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Let a complex manifold X parametrize a complex analytic
family of non-singular polarized varieties in a projective space.
When we identify isomorphic members of the family, this identi-
fication defines an equivalence relation R on X. On the other
hand, when F is the Zariski-closure of the set of Chow-coordinates
of members of the family in the smallest algebraic variety contain-
ing it, R almost always induces on F a closed equivalence relation
in the sense of algebraic geometry, which we shall denote by R’
Under certain conditions, we are going to show, among other
things, that analytically defined quotient space, the analytic variety
of moduli, and algebro-geometrically defined quotient space, the
algebro-geometric variety of moduli, are the same thing. Condi-
tions are stated as axioms, which are satisfied when X is a bounded
domain, R is defined by a proper discontinuous group G acting
on X, the field of G-invariant meromorphic functions form an
algebraic function field of dimension m=dim X and when F has
a Zariski-open subset F, satisfying the following conditions: (i)
F, carries an equivalence relation R’, compatible with R defined
on X by G; (ii) Every member of the analytic family is contaired
in the family defined by F,, and every member of the latter
family is equivalent, with respect to R’, to a member of the former
family ; (iii) R’ is a closed equivalence relation in the sense of
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algebraic geometry, and orbits of points of F, with respect to R’
are irreducible and have the constant dimension. Actually, under
slightly milder assumptions than those described above, we are
going to show the existence of the analytic and algebro-geometric
varieties of moduli at the same time and see that they are the
same. This is sometimes rather convenient, since we may be able
to tie up algebraically defined concepts with analytic concepts.
Before we actually discuss our main topics, we shall discuss
a few preliminary results, many of which are well-known. In
particular, in §2 and §3, we shall discuss the case when X is the
Siegel space of degree » and G is the paramodular group. A
purpose of this is to show actually that the axioms we are going
to consider in §4 are satisfied in this particular case. As for
more general cases than the Siegel space and the paramodular
group, the readers are referred to Satake (II), Shimura (II, 111, IV,
V, VI, VII), Siegel (II) and Kuga (I). At the moment, the author
does not know if in some of these general cases all the axioms
in §4 are satisfied, but hopes that most of them would do so.
In §5, rough materials are constructed which will be refined in §6
and pasted together to get analytic as well as algebro-geometric
variety of moduli. In §7 we shall discuss the possibility of pro-

jective embeddings of the varieties of moduli and the fields of
moduli.

For general properties of Abelian and theta-functions, the
readers are referred to Siegel (I), Weil (II) and Conforto (I). For
discontinuous groups on bounded domains, Poincaré-series and
automorphic functions, readers are referred to Siegel (I) and
Pyatecki-Shapiro (I). The author would like to point out that the
case when X is the Siegel space and when G is the modular group
was treated by Baily (II).

Conventions. Since we are going to deal with objects with
mixed structure, we shall agree to use the following conventions.
Whenever open sets, closed sets, closure are mentioned, these are
relative to the ordinary complex topology, unless the contrary is
specifically mentioned. Corresponding notions relative to Zariski-
topology will be indicated by ‘“Z-open sets”, “Z-closed sets” and
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by “Z-closure”. As far as algebro-geometric terminology are con-
cerned, they will be based on Weil (V). Therefore, for instance,
an “algebraic variety” will mean an absolutely irreducible algebraic
variety in the sense of Zariski. When Y is a cycle or an analytic
subset of an algebraic variety or a complex manifold, | Y| will
denote always the support of Y.

§1. Let X™ be a connected complex manifold, PV¥ a projec-
tive space and Z”*”* a connected complex submanifold of X x P (the
topology on Z may be stronger than the one induced on it by the
topology of XxP). When (X, Z) satisfies the following three
conditions, we say that (X, Z) defines an analytic family {Z(x);
x€X} in P.

(a) When = is the projection of Z on X, there is a non-singular
algebraic subvariety Z(x) in P corresponding to each point x of
X such that |Z(x)| is the set of points in Z with the projection x ;
(b) When we regard Z(x) as a closed complex submanifold of
P, xx Z(x) is a closed complex submanifold of Z;

(c) When zis a point of Z, there exist an open subset W, of Z
containing z such that »(W,) is open on X, an open subset U of
C™ (the complex Eucledean space), an isomorphism ¢ between
z(W,) and U, an open subset V of C” and an isomorphism ¢
between W, and Ux V such that the following diagram is com-
mutative :

w, T . z(W,) (=’ denotes the projection
ng 4,[ of Ux V on U).
7z_/

UxV———U

Let (X, Z) and (X', Z’) define analytic families in projective
spaces. When there is an isomorphism g between Z and Z’ and
an isomorphism % between X and X’ such that wog=rhon, we
say that the analytic families defined by (X, Z), (X', Z°) are
isomorphic.

Let 2=(x, y) be a point of Z and S an affine Z-open subset
of P containing y. When we set W,=Wn#z(W)xS, W, is open
in W and in Z since the topology on Z is finer than the induced
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topology. Hence ¢o(W,) is open in Ux V. Set @(2)=gp(x, y)= (4, v)
with #=¢(x) (cf. (¢)). There is an open subset U* of U containing
# and an open subset V* of V containing v such that U*x V¥
Co(W,). When W* is the set of points in W, which are mapped
into U*x V* by ¢, it is open on Z, contains z and z’op=¢or is
satisfied on W*. Let f,, -, fy be the affine coordinate functions
on S. They induce holomorphic functions f, -+, fx on U¥x V*,
Rearranging indices if necessary, and then setting f,=1, we have
found the following two consequences of (a), (b) and (c).

(d) To each point z=(x, y) of Z, contained in xx Z(x), there is
an open subset U* of x on X, an open subset V* of C”, a point v
of V* and a set (f,, -+, fy) of holomorphic functions on U*x V*
such that y=(f,(x, v): -+ : fu(x, v)) and that the map determined
by f,: - : fy maps &’ x V* x’eU¥, to an open subset of x’ X Z(x');
(e) The map determined by f,:---: fy has rank »# everywhere on
x’'x V¥ when x’'eU*.

Conversely, let X™ be a connected complex manifold. Assume
that a non-singular algebraic variety Z(x) in PV correspond to
each x on X and that the conditions (d), (¢) are satisfied by X
and by the set {xx Z(x)}. Then, defining |Z| to be the set of
points (x, y) in Xx P such that y is contained in Z(x), it is not
difficult to show that Z becomes a connected complex submanifold
of Xx P when we define a suitable topology which is finer than
the induced topology. By doing so, it is not hard to show that
(X, Z) satisfy (a), (b), (c). Therefore, the conditions (a), (b), (c)
and the conditions (d), (e) are equivalent.

In the following, we shall give a proof of this for the sake
of convenience.

LEMMA 1. Let X™ be a complex manifold and {A(x)"; x= X}
a set of non-singular varieties in a projective space PV, satisfying
(d) and (e). Let Z be the set of points (x, y) in XX P such that
ye |A(x)|. Then Z has a structure of a comnected complex sub-
manifold of X" x P satisfying (a), (b) and (c).

