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Let a  complex manifold X  parametrize a  complex analytic
family o f  non-singular polarized varieties in a projective space.
When we identify isomorphic members of the family, this identi-
fication defines an equivalence relation 91 on X .  On the other
hand, when F is the Zariski-closure of the set of Chow-coordinates
of members of the family in the smallest algebraic variety contain-
ing it, 91 almost always induces on F  a closed equivalence relation
in the sense o f algebraic geometry, which we shall denote by 9V.
Under certain conditions, w e are going to show, among other
things, that analytically defined quotient space, the analytic variety
of moduli, and algebro-geometrically defined quotient space, the
algebro-geometric variety of moduli, are the same thing. Condi-
tions are stated as axioms, which are satisfied when X  is a bounded
domain, R  is defined by a  proper discontinuous group G  acting
on X , the field of G-invariant meromorphic functions form an
algebraic function field of dimension m= dim X  and when F  has
a Zariski-open subset F0 satisfying the following conditions : ( i )
F, carries an equivalence relation 91', compatible with 91 defined
on X  by G ; (ii) Every member of the analytic family is contaired
i n  t h e  fam ily defined by Fo ,  a n d  every member o f  t h e  latter
family is equivalent, with respect to R', to a member of the former
family ;  ( i i i)  R ' is  a  closed equivalence relation in the sense of
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algebraic geometry, and orbits of points of F o w ith respect to R'
are irreducible and have the constant dimension. Actually, under
slightly milder assumptions than those described above, we are
going to show the existence of the analytic and algebro-geometric
varieties o f  moduli at the same time and see that they are the
same. This is sometimes rather convenient, since we may be able
to tie up algebraically defined concepts with analytic concepts.

Before we actually discuss our main topics, we shall discuss
a  few preliminary results, many o f which are well-known. In
particular, in § 2 and § 3, we shall discuss the case when X is the
Siegel space o f degree n  and G  is  the paramodular group. A
purpose o f this is to show actually that the axioms we are going
to consider in  §4  are satisfied in  this particular case. As for
more general cases than the Siegel space and the paramodular
group, the readers are referred to Satake (II), Shimura (II, III, IV,
V, VI, VII), Siegel (II) and Kuga (I). At the moment, the author
does not know if in  some o f these general cases all the axioms
in  §4  are satisfied, but hopes that most o f them would do so.
In § 5, rough materials are constructed which will be refined in §6
and pasted together to get analytic as well as algebro-geometric
variety of moduli. In §7 we shall discuss the possibility o f pro-
jective embeddings of the varieties o f  moduli and the fields of
moduli.

For general properties o f  Abelian and theta-functions, the
readers are referred to Siegel (I), Weil (II) and Conforto (I). F o r
discontinuous groups on bounded domains, Poincaré-series and
automorphic functions, readers a re  referred to Siegel (I) and
Pyatecki-Shapiro (I). T h e  author would like to point out that the
case when X is the Siegel space and when G  is the modular group
was treated by Baily (II).

Conventions. Since we are going to deal with objects with
mixed structure, we shall agree to use the following conventions.
Whenever open sets, closed sets, closure are mentioned, these are
relative to the ordinary complex topology, unless the contrary is
specifically mentioned. Corresponding notions relative to Zariski-
topology will be indicated by "Z-open sets", "Z-closed sets" and
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by "Z-closure". As far as algebro-geometric terminology are con-
cerned, they will be based on W eil (V ). Therefore, for instance,
an "algebraic variety" will mean an absolutely irreducible algebraic
variety in the sense o f Z arisk i. When Y is a cycle or an analytic
subset of an algebraic variety o r a  complex manifold, I 17 1 will
denote always the support of Y.

§  1 . Let X ' be a connected complex manifold, PN a projec-
tive space and Z"+" a connected complex submanifold of X x P (the
topology on Z  may be stronger than the one induced on it by the
topology o f X x  P ) .  When (X , Z )  satisfies the following three
conditions, we say that (X , Z )  defines an analy tic fam ily  {Z(x);
x E X } in P.
(a) When 7 C  is the projection of Z  on X, there is a non-singular
algebraic subvariety Z(x ) in P  corresponding to each point x  of
X  such that 1Z(x)1 is the set of points in Z with the projection x ;
(b) When we regard Z (x ) as a  closed complex submanifold of
P, x x Z(x) is a closed complex submanifold of Z ;
( c )  When z is a point of Z, there exist an open subset Wz  o f  Z
containing z such that 7r( W z )  is open on X, an open subset U of
Cm (the complex Eucledean space), an isomorphism 0  between
7r( W 2 .) and U , an open subset V o f Cti and an isomorphism .99
between Wz  and Ux V such that the following diagram is com-
mutative:

7r( W z ) ( 7 t '  denotes the projection
01‘ o f Ux V on U).

 U

Let (X , Z )  and (X ', Z ') define analytic families in projective
spaces. When there is an isomorphism g  between Z  and Z ' and
an isomorphism h  between X  and X ' such that mog=hoz, we
say that th e analytic families defined by (X , Z ), (X ', Z ')  are
isomorphic.

Let z---(x, y ) be a point of Z  and S an affine Z-open subset
of P  containing y. When we set W,= W fl7r( W ) x  S ,  W ,  is open
in W and in Z  since the topology on Z  is finer than the induced
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topology. Hence q)( W 0) is open in U x V . S e t 99(z)= 99(X, y)= (u, v)
with u= (p(x) (cf. (c)). There is an open subset U* of U containing
u  and an open subset V* o f V containing y  such that U *x V*
c p (W o). When W* is the set of points in Wo which are mapped
into U*x V* by p , it is open on Z, contains z  and 7-c l o p  ------ 007r is
satisfied on W .  L e t  .7„ •••, IN  be the affine coordinate functions
on S .  They induce holomorphic functions f „ • • • , f .„  on U* x  V*.
Rearranging indices if necessary, and then setting f o = 1, we have
found the following two consequences of (a), (b) and (c).
(d) To each point z =(x , y) of Z , contained in  x x Z (x ), there is
an open subset U* of x  on X , an open subset V* of C", a point y
of V* and a set (f „• • • ,  f N )  of holomorphic functions on U* x  V*
such that y----(f o (x , v ): ••• : f  N (x , v )) and that the map determined
by f o :••• : fN  maps x ' x  V*, x '  U ,  to an open subset of x'x Z (x ');
(e) The map determined by f o : •••: fN  has rank n  everywhere on
X' x V* when x'E  U*.

Conversely, let X m be a connected complex manifold. Assume
that a  non-singular algebraic variety Z (x )  in  P N  correspond to
each x  on X  and that the conditions (d), (e ) a re  satisfied by X
and by th e  se t ix x Z(x)} . Then, defining i Z I  to be the set of
points (x , y) in  Xx P  such that y  is contained in  Z (x ) , it is not
difficult to show that Z  becomes a connected complex submanifold
of Xx P  when we define a  suitable topology which is finer than
the induced topology. By doing so, it is not hard to show that
(X, Z )  satisfy (a), (b ), (c ) . Therefore, the conditions (a), (b), (c)
and the conditions (d), (e) are equivalent.

In  the following, we shall give a  proof of this for the sake
of convenience.

LEMMA 1. Let X rn be a complex manifold and { A (x )"; x EX }
a set of non-singular varieties in a projective space PN , satisfying
(d) and (e). Let Z  be the set of points (x , y ) in  X x P  such that
y E lA ( x ) 1 .  Then Z  has a structure of a connected complex sub-
manifold of X tm  x P satisfying (a), (b) and (c).

P ro o f. Let (x 0 , y o ) E Z .  Let U  be an open subset of X , con-
taining xo , V  an open subset of C", y o a point of V and f o ,•••, fN
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holomorphic functions o n  U x V  such that = 1  f o r  some i,
( f o (x„, yo ), ••• , f N (x 0 , y„)) is a set of affine coordinates of yo and that
a(fo , •-•, f)/a (v ) is of rank n everywhere on Ux V .  Then the map
F of Ux V into Xx P  defined by (x, v)---0.(x, y ) is holomorphic and
of rank n everywhere on Ux V .  Moreover, F(x, v) is a point of
xx A (x ).  Since the rank of the map F  is maximal, we can find
an open subset Wo of Ux V, containing (x0 , v„) such that Fo = F I Wo

is 1-1 on Wo . Set D0 = F 0 ( W0). Do i s  a  subset o f Z .  Thus, we
have associated to (x„, yo )  an open subset Wo o f  Cm x C" (we have
identified U with an open subset of Cm), a subset Do o f  Z  contain-
ing (x0 , yo ) and a 1-1 holomorphic map F,: W0—>D0 . When (x„, y„)
and (xp , yp )  are two points of Z  and (W„, D„„ F„), (W3 , Do , Fg )
are corresponding sets, F„- 'op and F 0

- 1 0F„ are clearly holomorphic
maps. We define topology T  on Z  as follows. W hen W  is an
open subset of W„, we define F,,,( W,) to be open. This generates
topology on Z  which we call T . Then Fa,  is a  homeomorphism
o f Wa, into (Z, T). Then, (Z, T) has a structure of a connected
complex manifold having the (Dn , F; 1 )  as coordinate neighbour-
hoods of the (x,„ yo,). It is clear that the canonical injection of
our complex manifold into Xx P  is holomorphic. Our lemma is
thereby proved.

