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§ 1 .  Introduction

The asymptotic properties of solutions' to stochastic differential

equations appear to be o f  current interest. Much o f  this interest

can be traced to the increasing use of stochastic differential equations

in the formulation of problems of the physical and engineering sciences.

A  number o f interesting results have appeared. F o r  example, Kac
[1] and McKean [2 ] study the winding of the solution paths of simple

osillators driven by "white noise" around the origin in the phase space

of the solutions.

Related to the present manuscript is the work of Khas'minskii [3]
in which a  Lyapunov stability in  a probabilistic sense is defined and

studied for the solution process o f a  stochastic differential equation

with "white noise" coefficients. In  particular if the M arkov solution

process is denoted by {X ( t ,  co), P „  then he defines stability of the

equilibrium solution X-=-0, as

lim Ps ,  s  {Sup I X  (t) >6} =x-->o t>s

A  similar definition is given for asymptotic stability. H e  obtains
sufficient conditions fo r  (1 .1 )  analogous to those of the second method
o f Lyapunov in ordinary differential equation theory. In particular,
if there exists a twice continuously differentiable positive definite func-
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tio n  V(s, x ) ,  such that

(1.2)
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 s.V .< 0Os '

where L „ ,  is the elliptic Backward Diffusion operator associated with
the given stochastic differential equation, then (1 .1 )  holds. The pur-
pose of the present paper is to study the sample asymptotic behavior

and the almost sure stability of the equilibrium solution of stochastic

differential equations. We obtain a  sufficient condition in terms of

exponentially decaying second moments that guarantees the sample
solutions, themselves, decay exponentially with probability one. This,
o f course, implies almost sure stability of the equilibrium solution for

linear homogeneous stochastic differential equations. Moreover, it is
shown that the second moments o f  the solution process satisfy a

differential relation which yields a  sufficient condition for their ex-

ponential decay. Results similar to those obtained in  this work for

a different class of stochastic systems may by seen in  [4] .

The author takes great pleasure in expressing his debt of gratitude

to Professor K . Ito for the many stimulating discussions held during

the development o f this manuscript.

§ 2 .  Preliminaries

L et {X (t, co) ;  t> t0 > 0 }  denote the solution process defined by

the stochastic differential equation

(2. 1) t/X (t, w ) = n t(t, X (t, o ) ) ) c l t  + a ( t ,  X ( t ,  o ) ) )d Z ( t ,  w ) .

We further assume that

LX 1 ,  •  •  •  , X„]

» t=  [1n 1 , • • • , nt„]
(2. 2)

a =- (a0 ) ,  1, j =1, • • • , n

Z=--- [4, • • • , Zu] .

T h e  components o f th e  vector Z-process are independent Wiener
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processes for which

P(Zi (0) = 0) =1

(2. 3) E {Zi(t)}

E (Z i(s )Z i(t)}  =m in(s, t), 1=1, • • • , n.

The stochastic integral equation denfining the meaning of (2.1), L5],
is

(2.4)X ( t ,  (o) = Xo +  nt (r, X(r, (A)) dr +S (r(r , X(r, co)) cl,Z(r , (A).
to to

Conditions guaranteeing the ex istence, uniqueness a n d  sample

continuity of the process defined by (2 .4 )  on any finite interval are
known. The conditions also guarantee the existence and absolute in-
tegrability of the second moments on any finite in terva l. Furthermore,

it is known that th e processes so determined h av e  n o  finite killing

time, that is , they do not terminate at some finite tim e. T h is last fact

guarantees that the processes exist over the entire positive time axis.
Hence, it is not vacuous to consider questions concerning th e  asym-
ptotic properties of these processes.

Sufficient condinions for the properties above are

a) Uniform Lipschitz condition.

Itm(t, $2) — m(t, $1)112<KIIE2 — $1112
(2.5)

ilo-(t , $2) — au ,  ED IIKKIIE2—E1112

b) Uniform Growth condition

in 0 1 1 2 <K (1  liE g )  1/2

0112<K( 1 +

where t>0, E1, E2E I?„ , ii>0 is a  constant independent of t  and the
norms are  defined as

Ily112= "2
(2.6)

11

11/1112= lE aff -} 2 .
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It is well known that th e  solution process defined by (2 . 1 ) or
(2.4) is associated with the Backward Diffusion operator d e f i n e d
by

8 1" o2
(2.7) L ; bu (r, y ) „ E m i(r , y )

a 

ar 2  i . . i= 1 o y io y i i=i o y i

w h ere  (bu )= a • ar. Superscript T  denotes transpose.

