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We shall try to generalize certain results on finitely generated
rings over noetherian rings to the case of finitely generated rings
over general (commutative) rings.® To begin with, the writer likes
to express his thanks to David Mumford, for that some ideas in
this note, especially that of Theorem 3, arose in conversation with
him.

One of our main results is the following:

Theorem 1. Let an integral domain A be finitely generated
over its subring R. Let p be a prime ideal of R. Assume that
ais a prime ideal of A which lies over b such that q is a minimal
prime divisor of pA. Then we have

trans. degg/y A/p=trans. degrA.

Then we come to the following theorems on finitely generated
rings over a valuation ring:

Theorem 2. Let V be a valuation ring of rank (= Krull
dimension) v, and let A=Via, ---,a.] be a finitely generated
integral domain over V. If p is a prime ideal of A, then every
maximal chain of prime ideals in A which begins with b and
ends with 0 has length equal to

*  The work was supported by NSF Grant GP-3512.
1) As for terminology, we shall use mainly the one in our book, M. Nagata,
Lacal rings, John Wiley, New York (1962).
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height(p( V) + trans. degy A—trans. degy,(pr ) A/D.

Theorem 3. Let V be a valuation ring and let A= Via,, -,
a.| be a finitely genevated rving over V. Let a be the kernal of
the homomorphism ¢ from the polynomial ring VX, -, X.]
onto A such that ¢(X)=a.. If no non-zeroelement of V is a
zero-divisor in A, or equivalently, if A is a flat V-module, then
a has a finite basis.

On the other hand, our proof of Theorem 1 can be applied to
prove the following:

Let R be a ring and let A,, -+, A, be finitely generated rings
over R such that for each pair (Z,7) (i,7<wn), there is a non-zero-
divisor @;€A; such that A.[A;] =A:[a;; ] (hence these A; have
the same total ring of quotients). Let by, ---, b, be prime ideals of
R and let R, be a subring of R. Then:

Theorem 4. There are finitely generated rvings R and R!
(i=1, -+, n) over Ry such that (1) Ro2R'CA;CA;=R[A}], (2) A}
contains a; and A}[A;]=Aila;]'] for every pair (i,7) (i,j<n)
and (3) for each y, setting P.=Ry,/p« Ry, it holds that A} & g/ Ps
EA;@RP,,.

Theorem 1, in case R is a valuation ring (one can reduce it
to that case), is implicit in the geometric statement: a specialization
of an #-dimensional variety is an #z-dimensional cycle i.e., all its
component have dimension 7 (cf. Lemma 2.1 below), which, we
presume, has been made by some one. However, all recent authors
who have laid- down algebraic foundations for algebraic geometry
seem oddly (in spite of their generalized treatment in other respect)
to restrict themselves to the case R noetherian.

Theorem 3 can be viewed as one explanation of why Theorem 1

is valid. In fact, in the language of schemes,” it asserts:

2) As for schemes, see, for inst., articles of A. Grothendieck (either “‘Elements”
or “S. G. A.”’) or lecture notes by Dieudonné on algebraic geometry.
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Theorem 3. If =: X—Spec R is a flat morvphism of schemes
of finite type and if R is a valuation ving, then = is finitely
presented.

As for Theorem 4, it asserts the following: Under the assumption
on A;, we have a scheme M of finite type (defined by these A;)
over Spec R. Then, for any given finite number of p,=Spec R and
for a given subring R, of R, there exist an affine scheme S’ over
R, and a scheme M’ of finite type over S’ such that (1) M is a
closed subscheme of M’ X y¢SpecR and (2) the fibre over p. on M
is isomorphic to that on M’ Xy SpecR.

1. The proof of Theorem 1.

We know already that if R is noetherian then the assertion is
true.® But, we shall prove the assertion without using the result
but using a more fundamental fact that the altitude formula (=di-
mension formula) holds for any locality over a prime integral
domain.®

Let K be the field of quotients of R. Considering Rp, we may
assume that (R, p) is quasi-local. Consider a polynomial ring
R[X,, -+, X,] and a surjective R-homomorphism ¢: R[X]—A. Let
a be the kernel of ¢. Take a finite number of elements fi, -:-, fin
such that (i) 2f;K[X]1=aK[X] and (ii) a+pR[X]=2f.R[X]
+pR[X]. Let R, be the ring generated by the coefficients of these
f: over the prime integral domain of R and set R;=(Ry)pNRs,
p=pR;, K,=the field of quotients of R, and A,=R,lay, -, a.],
here a;=¢(X,). By (i), Kla,, -, a,|=K [a,, -+, a.] g, K whence
trans. degp A =trans. degp, A;. By (ii), A/pA=(A:/p1 AD) @R, /p, R/b.
Therefore trans. degg/, A/qa=trans. degp, /p, A1/(@ A1) and qM A4,

3) See, for inst., (35.6) in the book cited in 1).