Exam ple 1. Let Xm be a non-singular algebraic variety, Z """
a subvariety (algebraic) o f X x PN  and assume that the following
conditions are satisfied : ( i )  x x P  and Z  intersect properly on
X x P  fo r  every point x  o f  X ; ( i i )  When we define Z (x ) by
(x x P )•Z = x  Z (x ), Z (x ) is a non-singular subvariety o f P .  Then
(X , Z ) defines an analytic family o f non-singular varieties in P.

Example 2. Let H„ be the Siegel space o f degree n, i.e. Ii„
consists o f n-rowed complex symmetric matrices W such that the

imaginary parts are positive definite. Let E = (
0

 
D  0 )  b e  the

canonical form of a non-degenerate Riemann-form which is carried
b y  a  complex torus of dimension n. Then (I n ,  D 'W )=  R w ,
WEH„, is a Riemann-matrix, having E  as a principal matrix (I„
denotes the n-rowed identity matrix). Denoting by the same letter
R w  the discrete subgroup o f C" generated by column vectors of
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R w  over the ring of integers, CnIR w  is  a complex torus T w  of
dimension n. E  defines on T w  a  homology class 7E , w  of complex
analytic d ivisors, and every com plex analytic divisor o n  T w

w hich is in  7E ,w
 is non-degenerate (i.e. defined as the zero of

a  non-degenerate theta-function). Conversely, when a  complex
torus T" and a homology class 7 on T  containing a non-degenerate
complex analytic divisor are given, then, there is a  suitable E
and a point W in H n such that T  and T w  are isomorphic (with
respect to  the complex structures) and th a t the isomorphism
transforms 7  to 7E , w  (cf. Siegel (I), Weil (II)).

Let m  be a fixed positive integer satisfying m 3 .  Then there
is  a set of holomorphic functions 8 0 , •••, eN on 1 1„x e ' satisfying
the following conditions : ( i )  W hen we regard 0,,(W, z )  as a
function on C", i t  i s  a  theta-function relative to R w  and e„= 0
define on T w  a  complex analytic divisor belongings to m7E,w;
( i i )  Regarding the O„( W, z )  as functions on Cn, the m ap z—>
0 0(w, z ) :  ••• : e N (w, z)) determines a projective embedding 8 w

o f T w  into a projective space ; (iii) e w (T w )=A w  i s  the underly-
ing variety o f an  Abelian variety, deg (A w )= mn • n! det (D), N =
m" det (D)-1, A w  is not contained in a hyperplane in P N  and
the set of hyperplane sections of A w  fo rm s a  complete linear
system ; (iv) Set 0 w = (0 0(W, 0): ••• : ON (W, 0)) ; then there is one
and only one Abelian variety such that A w  i s  the underlying
variety and Ow  is  the neutral element ; When we denote this by
(A m , O W ) , e w  is an isomorphism of T w  and (A m , O )  as complex
Lie groups (cf. Conforto (I), Siegel (I), Weil (II)).

Take X = H , Z (W )=A w  (resp. Z( W) = A w x 0 w ), then it can
be verified easily that the conditions (d) and (e) are satisfied.

R em ark . From now on, a  non-singular subvariety  o f  a  pro-
jectiv e space w ill be regarded alw ay s as  a polarized variety such
that a hyperplane section is  a polar div isor, unless the contrary is
specifically mentioned. Hence, A w  is a polarized variety such that

w (7,, w )  is  a polar divisor class.
When Y  is  a positive cycle in a projective space. We denote

by c(Y ) the Chow-point of Y. We shall end this paragraph with
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the following proposition which is more or less well-known but
the only place where we can find a proof is in Shimura (II) (in
a slightly stronger condition).

PROPOSITION 1. L et (X , Z )  define an  analy tic fam ily  o f  non-
singular varieties in a projective space. T hen the map x—> c(Z(x))
is a  holomorphic m ap o f  X  into a projective space.

Pro o f . It is enough to prove that our map is locally holo-
m orphic. Let dim Z (x )=n , k  a field of definition of Z (x ), PN  the
ambient projective space o f Z (x ) and L , a generic linear variety
in P N  o f codimension n  over k  (where we denote by t  the set
of defining linear equations for L „ identified with a point in an
affine space). Express Z (x )•L 1 a s  c1( .3,(')) in a suitable affine Z -
open subset o f P .  Without loss o f generality, we m ay assume
that y, =  1 . By our condition (d), there is an open subset U,,, of
X , containing x , an open subset Vo,  of C", a point v  V „, and
a set ( f ( a. ) )— (f ( *) ) „ ••• , fc(* )

N )  of holomorphic functions on U,,, x  Vo,
such that (f(a')(x, v ( ''') ))=(y“" ) ). By (e), the map f(a)) defined by the

mapping x x Vo,  into PN  has rank n  everywhere. W e have
v(°))= O. L e t  (x*, v*)E U„ x Vo,  and regard F('''); =

Mo Nt i i f ° ') i (x*, v*) as a function of (t, x *, v *). Then the F(') ;  are
holomorphic in a neighbourhood of (t, x , en  and has non-vanishing
jacobian there with respect to v * .  Therefore, the coordinates of
v(-) are locally holomorphic functions o f (t, x). Let t ' =(t'„ , t '  N )
be a  s e t o f independent variables over k (t, y ') ) ,  and set t"„---
X,Nt' i fc°3)i (x, v ( w) ). Then t",„ is locally a  holomorphic function of
(t', t, x ).

Let G ( T ) ,  ( T ) = ( T  0 < i ‹ n ,  0 <  j  < N ,  be the Chow-form of
Z ( x ) .  By a fundamental property of Chow-forms (cf. v.d. Waerden
(I)), w e have G ( t "  t', t) = O. H en ce  (t",,,, t', t )  can be identified
with a point on the hypersurface G defined by G ( T ) = 0 .  G  is  a
variety defined over k  and (t",„, t', t )  is a generic point of G  over
k. When we normalize G (T )  so that some coefficient is  1, then
the coefficients of G (T ) can be obtained rationally from the co-
ordinates of a finite set of independent generic points of G  over
k ,  by applying the Cram er's rule. W hen we denote by S  the
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space o f (t', t), the above arguments show that there is an open
subset W  of the product of S , in suitable number, and an open
subset U ' o f X  containing x, such that the coefficients of G(T)
are holomorphic on  Wx U '.  But clearly these coefficients are
independent of points of W . Hence they are locally holomorphic
functions o f x.

§ 2 .  In  this paragraph, we summarize known results about
(H f i , Z ) (cf. Example 2  o f § 1) from analytic stand point. Here
Z  is either Z (W )=A w  o r  A w x 0 w . Z ( W )  and Z (W ') are iso-
morphic if and only i f  there is a non-singular n-rowed complex
matrix Y and a 2n-rowed integral unimodular matrix M  such that
R ,/= Y R w M . Denote by GE  the set of transformations W--->W'
defined by the relation R w l= Y R w M . Then GE is  a  group of
complex analytic automorphisms o f H „ and its action on H„ is
properly discontinuous. GE is called a paramodular group, and it is
commensurable with the modular group GE,, where E0 =(

° 1
4 .

Moreover, there is a suitable subgroup G ', of GE of finite index
which acts fixed point free on 11„.

H,,/GE  has a structure of normal analytic space (cf. H. Cartan),
which can be compactified, as a  topological space, by adding a
finite set of spaces of dimensions at most n(n+ 1)/2 —2 (cf. Satake
(II)). Furthermore, this compactified space has a structure of a
normal analytic space which is a prolongation of that o f I-1„/GE

(cf. Baily (I)). Therefore, when n 2, a meromorphic function on
H„/GE  can be extended uniquely to a meromorphic function on the
compactified normal analytic space and the set of such functions
forms a finitely generated field of dimension at most n(n+1)/2
(cf. Remmert (I)). By mapping H„ into the generalized unit circle
by the well-known map, and using there Poincaré series, we can
show the existence of a G E -invariant meromorphic function on H„
which separates two points on H„ which are not congruent modulo
G E .  Furthermore, when W  is  a point of H n  such that only the
identity o f GE  (res. G'E )  leaves it invariant, then there is a set of
n(n +1)/2 GE -(resp. invariant meromorphic functions on H,,
such that the functional determinant does not vanish at W. This
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can be proved by the same technique as above, using Poincaré
series o f sufficiently high weight. From these two remarks, it
follows that the condition (C') of § 4 is satisfied by (H„, Z).

§ 3 . We summarize here well-known facts and immediate
consequences of them in algebraic geometry which will be needed
later.

LEMMA 2. Let (A, OA ), (B 4 O,) be two A belian varieties in one
and the same projective space, where OA , O B  are neutral elements
of  the g rou ps. Assume th at  the set of hyperplane sections o f  A
(resp. B) form s a com plete linear system . Then (A, OA )  and (B, OB )
are isomorphic if and only  if A and B  are projectively equivalent.

LEMMA 3. Let (A, OA )  be  a polarized A belian variety . Then
the group of automorphisms of (A, OA )  is  a f inite group. W hen A
is  a subvariety of a Projective space, the set of automorphisms of
A  which are induced by projective transformations is  a f inite set.

Let (A, O A )  be  a polarized Abelian variety and X  an ample
polar divisor on A  (i.e. a polar divisor such that the complete
linear system determined by X  defines a projective embedding
of A ) .  Denote by %(X) the set of positive divisors on A  which
are algebraically equivalent to X  and by A(X) the set of positive
divisors which are linearly equivalent to X .  By definition, X, i.e.
A (X ) defines a non-degenerate projective embedding f x  of A .  f x
is uniquely determined up to a projective transformation. f x  can
be extended uniquely to an isomorphism o f  polarized Abelian
varieties, mapping (A, OA ) on ( f 1 ( A ) , f x ( 0 A ) ) ,  which we shall denote
by the same letter. When U is a set of polar divisor on A , we
denote by VA, U) the set of the f  x (A ), where the X  are ample
divisors contained in  U .  W e definine V(A, OA ) ,  U )  similarly.
Then we get the following corollary.

