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W e shall try to generalize certain results on finitely generated
rings over noetherian rings to  the case of finitely generated rings
over general (commutative) rings! )  T o  beg in  w ith , the writer likes
to express his thanks to  David Mumford, fo r  that som e ideas in
th is note, especially that of Theorem 3 , arose in conversation with
him.

One of our main resu lts is the following:

Theorem 1. Let an integral dom ain A  be finitely generated
ov er its subring R .  Let p be a Prime ideal o f R .  Assume that
q is a Prime ideal of A which lies over p such that q  is a minimal
Prime div isor of p A .  Then w e have

trans. degRA, A/1) trans. degRA.

Then we come to the following theorems on finitely generated
rings over a valuation ring:

Theorem 2. L e t  V  be  a  v aluation r in g  o f  ran k  (=K ru ll
dimension) r ,  and let A = V[ai , ••., a„] b e  a  f initely  generated
integral dom ain ov er V . I f  4.) is  a Prime ideal of A , then every
maximal chain o f  Prim e  ideals in  A  which begins with p and
ends with 0  has length equal to

* )  The work was supported by NSF Grant GP-3512.
1 ) As for terminology, we shall use mainly the one in  our book, M . Nagata,

L o c al rin g s , John Wiley, N ew  York  (1962).
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height () (1 V) -I- trans. deg vA— trans. deg v/ (1 , n  -v ) A/1).

Theorem 3. Let V  be a valuation ring and let A= V[a„ •••,
a„] be a finitely generated ring over V . L e t a be the kernal of
the homomorphism (6 from  the Polynomial r in g  V[X„ •••,
onto A  such that 0 (X , ) - - d .  I f  n o  non-zeroelement o f  V  is  a
zero-divisor in  A , or equivalently, i f  A  is a fla t V-module, then
a  has a finite basis.

On the other hand, our proof of Theorem 1  can be applied to
prove the following:

Let R  be a ring and let A 1,•••, A „  be finitely generated rings
over R  such that for each pair (i, j) (i, j <n ) , there is a non-zero-
divisor a,J E A  such that A [4 ]  A , [a , , - - 1 ] (hence these A , have
the same total ring of quotients). Let pi , •••, p r  be prime ideals of
R  and let R o be a subring of R .  Then:

Theorem 4. There are finitely generated rings R ' and R:
(i=1, n )  o v e r  R o such that (1 ) RD .R 'Ç A :gA ,=--R [A : ] ,  (2 )  A:
contains aq  and  A :[A ]= A a a 1 ] f o r  every Pair ( i , j )  ( i ,  j< n )
and (3 ) for each p„ , setting Pk=Rpk/INRpk, it holds thatA;(gR , Pk

=A jOR  Pk .

Theorem 1, in case R  is  a valuation ring (one can reduce it
to that case), is implicit in the geometric statement :  a specialization

of an n-dimensional variety is an n-dimensional cycle i.e., all its

component have dimension n  (c f. Lemma 2. 1 below), which, we
presume, has been made by some one. However, all recent authors

who have laid down algebraic foundations for algebraic geometry
seem oddly (in spite o f their generalized treatment in other respect)
to restrict themselves to the case R  noetherian.

Theorem 3 can be viewed as one explanation of why Theorem 1

is valid. In fact, in the language of schemes, 2 ) it asserts:

2 )  As for schemes, see, for inst., articles of A. Grothendieck (either "Elements"
or "S. G. A ." ) or lecture notes by Dieudonné on algebraic geometry.
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Theorem 3'. I f  X .-- Spec R  is  a f lat morphism o f  schemes
o f  f inite ty pe a n d  i f  R  i s  a  v aluation rin g ,  then  it is f in ite ly
presented.

As for Theorem 4, it asserts the following: Under the assumption
on A „  w e have a scheme M  o f finite type (defined by these A,)
over Spec R .  Then, for any given finite number of E S p e c  R  and
for a given subring R o o f  R , there ex ist an affine scheme S ' over
Ro and a scheme M ' o f finite type over S ' such that (1 )  M  is  a
closed subscheme of M ' X s ,  Spec R  and (2 )  the fibre over p, on M
is isomorphic to that on M ' x s ,  Spec R.

1. The proof o f  Theorem 1.

W e know already that i f  R  is  noetherian then the assertion is
true! )  B u t, we shall prove the assertion without using the result
but using a more fundamental fact that the altitude formula (=  di-
mension formula) holds fo r  an y  lo ca lity  o ver a prim e integral
domain»

Let K  be the field of quotients of R .  Considering Rp, we may
assume th a t  (R , p )  i s  quasi-local. Consider a polynomial ring
R[X„•••,X„] and a surjective R-homomorphism : R [X ]— .A . Let
a be the kernel of 0. T ake a finite number o f elem ents f, ••. , fm

su ch  th at (i) f , K [X ] = aK[X] a n d  ( i i )  a + p R [X ] = E f,R [X ]
+pR [X ] .  Let R o b e  the ring generated by the coefficients of these
f ,  over the prime integral dom ain o f  R  and set R1---(R0)vnR0,

