T  for any fixed T > 0  by Lemma 3. 6,

1and putting f ( x ) = xpp(x)—  1
,  xDp,(x), w e have

E x (It 5 (t, w)—t 5
, (t, w)1 2) = E x i(:f (x s )d s ) 2 }

3 2 )  T h e  method is suggested by McKean-Tanaka [21].
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f (x ,)d r )= 2 .E r I t f(xs)dsE,„( 1 ' f (x r )d r )}0 0 0

<2_,E,(Ç lEy(Ss f ( x r )dr)1
o
l f (x r ) Id s )  sup

0 s t,yE D

<4 sup ep(t, x) • sup I ep(s, y) — en' (s, y ) I —.0,
p>0 t , y E D

uniformly in  x e D  as  p and Now, define

10(t> w)= E.(tp(T) I B t )  f o r  t< 7'.
Then, w e  have

(7. 11) tp(t, w ) = t 0 (t)  +e0 (7'—t, x,).

Since (fp(t)— fp , (t ),  B ( , 0 < t < 7 ,  P , ) ,  is  a  separable martingale for
any xE  D , b y  an extension of Kolmogorov's inequality due to Doob
[3, p. 353] w e have

(7. 12) P,(max 11,(t) (t) 1> e )< e - 2 E (Itp ( 7 ') — t0'(T )1 2)

=e - 2 E.‘.(it0(T) — tp '(r) 12).

Thus, by (7. 10) and (7. 12) and by m aking use of the Borel-Cantelli
Lemma we can find such a subsequence fpwl for any sequence fp401
that

Pr(tp.,(t, w ) converges uniformly in 0 < t< T , when n'—.00) = 1,

D.

H ence, by (7. 11) and Lem m a 3. 6 w e have

w )  converges uniformly in 0<t< 7', when n'-->00) =1,
E D.

Since the convergence in  (7. 10) is uniform  in  .2-, {p„,,, }  can be taken
independently of x ï i .  T h e n ,  b y  m ak in g  u se  o f  the diagonal
m eth o d  w e  can  p ro v e  th a t th e re  is  a  sequence p„ 1,0 such that
P , (W ')=  1 for each x  D , where

W'= {wlip„(t, w )  converges uniformly on any compact time
interval, when n--->(>0)
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Now, define t(t, w ) b y  t(t, w) = limtp„(t, w) for w E  W ' and t(t, w)
n - . o 0

—= -I- 00 for w EE W '.  That t(t, w ) is a non-negative additive functional
is  c lea r b y  the construction . Continuity follows from the uniform

convegence of tp„(t, w) to  t(t, w ) . B y (7. 10) i(t, w) is also  a  limit
o f  tp(t, w) in  th e  sense o f  1, 2 ( W , .P.,) a n d  hence in  th e  sense of

Li ( W , Pi). T h is ,  combined with e (t , x) E  ,  p+ (s,
0 a i l

x , y )M (d y ) , im p lies (7. 7). Now, let x 1 ( w )  b e  in  D  and  t>0.

T hen, b y  th e  continuity o f path functions there a re  t ,  and t 2 such

th a t  t i < t < t ,  and t , ( t 1 , w) = ip(t2, w) fo r  sufficiently sm all p ,  and
hence t (t i  , w) = t(t 2 , w ) ,  im p lying that t (t, w )  increases at t  only
when x 1 (w ) is  on D .  (In case  x ,  (w ) E D  and t = 0, w e have only
to  consider 0 = t < t 2 w i t h  (t 2 , w ) =0.) ( 7 .  8 )  a n d  (7 . 9 ) w ill be
proved later a s  a  corollary to Theorem 9. 1.

L et u s prove the uniqueness. Suppose that t(t, w ) and ti(t, w)

a r e  both non-negative additive functionals o f  X  satisfying (7. 7).

Put w ) = (t , w ) ( t  ,  w )  .  S in c e  T 1+ form s a  semigroup on
c (r)) , th e reflecting diffusion h as  the strong Markov property by
[14, p. 6 0 1 ,  an d  th e  right continuous inverse 1 - 1 (t, w ) of t(t, w ) is
a  Markov tim e .  Hence we have

E,,( t(ds) ( d r) ) = .E 6t (ds) (dr,o o o
/ rim ri-t - ico atcol- 1 t - i ,

=E , d s
( 
dr ,zqii ( ,) ))= LE (dr))1,, = t_i (s f1.5) = 0 ,

Oo

b y the assumption E „(( t, w ))  =0 . S im ila r ly  w e  have

E t' (ds) (d r) )= 0,

and  hence

E . ( ( t , w ) 2 ) =  „

0-4: ( d s )  ( d
2P (Ço (d s)  ( d r ) ) =  0,

30 (.)

w h ich  im p lie s  P.,(t(t, w ) =t' (t, w ) for a ll t) = 1. T h e  p roo f of
Theorem 7. 2 is complete.

R em ark . F o r an y  t ,  w e  have
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(7. 1 2 )  l im  Z (Itp (t,w )— t(t,w )1 2 ) = 0, un if o rm ly  in  x.
p4,0

§8. Solutions for some parabolic equations

Lemma 8. 1." )  I f  f  an d  b belong to  0 . " (D ) ,  then

(t, x) = E i l : f (x s )  exp( —  b(xi)dr)ds}

is continuously  dif f erentiable in  t> 0 ,  belongs to  C (D )n C 2 (D )  as
a f u n c tio n  o f  x , an d  satisfies

(8. 1) ( +b (x ) —  A )v ( t ,x )= f (x ) ,  t> 0 ,  x E D ,

(8. 2) av 
a n

(t
'

x )= 0 , t > 0 ,

(8. 3) lim v(t, x ) = 0, x ED.

Proof.

(t, x) — E i ( ' f ( x s )ds)-= E„6:{exp(—  ( x i )d r ) -1 } f (x s )d s )

= — E s6 :f(xs )d s :b (xu )exp (—  b (x i )d r)d u )

= — E i 6 t
o b (x u ) d 4  f ( x s )e x p (—  ' b(x ,.)dr)ds)

= — E .,So b (x u )duE„.6 0
t ' f ( x s )exp(— o b(x i )d r)d s )}

=- — Ei 6:b(xs)v(t — s, xs)ds).