COROLLARY. VA, WX))=T(A, A(X)).

LEMMA 4. Let (A, OA ) be a Polarized A belian variety  and X
an ample polar div isor on A . Let p(A ,W (X )) be the set of Chow-
points o f  m em bers o f  T (A , K (X )). W e def ine p((A , O A ), W(X))
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sim ilarly ". p(A, K(X)), p((A, A ), %(X)) are both algebraic varieties
and hav e the sm allest f ields o f  definitions. W hen w e denote by
P(A, W X )), ((A , A ), WX)) the Z-closures o f  p(A, TWO), P((A, GA),
TAX)), p(A, %(X)) an d  1-i(A, Ti(X)) an d  also p ((A , A ), TI(X)) and
W A , A ), Ti(X)) have the sam e sm allest f ields o f  definitions.

All these results are discussed in Matsusaka (I) in slightly more
general fo rm . Moreover, following two lemmas can be deduced as
easy exercise from the results contained in the paper quoted above.

LEMMA 5. L et (A , OA ) be a polarized A belian variety  and X ,
Y  two ample polar divisors o n  A .  Then p(A, TI(X)) and p(A, 9.I( Y))
hav e the sam e sm allest f ield o f  definition. T he sam e is true f or
1-1( (A ,  A), W X)) and 1.)((A, A), WY )).

Because o f this lemma, it is possible to use A  for (A, OA )  in
many problems concerning moduli. Incidentally, the definition for
the field of moduli given in Matsusaka (I) and Shimura (II) are
different in appearance but they are actually the same, which can
be shown easily. Hence, the field of moduli of a polarized Abelian
variety (A, GA) over a fixed field ko is given by the smallest field
of definition o f p(A, TX(X))—p(A, A(X)) containg k„ when X is an
ample polar divisor.

LEMMA 6. L e t (A , (B„ O '), i=  1, 2, be f o u r polarized
A belian varieties and assum e th at  (A„ 0 1 )  and  (A 2 , 00 are  iso-
m orphic. A ssume f urther that there is a  discrete valution rin g  o
such that ((B„ 0' 1 ), (B„ 0' 2 )) is a specialization o f  ((A„ (A 2 ,  0 2 ))
over o. L e t  F  be the  g rap h  o f  th e  isomorphism between (A„ 0 1 )
and (A 2 , 00 and extend the above specialization to a  specialization
F' o f  r  over o .  Then F' is  the graph o f  an  isomorphism between
(B1 , 0' 1 )  and (B2 , 0' 2 ).

This is an immediate consequence of the principle of degene-
ration of Zariski (cf. Zariski (1)), the compatibility of specializations
with algebraic projection (cf. Shimura (1)) and of the fact that
F '  is an algebraic subgroup of B,x B2 . This is also a special case

1 )  When (B, O ,)  is  a  member 13((A , OA ), W (X )), we consider the Chow-point
o f B x On  .



On some analytic families of polarized algebraic varieties 289

of a m ore general result for non-ruled varieties (cf. Matsusaka-
Mumford (1)).

Before we state and prove the next lemma, we summarize the
results about the dual Abelian variety of a given Abelian variety
(cf. Weil (II) and Igusa (I)). L e t  V be the underlying real vector
space o f  a  complex vector space V of dimension n  and J  the
complex structure such that (V, J)= V . L e t D be a discrete sub-
group of V of the maximum rank over the field of real numbers
R  and set T =V ID  which is a  complex torus of dimension n.
When XE V, denote by x  the corresponding point of V and by x'
the corresponding point on T .  Assume that ( V , D ) admits a
non-degenerate Riemann-form E ,  i.e. a  skew-symmetric bilinear
form on V, integral valued on D x D , such that E(X, JX) is sym-
metric and positive definite. Let X  be a complex analytic divisor
on  T ,  belonging to the divisor class determined by E .  Then
X—X x ,  on  T  if and only if E (., d) 0 mod Z  fo r a ll d E D .  Let

-V * be the dual o f  V and t h e  map of V into -17* mapping -x" to
E ( . ,  ). is surjective and R -lin ear. Let D* be the set of those
E(X  , ) such that E(X, is1 )=0  mod Z  for all d E D . Then g-(d)ED*
and the latter is  a  discrete subgroup o f  -V * o f rank 2n over R.
J  is an automorphism o f V such that J 2 = — 1. Hence J  has the
dual automorphism J*  of V*, and J* - '  is a complex structure on

-V* such that R(JY)=j* - 1(x). Hence k defines a complex linear
map g o f V onto V* = ( J* - ')  such that g(D )cD *, where D*
corresponds to D* in V*. Therefore, g induces a complex homo-
morphism a  o f  T  on the complex torus T*-= V* ID*, the dual
torus. When d„•••, d ,. is a set of generators of D, then we can
introduce a  coordinate system on  V such that di  becomes the
standard unit vector ei . When 1E(ã1 ,  ), •••, )1 is the dual
basis o f V*, then this is a set of generators of D .  Hence, we
can introduce the coordinate system on V* such that E(.41 ,  )  is
the standard unit vector ei  (fo r  th e  above description of dual
torus, see Weil (II) and Igusa (I)). When we denote by E  and M(a)
the representations o f E  and g w ith  respect to these coordinate
systems, we see at once that E = M(a).

( V*, D *) also admits a  non-degenerate Riemann-form and
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hence T and T* can be identified with Abelian varieties. (a, T*)
is then the Picard variety of T and a  is the canonical homomor-
phism determined by the divisor class o f  X .  Moreover, when
suitable /-adic coordinate systems are introduced on Abelian
varieties T, T* and M(a) is viewed as a matrix with /-adic integral
entries, we have M (a)=M i (a ) (cf. Weil (I)).

In general, let A  and A ' be Abelian varieties such that A ' is
a specialization of A  over Q. Let C be a divisor on A and (0, B)
the Picard variety o f A  such that 0(u)=C1(C u —C). When r  is
the graph of 0, we can find a suitable model of B such that (A',
B', r', C') is a specialization of (A , B, r, C) over Q, where B' is
an Abelian variety, r/ is the graph of a homomorphism 0', (8', B')
is the Picard variety of A' and I3'(u')=C1(C',/ — C'). This is well-
known and easy to prove in our case. As for the general case
of specialization over a discrete valuation-ring, see Koizumi

LEMMA 7. L et (A , 0), (A ', 0 ')  be tw o A belian v arieties in  a
projective space and assum e th at  the  latter is  a  specialization of
the f orm er over the f ield  Q  o f  rational num bers. L e t C , C ' be
hyperplane sections o f  A , A ' and E, E' Riemann-forms associated
w ith the div isor classes on A , A ' determined by C, C'. Then E and
E ' have the sam e normal form.

P ro o f . Let (13, B) be the Picard variety of A  such that 13(u)
----C1(C C), (/ 3 ', B ') the Picard variety o f A ' such that 13'(u')=
Cl(C' — C') and assume that B has been chosen so that (A ', B', r')
is a specialization of (A , B, r) over Q, where r  (resp. r') is the
graph of /3 (resp . 0 '). Denote by g(/, ) the group of points of
orders which are powers of a prime 1 on Abelian varieties. Since
the graph of an endomorphism 1m8 on A  specializes to such on
A ' over A , A ' ref. Q, this specialization defines an isomorphism
0- between g(l, A ) and g(/, A ') .  The same is true for B, B' and
g(/, B), g(1, B'). We denote by cr again such an isomorphism. Then
it is possible to introduce an /-adic coordinate system on A ' (resp.
B ') such that x in g(/, A ) (resp. 9(1, B)) and 0-(x) have the same
/-adic coordinates. When this is done, 0  and 8' have the same
/-adic representation, i.e. M i (8)-- A ( T ) .  Since this is true for
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all 1, it follows that M(13) and M (0') have the same elementary
divisors. Consequently, E  and E ' have the same normal form.

PROPOSITION 2. Let (A ", 0) be a polarized A belian variety , Y
a basic polar div isor of A and E  the non-degenerate Riemann-form
associated with the divisor class determined by Y . Let m be a positive
in teger such  that m >3 and set N =m " det(D)/n!— 1, where D is
such that 

(°D
 Do)  i s  the normal form of an integral representation

of E . D e n o te  b y  
m
 the set of  non-singular subv arieties B  in the

projective sp ace  Pt', w h ich  are underly ing v arieties o f  Abelian
varieties, satisfy ing the follow ing conditions: (i) The set of hyper-
p lane  sections of B  f o rm s  a  com plete linear sy stem ; ( i i )  The
Riemann-form associated with the divisor class of hyperplane sections
of B  is giv en by  m E. T hen the set of Chow-points Fm  o f  members
of m  is  an algebraic variety  def ined over Q. W hen we denote by

the set consisting of  B x u, w here B  is in and u  is a point
o f B , the set of Chow-points of members of i s  an algebraic
variety defined over Q.