4) A prime integral domain is either a finite field or the ring of rational in-
tegers, hence is either a field or a pseudo-geometric Dedekind domain. Validity of
the altitude formula is known for much more general case (see, for inst., the book
cited above). For this special case, see, M. Nagata, A general theory of algebraic
geometry over Dedekind domins, I, Amer. J. Math. 78 (1956), pp. 78-116.
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contains a minimal prime divisor of p; 4;. Thus we may assume
that R is a locality over the prime integral domain.” Then by the
altitude formula, height q +trans. degp/, A/q=height p-+trans.degrA.
Let y;, -+, ¥, be a system of parameters of R. Then 7=heightp
and q is a minimal prime divisor of the ideal > y:A. Thus we
have height q<{r =heightp, and therefore trans.degg/,, A/q=>trans.
degpA.

2. Proof of Theorem 2.

Lemma 2.1. Under the notation of Theovem 1, if R is a
valuation ving, then

trans. degp/p, A/q=trans. degp A.

Proof. Let z, -+, z, be elements of A such that they are alge-
braically independent modulo p over R/p. If they algebraically
dependent over R, then there is a non-trivial relation f(zy, -+, 2,)=0
over R. Since R is a valuation ring, we may assume that some
coefficients are not in p, then it contradicts to the choice of the z;.
Thus trans. degg/, A/q<trans.degp A. Hence we have the equality.

Lemma 2.2. Assume that a valuation ring V is contained
inaring Rin which non-zero elements of V are non-zero-divisors.
If PR+R for a prime ideal p of V, then for any prime ideal q
of V contained in p, we have GqRN\V=q; if v is a prime ideal
of R which lies over p, then there is a prime ideal q' of R lying
over q and such that q'<y'.

Proof. Assume that @ is an element of qR( V which is not
in q. Then there are elements ¢; of q and elements 7#; of R such
that a=3>)¢:7;. Then 1= (q;a)r,€qVyR=qR. Therefore qR=R,
which is a contradiction. If this is applied to Ry instead of R,
then we have the existence of q’, and the proof is completed.

Now we shall prove Theorem 2 by induction on #+trans. degy A.

5) If we use the result on noetherian case, then this completes the proof.
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Let p=p,Op;D---Dp,=0 be a maximal chain. If s==0, then p=0
and the assertion is obvious. Assume that s>>1. Set q=p._,N V.

(i) Assume that q=0. Then, denoting by K the field of
quotients of V, p..,K|a,, -+, @) is of height 1, whence we see that
trans. degy A/p.=trans. degy A—1. Therefore the induction as-
sumption gives us the result in this case.

(ii) Assume that q#0. Then p,, is a minimal prime divisor
of qA. Therefore Lemma 2.1 shows that trans.degy/, A/b1=
trans. degy A.  Therefore, by our induction assumption, s—1=
height (v V/q) +trans. degy/, A/p.-1—trans. degy/,n v)A/p=height
p—heightq+trans. degy A—trans. degy/pn v)A/P. By Lemma 2.2,
we see that heightq=1, and we complete the proof of Theorem 2.

‘The above proof of Theorem 2 can be applied easily to prove

the following:

Theorem 2. Let V be a valuation ring and let A be a finitely
generated integral domain over V. Let p be a prime ideal of A.
Set s=trans. degy A—trans. degy/pnv)A/p. Then s=>0. Let NV
=qDq D+ DG, 20 be a chain of prime ideals in V and let s,, ---,
s, be non-negative integers. Then there is a descending chain
of prime ideals p=p,Dp, DD, in A such that there are s« of
these v, which lie over q, for each «=0,1,---,t if and only if
>185:<s.

3. Proof of Theorem 3.

We begin with the following proposition which is related to
the statement of Theorem 3.