Thus, we have

v (t, x ) = t
o dlp+ (s, x, y ) (f(y) — b (y)v (t — s, y))m (dy) .

Hence, v (t, x )  is continuously differentiable in  x c D  an d  satisfies

(2 . 9 ) with u  replaced by v ,  by Lemma 2. 2. Therefore,

3 3 )  This is a parabolic version of the theorem of Kac [14,  P . 5 0 ]. A  similar result
is obtained by Has'minskii [9, p. 8] independently.
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1v (t , x) — v (t' , x') 1 <lv (t , x) — v (t' , x) 1 + 1v (t' , x) — v (t' , x') 1

<e r l i b i l • Ilfil• It—tf +KEIxi—x"1,

implying v ([0 , TI X Li). Thus, v (t, x )  satisfies (8. 1)-(8. 3)
by Theorem 2. 2.

Lemma 8. 2 . L et J  a n d  b b e  in  C '" (D )  a n d  le t  yo a n d  f3 be
in 0 ." (0 D ) a n d  „>-0. Then,

(8. 4) u(t, x) = 1:%„6 f(xs)exp(— fi(x„)±(dr))ds)
0 0

is continuously  d if f erentiable  in  t> 0 ,  belongs to  C '(D )  n e (D )  as
a f u n c tio n  o f  .x, and satisf ies

(8. 5) + b (x )  — A)u(t = f (x) t>0 ,, x) , x D,

(8. 6) ([3(x) a 
) u t , = 0,t > 0 ,x )x OD,an

(8. 7) lim u(t, x )  = 0,x ib.

(8. 4') v (t, x ) .E. 6:yo(xs) exp(—  s
ob(x,)(1,-

—Ss 0 (x ,)t (d r ))t (d s ))0

is continuously  dif f erentiable i n  t> 0 ,  belongs to C1 (15)c-)C 2 (D ) as
a  f unction o f  x , an d  satisfies

(8. 5') (  :  +  b(x) — A)v(t, x) —0 , t> 0 ,

(8. 6') ( ( x )  a
a
n )v (t , x ) = ( x ) , t > 0 ,  x  E O D  ,

(8. 7') lim v(t, x )  = 0,
14,o

P ro o f. Here, we prove the propositions fo r  v  alone, since the

proof fo r  u is almost th e sam e. Take continuous extensions on D

o f yo and i3 denoted by a n da n d  respectively. t3 is taken to be non-

negative. Put
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(8 .8 )v p ( t ,  x )---E 1 ç9(x s ) e x p ( - 1 , ( x , ) d r
0

— ' k x , ) t ( d r ) ) t , ( d s ) } ,0

(8. 9) x )  E , i ( x s )ex p (—

— ( x , . ) -tp, (d r ))tp (d s)} ..0
W e note that

(8. 10) ( t ,  x )  = vp ( t . x )  (boundedly in  0 < t< T , x E D ) ,

(8. 11) l im v „ ( t ,  x ) =  v(t, x ) (boundedly in  0 < t< T , x E D ) ,

w h ere  {p„} i s  th e  sequence in  Theorem 7. 2, a n d  'I ' is arb itrary

n u m b e r . In fact, s :4(x,.)t (dr)--> P ( x , ) t ( d r )  a n d  th e  dominated
0 0

convergence theorem imply (8 . 10 ). Moreover, we have

Ç'y'o (x i ) exp( — s
o l ) ( x , ) d r  —  P (x , ) t ( d r ) ) t , ( d s )

0 0
(8.12)

eP (x J  ex p ( -1 3 (x i)d r— s /À (x ,) t ( d r ) ) t ( d s ) ,
0

when S ince t , ( t ) , t ( t )  in  L i ( W, {t }  a r e  uniformly

integrable in  th e  sense o f Doob [3] . The left hand side o f  (8. 12)

is bounded by Rolle"bltr,„ (t ),  an d  hence, uniform ly integrable in  n.

Therefore, (8. 11) follows from (8. 12). The convergences in (8. 10)

a n d  (8. 11) a r e  bounded, because both x )  an d  vp(t, .x )  are
bounded b y  d'Ç'oller lib ' • li.%(tp(t , w)) Ilîoile711°11 cp(T, x) for an y  / E D  and
0 < t<  T.

Now, fix p and p', and take sequences { } and {hm }  in  UC° . " (b )
K>0

converging boundedly to  îp(x)  1  x ( x )  and b(x) + (x )   1
,  X r,„ (x ),

respectively. B y Lem m a 8. 1

tt,,,(t, x )= E „{ :g ,,,(x .,)ex p (—

satisfies (  a— + =- D na = 0  on  OD, an d  limum = O.at A)u,„, gm. o n  ,   an
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H ence, m aking use o f the fundamental solution p ( t ,  x ,  y )  of the

e q u a t i on 8 u  =A u  with boundary condition (i3— 
 O

a
i

u  --- 0, w e have,
at

by Theorem  2. 2,

u m (t, x, y ) {g„,(y) — h m ( y ) t t in (t — s, y)} m (dy)

p ( s ,  x ,  y )8 ( y ) t t m (t  —s, ( d y ) .
0 op

Since um  converges boundedly to  vp,, , w h en  m-->oo, it follows that

v ,,, , (t, x ) cls p (s, x , y)1   p
l  x p , ( y ) ( Y )

(8 . 1 3 ) — b(y)vp ,p , (t —s, y ) — 2cD (Y ) (Y )v p ,p , ( t — s, y)}711(dy)

p(s, x, y) ( y )  v ,  p,  (t —  s, y)îti (dy).
0 aD

To apply Lemma 3 .4  to  {fp , ( x ) = ( x ) v p , , , (s , x )}  we have, by (8.13)
above,

sup I fp , (x) —  fv(P ; ( x ) )  <const. sup
x €1/(p ,  , s e V ( p f , r j ; )

x, y ) — p(s, P i ( x ) ,  y ) I ( d y )

+ ip(s, x , y) — p(s, P i  (x) , y )  n t ( d y )
p o D p '

+ t
e d s a p ip (s , x, y) — p (s, Pi (x ), y )  I iii(d y )1  ,

w h ich  converges to  0  w hen  p '  0  by Lem m as 2 . 1 , 3 . 3  and 3. 5.
Hence, letting 0  in  (8 . 13 ), we obtain

vp (t, x ) x, y )(   1   x p ,(y)Y 9 (y) — b(y)vp (t  —s, y ) ) t n ( d y )

in virtue o f Lemma 3. 4. T hus, w e have, by letting p =

v ( t , d s L p ( s ,  x , y ) g ,( y ) ( d y )

d l p ( s ,  x ,  y ) b ( y ) v ( t —  s ,  y )  ( d y )  ,
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im plying that v  E  0 1 ((O , T )  X D) by Theorem  2. 2 and Lemma 2. 2,
and that y  satisfies (8. 5')—(8. 7 ') by Theorem  2. 2.