Proof. Let (x,, y,)€Z. Let U be an open subset of X, con-
taining x,, V an open subset of C”* v, a point of V and f,, :--, fx
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holomorphic functions on Ux V such that f;=1 for some i,
(fo(x, o)y ==+, Fn(%,, o)) is a set of affine coordinates of y, and that
0(fo, *++, fn)/0(v) is of rank n everywhere on Ux V. Then the map
Fof UxV into Xx P defined by (x, v)—(x, y) is holomorphic and
of rank »n everywhere on Ux V. Moreover, F(x,v) is a point of
xX A(x). Since the rank of the map F is maximal, we can find
an open subset W, of Ux V, containing (x,, v,) such that F,=F/W,
is 1-1 on W,. Set D,=F,(W,. D, is a subset of Z. Thus, we
have associated to (x,, y,) an open subset W, of C”xC”(we have
identified U with an open subset of C™), a subset D, of Z contain-
ing (%,, »,) and a 1-1 holomorphic map F,: W,—D,. When (%, ¥,)
and (xg, yp) are two points of Z and (W,, D,, F,), (Ws, Ds, Fp)
are corresponding sets, F,'oFg and Fg'oF, are clearly holomorphic
maps. We define topology = on Z as follows. When W, is an
open subset of W,, we define F,(W.) to be open. This generates
topology on Z which we call . Then F, is a homeomorphism
of W, into (Z, ). Then, (Z, r) has a structure of a connected
complex manifold having the (D,, F,') as coordinate neighbour-
hoods of the (x,, y,). It is clear that the canonical injection of
our complex manifold into XX P is holomorphic. Our lemma is
thereby proved.

Example 1. Let X™ be a non-singular algebraic variety, Z™*"
a subvariety (algebraic) of Xx P¥ and assume that the following
conditions are satisfied: (i) xxP and Z intersect properly on
XX P for every point ¥ of X; (ii) When we define Z(x) by
(xx P)-Z=xx Z(x), Z(x) is a non-singular subvariety of P. Then
(X, Z) defines an analytic family of non-singular varieties in P.

Example 2. Let H, be the Siegel space of degree n, i.e. H,

consists of n-rowed complex symmetric matrices W such that the

imaginary parts are positive definite. Let E=<_0D g) be the

canonical form of a non-degenerate Riemann-form which is carried
by a complex torus of dimension n#. Then (I,, D'W)= Ry,
WeH,, is a Riemann-matrix, having E as a principal matrix (7,
denotes the n-rowed identity matrix). Denoting by the same letter
Ry the discrete subgroup of C” generated by column vectors of
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Ry over the ring of integers, C”/Ry is a complex torus Ty of
dimension n. E defines on T a homology class v y of complex
analytic divisors, and every complex analytic divisor on Ty
which is in vz is non-degenerate (i.e. defined as the zero of
a non-degenerate theta-function). Conversely, when a complex
torus 7" and a homology class v on T containing a non-degenerate
complex analytic divisor are given, then, there is a suitable E
and a point W in H, such that T and T, are isomorphic (with
respect to the complex structures) and that the isomorphism
transforms v to vz w (cf. Siegel (I), Weil (II)).

Let m be a fixed positive integer satisfying m>3. Then there
is a set of holomorphic functions ©,, :--,®, on H,x C” satisfying
the following conditions: (i) When we regard ©,W, z) as a
function on C”, it is a theta-function relative to Ry and ©,=0
define on Ty a complex analytic divisor belongings to mvg w;
(ii) Regarding the ©,(W, z) as functions on C”, the map z—
(O(W, 2): - : Oy(W, 2)) determines a projective embedding O
of Ty into a projective space; (iii) O(T w)=Ay is the underly-
ing variety of an Abelian variety, deg (Ay)=m"-n!det (D), N=
m"det (D)—1, Ay is not contained in a hyperplane in P¥ and
the set of hyperplane sections of A, forms a complete linear
system ; (iv) Set Oy =(0(W, 0): --- : @5(W, 0)); then there is one
and only one Abelian variety such that Ay, is the underlying
variety and Oy is the neutral element; When we denote this by
(Aw, Oyw), Oy is an isomorphism of T and (A, Oy) as complex
Lie groups (cf. Conforto (I), Siegel (I), Weil (II)).

Take X=H,, Z(W)=Ay (resp. Z(W)=Ay x0y), then it can
be verified easily that the conditions (d) and (e) are satisfied.

Remark. From now on, a non-singular subvariety of a pro-
Jective space will be regarded always as a polarized variety such
that a hyperplane section is a polar divisor, unless the contrary is
specifically mentioned. Hence, Ay is a polarized variety such that
Ou(ve w) is a polar divisor class.

When Y is a positive cycle in a projective space. We denote
by ¢(Y) the Chow-point of Y. We shall end this paragraph with



On some analytic families of polarized algebraic varieties 285

the following proposition which is more or less well-known but
the only place where we can find a proof is in Shimura (II) (in
a slightly stronger condition).

PRrROPOSITION 1. Let (X, Z) define an analytic family of non-
singular varieties in a projective space. Then the map x— (Z(x))
is a holomorphic map of X into a projective space.

Proof. 1t is enough to prove that our map is locally holo-
morphic. Let dim Z(x)=un, k a field of definition of Z(x), PV the
ambient projective space of Z(x) and L, a generic linear variety
in PN of codimension »# over k (where we denote by ¢ the set
of defining linear equations for L,, identified with a point in an
affine space). Express Z(x)-L, as Z,(¥*) in a suitable affine Z-
open subset of P. Without loss of generality, we may assume
that y,®=1. By our condition (d), there is an open subset U, of
X, containing x, an open subset V, of C” a point »*® of V,, and
a set (f)=(f", -+, f®,) of holomorphic functions on U,x V,
such that (f(x, v®))=(y). By (e), the map f** defined by the
f@. mapping xx V, into PV has rank n everywhere. We have
SN @ (x, v)=0. Let («*, v*)eU,xV, and regard F®;=
SNt f(x*, v¥) as a function of (£, %, v*). Then the F®; are
holomorphic in a neighbourhood of (¢, x, v*) and has non-vanishing
jacobian there with respect to »*. Therefore, the coordinates of
v are locally holomorphic functions of (¢, x). Let /=@, -+, ¢'y)
be a set of independent variables over k(f, y*), and set ¢”,=
SN (x, v). Then t”, is locally a holomorphic function of
@, t, x).

Let G(T), (T)=(T;;), 0<i<n, 0<j<N, be the Chow-form of
Z(x). By a fundamental property of Chow-forms (cf. v.d. Waerden
(I)), we have G(t”,,t,t)=0. Hence (¢”,,%,¢) can be identified
with a point on the hypersurface G defined by G(T)=0. G is a
variety defined over k and (¢, ¢/, t) is a generic point of G over
k. When we normalize G(T) so that some coefficient is 1, then
the coefficients of G(7T) can be obtained rationally from the co-
ordinates of a finite set of independent generic points of G over
k, by applying the Cramer’s rule. When we denote by S the
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space of (¢, %), the above arguments show that there is an open
subset W of the product of S, in suitable number, and an open
subset U’ of X containing x, such that the coefficients of G(T)
are holomorphic on Wx U’. But clearly these coefficients are
independent of points of W. Hence they are locally holomorphic
functions of x.

§2. In this paragraph, we summarize known results about
(H,, Z) (cf. Example 2 of §1) from analytic stand point. Here
Z is either Z(W)=Ay or AyxOy. Z(W) and Z(W’) are iso-
morphic if and only if there is a non-singular n-rowed complex
matrix Y and a 2n-rowed integral unimodular matrix M such that
R, =YRy,M. Denote by Gz the set of transformations W—W’
defined by the relation Ry, =YR,M. Then Gz is a group of
complex analytic automorphisms of H, and its action on H, is
properly discontinuous. Gy is called a paramodular group, and it is

commensurable with the modular group Gg,, where E0=<_0 I {)n)
Moreover, there is a suitable subgroup G’y of Gz of finite ”index
which acts fixed point free on H,.

