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§1. Introduction

The asymptotic properties of solutions' to stochastic differential
equations appear to be of current interest. Much of this interest
can be traced to the increasing use of stochastic differential equations
in the formulation of problems of the physical and engineering sciences.
A number of interesting results have appeared. For example, Kac
[1] and McKean [2] study the winding of the solution paths of simple
osillators driven by “white noise” around the origin in the phase space
of the solutions.

Related to the present manuscript is the work of Khas'minskii [3]
in which a Lyapunov stability in a probabilistic sense is defined and
studied for the solution process of a stochastic differential equation
with “white noise” coefficients. In particular if the Markov solution
process is denoted by {X(¢, w), P, .}, then he defines stability of the

equilibrium solution X=0, as

(1.D lil’(l]'lPs,x{Stl;plX(t) | >} =0

A similar definition is given for asymptotic stability. He obtains
sufficient conditions for (1.1) analogous to those of the second method
of Lyapunov in ordinary differential equation theory. In particular,

if there exists a twice continuously differentiable positive definite func-



516 Frank Kozin

tion V(s,x), such that

(1.2) —6651+Ls,,V<0,

where L,,. is the elliptic Backward Diffusion operator associated with
the given stochastic differential equation, then (1.1) holds. The pur-
pose of the present paper is to study the sample asymptotic behavior
and the almost sure stability of the equilibrium solution of stochastic
differential equations. We obtain a sufficient condition in terms of
exponentially decaying second moments that guarantees the sample
solutions, themselves, decay exponentially with probability one. This,
of course, implies almost sure stability of the equilibrium solution for
linear homogeneous stochastic differential equations. Moreover, it is
shown that the second moments of the solution process satisfy a
differential relation which yields a sufficient condition for their ex-
ponential decay. Results similar to those obtained in this work for
a different class of stochastic systems may by seen in [4].

The author takes great pleasure in expressing his debt of gratitude
to Professor K. Ito for the many stimulating discussions held during

the development of this manuscript.

§2. Preliminaries

Let {X(t,»); t>t,>>0} denote the solution process defined by

the stochastic differential equation
2.1 dX(t, 0)=m@, X, 0))dt+e(t, X, 0))dZ(t, »).
We further assume that

X=X, -, X.]

M= [y, M,

6=C(0i1), 1, j=1,,n

Z= 2, , Z.].

The components of the vector Z-process are independent Wiener
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processes for which

P(Z:(0)=0)=1
(2.3) E{Z:()} =0
E(Z()Z:@)}=min(s, t), i=1, -, n.

The stochastic integral equation denfining the meaning of (2.1), |5],

18

2.4 X o) =X0+S: me, X(c, w))dr-l—Si (e, Xz, 0))diZ(z, ).

Conditions guaranteeing the existence, uniqueness and sample
continuity of the process defined by (2.4) on any finite interval are
known. The conditions also guarantee the existence and absolute in-
tegrability of the second moments on any finite interval. Furthermore,
it is known that the processes so determined have no finite killing
time, that is, they do not terminate at some finite time. This last fact
guarantees that the processes exist over the entire positive time axis.
Hence, it is not vacuous to consider questions concerning the asym-
ptotic properties of these processes.

Sufficient condinions for the properties above are

a) Uniform Lipschitz condition.

2.5) lm (e, &) —m (e, &) [[:<K||&— &l
(-“ ”d(t, 52) —O'(t, 51) “2<K”52—51“2

b) Uniform Growth condition
(e, ) [<K( -+l
lloCe, ) [<K(L+[I£]D",
where ¢>>0, ¢, §ER,, K>0 is a constant independent of ¢ and the
norms are defined as
lylle= [g ¥

All.= ‘Zlaizi] v,

=
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It is well known that the solution process defined by (2.1) or
(2.4) is associated with the Backward Diffusion operator L7, defined
by

. _ a 1 n 62 n a
2.7 L., y—m—— T bij s i\l AL 0
2.7 e Ty b g e T G ) 5

where (b;;) =6-6". Superscript T" denotes transpose.