K 1 = the field of quotients of R1 and Ai= RI [a, •••, a„],
here a ,= 0 (X ,). BY ( i ), K  whence
trans. degR A = trans. degR, A l. BY (ii), ORi/p, R/p.
Therefore trans. degRA, A/q= trans. degRi/pi n A 1 ) and q n A i

3) See, for inst., (3 5 .6 ) in the book cited in  1).
4) A  prim e integral domain is either a finite field or the ring of rational in-

tegers, hence is either a field or a pseudo-geometric Dedekind domain. Validity of
the altitude formula is known for much more general case (see, fo r inst., the book
cited  above). For this special case, see, M . Nagata, A  g e n e ral th e o ry  o f  algebraic
geom etry  ov er Dedekind dom ins, I ,  Amer. J. Math. 78 (1956), pp. 78-116.
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contains a minimal prime divisor of p, A , .  T hus w e m ay assume
that R  is  a locality over the prime integral dom ain» Then by the
altitude formula, height q + trans. degR/p A/q = height p + trans. degRA.
Let y , • ••, y , b e  a system  o f parameters of R .  Then r= height p
and q  i s  a minimal prime divisor of the ideal E y ,A .  Thus we
have height q< r =  height p , and therefore trans. degRA, A/q>trans.
degR A.

2. Proof o f Theorem 2.

Lemma 2. 1. Under the notation of  T heorem  1 , i f  R  i s  a
valuation ring , then

trans. degR/1, A /q= trans. degRA.

P ro o f . Let z1, • • •, z , be elements of A  such that they are alge-
braically independent modulo p  over R / p . I f  they algebraically
dependent over R , then there is a non-trivial relation f (z i , • • • , z,) = 0
over R .  Since R  i s  a valuation ring, w e m ay assume that some
coefficients are not in p, then it contradicts to the choice of the z,.
Thus trans. d eg R / A /q < tran s . degR A .  Hence we have the equality.

Lemma 2. 2. A ssume that a  v aluation rin g  V  is contained
in a ring R  in w hich non-zero elements o f  V  are non-zero-divisors.
I f  p R R  f o r a p rim e  ideal p of  V , then f o r any  Prim e ideal q

o f  V  contained in  p , we have gR f iV =q; i f  P' i s  a  Prim e ideal
o f  R  w hich lies over p, then there is a Prim e ideal q '  of  R  lying
over q  and such that q'gp'.

P ro o f . Assume that a  is  an element o f qi? fl V  which is not
in q .  Then there are elements q, of q  and elements r,  of R  such
that a= E q, r, . Then 1= E (q,a - ')r, G q R = q R .  Therefore qR= R,
w hich  is a contradiction. I f  th is  is  ap p lied  to  Rp ,  in stead  of R,
then we have the existence of q ',  and the proof is completed.

Now we shall prove Theorem 2 by induction on r+ trans. deg A.

5 )  I f  w e  use the result on noetherian case, then this completes the proof.
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Let p= P o p  D • • • D =  0  be a maximal chain. I f  s= 0 , then p  0
and the assertion is obvious. Assume that Set q =1),-1 fl V.

( j )  A ssu m e that q = O. Then, denoting by K  the field of
quotients of V, Ps-i K[ai, • • •, a .] is  of height 1, whence we see that
trans. deg v  A/ps _,= trans. deg v  A - 1. Therefore the induction as-

sumption gives us the result in this case.
(ii) Assume that ci* O .  Then ps_i is  a minimal prime divisor

o f  ciA .  Therefore Lemma 2 . 1  shows that trans. deg v/ q A/P.-I--
trans. deg y  A. Therefore, by our induction assumption, s— 1=

height (pn v/q) +trans. deg v/ q A/P—i —  trans. deg vApn v)A /p= height
p— height q + trans. deg v  A — trans. deg v Apn  y ) A / .  By Lemma 2. 2,
we see that height q =1, and we complete the proof o f Theorem 2.

The above proof o f Theorem 2  can be applied easily to prove
the following :

Theorem 2'. L et V be a valuation ring and let A  be a finitely
generated integral domain over V . L e t p be a prim e ideal of  A .
S et s=  trans. deg v A — trans. degvApn v) A /p. Then s > 0 .  L et p r1 V

= q 0 D cr iD • • • D ci ,Q 0  be a chain of  Prim e ideals in  V  an d  le t so, •• • ,
s t be non-negative integers. Then there is a  descending chain
of  Prim e ideals P -- -P o p P iD • • • D p „  in  A  such that there are  so, of
these p, which l ie  over ci c,  f o r  each a = 0 , 1 , • • • , t  i f  an d  only if

s,<s.

3. Proof o f Theorem 3.

We begin with the following proposition which is related to

the statement of Theorem 3.

Proposition 3. 1. A  m odule  M  over a  valuation rin g  V  is
a flat m odule if  and only if  no non-z ero element o f  V  is a zero-
divisor with respect to  M.