H,/Gg has a structure of normal analytic space (cf. H. Cartan),
which can be compactified, as a topological space, by adding a
finite set of spaces of dimensions at most #(n+1)/2—2 (cf. Satake
(I1)). Furthermore, this compactified space has a structure of a
normal analytic space which is a prolongation of that of H,/Gg
(cf. Baily (I)). Therefore, when #=2, a meromorphic function on
H,/Gg can be extended uniquely to a meromorphic function on the
compactified normal analytic space and the set of such functions
forms a finitely generated field of dimension at most #(n+1)/2
(cf. Remmert (I)). By mapping H, into the generalized unit circle
by the well-known map, and using there Poincaré series, we can
show the existence of a Gg-invariant meromorphic function on H,,
which separates two points on H, which are not congruent modulo
Gg. Furthermore, when W is a point of H, such that only the
identity of G (res. G’g) leaves it invariant, then there is a set of
n(n+1)/2 Gg—(resp. G’,-) invariant meromorphic functions on H,
such that the functional determinant does not vanish at W. This
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can be proved by the same technique as above, using Poincaré
series of sufficiently high weight. From these two remarks, it
follows that the condition (C’) of §4 is satisfied by (H,, Z).

§3. We summarize here well-known facts and immediate
consequences of them in algebraic geometry which will be needed
later.

LEMMA 2. Let (A, O,b), (B, Og) be two Abelian varieties in one
and the same projective space, where O4, Og are neutral elements
of the groups. Assume that the set of hyperplane sections of A
(resp. B) forms a complete linear system. Then (A, O,) and (B, Og)
are isomorphic if and only if A and B are projectively equivalent.

LEMMA 3. Let (A, O,) be a polarized Abelian variety. Then
the group of automorphisms of (A, O,) is a finite group. When A
is a subvariely of a projective space, the set of automorphisms of
A which are induced by projective transformations is a finite set.

Let (A4, O4) be a polarized Abelian variety and X an ample
polar divisor on A (i.e. a polar divisor such that the complete
linear system determined by X defines a projective embedding
of A). Denote by A(X) the set of positive divisors on A which
are algebraically equivalent to X and by A(X) the set of positive
divisors which are linearly equivalent to X. By definition, X, i.e.
A(X) defines a non-degenerate projective embedding fx of A. fyx
is uniquely determined up to a projective transformation. fx can
be extended uniquely to an isomorphism of polarized Abelian
varieties, mapping (A4, O,) on (fx(A), fx(0,)), which we shall denote
by the same letter. When U is a set of polar divisor on A, we
denote by PB(A, U) the set of the fyx(A), where the X are ample
divisors contained in U. We definine B((A4, O,), U) similarly.
Then we get the following corollary.

COROLLARY. P(A4, WX))=P(A, A(X)).

LemMA 4. Let (A, On) be a polarized Abelian variety and X
an ample polar divisor on A. Let (A, W(X)) be the set of Chow-
points of members of P(A, U(X)). We define p((4, O4), A(X))
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similariy®. p(A, WX)), p((4, 0,), WX)) are both algebraic varieties
and have the smallest fields of definitions. When we denote by
B4, X)), P((A, O4), W(X)) the Z-closures of P(A, X)), P((4, O,),
AX)), p(A4, A(X)) and H(A, A(X)) and also P((A, O4), WX)) and
P((A, 0,), W(X)) have the same smallest fields of definitions.

All these results are discussed in Matsusaka (I) in slightly more
general form. Moreover, following two lemmas can be deduced as
easy exercise from the results contained in the paper quoted above.

LEMMA 5. Let (A, O,) be a polarized Abelian variety and X,
Y two ample polar divisors on A. Then (A, X)) and p(A, WY))
have the same smallest field of definition. The same is true for
P((A, 04), WX)) and p((4, O4), AU(Y)).

Because of this lemma, it is possible to use A for (4, O,) in
many problems concerning moduli. Incidentally, the definition for
the field of moduli given in Matsusaka (I) and Shimura (II) are
different in appearance but they are actually the same, which can
be shown easily. Hence, the field of moduli of a polarized Abelian
variety (A, O,) over a fixed field &, is given by the smallest field
of definition of pP(A, AW(X))=p(A, A(X)) containg k,, when X is an
ample polar divisor.

LEMMA 6. Let (A;, O;), (B;, O0)), i=1, 2, be four polarized
Abelian varieties and assume that (A,, O,) and (A,, O,) are iso-
morphic. Assume further that there is a discrete valution ring o
such that (B,, 0")), (B,, 0',)) is a specialization of ((A,, 0,), (4,, 0,))
over v. Let T be the graph of the isomorphism between (A,, O,)
and (A,, O,) and extend the above specialization to a specialization
T of T over . Then TV is the graph of an isomorphism between
(B,, 0")) and (B,, O’,).

This is an immediate consequence of the principle of degene-
ration of Zariski (cf. Zariski (1)), the compatibility of specializations
with algebraic projection (cf. Shimura (1)) and of the fact that
|T’| is an algebraic subgroup of B,x B,. This is also a special case

1) When (B, Op) is a member B((A4, 04), A(X)), we consider the Chow-point
of BXOy.
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of a more general result for non-ruled varieties (cf. Matsusaka-
Mumford (1)).

Before we state and prove the next lemma, we summarize the
results about the dual Abelian variety of a given Abelian variety
(cf. Weil (II) and Igusa (I)). Let V be the underlying real vector
space of a complex vector space V of dimension # and J the
complex structure such that (V, J)=V. Let D be a discrete sub-
group of V of the maximum rank over the field of real numbers
R and set T=V/D which is a complex torus of dimension .
When eV, denote by x the corresponding point of V and by z’
the corresponding point on 7. Assume that (V, D) admits a
non-degenerate Riemann-form E, i.e. a skew-symmetric bilinear
form on V, integral valued on Dx D, such that E(%, JX) is sym-
metric and positive definite. Let X be a complex analytic divisor
on T, belonging to the divisor class determined by E. Then
X~X, on T if and only if E(%, d)=0 mod Z for all deD. Let
V* be the dual of V and g the map of V into V* mapping % to
E(%, ). g is surjective and R-linear. Let D* be the set of those
E(%, ) such that E(%, d)=0 mod Z for all deD. Then g(d)cD*
and the latter is a discrete subgroup of V* of rank 2x over R.
J is an automorphism of V such that J?°= —1. Hence J has the
dual automorphism J* of V*, and J*' is a complex structure on
V* such that g(J%)=J*"'g(%). Hence g defines a complex linear
map g of V onto V*=(V* J*°') such that g(D)cD* where D*
corresponds to D* in V*, Therefore, g induces a complex homo-
morphism a of T on the complex torus 7%= V*/D* the dual
torus. When d,, -+, d,, is a set of generators of D, then we can
introduce a coordinate system on V such that d; becomes the
standard unit vector ¢;. When {E(4,, ), -, E(&,,, )} is the dual
basis of V*, then this is a set of generators of D*. Hence, we
can introduce the coordinate system on V* such that E(a;, ) is
the standard unit vector e¢; (for the above description of dual
torus, see Weil (II) and Igusa (I)). When we denote by E and M(«)
the representations of £ and g with respect to these coordinate
systems, we see at once that E= M(a).