In  fact if  F (E ) is any twice continuously differentiable function,

it has been shown that [6]

(2. 8) d F (X (t, (o ))

= [
w)1

1, F (E )d t+ au(t,E)  a F ( $ )
  

c  4 ( t ,

The symbolic form ula (2 .8 ) attains its meaning only through the as-
sociated stochastic integral equality. If F  is bounded then its expecta-

tion exists and satisfies.

(2.9)d  "E  { F (X (t, (0 ))1 1 ,— ;= L ;yF (Y )d t  

We shall be concerned, in  this paper, with th e  equilibrium solution

defined as

(2. 10) -= • • • =------- X „ 0

A  sufficient condition guaranteeing the ex istence o f the equilibrium

solution for the stochastic equation ( 2 .4 )  (or, symbolically, (2.1)) is
that

(2. 11) tit ( t ,  0) [0, • • • , 0]

6 (t, 0) = (0) ,

identically in  t.
It immediately follows from (2 .5 )  and  (2 .1 1 ) that

(2. 12) (t, lia<K1102
0112<K11$112

for E R „ , identically in  t.
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W e are  interested in  the asymptotic approach of the sample solu-

tions to th e  equilibrium so lution , as w ell a s  th e  stability of the
equilibrium solution. We define almost sure stochastic versions of
Lyapunov stability and psuedo-asymptotic stability. Lyapunov stabilty

is a  uniform convergence with respect to the initial conditions, hence

we display th e  explicit dependence of the so lution process on the
initial conditions in the following two definitions. We shall display

this dependence, whenever it appears appropriate.

Defin ition 1 .  A lm ost S ure  Lyapunov S tability . T h e  equilibrium

so lu tion  o f a  stochastic system is said to possess th e  property of
almost sure Lyapunov stability if

(2. 13) P { lim  Sup Sup II X(t : x 0 , t0 , to) II = 0} =1
to t

Definition 2 .  A lm ost Sure Psuedo-Asymptotic S tability  R elativ e to
R ,„  T he equilibrium solution of a stochastic system is said to possess

almost sure psuedo-asymptotic stability relative to R„, if x o ER„ implies

(2. 14) lim Sup II X(t : xo , t0, (0) 0 }  1 .
T T < t

T he norm "II II" without subscript refers to the absolute norm,

11X11= I X , I .

W e use this norm in  the following without comment.

§ 3 .  M ain  Results

We shall now prove the two theorems that are the m ain results

of this p ap er . T h e  proofs follow directly along the lines set by Ito

[5 ] and Doob [7] .

Theorem  1. Let the stochastic system defined by (2.4) satisfy (2.5).
Let the second moments, which exist, of the solution process decay
exponentially in  th e  sense that there exists constants a, b > 0  such

that for x o e R„ , t>to,

(3. 1)E 0 ,,( 0 ) 1 P 2 1  < c e  II•xo exp [ —2b (t — to)] •
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If follows that the sample paths decay exponentially with probability
one. In particular, there exists constants a ,  f3> 0  and a positive in-
teger M(0)) depending upon th e  sam ple path  fo r which t>211(0))
implies

(3. 2) IIX(t : x 0 , to  0))11<trilxo112exp[ -  19(t - t o -  1) j

on an co-set of probability measure one.
P r o o f .  The proof is based upon estim ates derived using th e  pro-
perties of the stochastic integral.

C learly for an y  positive integers N<N' ,

Sup 11X(t, w) 11< Sup11X(t 0)) - X(N, (011 + 11X(N, w)11.

Hence, for any eN >0, w e have

(3 .3)P o ,  . 0 {SuP IIX(t, a)) il>eN} <

P
t0 , . 0 { N y13

;  ji X(t, (0 ) - X(N, co) liX(N,

It is useful to recall, from  the Schwarz inequality, that

11y11<1/n , for vectors.

11/4.11<)/11A112, for matrices.

For the second term  o n  th e  right side o f th e  inequality (3.3), we
have from Chebychef's inequality and (3.1)

(3 .4 ) P ,„ 0 {11X(N, 0))11>-6I-}<1', 0 „111X(N, (1 ) 112>  2 6; - n - }

4 n  < 2 E {11X(N, 0))
EN

4n a2 iIxo exp [ - 2b (N -  to).] •
EN

It follows from (2.4),

(3.5)P o , Sup 11X(t, 0)) - X(N, 0))11>  € 2" }
l'sr t <A7'

< P t „ Sup 11 ni(r, X ( ,  0 ) ) )  dr 11>
N

± P X(r, to)) dZ(r , (o) II> 6
:41  .
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The uniform conditions (2.12) and the Markov inequality yield

P to ,d  Sup IT m(r, X (r, co))dril>  s
4N

N

< P t o  ,  so {SUP , X (r, (o))ildr> }
N

(3.6)= P t o ilm(r, X (r, (0)) Ildr>  e
ziN

<I' t o , .0 11/ n 11X(r , (0)112dr>  €
4N

<  41/E:  KE ,  {IIX (r , w)112} c*,

where the last inequality, through the interchange o f expectation and

integration holds because of the measurability of the solution process

and the finitness of the integrals involved.