§ 9 .  M a r k o v  processes on  the boundary and some

m odifications of the reflecting diffusion

Now, we construct Markov processes on the boundary corres-
ponding to the semigroups on C(aD ) in §6 in some special cases. In

a  sim ilar w ay w e can  obtain  som e modifications of the reflecting
diffusion.

Let a(t, w ) b e  a non-negative continuous additive functional
o f X , and let a- i(t, w ) be the right continuous inverse of a(t, w),
that is,

aAt, w) = sup {sic' (s, w )< t 'f .

N oting that 19 .(a( t , w )> 0  for all t> 0 )  =0 o r  1 for each  x E D ,
w e denote by S *  the set of all such  x  th a t the above probability
is  1. Then, it can be proved that

P„(x,-1 ( t ,„,) (w ) takes values in S *  {M ,  is right continuous and

has left limits as a function o f tE [0, a(oo, w))) =1, x E D .

Suppose th a t S *  is  m easurab le . W e define W *  to  b e  the set of

all functions w *  o f  [0, + 00], tak ing values in S* U {4 } and satis-
fying the following conditions :

1. There is such a  C*(w*) E  [0 , + o 0 ] th a t w*(t) E S *  fo r  0<t
<C*( w * )  and w*(t) for C*(w *)<t< + 00.

2, w * ( t )  is right continuous and has left lim its for each  t E  [0,

C* (w*)
W e w rite  .TP (w*) = w*(t). Let B P and B *  b e  the sm allest Borel

fields of subsets o f  W *, w h ich  m ake { x ?; sE  [0 , t ]) a n d  fx* : sE
10, +0011 m easurable, respectively. W e define P,* on ( W*, B *) by

_M (B )=.13 (x a -i(t,„,)(w )  belongs to B , as a function o f t)

for B E  B * .  Then, the s y s te m  X *  (4% W*, B :,  P : ; x E S *  { 4 } )
i s  a  Markov process and h as  the strong Markov p ro p e r ty . The
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transition operator of X * and  the G reen  operator a re  determined

by

T U (.x ) = (f (xr))= Er(f (ra-'(,))x{ :<a(-)} )
(9.1)

K t f ( x) = r f ( x ) c l t  E ,0 0- e- Aa( ' ) f (a s ) a (ds)),

where f  is bounded measurable on S * .  T he righthand sides of the
above equalities have meaning, because for any measurable extension
on D  of f  th e  righthand sides exist an d  they depend only on f ,
not on the choice of the extension. We call X * the M arkov process

ob tained  f ron t X  th rough  tim e  change  by  a(t).

Suppose that another non-negative continuons additive functional

1(t, w) of X is given . Let P ( • )  be a probability measure on [0, + co]

with density e- ,̀ an d  le t P ,  be th e product measure o f P , and P
on the space ,S2= Wx [0, + = , (31 . Define 1-2-,(w) on D  for tE [0  +00]

by

(co) =.27„-i ( t ,„,) (ze)), i f  b(aAt, w), w ) <  T,

J, i f  otherwise

C (co) = inf {t I (w) =4 } , where co= (w , T )  E Q.

W e have

(w ) takes values in  S *  {J },  is right continuous and

has left limits a s  a  function of t ro, (0,))) —1, x E D ,

and define a  measure p ! on ( W*, B * )  by

f l ( B ) =  -/ - (co) belongs to B  a s  a  function of t)

for B E B * .  Then, th e  system )0 =  (.277, W *, B",x E S * L J  {4} )
is also a  Markov process with the strong Markov property, called

th e  M arkov  process obtained  f rom  X  th ro u g h  tim e  change b y  a(t)
an d  k illing  by  b ( t ) .  Its transition operator and Green operator are

T iV (x ) = ( f ( x ) ) = E , ( f ( x a -i( o )e t ) ) 2 ( ( i < c , ( 0 , , ) 1 )

(9.2)
K2f(.27)= 0 e- À'T ,*f (x )dt=E„( oe- Aa( ' ) - b"f (x ,)a (ds)).
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T h e  proof o f th e  above results is referred mainly to Volkonskii
[34, §1].

Theorem 9 .1 . L e t  X *  be the  M ark ov  process obtained  f rom
the re f lec ting  d if f usion  X  th ro u g h  tim e  c h an g e  b y  the local tim e
on the b o u n d ary  t ( t ,w ) . T h e n , X *  is conserv ativ e, has state space

8S* =O D , and TT* is a sem igroup on C (8D ) w ith generator H0.34)
On

More generally, we can prove the following.

Theorem 9 .1 '. F o r  j  and r in c."(aD) satis f y ing  8 > 0  and
r<O, put

a(t, w ) c.
t 0(:17,(ze.))t(c/s, w),

b ( t ,  w )  at + 1 j r (27,(w)) I (.27 (w ))t (ds, w ),0

w here  a  i s  a  non-negativ e  num ber. Then, the M ark ov  process X°
o b tain ed  f ro m  X th ro u g h  tim e  c h an g e  b y  a( t)  an d  k illin g  b y  b ( t)
has the  s tate  space  S.--an and 7 1  f o rm s  a  sem igroup o n  c(&n)

w ith  g en erato r —

1  
a 

 H«0  an
Proo f. Since t ( t ,  w )  and, consequently, a ( t ,  w )  increase at t

only when .27,(w )  is on 0/), S *  is contained in 0 / ) . Hence we can
define, for 49EC°'"(aD),

KAcp(x)=. e '( ') -b (s ) (x s )a(d s ) ) .0

Since v (t, x ) = E e ' ` ' ) - 6 ( s)ço (x,) a (d s ) )  satisfies

—  A  + + ( t ,  x ) - -  0,

—
On

 r ) v ( t ,  x )  = (x ) ,

lim v ( t , x ) = 0
14, 0

by Lemma 8 . 2 , we can see, by Corollary to Theorem 2 . 3 , that

3 4 )  a/an is understood to be a n  operator with domain c'(5).