Pro o f . Let B  be a member of Using the same notations
as in Example 2 , there is a point W in H„ such that A w  and B
are isomorphic (as polarized varieties). When 73  is  the map :

c(A 14,), i t  is a holomorphic map of H„ into a projective space
by Prop. 1. g ) ( H )  is contained in Fm  and an element of

 m
 can

be obtained from an element of the form A w  b y  a projective
transformation (cf. Lemma 2). Denote by G  the group variety
PGL (N ) and by g  an element of G .  Set X =H „x G  and Z(W , g)
= g (A w ). Then it is easy to verify that (X, Z ) defines an analytic
family of non-singular varieties in P N .  When (,b denotes the map
( W, g)—> c(g(A w )) , it is a holomorphic map of H „x G into a pro-
jective space by Prop. 1, and 0(H„ x G )=Fm . H „x G  is a connected
complex manifold, and hence, çb is defined by a finite set of mero-
morphic functions on H „x G .  Taking algebraic relations among
them into consideration, it is easy to see that the Z-closure
o f Fm i s  an algebraic variety. Let k  be a field of definition of
Pm . Then a generic point of Pm  over k  is also a point of Fm by
Lemma 7. Let V be the set of points in Pm , which correspond
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to underlying varieties o f Abelian varieties and which are not
contained in any hyperplane in PN , then V  is a Z-open subset of
P m  (cf. Hoyt (I)). Fm  is contained in V .  But, from the Riemann-
Roch theorem l(X )=X (n) In ! , it follows that the varieties corres-
ponding to points of V  also satisfy the condition (i). Then Fm

contains V by Lemma 7. Thus Fm = V .  From the definition o f V
and Lemma 7, V is invariant under the action of an automorphism
of the field of complex numbers. Hence Fm  is an algebraic variety
defined over Q .  The corresponding fact for J m  can be deduced
from this easily.

§  4 . In order to study analytic families o f non-singular varie-
ties more closely, we list here some basic properties satisfied by
our Example (2 ), the paramodular family o f  Abelian varieties.
In  order to do so, we shall discuss briefly about an equivalence
relation on algebraic varieties.

Let V  be an algebraic variety an d  Y  a  Z-closed subset of
Vx V. Assume that Y  defines on  V an equivalence relation 91,
i.e. when we define v— v' if and only i f  (v, y') is in  Y , this is an
equivalence relation on V .  Assume further that every component
IT, o f Y  has the projection V on V  and that dim Y,= dim Y; for
every pair (i, j). W e shall consider equivalence relation of this
type only on algebraic varieties. Set dim V= n  and dim Y =n+r.
When we denote by K(V IN ) the set of rational functions on V
which are invariant with respect to al, then it is a finitely generated
field of dimension n— r over the universal domain (the field of
complex numbers in the case we are interested in). When k  is
a field of definition o f  V over which Y  is closed, then we say
that 01 is defined over k.

The p a ra m o d u la r  families we have studied in  § 2  and §3
satisfy the following properties. It is an analytic family (X, Z)
such that :
(A) X  carries a properly discontinuous group G of automorphisms;
(B) There is a set o f non-singular varieties in a projective

space P N , containing every Z (x ) ,  satisfying the following
properties :
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( i ) The set of Chow-points of is an algebraic variety F;
(ii)) F  carries an equivalence relation 91, such that Z(x)—Z(x')

with respect to  % if and only i f  x  and x' are congruent
modulo G;

(iii) The set of Chow-points of members of which are equi-
valent to some Z(x), xe X , contains a Z-open subset of F;

( i v )  When A  is  a  member of the set of Chow-points of
members of which are equivalent to A  forms an al-
gebraic subvariety of F  of constant dimension.

Before we list some other properties satisfied by the para-
modular families, we shall discuss some consequences of (A) and
(B).

LEMMA 8. Let (F, R ) be as in (B) and k  a  common f ield of
definition o f F  a n d  N . W hen E(a) is the set of points of F which
are equivalent to aEF, then E(a) is k (a)-closed.

This is easy to prove.

LEMMA 9. Let the notatons be as in Lemma 8 and denote by
E(a) the Z-closure o f E(a) in the ambient projective space. W hen
a is a generic point of  F ov er k , the sm allest field of definition Ka

of E(a) containing k  is contained in  k(a) and dimk  K a  = dim X.

P ro o f . The first part of our lemma follows from Lemma 8.
Let t  be the Chow-point of E (a) and V  the locus of "i")  over k.
Clearly, K a = k ( i ) .  When we set T (a)=-t', T  is a rational map of
F into V .  Replacing F by its normalization, i f  necessary, we may
assume without loss o f generality that T  is defined at every point
of E ( a) .  By (B)-(iii), there is a point x in X  such that c(Z(x))e
E (a) . Since the map .7) : x—>c(Z(x)) is holomorphic on X, the map

f) is a homomorphic map of an open subset U of X  containing
x in to  V . The image of F  by T  contains a Z-open subset o f V
(cf. W e il (V I)). Consequently, the image of U by the map
contains a Z-open subset o f  V , which proves dim X>dim V .  On
the other hand, from  (A), (B)-(ii) and from the definition o f "V,
it follows easily that dim X<dim V.

COROLLARY. Let (F, 91) be as in (B). Then the f ield K (FIR )
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i s  an  algebraic function f ield of  dim ension m=dim X , an d  i s  a
subf ield of  the f ield  of  G-invariant meromorphic functions on X.

Besides (A) and (B), the paramodular families further satisfy
the following conditions :
(C) When (x 1 , ..•,  is a finite set of points of X , such that no

two points are congruent modulo G, there is a G-invariant
meromorphic function h , algebraic over K (FIN ), such that h
is holomorphic at the x i  and that h (x ) h ( x )  for i * j  ;

(D) G contains a subgroup G , of finite index in G which operates
fixed point free on X ; moreover, when (x„ •••, x i )  is a finite
set of points on X , there is a finite set of Go-invariant mero-
morphic functions on X , algebraic over K (FIN ), which are
holomorphic with non-vanishing Jacobians at the x i .

In the discussions which follow, we sometimes use the follow-
ing stronger conditions (B') and (C'), satisfied by the paramodular
families.
(B') In (B), (i), (ii), (iv ) remain as they are, but (iii) is replaced by

( i i i) ' The set of Chow-points o f members of which are equi-
valent to some Z(x), x X, is  a Z-open subset of F;

(C') When (x1, ••., x i )  is a set of points on X  such that no two
points are congruent modulo G, then there is a finite set of
holomorphic functions ho , •••, h r  on X  satisfying the following
conditions :

( i ) When i = j ,  there is an index s  such that hs (x i ) * h s (x ; ),
hs (x i )•11,(x . i ) * 0  ;

(ii) h,/h 3 i s  a G-invariant meromorphic function on X , al-
gebraic over K(F191);

(iii) When x,_„E X  is not congruent to any x i  modulo G, there
is a set (h ' 0 , •• , r i)  of holomorphic functions on X , con-
taining the set of monomials in the h i  o f a  fixed degree
d , such that it satisfies (i) and (ii) with respect to ( x „- - ,
x „ x „,).

R em ark . In  general, when X  is isomorphic to a symmetric
domain, then (C ') can be verified except fo r  ( ii) , by using the
Poincaré sesies. I I , ,  is  one of such domains. In the case when
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n=1, it is well-known and easy to  verify that K (F 9i) exhausts
the modular functions in one variable. As we remarked in § 2,
K(FIN) exhausts the paramodular functions and i s  the set of
invariant meromorphic functions when n_,>, 2. In general, when X
is the product of irreducible domains of dimensions at least 2  and
when G is  the so-called "normal discrete group", then Pyatecki-
'apiro showed that G-invariant meromorphic-functions on X  form
an algebraic function field of dimension m= dim X .  The same is
true when X IG  i s  compact. Hence, in  these cases, aga in  the
algebraic nature of meromorphic functions over K (F IN) in  (C), (D)
and (C') are verified because of the corollary of Lemma 9.

§  5 . In this paragraph, we assume that (X , Z ) is  an  analytic
fam ily  o f  non-singular varieties in a projective space, satisfying the
conditions (A), (B), (C) and (D), unless the contrary is specifically
mentioned. Moreover, we set dim X = m . Furthermore, when (F, 91)
is  the pair which enters in  (B), we fix  a  common f ie ld  k , o f  de-
finition for F and 91, and assum e that all f ields we shall consider
contain k,.

In order to simplify matters, let us fix the following notations.
( p  will denote always a holomorphic map o f X  into a projective
space defined by x—). c(Z(x)). When a  is  a point of F, E (a) will
denote always the set of points on F  which are equivalent to a
and E(a) will denote the Z-closure o f E (a) in the ambient pro-
jective space. When k  is  a field of definition of F (containing kJ
and u  a generic point of F  over k, î  = c(E(u)) has a locus over k
by Lemma 9, which will be denoted by V. There is a rational
map of F  into V defined by w h ic h  w i l l  b e  d e n o t e d  b y  T .

Finally, Top is a  holomorphic map of an open subset of X  into
V, which will always be denoted by 0.

Frst we shall show that meromorphic functions on X , which
are algebraic over K (F IN) and are G-invariant, are elements of
K(F IN ), i.e. N-invariant rational functions on F .  This follows
from the following lemma.

LEMMA 10. L et V " be a norm al algebraic variety i n  a  pro-
jective space and  U  an  open subset o f  V  such that every point of
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U  is  sim ple  o f  V . L e t b„ •••, b r  be rational functions on  V  and f
a  meromorphic function def ined on  U , satisf y ing bo f r+b i f '+  • • •
+b r = 0 .  I f  there is a  common f ield k  o f  definition f o r V  and for
the b, such that U  contains all the generic points o f  V  over k ,  f  is
a  rational function on V .