(V*, D¥) also admits a non-degenerate Riemann-form and
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hence 7 and T* can be identified with Abelian varieties. (a, T%)
is then the Picard variety of T and « is the canonical homomor-
phism determined by the divisor class of X. Moreover, when
suitable /-adic coordinate systems are introduced on Abelian
varieties 7, T* and M(«) is viewed as a matrix with /-adic integral
entries, we have M(a)=M,(a) (cf. Weil (I)).

In general, let A and A’ be Abelian varieties such that A’ is
a specialization of A over Q. Let C be a divisor on A and (8, B)
the Picard variety of A such that B(x)=Cl(C,—C). When T is
the graph of B, we can find a suitable model of B such that (4,
B, TV, C’) is a specialization of (A, B, T', C) over @, where B’ is
an Abelian variety, IV is the graph of a homomorphism &', (8’, B)
is the Picard variety of A’ and B'(#’)=CI(C’,y—C’). This is well-
known and easy to prove in our case. As for the general case
of specialization over a discrete valuation-ring, see Koizumi (I).

LEMMA 7. Let (A, O), (A, O) be two Abelian varieties in a
projective space and assume that the latter is a specialization of
the former over the field Q of rational numbers. Let C, C' be
hyperplane sections of A, A’ and E, E’ Riemann-forms associated
with the divisor classes on A, A’ determined by C, C'. Then E and
E’ have the same normal form.

Proof. Let (B, B) be the Picard variety of A such that B(«)
=CI(C,—C), (&, B’) the Picard variety of A’ such that B'(«')=
CI(C’,,—C’) and assume that B has been chosen so that (4’, B, T)
is a specialization of (A, B, T) over @, where T (resp. I'’) is the
graph of B (resp. 8’). Denote by g(/, ) the group of points of
orders which are powers of a prime / on Abelian varieties. Since
the graph of an endomorphism /™8 on A specializes to such on
A’ over A—A’ ref. @, this specialization defines an isomorphism
o between g(/, A) and g(/, A’). The same is true for B, B’ and
g, B), g({, B)). We denote by ¢ again such an isomorphism. Then
it is possible to introduce an /-adic coordinate system on A’ (resp.
B’) such that x in g(/, A) (resp. g(/, B)) and o(x) have the same
/-adic coordinates. When this is done, B and B’ have the same
l-adic representation, i.e. M,(B)=M,(B’). Since this is true for
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all /, it follows that M(B) and M(B’) have the same elementary
divisors. Consequently, E and E’ have the same normal form.

PROPOSITION 2. Let (A", O) be a polarized Abelian variety, Y
a basic polar divisor of A and E the non-degenerate Riemann-form
associated with the divisor class determined by Y. Let m be a positive

integer such that m>3 and set N=wm"det(D)/n!—1, where D is

such that <—0D g) is the normal form of an integral representation

of E. Denote by 3, the set of non-singular subvarieties B in the
projective space PN, which are underlying varieties of Abelian
varieties, satisfying the following conditions: (i) The set of hyper-
plane sections of B forms a complete linear system; (ii) The
Riemann-form associated with the divisor class of hyperplane sections
of B is given by mE. Then the set of Chow-points F,, of members
of B, iS an algebraic variety defined over Q. When we denote by
&', the set consisting of BXu, where B is in §,, and u is a point
of B, the set of Chow-points of members of ¥, is an algebraic
variety defined over Q.

Proof. Let B be a member of §,,. Using the same notations
as in Example 2, there is a point W in H, such that A, and B
are isomorphic (as polarized varieties). When ¢ is the map:
W—c(Ay), it is a holomorphic map of H, into a projective space
by Prop.1. @(H,) is contained in F,, and an element of $,, can
be obtained from an element of the form A, by a projective
transformation (cf. Lemma 2). Denote by G the group variety
PGL(N) and by g an element of G. Set X=H,xG and Z(W, g)
=g(Aw). Then it is easy to verify that (X, Z) defines an analytic
family of non-singular varieties in P¥. When ¢ denotes the map
(W, g)—c(g(Aw)), it is a holomorphic map of H,x G into a pro-
jective space by Prop. 1, and ¢(H,xG)=F,,. H,xG is a connected
complex manifold, and hence, ¢ is defined by a finite set of mero-
morphic functions on H,xG. Taking algebraic relations among
them into consideration, it is easy to see that the Z-closure F,,
of F, is an algebraic variety. Let k£ be a field of definition of
F,. Then a generic point of F,, over k is also a point of F,, by
Lemma 7. Let V be the set of points in F,,, which correspond
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to underlying varieties of Abelian varieties and which are not
contained in any hyperplane in P¥, then V is a Z-open subset of
F,, (cf. Hoyt (I)). F,, is contained in V. But, from the Riemann-
Roch theorem /(X)=X“/n!, it follows that the varieties corres-
ponding to points of V also satisfy the condition (i). Then F,,
contains ¥V by Lemma 7. Thus F,,=V. From the definition of V
and Lemma 7, V is invariant under the action of an automorphism
of the field of complex numbers. Hence F,, is an algebraic variety
defined over Q. The corresponding fact for %', can be deduced
from this easily.

§4. In order to study analytic families of non-singular varie-
ties more closely, we list here some basic properties satisfied by
our Example (2), the paramodular family of Abelian varieties.
In order to do so, we shall discuss briefly about an equivalence
relation on algebraic varieties.

Let V be an algebraic variety and Y a Z-closed subset of
Vx V. Assume that Y defines on V an equivalence relation R,
ie. when we define v~ if and only if (v, v") is in Y, this is an
equivalence relation on V. Assume further that every component
Y; of Y has the projection V on V and that dim Y;=dimY; for
every pair (i, j). We shall consider equivalence relation of this
type only on algebraic varieties. Set dim V=# and dimY=#n+7.
When we denote by K(V/R) the set of rational functions on V
which are invariant with respect to R, then it is a finitely generated
field of dimension #—7 over the universal domain (the field of
complex numbers in the case we are interested in). When £ is
a field of definition of V over which Y is closed, then we say
that R is defined over k.

The paramodular families we have studied in §2 and §3
satisfy the following properties. It is an analytic family (X, Z)
such that:

(A) X carries a properly discontinuous group G of automorphisms;

(B) There is a set ¥ of non-singular varieties in a projective
space P, containing every Z(x), satisfying the following
properties :
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(i) The set of Chow-points of ¥ is an algebraic variety F;
(ii) F carries an equivalence relation R, such that Z(x)~Z(x")
with respect to R if and only if x and x’ are congruent
modulo G;
(iii) The set of Chow-points of members of ¥ which are equi-
valent to some Z(x), x=X, contains a Z-open subset of F';
(iv) When A is a member of %, the set of Chow-points of
members of ¥ which are equivalent to A forms an al-
gebraic subvariety of F of constant dimension.
Before we list some other properties satisfied by the para-
modular families, we shall discuss some consequences of (A) and

(B).

LEMMA 8. Let (F,R) be as in (B) and k a common field of
definition of F and R. When E(a) is the set of points of F which
are equivalent to acF, then E(a) is k(a)-closed.

This is easy to prove.

LEMMA 9. Let the notatons be as in Lemma 8 and denote by
E(a) the Z-closure of E(a) in the ambient projective space. When
a is a generic point of F over k, the smallest field of definition K,
of E(a) containing k is contained in k(a) and dim,K,=dim X.

Proof. The first part of our lemma follows from Lemma 8.