(9.3)
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KA ç o ( x )  limv ( t ,  x ) = i t ( x )  belongs to  Cl (D) n C 2 (D )  and satisfies

(A— a )u (x ) =0 , x E D ,

(A —
 1   0  — O rt(x ) —ço(x ), xEOD.

(3 an

1 a1  aThus, by Theorem 5 . 1 , (  + OH.— Ha -Fr generates a
an g an

-
s e m i-g ro u p  7 ;  on  c(aD). Since cal Tg cp(x)dt = KA f ( x ) e- c"0 0
T ( x ) d t ,  w e have T i cp(x)=71 yo(x) for all çoE c . . " (a D ) .  Since Ti
is strongly continuous in  t> 0 ,  we have .73 ( x a -1(, ) = x )  = 1  fo r  each

x E a / ) .  Therefore, we have, b y  the strong M a rk o v  property,

P.(a - 1 (0) =0) = Z .(P „ -i ( o ) (a - 1 (0) =0)) =/-:Ç(a - 1 (0,w-1 0 ,0 ) =0) =P.,(a --1

(0 , w )< 00 ) = 1  fo r  each x E a D .  Thus, s* and com-
pleting the proof of Theorem 9. 1 '. C onservativity o f X *  in Theorem

9 . 1  follows fro m  that the domain o f   a 
an 

H o contains the constant

function 1  and  a  / 4 1 - 0 ,  and hence 1 ( x )  1 1  Tp  a  Hol(x)ds
an an

= 0 .

A s a  special case where f3=  1  and r = 0 ,  w e have obtained a

system o f  Markov processes o n  th e  boundary aD w ith  generato r
a 

O n
H a . Thus we have established a justification of the interpretation

o f L H « in the introduction in the case of the reflecting diffusion.

C orollary." )  P r (lim'i(t , w) 0 0 )  = 1  i f  x E D.

" (* ,  w ) > 0  f o r  a l l  t> 0 )  = 1  i f  an d  o n ly  i f  xe0D .

P r o o f .  From  conservativity o f X *  we have P,(lim t(t, w ) =  00)
1->.

= 1  for each x E 0 D .  The strong M arkov property implies this for

x E  D , since P ,(lim i(t,w ) 0 0 )—  E  (P .„ (lim t(t,w )=  0 0 )) = 1  where

is the first hitting time to D. The second assertion has already

been proved.

N o t e .  Replacing (a— A )u (x )=  0  b y  (A + c (x ) )z i (x )=  0  in

3 5 )  Cf. Theorem 7. 2, (7. 8) and (7. 9).
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Theorem 2 . 5 , we obtain a  non-negative bounded linear operator
0H id  instead o f  H « , where 0>cE C 0 ( 5 ) .  W e can define —

0 7 1
Hid

8and prove properties of 1/1,1 similar to those of —8  H «  .  For in-
On

stance, Markov process on the boundary corresponding to

-Er is obtained by putting, in  (9 . 3),

b(t, w) t
o jc (x ,(w ))1  ds + t

o I r (x s (w )) o (x ,(w ))t  (ds, w ).

A n  alte rn at iv e  p ro o f  o f  T heorem  9. 1. H. Tanaka (private

communication) suggested that Theorem 9. 1  can be proved essen-

tially by Theorem 2 . 3  a n d  a  property of additive functionals [25,
Theorem 4. 1] . Here is a  proof. First, we have for ex> 0,

t(clt))— lim e '3 ') l't(d t) )
o ■ro 0

= l i m  E 4 k / ' c a k i " t ( d t ) )
k=1( k  — 1 ) /

- E c a l k  
it t

d t  p+ (t, x, y ) -171(dy),
n - > 0 0  k (k — 1)/0 OD

- c• at dt p + ( t , x , y ) (d y )= (s , (dy ),0 OD OD

where -
ec(x , y ) catp+ (t, x , y )dt.

0

Hence, by [25, Theorem 4. 1],

-
(9. 4) E 4  e - Œ lv (x ,)t (d t ))=  e i(x , y )q )(y rn i(d y ) , x  G  D ,0 OD

holds for all (pG C ( 0 D ) .  The condition on g l( x ,  y )  for the use of
[25, Theorem 4 . 1 ] is easily checked, fo r g ( x ,  y )  is continuous in

15 X  D —  {(x, Y )ix . L e t  {KZ, A>0} be the G reen operator for

the sem igroup  on  C (8 D )  generated by 8
8
17 11a, and  le t p l( t ,  x , y )

be the fundamental solution of the Cauchy problem for the equation
au =A u  with boundary condition ( 02 — )u = O. T hen , ce"p -k(t, x, y )at

1 0 H1,1fi an
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i s  th e  fundam ental so lution of th e  C auchy prob lem  fo r  au /at=
-

(A— )u  a n d  cOEW (t, x, y)dt is the Green functon for (a— A )u=  f
0

with boundary condition unchanged. Hence,

K.;,q; (x ) dtp.);(t ,x , y ) y o ( y )Z ( d y )

by virtue of Theorem  2. 3. The right side of (9. 4) is  ju st K ( x ) ,
i f  .77E a D . Put

( x ) = E s 0 e - a1- 4 tn p (x t ) t ( d t ) ) ,x .

—
Then, (9. 4) means K no= on aD, and hence, K -N9=K6, on aD
fo r a ll 2 > 0  b y  the force of the resolvent equations :

K;; — K,̀1+ (2— ,u) KIK;', = 0  a n d  K - 1 C +  (2 —,a)KM:= 0 .
—

Letting a-->O, w e ob ta in  K(1,=K;No o n  aD, from which Theorem
9. 1 follows.

N o w , a s  in  th e  c a se  o f  o n e  dim ensional diffusion [16] , we
construct some diffusions modifying th e  reflecting diffusion X  by
m aking use o f the local tim e on  the boundary.