Proposition 3.1. A module M over a valuation ring V is
a flat module if and only if no non-zevo element of V is a zero-
divisor with respect to M.

Proof. Considering V&M, we may assume that M is a ring
containing V (principle of idealization). (i) Only if part: For
0#x< V, we have 0= [0: x| y@QyM==[0: x| 3y and therefore x is not
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a zero-divisor with respect to M. (ii) If part: A finitely generated
ideal a of V is principal: a=xV. Therefore aM=xM=xVY M.
Therefore M is flat. This completes the proof.

Corollary 3.2. Let V be a valuation ving of a field K and
let A=Vlay, -, a,] be a finitely generated ring over V. Consider
a polynomial ring and surjective homomorphism ¢: V[ Xy, -+, X,
—A (p(X)=a). Let a be the kernel of ¢, and let fi, -, f. be
elements of a which generate aK[X,, .-+, X..]. Let K, be a subfield
of K containing all coefficients of these f; and set V= VNK,.
If no non-zevo element of Vi is a zero-divisor in A (or, rather,
in Vilay, -+, a.)), then A=V (a,, -, a.]Qvy, V.

Proof. Vila, -+, @,) is a flat module over V;, hence
Vilay, -, a.)Qv, V< Vilay, -+, a,] Q v, K=K|a,, - ,a.], which proves
the assertion.

Now we shall prove Theorem 3. We denote by ut the maximal
ideal of V.

(1) Homogeneous case. First we assume that a is a homogene-
ous ideal of V[X]. Let F, be the module of homogeneous forms
of degree d in V[X] and set a,=F,Na. Because of the assumption
on A, a, has the property that cf€a,, 0#c€ V and fEF, imply
f€a;,. We claim that a; is a finite free V-module. Namely,

Lemma 3.3.° If a submodule M of F, has the property that
cfeM, 0+ceV, feF, imply feM, then M is a finite free V-
module and mM=MNOwmF,.

Proof. The last equality is obvious. Take elements #,, «, m,
of M such that residue classes of these elements form a linearly
independent basis for M/(MMmF,) over the field V/m. Let b, -,
b, be a free base of F, such that m,=b; for i<<{. Let M' be the
module generated by these m;. Assume now that there is an element
me M which is not in M’. Then m=>)¢;b; with ¢;€ V. Subtracting

6) Note that F; can be replaced by an arbitrary finite free V-module.
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,Z‘Vbh we may assume that ¢;=0 for 7<{{. We may assume that
ci‘V:Zc;V Then we see that ¢;'meM and (¢;'m) modulo M is
not in M/(MMmF,), which is a contradiction.

Now we go back to the proof of Theorem 3. Let fi, -, f, be
homogeneous elements of a such that their residue classes modulo
m generate a/(aMmV[X]) in (V/m) [X] and let o’ be the homogene-
ous ideal generated by these f;. Then a’<<a. Set a;=a’(\F,. Since
a+mV[X]=a+mV[X], we have a;+mF,=qa,+mF,. Since a,mF,
=ma,, we see that a;+ma,=aq,, which shows that a;=a, by virtue
of the lemma of Krull-Azumaya. Thus a=a’, and a has a finite
basis.

(2) General case. Take a transcendental element y, and set
yi=a:y, (1=1,2,--,mn), A=V[y,,¥y.]. Then the kernel a' of
¢: V[X,, -+, X.] >A" (defined similarly) has a finite basis, say fi, -,
fi. Let f; be the element of V[X;---, X,] which is obtained from
fi setting Xo=1. We claim that a is generated by fi, -+, f;. It is
obvious that fi=a. Conversely, let f be an arbitrary element of a.
Let f’ be a homogenized polynomial from f introducing X,. Then
f'€d’, and we see that f is in the ideal generated by these f;.
This completes the proof.

4. Proof of Theorem 4.

Let b, -+-, b,y be a set of generators of A; over R and let q; be
the kernel of the R-homomorphism ¢;: R[X;, -+, X;] = A: (¢:(X,) =b:}).
For each ., there is a finite subset ¢, of q; such that A:X:P,=
P.[Xy, -, X)) /o P, [X]. Let R’ be a finitely generated ring over R,
such that (1) R'CR, (2) R’ contains all coefficients of members of
¢, (3) ay€R' by, -+, bi), 4) bpsR by, -+, bi,a;']. Then Ai=
R'[bi, -+, b;/] are the required rings.
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