Let # be the Chow-point of E(a) and V the locus of # over k.
Clearly, K,=k(#). When we set t(¢)=o, v is a rational map of
Finto V. Replacing F by its normalization, if necessary, we may
assume without loss of generality that r is defined at every point
of E(a). By (B)-(iii), there is a point x in X such that ¢(Z(x))e
E(a). Since the map ¢ : x—c(Z(x)) is holomorphic on X, the map
x— ¥ is a homomorphic map of an open subset U of X containing
z into V. The image of F by 7 contains a Z-open subset of V
(cf. Weil (VI)). Consequently, the image of U by the map x—o
contains a Z-open subset of V, which proves dim X>dim V. On
the other hand, from (A), (B)-(ii) and from the definition of V,
it follows easily that dim X<dim V.

COROLLARY. Let (F,R) be as in (B). Then the field K(F|R)
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is an algebraic function field of dimension m=dim X, and is a
subfield of the field of G-invariant meromorphic functions on X.

Besides (A) and (B), the paramodular families further satisfy

the following conditions :

(%

(D)

When (x,, .-+, x,) is a finite set of points of X, such that no
two points are congruent modulo G, there is a G-invariant
meromorphic function %, algebraic over K(F/R), such that %
is holomorphic at the x; and that A(x;)=s=hA(x;) for i=j;

G contains a subgroup G, of finite index in G which operates
fixed point free on X; moreover, when (x,, ---, x,) is a finite
set of points on X, there is a finite set of G,~invariant mero-
morphic functions on X, algebraic over K(F/R), which are
holomorphic with non-vanishing Jacobians at the x;.

In the discussions which follow, we sometimes use the follow-

ing stronger conditions (B’) and (C’), satisfied by the paramodular
families.

(B)

In (B), (i), (ii), (iv) remain as they are, but (iii) is replaced by

(iiiy The set of Chow-points of members of ¥ which are equi-

©)

valent to some Z(x), x€ X, is a Z-open subset of F;
When (x,, -+, x,) is a set of points on X such that no two
points are congruent modulo G, then there is a finite set of
holomorphic functions #4,, ---, £, on X satisfying the following
conditions :

(i) When i=j, there is an index s such that A/(x;)+h(x;),

hs(xi)'hs(xj) =’=O ,

(ii) hk;/h; is a G-invariant meromorphic function on X, al-

gebraic over K(F/R);

(iii) When x,,,€X is not congruent to any x; modulo G, there

is a set (W, -+, #’,/) of holomorphic functions on X, con-
taining the set of monomials in the %; of a fixed degree
d, such that it satisfies (i) and (ii) with respect to (&, -+,
Xyy Xypr)e

Remark. In general, when X is isomorphic to a symmetric

domain, then (C’) can be verified except for (ii), by using the
Poincaré sesies, H, is one of such domains, In the case when
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n=1, it is well-known and easy to verify that K(F/R) exhausts
the modular functions in one variable. As we remarked in §2,
K(F/R) exhausts the paramodular functions and is the set of
invariant meromorphic functions when #>2. In general, when X
is the product of irreducible domains of dimensions at least 2 and
when G is the so-called “normal discrete group”, then Pyatecki-

éapiro showed that G-invariant meromorphic-functions on X form
an algebraic function field of dimension m=dim X. The same is
true when X/G is compact. Hence, in these cases, again the
algebraic nature of meromorphic functions over K(F/R) in (C), (D)
and (C’) are verified because of the corollary of Lemma 9.

§5. In this paragraph, we assume that (X, Z) is an analytic
family of non-singular varieties in a projective space, satisfying the
conditions (A), (B), (C) and (D), unless the contrary is specifically
mentioned. Moreover, we set dim X=m. Furthermore, when (F, R)
is the pair which enters in (B), we fix a common field k, of de-
finition for F and R, and assume that all fields we shall consider
contain k,.

In order to simplify matters, let us fix the following notations.
@ will denote always a holomorphic map of X into a projective
space defined by x—c(Z(x)). When « is a point of F, E(a) will
denote always the set of points on F which are equivalent to a
and E(a) will denote the Z-closure of E(a) in the ambient pro-
jective space. When % is a field of definition of F (containing k,)
and # a generic point of F over k, #=c(E(«)) has a locus over k
by Lemma 9, which will be denoted by V. There is a rational
map of F into V defined by #—, which will be denoted by r.
Finally, 7op is a holomorphic map of an open subset of X into
V, which will always be denoted by .

Frst we shall show that meromorphic functions on X, which
are algebraic over K(F/R) and are G-invariant, are elements of
K(F[®R), i.e. R-invariant rational functions on F. This follows
from the following lemma.

LEMMA 10. Let V” be a normal algebraic variety in a pro-
jective space and U an open subset of V such that every point of
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U is simple of V. Let b, ---, b, be rational functions on V and f
a meromorphic function defined on U, satisfying b, f"+b.f" '+ -
+b,=0. If there is a common field k of definition for V and for
the b, such that U contains all the generic points of V over k, f is
a rational function on V.

Proof. Let V, be the set of simple points of V. Then a point
in V-V, is at least of codimension 2 over k and a point in V,— U
is at least of codimension 1 over k. Let v’ be a point of V,—U
and W an affine open subset of V, containing ». Let (k) be a
set of affine coordinate functions in W. Since the b; are rational
functions of (%), there are polynomials c(k), ---, ¢, (k) in (k) such
that f satisfies c(h)f"+c(R)f" '+ +c,(B)=0 in UN W. Setting
g=ch)-f, we get g"+e(h)g” '+ - +e,(h), where the ¢,(%) are also
plynomials in (%). When we take a sufficiently small neighbour-
hood W’ of v/, contained in W, the roots of Y"+e(h)Y" " +---+
e,(h)=0 are bounded when ve W’. Since the set of generic point
of V over k is dense, UNn W +0. Clearly g is holomorphic in
Un W', and points of W/ —UN W’ are at least of codimension 1
over k. Hence g can be continued analytically throughout W’ and
becomes holomorphic there. Consequently, f is meromorphic on
W’. Therefore, f is a meromorphic function on V,. When that
is so, f is a rational function on V, as is well-known (if one uses
the reduction of singularities due to Hironaka, one can prove this
fact directly from the above proof) (cf. Hironaka (I)).

As we announced before our Lemma 10, we get the following
proposition easily from this Lemma.

PRrROPOSITION 3. Let f be a G-invariant meromorphic function
on X and set f(x)=F(y(x)). Then f is a rational function on V
if f is algebraic over K(F|R). Conversely, when f is a rational
Sfunction on V, f=fo¢ is a G-invariant meromorphic function on X,
algebraic over K(F|R). The correspondence f—f gives an isomor-
phism between the field of G-invariant meromorvphic functions on
X which are algebraic over K(F|R) and the field of rational func-
tions on V.

LEMMA 11, Let V be a non-singular variety in a projective
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space and V* a topological space satisfying the following conditions :
(i) |V*¥|c|V]|; (ii) | V*| contains a Z-open subset V, of V; (iii)
The injection i of V* into V is continuous; (iv) When T is an
algebraic curve on V, |T'| N | V*| with the induced topology of V*
is Such that no finite set of points is open. Let g be a rational
Sfunction on 'V and D a Z-open subset of V such that g is defined
and finite at every point of D. Let g* be a continuous function on
an open subset D* of V* such that |D¥*| contains | V*| N |D| and
that g*(v")=g(v") for every v’ in |V*| N |D|. Then g is defined
at every point v' of |D¥| and g(v')=g*(’).

Proof. First we settle our lemma when V is a non-singular
curve. We state this as the following lemma.

LEMMA. Let T be a non-singular curve, T'* a topological space
such that |T'|=|T*| and assume that the canonical injection map
i of T* into T is continuous. Let g be a rational function on T
and g* a continuous map of T'* into C' such that g¥=goi on a
dense subset of T*. Then g is defined and finite everywhere on T.