In fact if F(é) is any twice continuously differentiable function,
it has been shown that [6]
(2.8) dF(X(, w))

=[L,‘,£F(E)dt+ 0,8 ‘”;f L az,, w)]

E=X(tw) ’

The symbolic formula (2.8) attains its meaning only through the as-
sociated stochastic integral equality. If F is bounded then its expecta-

tion exists and satisfies.

@9 LB FXC oD =L, ()

We shall be concerned, in this paper, with the equilibrium solution
defined as

(2.10) Xi=X,=+=X,=0

A sufficient condition guaranteeing the existence of the equilibrium
solution for the stochastic equation (2.4) (or, symbolically, (2.1)) is
that

(2.1 m (e, 0)=10, -+, 0]
a(t, 0)=(0),

identically in ¢.
It immediately follows from (2.5) and (2.11) that

(2.12) fl222 (2, &) [[:<KIl€]]2
”U(l, &) ”2<K”5“2 )

for éeR,, identically in ¢.



On almost sure asymptotic 519

We are interested in the asymptotic approach of the sample solu-
tions to the equilibrium solution, as well as the stability of the
equilibrium solution. We define almost sure stochastic versions of
Lyapunov stability and psuedo-asymptotic stability. Lyapunov stabilty
is a uniform convergence with respect to the initial conditions, hence
we display the explicit dependence of the solution process on the
initial conditions in the following two definitions. We shall display
this dependence, whenever it appears appropriate.

Definition 1. Almost Sure Lyapunov Stability. The equilibrium
solution of a stochastic system is said to possess the property of
almost sure Lyapunov stability if

(2.13) P {lim Sup Sup||X(#: v, to, ®)||=0} =1

V0 flxoll<s to<t

Definition 2. Almost Sure Psuedo-Asymptotic Stability Relative to
R.. The equilibrium solution of a stochastic system is said to possess

almost sure psuedo-asymptotic stability relative to R.,, if xy& R, implies

(2.14) P{iiTm STgp[lX(t: Zo, te, ®)[[=0} =1.
The norm || ||’ without subscript refers to the absolute norm,
k
I1X1I= 31X,

We use this norm in the following without comment.

§3. Main Results

We shall now prove the two theorems that are the main results

of this paper. The proofs follow directly along the lines set by Ito
[5] and Doob [7].
Theorem 1. Let the stochastic system defined by (2.4) satisfy (2.5).
Let the second moments, which exist, of the solution process decay
exponentially in the sense that there exists constants a, b=>0 such
that for xy€R,, t>t,,

G.D Ey, {1 X (@, 0) |3 <d'llzolz exp [ —26(2 — )]
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If follows that the sample paths decay exponentially with probability
one. In particular, there exists constants a, >0 and a positive in-
teger M (w) depending upon the sample path for which =M (o)
implies

38.2) [X(@: 20, to, o) |[<allzolexp[—B(—2—1) ]

on an o-set of probability measure one.

Proof. The proof is based upon estimates derived using the pro-
perties of the stochastic integral.

Clearly for any positive integers N<<N’,
Sup [ X (2, @) [< Sup [ X(#, 0) — X (N, o) |+ | XN, @) |.
N<tsN/ NtN/
Hence, for any ey>>0, we have
(3 3) Pfoa’o g?}l}%,“x(t’ (D) “>€N} <
Pros ] S0 Xt 0) = XN, 0) [+ Prn{ IX NV, ) 1>
Nt N/ 2 2
It is useful to recall, from the Schwarz inequality, that

|yI<v/7 ||ylls, for vectors.
|All<n|lAllz, for matrices.