P ro o f . Let V, be the set of simple points of V. Then a point
in V— V, is at least o f codimension 2 over k  and a point in V,— U
is at least o f codimension 1 over k. Let y' be a point of Vo — U
and W an affine open subset o f  V, containing y'. Let (h )  be a
set of affine coordinate functions in  W . Since the b , are rational
functions o f  (h ), there are polynomials c 0(h ),•, c  r (h) in (h) such
that f  satisfies c o (h) f r  c i ( h )  f  1 + • • • + c r (h) = 0  in  Un W .  Setting
g= c o (h). f  , we get g r+e i (h)g'+ • • • + e r (h), where the e 1(h) are also
plynomials in (h). When we take a sufficiently small neighbour-
hood W ' o f y ', contained in  W, the roots o f  Y r+e,(h)Y r - ' +•••+
e ( h ) =0  are bounded when vE Since the set of generic point
o f  V  over k  is  dense, un W / * 0 . Clearly g  is  holomorphic in
un W ', and points of W'— tin W ' are at least o f codimension 1
over k. Hence g can be continued analytically throughout W' and
becomes holomorphic there. Consequently, f  is  meromorphic on
W '. Therefore, f  is a meromorphic function on Vo . When that
is so, f  is a rational function on V, as is well-known (if one uses
the reduction of singularities due to Hironaka, one can prove this
fact directly from the above proof) (cf. Hironaka (I)).

As we announced before our Lemma 10, we get the following
proposition easily from this Lemma.

PROPOSITION 3. Let f  be a G-inv ariant meromorphic function
on X  and set f ( x ) =1 .(çb(x)). Then 1  i s  a  rational function on
if  f  is algebraic over K(F IN ). Conversely , w hen J  i s  a  rational
function on V, f  =  0 0  is a G-invariant meromorphic function on X ,
algebraic over K(F I N ) .  The correspondence f - 4  gives an isomor-
phism  between the f ield  o f  G-inv ariant meromorphic functions on
X  which are algebraic over K (F I R) and the f ield of  rational func-
tions on  V.

LEMMA 1 1 ,  L e t V  be a  non-singular variety  in a projective
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space and V * a topological space satisfying the following conditions:
(i) IV *I c 1 V I; (ii) 1 V* 1 contains a Z -open subset V , o f  V ; (iii)
T he in jection i o f  V * into V  is continuous; ( iv )  W hen 1 ' i s  an
algebraic curve on V , IrInly*1 w ith the induced topology of  V *
is  su ch  th at no f inite  se t o f  po in ts is  open . L e t g  be a  rational
function on V  and D  a Z -open subset o f  V  such that g  is defined
and finite at every point of  D .  L et g* be a  continuous function on
an open subset D * of  V * such that ID*I contains IV *I n 1D1 and
that g*(v")=g(v") f o r ev ery  if ' in IV *I n IDl. T h e n  g  is defined
at every  point y ' of  ID*I and g(v ')=g*(v ').

Pro o f . First we settle our lemma when V  is a non-singular
curve. We state this as the following lemma.

LEMMA. L et r be a  non-singular curve, F* a topological space
such  that IF I = I F* I and assum e that the canonical injection map
i  o f  r* into r is continuous. L e t g  be a  rational f unction on  F
an d  g *  a continuous m ap o f  F *  into C 1 su c h  th at g * =g o i on a
dense subset of  r * .  Then g  is def ined and finite everywhere on F.

P ro o f . When a is the set of points where g  is not finite, g
is defined everywhere on r — a. W hen that is so, g *  g o i  every-
where on r*— a. L e t  x  be a point of a and c  a constant such
that g * (x )+c* O . Then, there is a finite set of points b , contain-
ing x ,  such that 11(g*+c) is continuous on r*— b ,  11(g+c) is
continuous on  r—b and that 1/(g* + c)= 1/(g + c )o i on  r*— b.
Moreover, 11(g*H-c) is continuous on F*— (b — x) and 11(g+c) is
continuous on  r— (b — x). Hence 11(g* + c)-11(g+c)oi on r*—
(b—x). This is against to our assumption that g  is not finite at
x , and a = O.

Proof  o f  our lem m a. Let k  be a common field  of definition
for V, V ,, D  and g .  Let F . b e  an algebraic curve on V , going
through y' and a generic point of V over k  and having y' as a simple
point. Set i - i(ro)= r* o . r * 0 is  an algebraic curve on V with finer
topology than the induced topology. Let a be the set of singular
points of 1'0 , contained in  IF*0 , and the points in V o l which
are not contained in I D l. W hen we call r the set (I r*„ I — a) + y',
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I ' is also an algebraic non-singular curve on  V . Set i-(r)=r*.
Then Iri=lr*I. g*  induces a continuous function h* on r* and
g  induces a rational function h  on r which is defined and finite
at every point of r, except at y'. Moreover, h*=hoi on r*-vi.
Moreover, P*— v' is  dense in r*. Consequently, h  is defined at
y' and h(e)— h*(v')= g*(v') by our lem m a. Since this is true for
all algebraic curves P o w ith  the same properties as Po , it follows
that g  is defined at y' and g(e)=g*(e).

For the sake  o f  sim plicity, w e shall adopt the following
definitions. Let W be an algebraic variety defined over a field k,
h  a  rational map o f W into an algebraic variety U  and r  the
Z-closure of the graph of h  on Wx U .  Let w' be a point of W
and assume that there is one and only one point w' x u' on r with
the projection w' on  W . Furthermore, assume that F  is complete
over w '. T hen w e shall say that h  is  single v alued  at w '. We
shall say also that u ' is  the v alue o f h  a t  w ' and denote it by
h(w '). This is equivalent to the following. Let w be a generic
point of W over k. Then h(w) has a uniquely determined speciali-
zation u ' over k , over the specialization w-->w' ref. k.

LEMMA 12. Let V  be an algebraic variety in a projective space
and r a Z -closed subset of  V  x  V  such that every component o f  r
h as  th e  sam e dim ension and that ev ery  such com ponent has the
projection V  on either f actor o f  th e  product V x  V . L e t  k  be a
f ield o f  definition f o r V  such  that r  is k -closed. W hen 11 is a
point of  V , denote by  F(e) the set defined by v ' x  V  nP =v' xF(v').
A ssume that F def ines an equivalence relation on V  and that, when
v  is  a  generic p o in t o f  V  ov er k , F(v ') is a  uniquely determined
specialization o f  F(v ) ov er k  ov er the  specialization v-->v ' ref . k .
L et g  be a  rational function on V  def ined over k  such that g(v )=
g(v") w henever v" is a  generic point of  V  over k  and contained in
F(v ) . Under these conditions, if  g is  single v alued at v ', then g  is
single valued at every  point w ' of  F(v ') and g(e)= g(w /).

P ro o f . Let (v, g(v))—*(w ',t) ref. k. By our assumption, we get
(v, g(v), F(v))—.(w' , t, 1- (w )) ref. k. Since r defines an equivalence
relation, r (v ')= F (tv i),  and y' is  a point of P(w/). When that is so,
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there is a point yo o f  1(v), which is a generic point of V over k,
such that (y, g(v), r(v), v 0)-->(w' , t, r(w '), v ') ref. k. By our assump-
tions, g(v )=g(v 0)  and g  is  single valued at y'. Consequently,
t = g(v/). Our lemma is thereby proved.

Let V be an algebraic variety and r  a  Z-closed subset of
Vx V .  When I- '  defines on V an equivalence relation on V and
when r satisfies conditions described in Lemma 12, we shall call
such an equivalence relation on V  adm issible. As an application
of Lemma 11, we get the following lemma.

LEMMA 1 3 . L e t f  be a G-invariant m erom orphic function on
X  and U a G-invariant open subset of  X  on which f  is holomorphic.
L e t p  be a holomorphic m ap of  U into a  locally Z-closed algebraic
subvariety of  a projective space w ith the follow ing properties: (i)
p(x)= p(x ') implies m o d  G ;  ( i i )  T here is a Z -closed subset
F of  V x  V  w hich def ines an adm issible relation on V  such that
( ( x ) ,  b t ( f ) )  is  in  r if  an d  only if  x - x ' mod G ; ( i i i )  T he set of
Points on V  which are equivalent to points of  p,(U) contains a Z -
open subset V , o f  V . L e t  k  be a  common field o f  definition f o r V
and  V , over which I- '  is  c lo sed . A ssume th at th e re  is  a  rational
function g ,  def ined ov er k , such that f (x )=g(v ) w hen x cU  and
w hen v  is a  generic point of  V  ov er k  such that i(x )— v . Under
these conditions, w hen  x , is  a p o in t o f  U , g  i s  single valued at
v0 = (x 0 ) and g(v 0 )—f(x 0 ).

Pro o f . Denote by V the Z-closure o f V in a projective space,
W a non-singular variety in a projective space and h a surjective
morphism o f W on V  such that it is a birational transformation
(cf. Hironaka (I)). Then Ca, h )  is  a  holomorphic map o f  U x  W
into Vx V. L e t  r be the Z-closure of r on V x  -V  and T  the set
of points in Ux W such that (p(x), h(w)) is contained in T . T h en
T  is  an analytic subset o f  Ux W . R egard  T  as a  topological
space with the induced topology from Ux W .  W hen we set
f '( x ,w ) =f ( x ) ,  f ' is  a  continuous function on T .  When we set
g '=g 0 h , g ' is  a  rational function o n  W . If w' is a point of W
such that h(w ')=e , and if g  is defined at y', then g ' is defined at
w ' and e(w 1)— g(v '). When w  is  a  generic poin t of W  over k
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(take W and h so that they are defined over k), there is a point x
in  U such that (A(x), h(w)) is in r. Since f(x)— g(h(w)), it follows
that f'(x, w)— g'(w).