Proof. When a is the set of points where g is not finite, g
is defined everywhere on I'—a. When that is so, g¥=goi every-
where on ' —a. Let x be a point of a and ¢ a constant such
that g*(x)+c¢=+0. Then, there is a finite set of points b, contain-
ing x, such that 1/(g*+c¢) is continuous on I'*—D0, 1/(g+c) is
continuous on T'—b and that 1/(g*+c¢)=1/(g+c¢)oi on T'*—b,
Moreover, 1/(g*+c¢) is continuous on T*—(b—x) and 1/(g+c¢) is
continuous on I'—(b—x). Hence 1/(g*+c)=1/(g+c)oi on T*—
(b—x). This is against to our assumption that g is not finite at
x, and a=0.

Proof of our lemma. Let k be a common field of definition
for V, V,, D and g. Let I', be an algebraic curve on V, going
through ¢’ and a generic point of V over k and having v’ as a simple
point. Set i7'(I",)=T%,. T*, is an algebraic curve on V with finer
topology than the induced topology. Let a be the set of singular
points of T';, contained in |T'*,|, and the points in |T'*,| which
are not contained in |D|. When we call T' the set (|I"*,| —a)+v/,
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T is also an algebraic non-singular curve on V. Set i (I')=T%*.
Then |T'|= |T*|. g* induces a continuous function £* on I'* and
g induces a rational function %z on T" which is defined and finite
at every point of I', except at v’. Moreover, A*=hoi on I'*—v'.
Moreover, T*—v’ is dense in T'*. Consequently, # is defined at
v and A(v)=h*@")=g*@’) by our lemma. Since this is true for
all algebraic curves T', with the same properties as T, it follows
that g is defined at v’ and g(v")=g*(’).

For the sake of simplicity, we shall adopt the following
definitions. Let W be an algebraic variety defined over a field &,
% a rational map of W into an algebraic variety U and T the
Z-closure of the graph of # on Wx U. Let w’ be a point of W
and assume that there is one and only one point w’ X%’ on T" with
the projection w’ on W. Furthermore, assume that I' is complete
over w’. Then we shall say that % is single valued at w'. We
shall say also that #’ is the value of h at w’ and denote it by
h(w’). This is equivalent to the following. Let w be a generic
point of W over k. Then /4(w) has a uniquely determined speciali-
zation #' over k, over the specialization w—w’ ref. k.

LEMMA 12. Let V be an algebraic variety in a projective space
and T a Z-closed subset of VXV such that every component of T°
has the same dimension and that every such component has the
projection 'V on either factor of the product Vx V. Let k be a
field of definition for V such that T is k-closed. When v is a
point of V, denote by T'(v') the set defined by v'x VNT'=v'xT'(v').
Assume that T defines an equivalence relation on V and that, when
v is a generic point of V over k, T(V') is a uniquely determined
specialization of T(v) over k over the specialization v—v' ref. k.
Let g be a rational function on V defined over k such that g(v)=
g(") whenever v’ is a generic point of V over k and contained in
T'(v). Under these conditions, if g is single valued at V', then g is
single valued at every point w' of T'(v') and g(v')=g(w’).

Proof. Let (v, g(v))—(w’, t) ref. k. By our assumption, we get
(v, glv), T@))—(w’, t, T(w’)) ref. k. Since T" defines an equivalence
relation, T'(¢")=T(w’), and v’ is a point of I'(w’). When that is so,
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there is a point v, of I'(v), which is a generic point of V over &,
such that (v, g(v), T'(v), v,)—>(w’, ¢, T(w’), v’) ref. k. By our assump-
tions, g(v)=g(v,) and g is single valued at . Consequently,
t=g(®’). Our lemma is thereby proved.

Let V be an algebraic variety and T' a Z-closed subset of
Vx V. When T defines on V an equivalence relation on V and
when I' satisfies conditions described in Lemma 12, we shall call
such an equivalence relation on V admissible. As an application
of Lemma 11, we get the following lemma.

LeEMMA 13. Let f be a G-invariant meromorphic function on
X and U a G-invariant open subset of X on which f is holomorphic.
Let p be a holomorphic map of U into a locally Z-closed algebraic
subvariety of a projective space with the following properties: (i)
wWx)=w(x) implies x=x" mod G; (ii) There is a Z-closed subset
T of VXV which defines an admissible relation on V such that
(%), () is in T if and only if x=x" mod G; (iii) The set of
points on V which are equivalent to points of w(U) contains a Z-
open subset V, of V. Let k be a common field of definition for V
and V, over which T is closed. Assume that there is a rational
Sunction g, defined over k, such that f(x)=g@) when x=U and
when v is a generic point of V over k such that u(x)~v. Under
these conditions, when x, is a point of U, g is single valued at

Z)o:ll'(xo) and g(vo):f(xo)-

Proof. Denote by V the Z-closure of V in a projective space,
W a non-singular variety in a projective space and % a surjective
morphism of W on V such that it is a birational transformation
(cf. Hironaka (I)). Then (u, %) is a holomorphic map of Ux W
into Vx V. Let T be the Z-closure of T" on Vx V and T the set
of points in Ux W such that (u(x), 2(w)) is contained in T. Then
T is an analytic subset of Ux W. Regard T as a topological
space with the induced topology from Ux W. When we set
f(x, w)=f(x), f’ is a continuous function on 7. When we set
g'=goh, g’ is a rational function on W. If w’ is a point of W
such that Z#(w’)=v’, and if g is defined at v/, then g’ is defined at
w' and g'(w)=g@®). When w is a generic point of W over k
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(take W and & so that they are defined over k), there is a point x
in U such that (u(x), 2(w)) is in T. Since f(x)=g(h(w)), it follows
that f'(x, w)=g’(w).

Let w, be a point of W such that k(w,)=v,. Suppose that g’
is defined at such w, and g’(w,)=f(x,). Then it can be shown
easily that g is single valued at v, and g(v,)=f(x,).

Let » be the projection map of 7T on W. v is clearly conti-
nuous. »(7T) also clearly contains a Z-open subset 27'(V,) of W.
Introduce on »(7T) the quotient topology with respect to the
equivalence relation on 7 defined by the map ». Denote the
resulting topological space by W*. » determines the canonical
map v* of T on W*. f’ determines a continuous function g* on
W*. Then we can verify that W, W*, g’ and g* satisfy the
requirements of Lemma 11. Hence g’ is defined at a point w,
of |W*| and g'(w,)=g*w,)=r"(x’, w,) if (x’, w,) is a point of T.
Our lemma is thereby proved.

When we apply this lemma to our situation, we get the
following proposition at once (cf. Prop. 3).

PROPOSITION 4. Let x, be a point of X and f a G-invariant
meromorphic function on X, algebraic over K(F|[R), such that it is
holomorphic at x,. Let f be a rational function on V such that
f=Fop and set f=for. Then f is single valued at o(x,) and has
the value f(x,).

COROLLARY 1. Let f be a G-invariant meromorphic function
on X, algebraic over K(F[/R). Let f be a rational function on F
determined by f=fo¢, f:=f07. Let x, be a point of X, b a point
of F such that b~q(x,) and E(b) the set of points on F which are
equivalent to b. If f is holomorphic at x,, then f is single valued
at every point of E(b) and takes the constant value f(x,).