For the second term on the right side of the inequality (3.3), we
have from Chebychef’s inequality and (3.1)

3.4 P{ [ XN, ») 1|>€7~}<P,0,,0{|1X(N, o) [l:> 9%}

“

<:1€_;l_ Ery o IX (N, )3

<Al exp L~ 26 (N1
N

It follows from (2.4),

(3.5) P,o,,‘,{gg X, @) = X(N, o) H>f2i}
<P, m{ Sup || S‘Nm(z', X, w))d‘f“>‘€i—}

Nt N/

+ P S0p I 0 X o)) a2, 0) >}
N<t<N’ JN 4



On almost sure asymptotic 521

The uniform conditions (2.12) and the Markov inequality yield
P Sup 1| e, X, o) l>50
<Pusn{ sup, [ Im X o)) lar>2 |
(3.6) ~Pusud |7 I, X, 02 > 22|
LPuyud 1 K, 1XG, o) s>

<K X G @ L,

where the last inequality, through the interchange of expectation and
integration holds because of the measurability of the solution process
and the finitness of the integrals involved.

In the same fashion, applying the usual semi-martingale property
and the property of the second moments of generalized stochastic in-

tegrals, we obtain

P, { Sup ||S o(e, X(z, 0))dZ(r, o) >0 }

< B Puaf s || o X6 021, 0 [ >

$i=

6.7 <3

ij=1 EN

= 3 AN Lo (o, X, 00)) e

ij=1 EN

S:/o',-,-(r, X (e, 0))dZ; (s, w>|”}

E'o,xo{

= o, XG5, ) I3}
EN N

24 K72 N/
< 167 K S Eu, ol X, 0)|[2 dr.
EN N

We may now combine the results (3.3)-(3.7), and apply the hypo-
theses (3.1) to yield

Py Sup X (2, 0) e
N<t<N/
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3.8) <K s exp T b 1) de
+ WK 40| @l exp (256 — 0 de.
We now choose ey as,
en—allzuluexp —5-(N-) |, N1,
and allow N’'—co to obtain, »
B9 P {Supl X, 0) [Balull exp] —b-V-2) |}

424 0
(8 Kb_+;nl exp[—b(N—1)].

+

However, the expression on the right hand side of the inequality
(3.9) is the N-th term of a convergent series. Hence, by the Borel-
Cantelli lemma, there exists a positive integer M (w), depending

upon the sample, for which N>M(w) implies
(3.10) Sup X, o[ <allall exp| —5- (V-1 |

on an o-set of probability measure one.
Now, if [T] denotes the greatest integer in 71" for T>M (o), then
T—1<<[T]<T imples from (3.10),

@11 X7 o) [<Supl X, o) [<Supl Xt o)
Zallalhexp| = & AT)-1) [<alalesn| = & (1-6-1 |

The theorem is proved.

An immediate consequence of Theorem 1 is that the sample
solutions satisfy (2.14) of Definition 2. It also follows, "if the
components of the vector m and the matrix ¢ are linear (therefore

homogeneous by 2.11), then the equilibrium solution is almost surely
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Lyapunov stable according to Definition 1. Indeed, the sum of two
solutions is a solution since generalized stochastic integrals satisfy
the linearity properties of ordinary integrals. Furthermore the solu-
tions are unique relative to the initial conditions, with probability
one. Therefore, one can form a fundamental matrix of n linearly
independent solutions of (2.4) and prove stability from Theorem 1
by the usual methods of ordinary differential equation theory, [e.g.
see. [8]].

We can also establish (2.13) directly using estimates obtained
in Theorem 1. If x(¢,w) denotes a fundmental matrix of solutions
X' (t,w), i=1,-+,n, where the j" component of X' satisfies X (%, »)
=0! (Kronecker delta), then for a solution with initial condition ay,
we have

X(t: 0. ty, ®) =20%(t, ®),

with probability one.

Therefore, from the estimates in (3.8) we have,

P{Sup Sup|| X(t: a0, to, ®) ||[>¢} <P{58‘u13|]x(t, o) [|[>€}

xoll<§ tost

» An**Ka < 2n* +8n° i]
<26[ JRa 52 )az .

The limit as 60 may be taken under the probability measure since
the events are monotonically decreasing in 8. This establishes stability
as given in Definition 2 for linear stochastic differential equations.