Let wo b e  a point of W such that h(w„)---- v0 . Suppose that g'
is defined at such wo and gAw0)=f (x 0). Then it can be shown
easily that g  is  single valued at vo and g(v o ) = f(x 0).

Let y  b e  the projection map o f T  o n  W . 7, is clearly conti-
nuous. v (T ) also clearly contains a Z-open subset h - 1 (17„) of W.
Introduce on  u( T )  the quotient topology w ith respect to  the
equivalence relation on T  defined by the m ap v. D enote the
resulting topological space by W*. u  d eterm in es the canonical
map u* of T  on W * . f '  determines a continuous function g*  on
W * . T hen  w e can  verify  that W , W *, g ' and g *  satisfy the
requirements o f Lemma 1 1 .  Hence g ' is defined at a point wo

o f  1W *  and g'(w„)= g*(w o) = f '(x', w 0 )  if (x ', w o )  is  a point of T.
Our lemma is thereby proved.

W hen w e app ly th is lem m a to  our situation, w e  g e t the
following proposition at once (cf. Prop. 3).

PROPOSITION 4. L et x , be a poin t o f  X  and  f  a G -inv ariant
meromorphic function on X , algebraic over K (FIN ), such that it is
holom orphic at x ,. Let f  b e  a  rational function on V  such that
f = f o o  and  se t j= .7.-r. T hen f  is single v alued at p(x 0)  and has
the value f (x 0).

COROLLARY 1. L e t  f  be a G-invariant m erom orphic function
o n  X , algebraic over K (F191). L e t  f  be a  rational function on F
determ ined by  f=jo sb, i= f 0 T .  L et x , be a point o f  X , b  a Point
of  F such that b--99(x 0 ) and E(b) the set of  points on F which are
equiv alent to b. I f  f  is holom orphic at x ,, then f  is  single valued
at every  point of  E(b) and takes the constant value f(x„).

This corollary follows at once from our proposition and from
Lemma 1 2 .  Similarly, we get

COROLLARY 2. L e t f  be a G-invariant m erom orphic function
on X , algebraic over K(FI91), and f  a  rational function on F deter-
m ined by  f=foo, f= f .T . W h e n  f  is  single valued at b o o n  F ,  it
is  single valued at every  point of E(b„) and has the value f(b0).
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Using the fact that X  is a complex manifold, Cor. 1  and Cor. 2
above can be generalized at once as follows :

COROLLARY 3. L et f  and  f  be as in Corollary 2 and bo a point
o f  F .  W hen f  is  in tergral over the local ring o f  F  at  bo ,  then it
is so over the local ring o f  F  at every  point of  E(bo ). W hen there
is a point x o o n  X  such that 9)(x0 )=b 0 , an d  when f  is integral over
the  local ring  o f  F  a t  b „  f  is  holomorphic at  x , and  f  is  single
valued at every  point of  E(b0 )  w ith the value f (x 0 ).

From (C), Prop. 4 and from Cor. 1, Cor. 2  above, we immedi-
ate ly  get the following

COROLLARY 4. L e t x„ ••• , x f  b e  po in ts on  X  an d  g)(x i )—b i .
T here is a  f inite s e t  o f  meromorphic functions f „ • • •  ,  f ,  on X ,
w hich are G-inv ariant and algebraic over K(F IN ), satisf y ing the
follow ing conditions: ( i )  W hen the ff, are rational functions o f  F
determined by f i =; 600, f„=f f o r ,  the

 f
 are  s in g le  valued at every

point of  E(b 1 )  and tak e the values ci f ;  ( i i )  I f  x o EX , g)(x o )=b o is
such that every  f ,  is  single v alued at som e point b  of  E (b 0 )  and
takes the value c1 1 ,  then bo i s  a point o f  E(b i ).

U sing Cor. 3  and the technique of normalization in  a n  al-
gebraic extension, w e get the following

COROLLARY 5. In Cor. 4, we can take the t i  so that the follow-
ing additional conditions are satis f ied : ( i i i )  The f ,  generate the
rational function f ield o f  V ; (iv ) The geometric im age of  F by the
m ap into the projective space I3

1
- 1  determ ined by  (f 1 , •••,f ,v )  i s  a

norm al algebraic variety.
Combining Cor. 4  and Cor. 5 , w e further get the following

COROLLARY 6. W hen x „•••,x t  are points o f  X  and ço(x i )—bi ,
there are  a n orm al algebraic variety  W , a  rational m ap X  o f  F
into W  w hich is generically  surjectiv e, and a holom orPhic m ap p,

of  an  open subset o f  X , containing th e  x „  in to  W  satisfy ing the
following conditions: ( i )  W hen x ' is  a point o f  X  such that p, is
holomorphic a t  x ',  then x  i s  single v alued  at (p(x ') an d  11,(x')=
x (99(x ')); ( i i )  W hen x 'E X  and x  is integral ov er the local ring of
F at p(x '), then x  is  single v alued at 99(.0 ,  p  is  holomorphic at  x '
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and IL(x')=X (.7)(x')); (iii) W hen x 'EX  an d  X  i s  single valued at
99(x '), then it is single valued at every  point of  E(p(x ')) and has
the constant value ,a(x '); ( iv ) x  i s  single v alued  at the 1 , 1 ;  when
A  is  the Z -closure o f  the graph o f  X  o n  Fx W , then A nFx X(b,)
contains E(b i )x x(b,); moreover, when b'xX (b i )  is  a point of  A such
that E(b/)ng)(X )*0 and that X  is single valued at b', then h' is  a
point of  E(b i ) ; ( y )  th e  correspondence X (u)— .7(u) is a birational
correspondence between W  and  V.

§ 6. In  this paragraph, w e assum e ag ain  th at (X , Z ) i s  an
analy tic fam ily  o f  non-singular algebraic varieties in  a  projective
space, satisfying (A), (B), (C) and (D), unless the contrary is speci-
fically stated. Furthermore, w e f ix  a  Point x o o n  X  and conse-
quently bo = p(x o ). W e denote by W oo , X o0 , Ab o th e  variety, the
rational map and the holomorphic map constructed in Cor. 6 of
Prop. 4, in the special case when (x„ ••• , x i ) reduces to x , .  For
the sake o f simplicity, we shall omit the index b , when there is
no danger of confusion. B y (D ), G  contains a  subgroup Go o f
finite index with the property described in (D).

LEMMA 14. L et G=Ef  G o -y i  a n d  f  a  Go-invariant meromor-
phic function on X , algebraic over K (F IN ). L et y  be a point of  X
such that 99(y)— b 0 an d  that f  is holom orphic at the 7 i (y). T hen f
is integral ov er the local ring o f  W  at X(p(y)).

P ro o f . Set f i (x)----- f (y i (x)). It is enough to prove that the
coefficients of the polynomial Il i ( T— f i ) are integral over the local
r in g . Denote by h one of the coefficients. Then h  is holomorphic
at y, G-invariant and algebraic over K (F191). Hence, there is a
rational function g  on W such that h=gop, which is valid at x on
X  whenever A (x ) is in a suitable Z-open subset of W (cf. Prop. 3
and Cor. 6, Prop. 4). Take the identity equivalence relation on W.
Then our assertion follows easily by applying Lemma 13 to our
situation.

Denote by L  the set of Go-invariant meromorphic functions
on X  which are algebraic over K(F/01). Since Go is  a subgroup
of G  of finite index, L  is a finite algebraic extension of the field
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K (W ) o f rational functions o f  W (cf. Prop. 3 and Cor. 6, Prop. 4).
Throughout this paragraph, we shall denote by ( W*, n-) a normali-
zation o f W  in the function field L .  W* is  a normal algebraic
variety in a projective space, n- a  proper morphism o f W * onto
W and the inverse image of a point of W by r  is  a finite set of
points. From Lemma 14 and from (D), w e get easily the follow-
ing lemma.

LEMMA 15. Choose y  as in  the  Lemma 14. T hen there is an
open subset U of  X , containing the 'y 1(y ) and a holom orphic map [I*
of  U into W * such that [1,* is  o f  ran k  m=dim X  everywhere on U
and that tt = zo IL*. Hence p,*(7 1(y ))  is  a sim ple point of  W * for
every i.

By (B), (iii), the set of points on F  which are equivalent to
points of q ( X )  contains a  Z-open subset o f F .  Hence the set
contains the largest Z-open subset o f F, which we denote by P .
Let k  be a common field of definition for F, V, T ,  X, W , W * , 7T, F #

over which the equivalence relation on F  is defined. W e fix k
this way untill the end of th is §.

Let A  be the Z-closure of the graph o f X  on Fx W  and n-
the morphism (identify, 7F) o f  Fx W * on Fx W . L e t  u  b e  a
generic point of F over k. By Cor. 6, Prop. 4, we have Fx X(u)n A
=E(u)x X (u), and E(bo )xX (b o )  is  a component of F x x (b o )n A i f  bo

is  a point of P .  When b'x X(b„) i s  a point of the intersection,
not contained in  E(b0 )x x (b 0), then either X is not finite at b ' or
E(b/)n 99(X )= 0. Let r, r  be respectively the graphs of 11E, n. and
set 11- 1 (A)=pr 1 2 (F •(Fx  W *x11 ). Let w*, w (1̀ be points on W*
such that 7F(w*)= X (u), (4) = X (b o ). Then, F x w* nn-  (A) =E(u)
x w* , and E(b o ) x  ul is  a component o f F x  n II - 1 (A ). W hen y
is a point of X  such that 99(y)-4 0 , p,*(y) is mapped to X(b0 ) by
Assum ing still that ba i s  in  Fo, E(b 0 )  is  then  a  component of
Fx p ,* (y )n  II - 1(A ) .  W e  se t A*=11 - 1(A ) .  B y  (B), (iv ) a n d  from
basic properties of n-, it can be shown easily that A* is  an algebraic
subvariety o f  F x  W *. Let A * be the Z-closure o f A * in the
ambient space.