Theorem 9. 2. F o r b in  C 2 ( J5 )  an d  c  i n  C 0 (15) an d  r  and
8  in  c..(aD) satisf y ing  b> 0 , c< 0 , r< O , an d  8<O, put

a (t, w )  =  b(x s(w ))d s + :18  (x  s( w )) it(d s, w ) ,

b(t, w) c (is ( w ) )  b(x , (7-0)ds (x s(w )) it(ds, w ) .

T hen, the M arkov process X° obtained  f rom  X through tim e change
b y  a  a n d  k illin g  b y  b  h as  th e  s tate  space  D  a n d  {r }  i s  a  semi-
g ro u p  o n  C (D ) , w h o se  g e n e rato r is  th e  con trac tion  o f  A i  b y  the

1 late ral condition L 1 u = 0 , w here  A , — A + c and

aL iu (x )= r (x )u (x ) + ô(x ) lim  Ai u ( y )+  
 a n

u (x )." )

yCD. y -

3 6 )  a/an is the normal derivative associated with A  (not with A l ) .  W e put
( L i )  = li1 G C 1 (15)nC 2 (D ) and A lit(x ) is extended to be continuous on R .
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P r o o f .  Since a (t , w ) is strictly increasing, th e  state space S*

of X° is clearly 1). L et fE C 0 ( 5 ) .  Since

v(t, x)=- E.,T of ( x s ) exp( — Âa(s) — b ( s ) ) a ( d s ) )

satisfies

:  A b  A  c b ) v = f b on D,

+ A8 4- o
a
n ) z )  f 8 on 8D

by Lem m a 8 . 2 , lim v(t, x )  u ( x )  exists, belongs to Z (L 1 )  and

satisfies (A— A i ) u = f  on D .  L 1 u = 0  on  O D , b y  th e  corollary to

Theorem 2. 3. O n  th e  other h an d , u = a f  i n  v iew  o f (9 . 2 ).
Moreover, u  belongs to Z (L i ) E Z (A i )  a n d  satisfies (A —A i ) u = f
and 1 u = 0 .  In  fa c t , u — G T V +H a,i[u ],p , where GT,',7 and H«.1
correspond to A i . Since G zirfEC 2(D )cZ (L i) by Theorem 2. 4,

/ N .

11a,,[u],, belongs to Z (L 1 ) ,  and hence u 5)(L 1 )  and Liu=LiGT.Tf
+ L ii i« , i [ u ] a p — L iu . Next, note that there is a sem igroup on c (r ))
with generator A restricted to uEZ(L1)1Liu---- 0 1  by Theorems

5. 1 and 5. 2, since th e  equation (cc — A i ) u =0 , L 1 zi =y9 is equivalent

to  (A +c b — ab )u =0 , (r+c e 8 + )u— cp. Then, the G reen operator
an

of this semigroup coincides with 1(1, and  the proof is complete.

Comments on the general case

The definition of th e local time on the boundary in  §7  is based
essentially on the special case, while th e following method will be

useful in  general.

Consider th e  d iffu s io n  x ,(w ) o n  D  corresponding to a  semi-

group {T „ t>0 }  on C ( D )  with Green operator {Ga, g > 0 } .  Let u
be a function in  C ( D )  non-negative and not identically zero. Then,

ua=G au— G T »u=11 -a[Gai ]

is uniformly a-excessive relative to x „  that is, non-negative, e-at7',u,
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<uoc, an d  c a tT t u a ( x )  converges uniformly to  u ( x )  when t--->0.

Hence, there is a unique non-negative, continuous additive functional

tc,(t, w) of x , such that

e - (x̀ C(dt , w )) uOE(x ).
0

It can be proved that t (t, w) increases only when  x 1(w )  is on the
boundary. The Markov process y,(w) obtained from x 1 (w) through

time change by te"(t, w), that is , y , ( w ) = x ( e o - I c t . . ) ( w ) ,  would share

the essential character with the Markov process .x;* on the boundary

having generator L H 0 , where L  is the operator of boundary condi-

tion. Namely, is expected to be obtained from y, through time

change by an additive functional of the type a(t) ço(y )ds, where
0

is a  function on aD, and conversely.

In  th e  c a se  o f  th e  reflecting diffusion, the local tim e on the
boundary t(t, w) defined in  §7 is connected with f:(t, w ) by the
relation

t ( t t:(ds, w ),, w )— t 1  
0  * (x ,(w ))

i f  u E C ° ( D ) .  H ere, 1p= G r' u > 0  .  T h e  proo f is  a s  follows.

Put •kir'= -11-2 GoVnu, noting that G r u e  C i (D )  by Theorem 2. 4. 1/ is

positive everywhere o n  aD by th e  footnote 16) to Theorem 2. 5,

i v ) .  Since no, belongs to ci (5) n C 2 (D )  an d  satisfies (a — A)ztOE 0
a on D and

an 
UŒ = P ' ,  we have, by Theorem 2.3, uOE(x) A rg l(x , y )

( y ) Z ( d y ) ,  from which

uOE(x) t) t(d t) )

follows (see the second proof o f  Theorem  9. 1). T h is proves the
connection between t(t) and t ( t )  stated above, and 1r

Returning to th e general case , t ( t ,  w )  depends o n  th e  choice
o f a  and u. B u t, if  we take another p a ir  a ' and u ' and suppose
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that u and u ' are positive, then, there is a  function yo on aD such
that

t (t, w )— ioço(x ,(w ))t(ds,w )

holds, an d  conversely. cp is  a  p o sitive  function on aD, bounded
an d  boundedly aw ay from  zero . F or the proof, n o te  a  result of
M otoo [24, Proposition 6. 17.] an d  th e  fact that, i f  we h ave  0< c 1

< u < c ,  by constant c ,  an d  c2 ,  then t (t)< tc :(t)< t?,(t) =  .

Dependence o f th e  process y t ( w )  above on  the choice of a  and u
corresponds to the situation that L  is not uniquely determined by
th e  d iffu sio n . In  fac t, th e  boundary conditions L u = O and L'u= 0
coincides i f  L '=e (x )L , where e (x )  is a positive function on aD.

M otoo has proved in  [24] that (7. 9) holds i f  u  is positive, and
that (7. 8) holds if u is positive and x ,  is conservative, where t(t, w)
in (7 .8 )  a n d  (7 . 9) is replaced by t (t, w).