This corollary follows at once from our proposition and from
Lemma 12. Similarly, we get

COROLLARY 2. Let f be a G-invariant meromorphic function
on X, algebraic over K(F|R), and f a rational function on F deter-
mined by f=fop, f=Ffor. When f is single valued at b, on F, it
is single valued at every point of E(b,) and has the value f(b(,).



On some analytic families of polarized algebraic varieties 301

Using the fact that X is a complex manifold, Cor. 1 and Cor. 2
above can be generalized at once as follows:

COROLLARY 3. Let f and f be as in Corollary 2 and b, a point
of F. When f is intergral over the local ring of F at b,, then it
is so over the local ring of F at every point of E(b,). When there
is a point x, on X such that ¢(x,)=0b,, and when £ is integral over
the local ring of F at b,, f is holomorphic at x, and £ is single
valued at every point of E(b,) with the value f(x,).

From (C), Prop. 4 and from Cor. 1, Cor. 2 above, we immedi-
ately get the following

COROLLARY 4. Let x,, -+, x, be points on X and o(x;)=0;.
There is a finite set of meromorphic functions f,, -, fn on X,
which are G-invariant and algebraic over K(F[R), satisfying the
following conditions: (i) When the fj are rational functions of F
determined by f;=fop, f;=F,or, the f; are single valued at every
point of E(b;) and take the values c,;; (ii) If x,€X, p(x,)=0, is
such that every f, is single valued at some point b of E(b,) and
takes the value c;;, then b, is a point of E(b;).

Using Cor. 3 and the technique of normalization in an al-
gebraic extension, we get the following

COROLLARY 5. In Cor. 4, we can take the f; so that the follow-
ing additional conditions are satisfied: (iii) The F: generate the
rational function field of V; (iv) The geometric image of F by the
map into the projective space PN determined by ( fl, e, fN) is a
normal algebraic variety.

Combining Cor. 4 and Cor. 5, we further get the following

COROLLARY 6. When x,, -, x, are points of X and o(x;)=0b;,
there are a normal algebraic variety W, a rational map N of F
into W which is generically surjective, and a holomorphic map p
of an open subset of X, containing the x;, into W satisfying the
following conditions: (i) When x' is a point of X such that u is
holomorphic at x', then \ is single valued at @(x') and wW(x')=
Mep(x)); (i) When ¥’ X and N is integral over the local ving of
F at o(x’), then N\ is single valued at ¢(x'), n is holomorphic at x’



302 Teruhisa Matsusaka

and p(x)=NMep(x")); (iii) When x’'=X and N\ is single valued at
@(x’), then it is single valued at every point of E(p(x’)) and has
the constant value w(x’); (iv) N is single valued at the b;; when
A is the Z-closure of the graph of » on Fx W, then ANFx\Db,)
contains E(b;)xX N(b;); moreover, when b’ x\(b,) is a point of A such
that E(V')N@(X)=+0 and that N is single valued at b, then V' is a
point of E(b;); (v) the correspondence Nu)—t(u) is a birational
correspondence between W and V.

§6. In this paragraph, we assume again that (X,Z) is an
analytic family of non-singular algebraic varieties in a projective
space, satisfying (A), (B), (C) and (D), unless the contrary is speci-
fically stated. Furthermore, we fix a point x, on X and conse-
quently b,=qo(x,). We denote by W, , \,, u,, the variety, the
rational map and the holomorphic map constructed in Cor. 6 of
Prop. 4, in the special case when (x,, -+, x,) reduces to x,. For
the sake of simplicity, we shall omit the index b, when there is
no danger of confusion. By (D), G contains a subgroup G, of
finite index with the property described in (D).

LEMMA 14. Let G=3{G,-v; and f a G,~invariant meromor-
phic function on X, algebraic over K(F|R). Let y be a point of X
such that @(y)~b, and that f is holomorphic at the v(y). Then f
is integral over the local ring of W at NMq(p)).

Proof. Set f{x)=f(y{x)). It is enough to prove that the
coefficients of the polynomial II,(7— f;) are integral over the local
ring. Denote by % one of the coefficients. Then /% is holomorphic
at y, G-invariant and algebraic over K(F/MR). Hence, there is a
rational function g on W such that 4#=gou which is valid at x on
X whenever p(x) is in a suitable Z-open subset of W (cf. Prop. 3
and Cor. 6, Prop. 4). Take the identity equivalence relation on W.
Then our assertion follows easily by applying Lemma 13 to our
situation.

Denote by L the set of G,-invariant meromorphic functions
on X which are algebraic over K(F/R). Since G, is a subgroup
of G of finite index, L is a finite algebraic extension of the field
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K(W) of rational functions of W (cf. Prop. 3 and Cor. 6, Prop. 4).
Throughout this paragraph, we shall denote by (W*, =) a normali-
zation of W in the function field L. W* is a normal algebraic
variety in a projective space, = a proper morphism of W?* onto
W and the inverse image of a point of W by = is a finite set of
points. From Lemma 14 and from (D), we get easily the follow-
ing lemma.

LeEMMA 15. Choose y as in the Lemma 14. Then there is an
open subset U of X, containing the v{y) and a holomorphic map u*
of U into W* such that u* is of rank m=dim X everywhere on U
and that p=rou*. Hence p*(v{y)) is a simple point of W* for
every i.

By (B), (iii), the set of points on F which are equivalent to
points of @(X) contains a Z-open subset of F. Hence the set
contains the largest Z-open subset of F, which we denote by F*.
Let # be a common field of definition for F, V, =, n, W, W*, », F#
over which the equivalence relation on F is defined. We fix k
this way untill the end of this §.

Let A be the Z-closure of the graph of » on Fx W and =
the morphism (identify, =) of Fx W* on FxW. Let u be a
generic point of F over k. By Cor. 6, Prop. 4, we have FX A ()N A
=E(u)xMu), and E(b,)x \(b,) is a component of F X n(b,)NA if b,
is a point of F¥* When & x(b,) is a point of the intersection,
not contained in E(b,)x A(b,), then either A is not finite at & or
E(W)N@p(X)=0. Let I', TV be respectively the graphs of II, = and
set TI"(A)=pr (T'-«(Fx W*xTI")). Let w* wf be points on W*
such that z(w*)=A(u), =#(w&)=x1(b,). Then, Fxw* NI (A)=E(u)
xw*, and E(b,)x w§ is a component of FxwfNII"'(A). When y
is a point of X such that ¢(y)~b,, p*(») is mapped to \(b,) by =.
Assuming still that &, is in F* E(b,) is then a component of
Fx uy*(»)NTI(A). We set A¥*=I1"(A). By (B), (iv) and from
basic properties of 7z, it can be shown easily that A* is an algebraic
subvariety of Fx W*. Let A* be the Z-closure of A* in the
ambient space.

Let P be the ambient projective space of F. Then, from what
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we discussed above, it follows that A* and PXw?* intersect pro-
perly on Px W* and A*.(Pxw*)=E(u)xw*, where E(x) denotes
the Z-closure in P. E(b,)x p*(y) is a proper component of A*N
(Px p*(y)) on Px W* if b, is a point of F*

LEMMA 16. Let w* be a point of W* such that A*N(Pxw*")
has a proper component Sxw* on Px W* and that SNF=0.
Then, there is a point d in F such that S=E(d), the Z-closure of
E(d) in P. When that is so, A*N(Fxw*)=E(d)xw*.