Let P  be the ambient projective space of F .  Then, from what
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we discussed above, it follows that A* and Px w* intersect pro-
perly on Px W* and A*•(Px w*)= E(u)x w* , where E(u) denotes
the Z-closure in P . E (b o )x p,*(y) is a proper component of A* r")
(Px  u*(y )) on Px W* i f  b, is a point of F .

LEMMA 16. Let w*' be a Point of  W * such that A* n (P x w*')
h as  a  proper com ponent S x w *' o n  Px  W *

 a n d  th a t  snF*o.
Then, there is a po in t d  in  F such that S =E(d), the Z -closure of
E(d) i n  P .  W hen that is so, A* f l(Fx w * / )=E(d)x w *'.

Pro o f . Let d  be a common point of S  and F .  When u  is a
generic point of F  over h  and w* a generic point of W* over k
such that x ( u ) =  (w *), A* • (P x w *)=E(u)x  w * . Then S =E(d)
follows from (B), (iv), (y) and from the compatibility o f speciali-
zations with the operation o f intersection-product (cf. Shimura (I)).
In fact, let K  be the algebraic closure o f k(w* / )  and d  a generic
point of S  over K .  Then d is necessarily in F by our assumption.
d x w*' is  a  specialization o f u x w* over k. This specialization
extends uniquely to E(u)-->E(d) ref. k  on F  b y  (B), (IT), (iv). It
follows that E(d)x  w*' is contained in A *, and has a point dx  w*'
in common with S x w*'. Therefore, S x w*' is contained in the
Z-closure o f E (d )x w * '. On the other hand, dim S= dim E(d)—
dim E(u) by (B), (iv) and S is irreducible. Consequently, S =E(d).
Let u' x w*' be a point of A* n (P x  w n  such that u'E F .  Then
u 'x w * ' is  a  specialization o f u x w* over k. Extend this to a
specialization T  of E(u) over k. The compatibility o f specializa-
tion with the operation of intersection-product implies that E(d)
is a component o f  T .  There is a  generic point b  o f F  over k,
contained in  E (u), such that (u',

 w * ' ,
 d )  is a specialization of (u,

w *, b) over k . u , b , u ' and d  are points of F  and u— b. Hence
u'— d by (B), (y). Our lemma is thereby proved.

LEMMA 17. L e t F, be the set of  points b on F such that X is
f in ite  at  b . T h e n  F, is  a Z -open subset o f  F , defined over k  and
X is  single valued at every  point o f  F .

P ro o f . Let F ' be the normalization o f F .  The set of points
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on F ' where a  rational map is defined is Z-open. Our lemma
then follows from this and from Cor. 3, Prop. 4.

LEMMA 18. L et Ar be the restriction o f  A* on F, x W *. L et
D t  be the set of  sim ple points w *' on W * su c h  th at Fx X le '
n Ar is not em pty , is irreducible and that its dimension is given by
r  dim E(u), where u  is  a generic point of  F over k. Then IX' is
a Z-open subset of  W *, defined over k.

P ro o f . Let w* be a  generic point of W* over k  such that
X (u )=71 -(w *). From A* • (F x w*)=E(u)x w* and from Cor. 3, Prop.
4, it follows that A t•(Fx x w *)=E (u)x w *. Then, it  is  an easy
exercise to show that Zr contains a Z-open subset o f W *. More-
over, this Z-open subset can be so chosen that it is defined over k.
Let 5)* be the largest Z-open subset o f  W* which is contained
in Z r . Then Z* is also defined over k. Set V= W*—Z*. V is
k-closed. Let Y  be a component of V containing a point w*' of
Z r .  Let v* be a generic poin t o f Y  over the algebraic closure
o f k. Since w*' is  simple on W*, v* is also simple on W*.
Then the compatibility o f  specializations with the operation of
intersection-product implies that Ar n x  v * )  also contains a
component of dimension r. When that is so, Lemma 16 implies
that v* is in Z r .  Denote by X' the union of those component of
Atn(Fx x Y ), having the projection Y on W *. Remove from Y
the projection of (Ar n (Fx x Y )) —X' and the intersection of Y with
the other components o f V, other than Y. Denote by Y, the re-
mainder. Y0 is Z-open on Y. Denote by ?E,„ the restriction of ?E.' on

x Y 0 . U s in g  Cor. 3, Prop. 4, we see that there is a point d  in
F, such that 3E0 n (F, x v*)= E (d)x v* (cf. Lemma 16). Since v* is
a generic point of Yo o v e r  k  and since every component o f  X,
has the projection Yo o n  Y0 , it follows that X, is the point set
attached to a subvariety of Fx  x Yo . There is a non-empty Z-open
subset Y,— a  o f  Y, such that v*'e Y0 — a implies the following :
(a) Y  x  en is not empty ; (b) The intersection is irreducible ;
(c) The intersection has dimension r. When that is so, At n
(Fx xv*') has the same properties by the definition of Yo . Let D'
be the union of the components of V, other than Y and set Vo=
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U(Y — YOU a. V ,  i s  Z-closed, W*— po*z* and Z;,/'D W *  -
DZ * . Consequently, ZZ  =Z*. Our lemma is thereby proved.

COROLLARY. W hen v* is a point of  there is a point d in
F , such  that M` n(F,x  v *)=E(d)x  v *. M oreov er, w hen b, is con-
tained in  F#  and  y  a po in t o f  X  such that q)(y)-- ,b0 , Z ',1' contains
p,*(y) whenever it is sim ple  on W *. Moreover such y  exists.

The first part of our corollary is contained in the above proof
and follows from Lemma 16 and Cor. 3, Prop. 4. E(b o )x X(b 0 )  is
a component o f Fx  x(b0 ) n A  by  Cor. 6 and Cor. 3 of Prop. 4. If
we choose y as in Lemma 15, p ,* (y )=4  is simple on W . M o re -
over, E (b „) x w is a component o f Fx  w  n A * .  Then the rest of
our corollary follows from Lemma 16.

PROPOSITION 5. L et q)` be as  in  Lemma 18 an d  Z , th e  set-
theoretic im age of  it  b y  7r. T h e n  Z , is  a Z -open subset of  W ,
def ined ov er k . L e t F, be as  in  Lemma 17, A  the Z-closure of  the
graph of  x . of  Fx W  and A, the restriction of  A  on Fx x W .  When
w  is a point of  Z À ,  there is a point u in F, such that A, n(F,x w )
=E (u )x w . W hen  b , is  in F#, X (b 0 )  is  a poin t o f  Z ,.

P ro o f . Except for the fact that Z , is Z-open on W, the rest
follows from the above corollary. Then our proposition follows
from the following general lemma.

LEMMA. Let U", V " be norm al algebraic varieties and assume
that U  is in a projective sp ace . L et h  be a m orphism  of  U onto V
such that the inverse im age of  points of  V  by h  consists of  finitely
many p o in ts . Then the set-theoretic image o f  a Z-open set D of  U
by h  is Z -open on V.

P ro o f . Let k ' be a common field of definition for U, V , h and
for D .  Let y be a generic point of V  over k  and set h - l(v)= nr(v).
When P  is the ambient projective space o f U, m(v) is a cycle on
P .  When we extend the specialization v y ' ref. k  on  V to  a
specialization of m (v) in P ,  there is a  finite set of cycles in P
such that it has to be one of the cycles in the set. Since V is
normal, this implies that ni(v) has a uniquely determined speciali-
zation in  P  over k , over the specialization r e f .  k. Let A
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be the locus of c(m(v)) over k. Then the above arguments show
th a t th ere  is  a  birational correspondence v  between V  and A,
which is set-theoretically one-to-one, and a morphism p of U onto
A such that p =v o h . Therefore, in order to prove our lemma, we
can replace V by A.

Set Y= U — D . Denote by D ' the set-theoretic projection of D
on A  by p. When a' is  a point of A , denote by it(a') the P-cycle
with the Chow-point a'. a '  is then contained in D ' if and only
i f  n(a') contains a  component which is contained in  D .  Or, a'
does not belong to D ' if an d  only if the support of n(a') is
contained in  Y . The set o f such a' forms a Z-closed subset of
A  by a well-known property of Chow-forms (cf. v.d. Waerden (I)).
Our lemma is thereby proved.

PROPOSITION 6. L et DA  b e  as in  Prop. 5. Let % b e  the set of
points a' on F ,  such that x (a')  is contained in  Z , .  Then 6 , is  a
Z -open subset o f  F ,  defined over k. W hen a ' is  in  6 ,, then E(a')
is contained in OA . D enote  f urther by  A', the Z -closure on 6 A x Z A

of  the graph of  the restriction of  X on 0 ,,x 2 ) A . Then the following
conditions are satisfied :  ( i )  When a ' is  in  GA , then A; n (( , x X(a'))
=E (d )x X (a') ; (ii) X  is  single valued at every  point of  E (a')  and
has the value X (a/), whenever d e 6 , ;  ( i i i )  W hen bo i s  in  F#, then
bo i s  in  6, ; ( iv ) W hen b  is  a point of  % ,  and g  a rational func-
tion on  F  such  that g  i s  single valued and f in ite  at b  and that
there is a  rational function h on DA  w ith  g=h0X , then h is defined
at  X(b).