In the same fashion, applying the usual semi-martingale property

and the property of the second moments of generalized stochastic in-

tegrals, we obtain

Pi„ dS up HS (r , X (r, co))dZ(r, w) e l' 1
N 4

< E  P t o ,.oiS uP X (r, 0)))dZ 1 (r, w)
N

 

(3• 7) < 162714 Et 3  . .0 { X (r, (,)))dZ i (r, co) 21° N

4 - 1
16n4

f  2  (

X0 tau k:r \ f  -7co) 2eN N

16n4 r
N

E 7 0 X(r, (o))1ID cir
S N

16n4K2

2 '- '1 0 , . . r 0  { 1 1 X ( r ,  0)) dr . .
eN N

We may now combine the results (3.3)-(3.7), and apply the hypo-

theses (3.1) to yield

P t , , ,{ , 0))11->eN}
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<  4 1/n K  (3. 8) altxo exp [ — b (r — to)] dre N N

1
(16 114 K2 + 4n) 0 nexp [ (r — to)] dr.

EN

We now choose eN  as,

E N =  II oll2exp[ —  2
b (N(N —  to)]. -2Y > 1-,

and allow N'—>00 to obtain,

(3. 9) P to , ,{SNuilX(t , (0)11>c/11a-01k exp[ l
‘;  (N — to)]}

41/n K [  bexp — (N — to)]2

(8n4 K 2 + 2n)— exp [— b(N— to)] .

However, the expression on th e right hand side o f  th e  inequality
(3.9) is the N-th term of a convergent series. Hence, by the Borel-
Cantelli lemma, there exists a  p o sitive  integer M (w ), depending
upon the sample, for which N > M (w ) implies

(3 . 10) Sup llX(t, co)11<allxo ll, exp[ — —
2  

(N — to)]

on  an  co-set o f probability measure one.
N o w , if [ T ]  denotes th e greatest integer in  T  fo r  T>M(co) , then
T - 1 < [T ]< T  imples from  (3.10),

(3. 11) T, co) II<  SuplIX(t, co) II< Sup IfX(t, co) il
T o i [ T ] , , t

<alIxodzexpL— 9
b - ([ T] — to)1<allx0112exp[ — (T—  — 1)].

T he theorem is proved.

A n  immediate consequence o f  Theorem  1  is  th a t t h e  sample
solutions satisfy (2.14) o f  Definition 2. It a lso follows, if  th e
components of the vector I n  and  the matrix a  a re  linear (therefore
homogeneous by 2.11), then the equilibrium solution is almost surely
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Lyapunov stable according to Definition 1. Indeed, the sum of two
solutions is a  solution since generalized stochastic integrals satisfy

the linearity properties of ordinary integrals. Furthermore the solu-

tions are unique relative to the in itial conditions, with probability
one. Therefore, one can form a  fundamental matrix of n  linearly

independent solutions o f (2.4) and prove stability from Theorem 1

by the usual methods of ordinary differential equation theory, [e.g.

see. [8]].
We can also establish (2.13) directly using estimates obtained

in  Theorem 1. If x(t, (0) denotes a  fundmental matrix of solutions
X'(t, co), i =1, • • • , n, where the i

th component of X ' satisfies X ii(to, to)
=85 (Kronecker delta), then for a solution with in itial condition xo,
we have

X (t : x o , to , (0) —xo x(t, (0),

with probability one.

Therefore, from the estimates in  (3.8) we have,

P { Sup Sup ji X(t : xo , to, 0 ))  >e) <P {8Sup ijx (t, (o) II > e }
ikon<8 to o to o

< P{SuplIX '(t, co) II>   e

1=1 na

" [  4n3l2Ka 
 +  8

( 2 n 3 + 8n°
)  

a2 < E 8 be e2

The limit as 610 may be taken under the probability measure since

the events are monotonically decreasing in a. This establishes stability

as given in  Definition 2 for linear stochastic differential equations.

It is desirable to know when the condition (3.1) of Theorem 1

holds. The following theorem yields a  sufficient condition as a simple
corollary.