Appendix. Proof of lemmas concerning fundamental solutions

I n  order to prove Lemmas 2 . 1 , 2 . 2 , a n d  3 . 5 , we state the
method of construction  of the fundamental solution p(t, x , y )  of
th e  C auch y problem fo r  parabolic equation (2 . 2) with boundary
condition (2. 3) according to S. Ito  [17, 18] with slight modifications.
W e have introduced in  §3 the definition of canonical coordinate neigh-
bourhood U  of a point on the boundary aD and canonical coordinate
system in  U .  F or a  po in t x o in  D , any coordinate neighbourhood
U  not reaching aD an d  any coordinate system i n  U  a r e  called
canonical. We can choose a  finite number o f canonical coordinate
neighbourhoods U i, 1 < i< M , open37 )  subsets l<  j< M i ,  o f  U1
an d  non-negative functions A u  i n  0 ." (D ) with supports contained
in B 11 ,  satisfying the following conditions :  {B15 , 1 <j<M , , 1 <i<M }
is  a  covering of D ;  i f  B 1 ; intersects B, , / ,  then Ui; 211 ( x ) 2

3 7 )  In the topology on 13.
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= 1  for x E  
'

r i •  a2" (x) = 0  fo r x E a D .  Suppose that U , contains
 a n

boundary points for 1 < i < M ',  while Uri (/1/' + 1 < i < M )  does not.
L et di(x ) =  ( 4 ) , •••, x )  be canonical coordinate system in  U1 ,  and
d i )  a n d  a ii

) b e  th e  v a lu e s  in  cri o f a  an d  au  , respectively. For

1 < i < / l f ,  define

7"; (t, x , y )—    
(   a u ) ( y ) ) N 1 2

ex p( —  (40 ' E (y )
a ( ")  ( y) 4nt 5,1=1

X (y(1) - 4))(.) , ( )
- 4 )))

for x ,  y e U i  and rf  ( t , x , y )  by replacing 4 )  an d  4 )  b y  4  and
x ,  respectively, where (4 ) , •••, x  x ) ) = ( 4 ) , • • • , x )

- 1  , — 4 )  ,

and,

i(t, x , y 21r (P ; (x )) I ce —
1 + ir(P i(x ) )

Oi (t, x, y) —  1 + ( P i ( x ) )  t 112 [1 — exp(— t - '/22 ('',) )]
1+  r ( P i( x ) ) 1

X [ 1- +  I r (Pi(x )) I (y) Cyto — 4))1
q i (t, x , y )  =- a, (t, x , y )(r 1 (t, x , y )  —  ri* (t, x, y))

+ x , y )  (r (t, .x , y )  + r (t, x , y )) 3 8 )

where Pi(x)= cri'l ( 4 ) , • • • , 0). F o r  M '+ 1 < i < M  we define

ri( t , x , y )  by th e  same formula and put

q i ( t ,  x ,  y )  = r i(t , X, y ).

Further, we define
m m i

q ( t , x , y )  =E  2i (x ) q,(t, x , y ) 20 (y ) .
i=1

T h e  fundamental solution p(t, x , y )  is constructed from q(t, x , y )

by

3 8 ) The construction in [18] contains a fault, which is corrected by S. Ito in his
lectures a t University of Tokyo and Rikkyo University. The definition o f q i( t ,x ,y )
here is slightly modified further.
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(a. 1 )  p (t, x , y) = q (t, x , y )+ 1
acis l y(t— s, x, z)f(s, z, y)m(dz),

where f  is the solution of the integral equation

8  f(t, x , y ) = at 
)q (t, x, y )

— :)q(t —  s, x, z)f(s, z, y)m (clz) 3 9 )

0 D

and is obtained by successive approximation as follows :

(a. 2) eo (t, x, x, y)

(a. 3) e.+ i(t, x , y) — s, x, z)e„(s, z, y)m(dz)

(a. 4) f(t, x , y ) =  je „ (t, x , y ).

Let us fix T  arbitrarily. We prove necessary estimates in the following.

Note that constants K 1 , K,, ••., K 13 in  this section are independent of

te  (0, T ]  and x ,  y E D .  First, we have

(a. 5) I q(t, x, 2,i(y)t-N / 2

x exp( —  K 2 t - 2 ZIA )—  4 ) 12)
k - 1

(a. 6) eo(t, x, y) I <K1ExB1 i (x )2 ,,(y )t ( - N - 1 ) / 2

x exp(—  K 2 t ' I Ai) _4) I 2)
k=.1

(a. 7) I x ,  y ) I < K r i r ( n + 1 ) - 1 t ( . - N - 1 ) / 2  

n>0.
2

The proof of (a . 5) — (a . 7) is as follows. 4 0 ) F irst, we have (a. 5 ) with

K 1 an d  K 2  replaced by some IC and 1<", respectively, from the

definition o f q  and

k k *exp( — K t - l EI y
. x  2(01) < e x p ( E yk( i) — .4 ) 12) .

k=1 k=1

Calculating eo (t, x, y )  from (a. 2 )  and using ( 4 ) ) =  ( 4 ) - 1 , a W x )

39) A .q ( t , x , y )  denotes the operation of A  to  y ( t ,  x , y )  with respect to x.
40) The proof o f (a. 7 ) is communicated from S. Ito.
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= 4 ) (y )  + 0 (E  I .4 ) — yko ( I) , a (y) ----- 0(A )  and 0"exp( — C102 ) <C2r-i
exp( — G O ), w e o b ta in  (a . 6 ) w ith  K , an d  K 3  replaced by some

4 ' and 4', respective ly . (a . 7 ) for 71=0 with K 1 replaced by some

Kin  i s  an obvious consequence. Before the proof of (a. 7) for 71>1,

let us prove, for some K 3 ,

(a. 8) e,(t, x , y) I m(dx)< Kr1r(n+ 1)-1 t(„_,v,
D 2

(a. 9) je„(t, x , y)I in(dy)< K 1 r(
n  + 1 ) 1

t

 (>1 - 1

2 )/2 .