It is desirable to know when the condition (3.1) of Theorem 1
holds. The following theorem yields a sufficient condition as a simple
corollary.
Theorem 2. Let the stochastic system (2.4) satisfy the uniform condi-
tions (2.5). Then the differential of the expectation E,,, ., {||X (¢, o) |3}
satisfies
(8.12)  dE. . {IX(t, o) 3 .

=E,  {leCt, X, o) i+2(X(, 0), m@, X(t, w))}dt
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where ( . ) denotes inner product.
Proof. The proof is a slight modification of proofs in Doob [7:

chap VI, Sec 3]. We shall first establish a lemma.
Lemma 1. For 0<<t—r<<k,

3.13) {EpulIXG.0) — X 0) 3 ds
LK (=) B o1 X G, 0) 3} 411,

where K’ is a constant depending only upon k.
Proof. Applying the properties of generalized stochastic integral as

well as (2.5) to the system (2.4), yields.
Fun {1X(t,0) =X 0) [ 2B {1 G5, XG0 sl]
2Bl oG X, 0)dZGs. w1}
L2 =) Eun | IG5 XCs. 0) s}
G190 2Bl X o) i
<20 0K (B 1XG, 08 +11ds
A=)+ K| =) [Eun (1X G ) [ +1]
B l1XG 0 = X ) 9 s}

since A’<2(A—B)*+2B:.
We are interested in ¢ close to 7, thus for some choice of #,
0<Ck<<l, we assume t—t<<k. Settnig ¢=4K*(k+n), we have
t

Fet—o) [Ep, o {1 X, o) |3} -+1].

(3.15)  Ep,u (X (1, 0) — X(e.0) [} <CS Erp o (1X(,0) — X(r.0) |3 ds

Integration of (3.15) with respect to ¢ yields,
(B 11X G 0) ~ XL ) 3 ds
et LR, (X o) +10,
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which is (3.13) for K'=—g—e"'.

<

The lemma is proved.

It is interesting to note that the “Backward” inequality

81 X @) — X s 0) |13 ds
LK (t =) B U1 X, o) |13} +1]

may be established in exactly the same fashion as (3.13). We may

now proceed with the proof of theorem.

For h=>0, we first consider

(3.16) Ep oI XGE+0, o) |i— X, o) |3}
=, X+ o) =X, )3}
F2FE 1. (X, 0), X(t+h, 0) =X, 0))}.

It will be convenient to write

Am(s, t, ) =m(s, X(s, 0)) —m(s, X(t, 0))
do(s, t, ) =0(s, X(s, 0)) —a(s, X, w)).

The second term on the right of the equality (3.16) may be written

as

Eieo{(X(@, o), X+, 0)—X(t, 0))}

=B (X0, (s X1 020}

(3.17) +Ef (X0, § G o))

+E,(,,,,,{(X(t, w), S:+ha(5. X (s, 0))dZ(s, w>)} .

By the Schwarz inequality, the last expectation on the right hand
side of (3.17) exists absolutely, since o satisfies (2.5) and the second

moments are finite. Thus, we may write
t+h
Elo»xo{(X(t~ w)‘S U(S.X(S, w))dZ(S, &)))}

= Epf (XG0, B {00 X G020, 0) [ X0 )} =0
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It is interesting to note that this last equality does not follow from
the usual L, theory of generalized stochastic integrals, which requires
the existence of fourth order moments.