Theorem 2. Let the stochastic system (2.4) satisfy the uniform condi-
tions (2.5). Then the differential of the expectation E io , „{11X (t, 0))

satisfies

(3 . 12) d E  „{i1X (t, (1 ))n}
=II: to , (t, X (t, 0 )))II!+  2 (X(t, co), m (t, X (t, 0 )))}  d t
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w h ere  (  ,  )  denotes inner product.
Proof. T h e  p ro o f  is  a  s lig h t modification of p ro o fs  in  Doob [ 7 :

chap  VI, Sec 3 ] .  W e  sh a ll f irs t  e s ta b lish  a lemma.

Lemma 1 .  F o r  0<t —r<k,

(3. 13) {II X(s, w) — X(r , to) IN) ds
<K' (t _ r ) 2

 [E  o{ iiX (r , , w) +11,

w here K ' is  a constant depending only  upon k.
Proof. A pplying the properties o f generalized stochastic integral as

w ell as (2 .5 ) t o  the system  (2.4) , yields.

E „(11X(t, (0) — X(r, w)g} <2E , (s, X(s, co)) dsliq

+ 2E to , (s, X(s, co))(1Z(s, to)

< 2 (t  —r)E1 0 ,„ci t iimc, X(s, w))11kis}

(3. 14) 27LEio ,, oK ija(s, X(s, c o ) )  ds1

< 2 ( ( t  —r) +71).KT [E „{IIX(s, (0)ig} + li ds

<4((t —r) + n)K 2 1 (t —r) [E ,„  {11X(r, co) N} +1]

+ :E i„ . 0 {1IX(s, (0) — X(r, w)11 22} ds} ,

s in c e  A2 <2(A— BY +21r .
W e  are interested in t  c lo se  to  r ,  th u s  fo r  som e  cho ice  o f  k,

0<k<1, w e assume t — r<k. Settnig c =4K 2(k + w e have

(3 . 1 5 )  E 1 0 , „ {IIX(t , co) — X(r, (o) {1IX(s, co) — X(r, co) ds

+ c(t — r) [Et ° , „ {11 X (, co) + 1] .

Integration o f (3 .15 ) w ith  respect to  t  yields,

{iiX(s, w) — X ( r ,
 w )  c i s

e`" - T)
 ( t  — r ) 2  [E0 0 , ,  {IIX(r, (0) IM -i-11,9
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which is (3. 13) for K ' = è k.

The lemma is proved.

It is interesting to note that the "Backward" inequality

(0— X(s, (I )N} cis

< K '(t —r) 2 [E10 ,„{ IIX (t, co) N} +1]

may be established in exactly the same fashion as (3 .13). We may

now proceed with the proof of theorem.

For h > 0 , we first consider

(3. 16) E,„0 (11X (t+ h , to) H X (t, to) g}
= E „, ,{11X(t + h , co) — X(t , co) g}
+2E, 0 ,„{ (X (t, co ), X (t +h, co) — X(t, w ) ) } .

It will be convenient to write

zint(s, 1, co) = m (s, X (s, co)) — m(s, X(t, co))

da (s, t, c o )  = (s ,  X (s, to )) — a(s, X(t, to )).

The second term on the right of the equality (3.16) may be written

as

E ,„„{ (X (t, co ), X (t + h, co) — X(t, 0 ) )1
t +h

=  E ,„„{(X (t, co),n i  (s, X (t, co ))d s)}

(3. 17) 1+h

E t o ,  . 0 1(X(t, CO ,  t t, co)ds)}

,+h
+ E „,„{ (X (t, co), a(s, X (s, (0))dZ(s, co))} •

By the Schwarz inequality, the last expectation on the right hand

side of (3.17) exists absolutely, since a  satisfies (2.5) and the second

moments are finite. T h u s , w e  may write

l +h

E i„ d (X (t , a(s,X (s, co))dZ (s, to))}
t +h

= co), E„, a(s, X (s,co))dZ (s, co)1X (t, w )}} =O.
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It is interesting to note that this last equality does not follow from
the usual L 2  theory of generalized stochastic integrals, which requires
the existence of fourth order moments.