W e can choose such a constant K , th a t (a . 8 ) and  (a . 9 ) h o ld  for

n= 0 , by v irtue o f (a . 6 ) w ith  K 1 a n d  K 3  replaced by and  4 '
above. Moreover, we take K o> K "  . If (a. 8) holds for some n , then

le1-1(t, .2', Y) I m (dx )

< P sreo (t—  s, x , Y )im (dx )m (dz )

<K3+2 C - 1 - 1  r ( n  +
2

1  ) ---1 1
0 (t —s) - v 2 .50 - 1 )/2 ds

=1Q+2 r ( n - -;  2  ) 1t"/2 ,

w hich proves (a. 8) for 72+ 1. T hus (a . 8 ) is verified  for a ll n > 0 .
(a . 9 ) is p roved  in  th e  same w a y . U sing (a. 8) and (a . 9 ), w e have

(a. 10) I e„(t, x, y )  I <2-N”"K+1r(n +1 '
2

t(—N-1)/2.

In  fa c t , (a . 10) ho lds fo r  n = 0  b y  K 3> K r ,  an d  if  (a. 10) is true
for some n ,  then, separating the integral in s  in  th e  right side of

(a. 3 )  in to  [0 , t/2] an d  [02 , t] ,  w e  have

I e., i(t , z, y ) 2‹ Pin/2 K r2  r ( 1   y '  r (  
n +1 

2 2

x " 2 (t— s) ( - N- 1 ) " s( "- ' 2 ds+ t6  (t— s) ( - N- 1 ) / 2  s( - 1
)

/ 2  ds)
o 1/2
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1
' r

—1 1/2
2Nn12 K v _ 2 r ( ( n + (n—N)/2

(1  - s ) ( - .
N-1)/2 s ( n - 1 ) / 2

 d s2 2 0

( 1 -  s ) -
1/2 5 (n-N-1)/2 d s

1/2

< 2   N (
;

+ 1 )   K 3+2 r (  V r (  n+ 1  \ - -1 13( 1  
\ 2 / \  2  / \ 2 '

n + 1 ) t (n-N)12
9

T hus, w e have (a. 5)-(a. 7) i f  w e  put K i = max (K1 , , 2" K 3)  and
K2= min (K ,

T h e  estim ate (a. 7 )  im plies the convergence o f the series in
th e  right side o f (a. 4 ) .  The existence of the in teg ra l in  (a . 1 ) is
verified in  th e  proof o f Lemma 2. 1 below.

P r o o f  o f L e m m a  2. 1. Obviously, q(t, x , y )  i s  a  continuous
function o f th ree v a r iab le s . S o , b y  (a . 1 ), w e  have only to prove
th e  continuity of

u(t, x , y ) s
cpc i sL q ( t -  s ,  x ,  z ) f ( s ,  z ,  y )m (d z ) .

First, note that there is a  K 4  such that

(a. 11) I q ( t ,  x ,  y ) I in (d y )< K 4 ,

which follows from (a. 5 ) .  F ix  0<t i<t2<00 and let t1< t< t2 .
f ( t , x ,  y )  is bounded o n  [6/2, t2] X D X D  by (a . 7 ), w e have

(a. 12) 4 ( t -  5 ,  x ,  ) f ( s ,  z ,  y ) m ( d z ) 1 < K 8
1-8

for sufficiently small 8>0, w here K  is  a constant independent of t,
8, x a n d  y .  F ix  8 and put

v (s ; t , x , y ) s ,  x ,  ) f ( s ,  z ,  y )m ( d z ) .

I f  w e fix  s 0, t - - 8  an d  le t t'->t, and then v (s ; t ', x ',
y ' ) -> i i ( s ;  t ,  x ,y ) .  I n  f a c t ,  e„(t, x , y )  d efin ed  b y  (a. 2 ) an d  (a . 3)

a r e  continuous i n  y ,  w h ich  is  p ro v ed  b y  induction , and hence,
f ( t ,  x ,  y )  is continuous in  y ,  a n d  w e  h av e , u sing  th e  dominated
convergence theorem, the continuity of v ( s ;  t ,  x ,  y )  w ith  respect to

Since
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( t ,  x ,  y ) .  The estimates (a. 5 )  and (a. 8 )  imply

I v(s ; t, x , y )  I <K 5 f(s , z , y) I m (dz)
eo

< K 5 8—N /2 E  K r i r  ( n +1)-1 
.5(

„-1)12
2

for a suitable constant K5. H ence, using the dominated convergence
theorem again, we have

22 i2

o 
V (.5 , v (s; t, x , y )ds,0

that is,

d.s q(t' — s, x', z )f (s, z , y ')m (dz )
D

1 -6

dsq(t —  s, x , z )f (s, z , y )m (dz ).

T his combined with (a. 1 2 )  prove that u(t' , x' , x , y ) , and
the proof of Lemma 2. 1 is complete.

P roof of Lem m a 2. 2. Let us prove, for a constant K 5

ox(i) I< K 6 t ( '- '2(a. 13) ( t ,  x ,  y )

) (t, x , Y )1m (dy )<K 6 r o .

First, by a sim ple calculation, we have, for some K 7  and K 5 ,

(a. 15) „8 q, (t , x, y) < K 7 7 (8 0 (X )2 ii(Y )t( -1 .1 -1 )/ 2
i..1

x exp(— .340— 401 2)
k

(a. 16) x , y )1m (dy )<K , t -1 / 2 .
8 8 :1 0 ) ( t ,

Since we have, by (a. 5 ) ,  (a. 7 ) ,  (a. 8 )  and (a. 11),

t
od.s 1q(t — s, x, z)1 I e„(s, z , y )im (dz )

< K 7 K 9 r (
 

1 )
11 / 2 ( t  s )  -N/2 s ( "_1)/2d s ++1n s("-N 2ds

2 0 1/2

and

(a. 14)
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=  K7+1-1(9r (  "1- 1 -
1 t(—N+1)/2 1/2 1

( 1  — s) - " 2 "- ' 2d + s( "
- N - 1 ) / 2 d s

2 0 1/2

1
< 2 N iw r iK o r  n  ±  1  i

tO-N f l ) / 2  s (n -1)/2 cis
2 0

(,___ 2 N/2K r i K 9 r  n  + 3 - i
to_N-1-1)/2

2 ,

x , y ) = x , z ) e.(s, z , y ) m (dz )

exists and

(a. 17) p ( t ,  y ) x , y )+ Ee 7 t (t, x , y )
x=1

holds. By

a 
ax (;)

q(t—  s, x , z )e„(s, z , y )m (clz )
D

( t  s , x , z )e .(s , z , y )n i(d z )
OX ii)

and by an  estimate similar to th e  proof o f (a. 10), we have

aen +,  ( t ,  y )  _ aq , ( t s , x , z )e .(s , z , y )n t(c lz )
0 J D  ax o,ax io

and
x  y  I 1+1K, r (  1   )14  n± 2  V t o _N)/(a. 18) a

a
e
x"t;) ( t  , )1<2w2K"