P ro o f . Considering VO:;M, we may assume that M  is a ring

containing V  (principle o f idealization). ( j )  O n l y  i f  part : For
0  x G  V, we have 0  [0: x] v ® [ 0  :  xi m and therefore x  is not
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a zero-divisor with respect to M .  ( i i )  If part: A  finitely generated
ideal a of Vis principal: a= x V. Therefore aM= x  v  m.
Therefore M  is  flat. T h is  completes the proof.

Corollary 3. 2. L et V be a  valuation rin g  o f  a f ield K  and
let A = V[al, ••• , a.] be  a f initely  generated ring over V . Consider
a polynom ial ring and surjective homomorphism 0:V[X,,•••, X„]

(0 (X 1) = d ) .  L et a be th e  k ernel o f  0, an d  le t f i ,•••, f, be
elements o f  a which generate aK[X,,•••, X .].  L et K i  be a subfield
o f  K  containing all coeff icients of  these f ,  an d  se t  V1 =  V n K i .
If  no non-zero element o f  V , is a  zero-divisor in  A  (o r, rather,
i n  Vl[al,•••,a,„]), then A= - --V ,[a 1 ,

P ro o f .  Vi [a l , •••, a.] i s  a  fla t  m o d u le  o v e r  V I., h e n c e
V1[a1,•••,a„]0v

1
V g Vi[ai, • • • ,a.i ® Y,K=K[a„••• ,a,,], which proves

the assertion.

Now we shall prove Theorem 3 . We denote by in the maximal
ideal o f V.

( 1 )  Homogeneous case. First we assume that a is a homogene-
ous ideal o f  V [X ].  Let F d  be the module of homogeneous forms
of degree d  in V [X ] and set ad=Fdna. Because of the assumption
on A , ad has the property that c f c a d ,  0*cE  V  and f e F d  im ply
f a d .  W e claim that a d  is  a finite free V-module. Namely,

Lemma 3. 3•' )  I f  a  submodule M of  F, has the property  that
c fE M , 0 # c E V , fE F d  imply  f E M ,  then M  is  a f inite f re e  V-
module and niM = M rin tF d .

P ro o f . The last equality is obvious. Take elements m 1 ,•••, m 1

of M  such that residue classes of these elements form a linearly
independent basis for M /(M n m Fd ) over the field V/m. Let b1,•••,
b„ be a free base of F d  such that m,=b, for i< t .  Let M ' be the

module generated by these m , .  Assume now that there is an element
m  M  which is not in M '.  Then m =E c ,b , with c, E  V . Subtracting

6 )  Note that Fd can be replaced by an arbitrary finite fre e  V-module.
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we may assume that c, =  0  for i t. W e  m a y  assume that
V = E c , V . Then w e see that c: 1 m  E M  and ( c ;l i n )  modulo in is

not in M / (M n m F d ) ,  which is a contradiction.

Now we go back to the proof o f Theorem 3. Let f j ,• ••, f ,  be
homogeneous elements o f a  such that their residue classes modulo
m generate a / ( a n n t  V [X ] )  in ( V/m) [X ] and let a' be the homogene-
ous ideal generated by these f .  T h en  a' < a .  Set a'd= a 'n  F a .  Since
a' + m V [X ]  =a+ in V [X ], we have ad' + mFd= ad -F 111F d  .  Since ad ninFa
—mad, w e see that a'd  + mad = ad, which shows that aid =ad by virtue
o f th e  lemma o f  K rull-A zum aya. Thus a = a', and a h as a finite
basis.

(2) General case . T ake a  transcendental element yo and set
Y ,=a,y 0  (1= 1, 2, • • • , n ),  A' =V [y o , • • • ,  y n ].  Then th e kernel a ' o f
0 :V [X o ,••• ,X ,J , A ' (defined similarly) has a finite basis, say f ;,• • - ,
f ; .  Let f  be the element o f  V[X, •••, X J  which is obtained from
f ;  setting X 0 = 1 .  W e claim  that a is generated by f. • ••, f , .  It is
obvious that f  Ga. Conversely, let f  be an arbitrary element of a.
Let f '  be a homogenized polynomial from f  introducing X 0 . Then
f ' a ' ,  and w e see th at f  i s  in  the ideal generated by these f .

This completes the proof.

4. Proof o f  Theorem 4.

Let b,„•••, b „ be a set of generators o f A , over R  and let q, be
the kernel of the R-homomorphism 0, :R [X ] ,•••, X J — )- A ,(0 ,(X 3 )=b u ).
For each Pk , th e re  is  a finite subset co, o f q  such that A,ORPk--- - --

PI, [X1, •••, /  , , [  X ] . Let R ' be a finitely generated ring over Ro
such that ( 1 )  R 'g R ,  ( 2 )  R ' contains all coefficients of members of

(3) • • • , b,,] , ( 4 )  b , R ' [b ,,, •  •• , (C,1 ]. Then A :=

R '[b ,„- - ,b „]  are the required rings.
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