Applying Lemma 1 to the second term on the right of (3.17)

gives us
t+h
lE:o‘,o{(X(t, ), St Am (s, ¢, w)(ls)H
t+h
1% D LI a1, )
WPE 1, o {1 X (@, 0) |33} 1/2E,0,,0{Sz+hlldm (s, t, ) Ilfﬁals‘}ll2
<O(113/2)E‘o’ X9 {”X<t' w) ”3} I/Z(Elw x0 {”X<t’ w) ”g} + 1)1/2,

where O(h¥*) is independent of any random quantity and is uniform
in . We now proceed to study the first term on the right of the

equality (3.16), and we write
E'o’*o{”X(t-'_h: w) _X(t’ w) ”g}
t+h +h
=B |{7 G X0 s+ (Tt X0 00)az G 0 1

t
t

(3.18)  +2E.. { (S“"m(s, X w))ds+g""a(s, X(t, 0))dZ(s, o).
SM‘Am(s, t, a))d.s‘+S:+hAa(.s‘, t, w)dZ(s, co))}

t+h t+h 12
+E{l8 A Gs. ¢, w)ds+S Ss (s, £, 0)dZ(s, w)\”.

The first term on the right of (3.18) may be written as

E{ Sm(s X, w))dsnz} +E,.,,,0{S:+']la(s, X (2, 0)) lléa’s}

R s X, )3 1)+ B f { o, X0, 02 3}

since the cross product expectations are zero as shown above, and the
components of the vector Z-process are assumed independent.

Using the Schwarz inequality, we can bound the last term on
the right of (3.18) by
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t+ t+h
zE{ [S (s, t, w)dsng} +zz:{' S o s, £, 0)dZ(s, ) ng}

t+h t+h
<211E,“,,0{S Lams, ¢, o) u;ds} +2nE,‘,,,°{S’ 4o Cs, 2, @) uzds}

L2+ KK R E{| X, o) |2 +1]
=0 [E{IX(, o3} +11,

upon application of Lemma 1, and the properties of generalised
stochastic integrals.
For the middle term on the right side of (3.18) we have upon
applications of the Schwarz inequality and the estimates above.
t+h t+h
2B (s, X0, o)yats 7ot X2, 00205, ),

SH Adm (s, t, w)ds-l—giwda(s, t, w)dZ (s, a)))“

<2E,0,,0{ S:“;’/L(S, X(z, a)))ds—i-S:H;(S, X(t, 0))dZ(s, o) |-

S'*"Am(s, z, w)a’s+g:+hda(s, t, w)dZ(s, w)”z}

\ t

<2F{ “S:”;n(s, X, w))d5+g:+,;(s,.X(t, 0))dZ(s, o) u;}m

t

t+h t+h /!
xE{ S Am(s, ¢, w)ds+8 Ho (s, £, 0)d2(s, ) ug}”

LK+ [2(h+m) KK )2 [E,,, ., {| X (2, 0) 13} +1]
=O™) LEw, | X(2, 0) (13} +1].

We may now combine our results above, interchanging integra-

tion and expectation to yield
t+h
Elo’xn{”X(t‘Fhﬁ (1)) ”g— “X(t, (D) “g} —S‘ E‘mxo{”d(s’ X(t> w))”%} dS

(3.19) —zghE {(X(t, ), m(s, X(¢, w))}ds

SOM) [Evy, {1 X2, o) |3 +11,
which yields the desired result.

Corollary. If there exists a constant 3>>0, such that
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(3.20) llaCz, O3 +2(&, m(z, &))< B,
then E,, . {|X(, 0)]3} is exponentially decreasing as t—>oo.
Proof. From (3.12), we have

dE., {IX(, o)} <—BE{X(2, o) 3} dt.

Thus, integration of

dlog Ev. o {IX(t, @) |3 = ‘fEE *o{{““;?(gf’;’))l'l'f}} Ry

yields the desired result.

Example. Let us consider the simple linear system,

dz.(t, o) = [ax:(t, ) +bx:(t, w)] dt +o.1:(t, 0)dZ: (¢, w)
dx(t, o) = [cx:1(t, ) +dx:(t, )] dt +o.x:(¢, 0)dZ:(¢, »),

where b+c=0.
The condition (3.20) requires that there exists =0 for which

(ot 2a) 2t + (b + 2d) i~ Bt + ).

In that case, not only do the sample solutions decay exponentially
with probability one but the equilibrum solution is stable in the

Lyapunov sense with probability one.

1
(2]
(3]
(4]

(5]
(6]

(7]
(8]
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