\  2  /  \  2  /

Here, we have used (a. 7), (a. 8), (a. 15) and (a. 16). Thus p(t, x , y )
is of class (21 a s  a  function o f x ,  an d  we can differentiate (a. 17)
with respect to x io ) term by t e rm . (a. 13) follows from (a. 15) and
(a. 18), and  (a. 9) combined with (a. 16) imply

V( n + 2  ) t'/2 .
a
! '  ( t  x  y )  n i ( d y )< K 1K 7 r (ox ( i) 2  )  \  2

Hence, we h ave (a. 14).

To conclude th e  proof, put

v (s, t, x , y )h(t—  s, y )m (dy ).

Then, by (a. 13), (a. 14) and boundedness o f h , v (s , t , x )  and u(t, x )
a re  of class C 1 a s  function of a- and
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ava p(s,t, (s, x , y )h(t— s, y )m (dy )
oxii ) D  0 i ( j )

8v 8v(t, .x) — (s, t, x )ds.
oxii )

(2 . 9 ) follows from the estimate (a. 14).

Proof of Lemma 3. 5. It is sufficient to prove

(a. 19) p(t, x , y )m (d y )<K t - 1 1 2  ,
p  Dp

from which p (t, x , y )R (d y )<K t - 1 /2 follows by Lemma 3.3 i f  we
OD

let Let us give the estimates

(a. 20) q(t, x , y )  I m (dy )<K 1ot - 1 1 2

p  Dp

(a. 21) 11  m ( d y ) P s _ ig ( t .
 —  s, x, z)Ileo(s, z, y ) I m(dz)<Kio

p  Dp 0 D

(a. 22) m (dy )tds_leo(t — s, x , z )lleo(s, z, y ) I m ( d z ) <K l o t - 1 1 2

p  Dp 0 D

where Kw is independent not only of t  (0, T ]  and x , y r .) ,  but
also o f  pe (0,  P 0 ] .  C h oose  sets V110— V(pi i k, n o , x110; p i )  1 <i<M ,
1 < j < M i , 1 <k <M i

3 ,  of the type (3.2) such that D o c  U Vi i k  and

D p n B i p e C U V i j k  fo r  any sufficiently small p ,  and put p "  =  p "  ( p )  =

maxp7i 0 (p) where pgk(p) is defined by using Corollary to Lemma 3. 2
1,k

in  Vij k. Then, we have, by (a. 5),

1 1— 1 I q ( t ,  x , y )1 m (d y )<E A13(x)7";(t, x, y)2; 5 (y )m (d y )
p  Dp j,5,k p  D p n v i i k

t ,

< 1 . E d Y t j) •  •  • Ai f ( X ) r j ( t  ,  X , y),Ii i ( y )V  a ( i) (y )  d y l
o r • .dy 1 ,

p p o R i ik

where

r j  ( t  ,  y ) —1(1 t - N j2  e X p ( —  K 2 t ' I Yii) —  X i) 2)1-1
and

1N -1
R if k =  { ( A), • • • , AT') ly 1

0 ) — (xi i k) 0̀ 12 < r q  •
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From this follows (a. 2 0 ) ,  since p"/ If we denote by E ' )

the summation for a ll j', j '  such that Bun.131 ,
1

, * 0  and  recall that
Biy c U 1 for such j ',  j ' ,  then, we have, by (a. 5 )  and (a. 6),

1 m ( d y ) P s  q ( t  s ,  x ,  z) I I eo(s, z , y )Im (dz)p  Do

1
< /72 (dy) t ds m (d z )E Ai i (x )  A,3 (z) ( z ) (y )

P D P

x  ( t  0 — N / 2

x exp(— K 2 (t — s) - 1 E  I z io ) — .x1
( 0 12) exp(—K2s - l E zii') 1 2)r.i /-1

< -1  m  (d y )  ' ds E j)K11 A; (x ) (  y )  s - 1 /2 t' "
P DpO h

exp(— Ki2t - 1 K  A )—  4)1 2)

< 2K 11tv 2 P z E" . "
p i . i 1', ji p o R $0'

(x ) Y)

x exp(— K 1 2  t - 1 4 )12) V a(')(y ) dy 10) . • • dy '(;)
- 1 ,

1=1

for some K n. and K u ,  from which (a. 2 1 )  follows. Here we have
chosen .K 1 2  satisfying K u< K a and

exp( — K 2 E  yi( e) — zio ,
) I2)<ex p(—  K 12 S - 1  E l A)— •z1)1 2) •=1

Similarly we can prove the estimate (a. 22).
Now, we have

(a. 23) e„(t ,
1
x ,  y )  m ( d y ) < K

3.

i ,  r ( - -
2

)
- 1  t 2 2

( ,  n > 1 ,n+ n n —  /

p Dp

where Ku = m ax (r(1 / 2 )K u , K 3) . In fact, (a. 23 ) holds for n =1  by
virtue o f  (a. 22). I f  e„(t , x , y ) satisfies (a. 2 3 ) ,  w e  have, using
(a. 9),

1. Y ) i n i ( d . Y )p JD p

<  
1m ( d y ) P s  I eo(t — s, x, z)I I e.(s, z , y ) m (dz )
p 0 D

n + 1  y  „< K 13 K v r  ( I )  r ( n )  T(t— s)-1/2s ( "-2)/Bds<K172r( tc „), B.2 2 0 2
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Thus, (a. 23) holds for a ll n> 1 . F rom  (a . 11 ) and (a. 23) we obtain

p p
m ( d y ) t c l s  q(t— s, x, z)! I z, y )In i(dz)0 -D-

<K4KI 1 r (  n.+2 
2

T his combined with (a. 20) and (a. 21) prove (a. 19), and  the proof
of Lemma 3. 5 is complete.
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