P ro o f . By the definition, X is  single valued at a'. Hence it
is  single valued at every point of E (a')  with the constant value
x(a') by Cor. 3, Prop. 4. Hence E (a')  is contained in F, and con-
sequently in 6 , .  ( i i )  is thereby proved. (i) and (iii) follow from
Prop. 5. 6 ,  is  Z-open since Z , is  Z-open on W and x  is  single
valued everywhere on F . W h en  th a t is  so, it is clear that 6,
is defined over k.

Let u  be a generic point of F  over k. Set w= X(u) and w '=
x ( b ) .  Denote by m(w) the W*-cycle 7-t- '(w). Since (W*, 7r) i s  a
normalization of W in a finite algebraic extension of the rational
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function field of W, and since W is also normal, it follows that
m(w) has a  uniquely determined specialization over k  in the
ambient projective space, over the specialization w ->w ' ref. k.
Denote this by m(w/). The support of this is the set of points on
W* which are mapped to w' by 7r. Among such points, there is
at least one point of Z t  by the definition (cf. Lemma 18, Prop. 5).
Therefore, from (i) and from Cor. of Lemma 18, we see that E(b)
is  the uniquely determined specialization o f  E (u ) over k , over
the specialization w--->w' ref. k , since the specializations and the
operation of intersection-product are compatible. Since (w ,E(u))
-o-(w', E(b)) ref. k  can be extended to a specialization (w, E(u), v)

, E(b), b) ref. k , where y is a point of E(u), and since we can
take y to be a generic point of F  over k , our assumptions imply
g(u)= g(v ), g(u)=h(w ) and consequently that h  is  single valued
at w '. When that is so, h  is defined at w '. Our proposition is
proved.

COROLLARY. A ssume that b , is  in F. D enote  by  % 0 , Z b o , Xb o

the Z -open subsets 6 ,„ 2), an d  th e  ratio n al m ap  X . L e t  b , be
another point of  Fo and X 1 , 1  t h e  corresponding Z-open sets
and rational m ap. Then, there is a birational correspondence Tb i bo

between Z b o  an d  Z b1 determ ined by  X b o (u)-->X„i (u). T he graph  of
this birational correpondence is Z-closed on Z b o x Z b i .

P ro o f . This follows from our proposition, from Cor. 6, Prop.
4, and from the fact that w-ow ' ref. k  on W determines E(u)-->
E(b) ref. k  uniquely on Fx ,  as we have seen in the above proof.

When we sum up the results o f this §, we get the following
theorem.

THEOREM 1. T here are , a  n o rm al algeb raic  v arie ty  Z , a
rational m ap x  of  F into Z , an open su bse t U  o f  X  and a holo-
m orphic m ap I L  o f  U  onto 5) satisf y ing the following conditions:
(a ) L et Fo be the largest Z -open subset o f  F, contained in the set
of  points of  F which are equivalent to some points of  q3(X ); then
there is a Z -open subset Fo of  F containing F# such that X  is single
valued at every  point of  F o ;  (b ) W hen b is a point of  F,, the set
E(b) of  points on F which are equiv alent to b is contained in F , ;
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A, is single valued at every point of  E(b) and has the constant value
X (b); moreover, when b' is in F, and x (b)=X (b'), then b' is in E(b);
(c ) W hen  x  is  a p o in t o f  U , then p(x )=x (q)(x )); (d ) U  is  a G-
invariant open subset of  X , and x , y  of  U are such that a(x )= p(y )
i f  an d  only  if  x  and y  are congruent m odulo  G ; ( e )  T here is an
isomorphism between the f ield of G-invariant meromorphic functions
f , algebraic over K (F IN), and the f ield o f  rational functions on Z
determined by f = -10 It; ( f )  W hen a G-invariant meromorphic func-
tion f , algebraic ov er K (F IN ), is holom orphic at a point x  of  U ,
the rational function .7 is def ined at a ( x ) ;  (g )  When g is a rational
function on  F such that there is a  rational function h  o n  Z  with
g = lo x  and  th at g  is f in ite  at a poin t b  o f  F,, then h  is defined
at x(b).

COROLLARY. I f  (B') is satisf ied by  (X , Z ) instead of  (B), then
w e can take U= X  and Fo to  be  the set o f  points on F w hich are
equivalent to some points of  p(X ).

§ 7 .  In this paragraph, we assume that (X , Z ) is  an  analytic
f am ily  o f  non-singular varieties in  a projectiv e space, satisfy ing
(A ), (B'), (C') and (D ). L e t  le° b e  the smallest common field of
definition o f F  and the equivalence relation of F .  W e fix  k o and
all f ields we shall consider will be assumed to contain 14.

Let bo be  a point of F, (cf. Th. 1) and Z e , 030 , Xe the Z-open
sets and the rational map constructed in Prop. 6 with respect to 1,

0 .
6 0 contains 1)0 (Prop. 5). Let b , be a point of F0 -63 0 . Because
of the axiom (C'), Cor. 6 of Prop. 4, Prop. 5, Prop. 6 and it Corol-
lary, it is possible to construct Z „  06„ >t, fo r b , such that 03,
contains OA, and that Z e can be identified as a subset of Z i b y  an
isomorphism. When that is so, there is a positive integer s such
that 13 ,=F 0 . Therefore, we get the following theorem.

THEOREM 2. When (X, Z )  satisf ies (A), (B'), (C'), (D), then Z
in  our T heorem  1  can  be  tak en  so  that it is  a  locally Z-closed
subset of  a projective space. Moreover, U can be taken to be X  and
F , can be tak en to be the set of  points of  F w hich are  equivalent
to some point o f  p(X ).
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Moreover, when we apply Weil's result on the field of defini-
tion of an algebraic variety (cf. Weil (IV)) and Th. 1, Th. 2 to our
situation, we immediately get the following theorem.

THEOREM 3. Under th e  sam e conditions as s tate d  i n  our
Theorem 2, in  T h .1  can be taken to be a locally Z-closed normal
algebraic v ariety  def ined ov er k , in  a pro jectiv e  space and  X  a
morphism defined over k o

THEOREM 4. W ith the same notations and assumptions as in
Theorem 1, le t  k  be a  common f ie ld  o f  definition of  F, a n d  X
over which the  equivalence re lation  on  F is  de f ined . L e t u  be a
point of  F. T hen k (X (u)) is the smallest f ield, containing k , satis-
f y ing the follow ing condition: W hen L  is a f ield, containing k, u'
a point of  E(u') and a an L -isom orphism  of  L (u'), then a(u')— u.

P ro o f . This follows easily from (B').
When we consider the deformation of algebraic varieties, then

we consider usually all possible projective embeddings of members
of the family b y  ample polar d iv iso rs . For instance, in the case
of Example 2, we consider all possible embeddings o f polarized
complex tori. Then usually, the following situation arises. There
is a set o f  non-singular polarized varieties in projective spaces
such that ?I contains as a subset. Moreover, and equivalence
relation is defined on usually  in  term s o f  isomorphisms of
members o f 1, and this equivalence relation induces the equival-
ence relation on stated  in the axiom  (B ).  In  th is  case, we
further have the following theorem.

THEOREM 5. A ssume that (X , Z ) satisfy  (A), (B'), (C'), (D) and
that s a t i s f i e s  the follow ing tw o conditions: (i) T here is a  sub-
f ield k * of  k o such that, w hen a  is  a k*-automorphism  of the field
o f  complex numbers, A , B ,  ./4 ' E  imply 13asE . -  and

; (ii) W hen P is the ambient projective space o f  members of
and a n  algebraic family (absolutely irreducible) o f  non-singular
varieties in  P  which contains a  member o f  1 , then is  c o n ta in e d
in W hen we take an d  x  as  in  Theorem 3 and u a point of
F„, then k„(X (u)) is the sm allest f ield, containing k*, satisfy ing the
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follow ing property  (M ). (M ): Let L  be a field, containing k*, and
a an L-automorphism of the f ield of complex numbers. Then there
is a member A  o f  satisfying A — A , c(A ) E(u), Â e E .  M oreover,
when .  F l  satisf ies Â - r i  w ith respect to this A , then rl

P ro o f . From ( i )  and Th. 4 , the field ko(x (u)) satisfies the
condition (M ) .  Let L  be now a field satisfying the condition (M)
and a an L-automorphism of the field of complex numbers. Let
A  be a member of such that A — A , c(A )EE(n), From
( i ) ,  it follows that A°' — A" , E l .  When we denote by the
algebraic family determined by then A °' is  a member of
Comparing dimensions and using (ii), w e ge t Is= 5?_. . Hence from
( i ) ,  it fo llow s that L  contains k , .  From (M ), it follows that

" — A .  Consequently, a  leaves E(u) invariant. This implies that
a  leaves every element o f ko(X(u)) invariant. Our theorem is
thereby proved.

It would be clear how we apply this theorem to the question
of the field of moduli. Therefore, we shall not go into the detail
o f it, except to mention the following. In the case of the para-
modular family of polarized Abelian varieties, Theorem 5  shows
that the field of moduli of a  polarized Abelian varieties over Q
is generated by the special values of paramodular functions.

Brandeis University.
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