Applying Lemma 1 to  the second term  on  th e  righ t o f (3.17)
gives us

t+h
E i o ,d (X ( t ,  co), 4m(s, t, co)els)}

t+h
< E  old X ( t  CD) 4m (s, t, co)ds112}

f .t+h )1/2<h1/2", "t o , . , 0 {IIX(t7 e°) n}} 1 / 2 Etvzoi 114))/(S, w) dS/'

< 0 0 3 / 2 )Eto, O {11x (t , (0 ) IM "2(
P, w) II!} +1)1/2,

where 0(//3/2)  is independent of any random quantity and is uniform
in  t. W e now  proceed to study the first term  o n  the right of the
equality (3.16), and we write

E t° , xo filX (t+ h, co) — X(t, co)
st+h t+h

M ( S ,  X (t, co))ds+ t a (s, X (t, co))dZ (s,
t+h t+h

(3. 18) +2E,„ , o { O t m (s, X (t, co ))d s +S t a (s , X (t, co ))dZ (s, co),

i+h
dm (s, t, co)ds+ S t 4 0 (5 , t , co)dZ(s, co))}

St+h t+h
din(s, t, co)ds+ tt ,  co) dZ (s, co) 21

The first term  on the right o f (3.18) m ay be written as

E, o ,d
t+h t+h
t M ( S ,  X ( t ,  C O W S N I  + E t o , , o,{ tX ( t ,  w )) ids

t+h
< h 2K 2 (E,„,{11X(t, c o ) B }  +1) + E, o , „6 , lia(s, X (t, (0)) fl ds}

since the cross product expectations are zero as shown above, and the
components of the vector Z-process are  assumed independent.

Using the Schwarz inequality, we can bound th e  la s t te rm  on
the righ t o f (3.18) by
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14.11 t +h

t 4m (s, t, co)dsilq + 2E 1 0 , 4a(s, t, co)dZ(s, (0)114

t +h t+ h

<2hEt 0 , 114m (s, t, co)ncls} +2nE to , „1 .ç t l id a ( s ,  t ,  w) I ds}

< 2(h +  n)K 2 K' h 2 [E {11X (t, (OM +1]

= 0 (h 2 )[E {11X(t, co)g} +1]

upon application of Lemma 1 , a n d  th e  properties o f  generalised

stochastic integrals.

F o r th e  m id d le  term o n  th e  right side o f (3 .1 8 ) w e  h ave  upon

applications

2E,„, a 1

of the Schwarz inequality and the estimates above.

6( + 2M (S , X (t, co ))d s+ ( + 2a(s, X (t,co))61Z(s, co),
( +0

zlm (s, t, co )d s+ t z la (s, t, co)dZ  (s, co )) }

t+ h t +h

<2E„,„-{ m (s , X (t, o )))d s  + a(s, X (t. co))dZ(s, (0112-
+h t +h

zlm (s, t, co)d s +S t zla(s, t, co)dZ(s, co) 11,1

..s•1+11 t +h 1112
< 2 E „ , ,{  t m (s , X (t , co ) )d s  +S t a (s , X (t, co ) )d Z (s , co )n

t+ h t+h 11/2
X  E 10 , 0 0 1 4 m (s , t , co) ds + t z la (s , t, co )dz (s , co )n

< 2 (h 2 K 2 + h) 1 1 2 [2(h + n)K 2K 1 122 ] 1/2 [E to , „ { J J X ( t  co) n} +1]

= 0 (h " 2 )[E1 0 ,,,,{11X(t, w) IM +1].

We may now combine our results above, interchanging integra-

tion and expectation to yield

1+2

E 10 ,.„{11X(t+h, co)H -11X(t, co) n} Eto,„{ila(s, X (t, co)) g} ds

— 2: + hE t , , , o {(X (t, co), m (s, X (t, co ))1 d s

< 0 (h 812 ) [E 10 ,  {11x(t, w) II} +11
which yields the desired result.

C o r o l la r y .  If there exists a constant 13> 0 , such that

(3.19)
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(3. 20) E)H+2(E, in(t, E))<- - M H

then E i o , „{I1X(t, co)IID is exponentially decreasing as t— °°.

P ro o f. From  (3 .12), w e have

dE to , .4{11X(t, w) < — (3/1: { X(t, w ) I }  dt

Thus, integration of

P}d log Et a, „{11X(t, (0)n} dE„, aiX(t,(0)
E,„ (.0)1M

yields the desired result.

Exam ple. L et us consider the simple linear system,

dx 2 (t, co) [ax i(t, co) + bx2(t, co)] dt + co)dZ i(t, co)

dx2(t, co) [cx ,(t, co) + dx2(t, co)] dt + a2x2(t, co)dZ2(t, w),

w h e re  b + c =0 .
The condition (3 .2 0 ) requires that there exists for which

(4 +2a).4 + (6. + 2 d )y K — R (x + y ) .

In  that case, not only do  the sam ple solutions decay exponentially
w ith  probability o n e  b u t th e  equilibrum  solution i s  stab le in  the
Lyapunov sense with probability one.
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