Proof. Let d be a common point of S and F. When « is a
generic point of F over k and w* a generic point of W* over k
such that A (u)==(w*), A*-(Pxw*)=E@)xw*. Then S=E(d)
follows from (B), (iv), (v) and from the compatibility of speciali-
zations with the operation of intersection-product (cf. Shimura (I)).
In fact, let K be the algebraic closure of A(w*’) and d a generic
point of S over K. Then d is necessarily in F by our assumption.
dxw* is a specialization of uxw* over k. This specialization
extends uniquely to E(x)—E(d) ref. k on F by (B), (v),(iv). It
follows that E(d)xw* is contained in A*, and has a point d X w*’
in common with Sxw*’. Therefore, Sxw*  is contained in the
Z-closure of E(d)xw*’. On the other hand, dim S=dim E(d)=
dim E(«) by (B), (iv) and S is irreducible. Consequently, S=E(d).
Let #'xw* be a point of A*N(Pxw*') such that w’F. Then
w' xw* is a specialization of uxw* over k. Extend this to a
specialization T of E(u) over k. The compatibility of specializa-
tion with the operation of intersection-product implies that E(d)
is a component of 7. There is a generic point & of F over &k,
contained in E(x), such that («’, w*, d) is a specialization of (x,
w*, b) over k. u, b, w and d are points of F and u~b. Hence
u'~d by (B), (v). Our lemma is thereby proved.

LEMMA 17. Let F, be the set of points b on F such that | is
finite at b. Then F\ is a Z-open subset of F, defined over k and
N\ is single valued at every point of F,.

Proof. Let F’ be the normalization of F. The set of points
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on F’ where a rational map is defined is Z-open. Our lemma
then follows from this and from Cor. 3, Prop. 4.

LEMMA 18. Let A¥ be the restriction of A* on FyxxX W*. Let
D¥ be the set of simple points w* on W* such that F,xw*
N A¥ is not empty, is irreducible and that its dimension is given by
r=dim E(u), where u is a generic point of F over k. Then D¥ is
a Z-open subset of W*, defined over k.

Proof. Let w* be a generic point of W* over k such that
Mu)=n(w*). From A*.(Fxw*)=E(u)xw* and from Cor. 3, Prop.
4, it follows that A¥.-(F\xw*)=E(u)xw*. Then, it is an easy
exercise to show that DF contains a Z-open subset of W*. More-
over, this Z-open subset can be so chosen that it is defined over k.
Let ©* be the largest Z-open subset of W* which is contained
in ®F. Then D* is also defined over k. Set Y=W*—-D*, 9 is
k-closed. Let Y be a component of 9) containing a point w*’ of
D¥. Let v* be a generic point of Y over the algebraic closure
of k. Since w* is simple on W*, v* is also simple on W#*,
Then the compatibility of specializations with the operation of
intersection-product implies that A¥N(F\xv*) also contains a
component of dimension . When that is so, Lemma 16 implies
that v* is in ©¥. Denote by X’ the union of those component of
A¥N(F\xY), having the projection Y on W*. Remove from Y
the projection of (A¥N(F\x Y))—2% and the intersection of Y with
the other components of ¥, other than Y. Denote by Y, the re-
mainder. Y, is Z-open on Y. Denote by X, the restriction of ¥’ on
F.xY,. Using Cor. 3, Prop. 4, we see that there is a point d in
F, such that X,N(F\xv*)=E(d)xv* (cf. Lemma 16). Since »* is
a generic point of Y, over %k and since every component of ¥%,
has the projection Y, on Y, it follows that ¥, is the point set
attached to a subvariety of Fyx Y,. There is a non-empty Z-open
subset Y,—a of Y, such that v* & Y,—a implies the following:
(a) X,N(Fyxv*)is not empty ; (b) The intersection is irreducible ;
(c) The intersection has dimension ». When that is so, A¥N
(Fyxv*) has the same properties by the definition of Y,. Let 9’
be the union of the components of ¥, other than Y and set 9,=
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PDU(Y-Y,)Ua. 9, is Z-closed, W*—9),=D* and DD W*—-9),
DP*. Consequently, Df=D*, Our lemma is thereby proved.

COROLLARY. When v* is a point of D¥, there is a point d in
E\ such that A¥N(F\xv*)=E(d)xv*. Moreover, when b, is con-
tained in F* and y a point of X such that ¢(y)~b,, DF contains
w*(y) whenever it is simple on W*. Moreover such y exists.

The first part of our corollary is contained in the above proof
and follows from Lemma 16 and Cor. 3, Prop. 4. E(b,)xX A\(b,) is
a component of Fxx(b,)NA by Cor.6 and Cor. 3 of Prop. 4. If
we choose y as in Lemma 15, p*(y)=wg is simple on W*. More-
over, E(b,) X w¥ is a component of Fxw¥NA*. Then the rest of
our corollary follows from Lemma 16.

PROPOSITION 5. Let OF be as in Lemma 18 and D, the set-
theoretic image of it by n. Then D, is a Z-open subset of W,
defined over k. Let F, be as in Lemma 17, A the Z-closure of the
graph of N of FX W and A, the restriction of A on F,xW. When
w is a point of D, there is a point w in F, such that AN (F, X w)
=E(u)xw. When b, is in F* \b,) is a point of D,.

Proof. Except for the fact that ®, is Z-open on W, the rest
follows from the above corollary. Then our proposition follows
from the following general lemma.

LEMMA. Let U”, V* be normal algebraic varieties and assume
that U is in a projective space. Let h be a morphism of Uonto V
such that the inverse image of points of V by h consists of finitely
many points. Then the set-theoretic image of a Z-open set D of U
by h is Z-open on V.

Proof. Let k' be a common field of definition for U, V, & and
for D. Let v be a generic point of V over k& and set 27 '(v)=m(v).
When P is the ambient projective space of U, m(v) is a cycle on
P. When we extend the specialization v—v’ ref. k2 on V to a
specialization of m(v) in P, there is a finite set of cycles in P
such that it has to be one of the cycles in the set. Since V is
normal, this implies that m(¢) has a uniquely determined speciali-
zation in P over k, over the specialization v —v’ ref. k. Let A
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be the locus of ¢(m(v)) over k. Then the above arguments show
that there is a birational correspondence v between V and A,
which is set-theoretically one-to-one, and a morphism p of U onto
A such that p=wvoh. Therefore, in order to prove our lemma, we
can replace V by A.

Set Y=U—D. Denote by D’ the set-theoretic projection of D
on A by p. When &’ is a point of A, denote by n(a’) the P-cycle
with the Chow-point @’. @’ is then contained in D’ if and only
if n(a’) contains a component which is contained in D. Or, &’
does not belong to D’ if and only if the support of n(a’) is
contained in Y. The set of such & forms a Z-closed subset of
A by a well-known property of Chow-forms (cf. v.d. Waerden (I)).
Our lemma is thereby proved.

PROPOSITION 6. Let D, be as in Prop. 5. Let (8, be the set of
points a’ on F\ such that \a’) is contained in D,. Then O, is a
Z-open subset of F, defined over k. When a' is in &,, then E(a’)
is contained in S,. Denote further by A} the Z-closure on &, x D,
of the graph of the restriction of » on &, xD,. Then the following
conditions are satisfied : (i) When a’ is in G,, then A{N(G\xMa"))
=E(@)xMa'); (ii) N is single valued at every point of E(a’) and
has the value \Ma'), whenever 'S, ; (iii) When b, is in F* then
b, is in &,; (iv) When b is a point of S,, and g a rational func-
tion on F such that g is single valued and finite at b and that
there is a rational function h on D, with g=ho\, then h is defined
at n(b).

Proof. By the definition, A is single valued at &’. Hence it
is single valued at every point of E(a’) with the constant value
Ma’) by Cor. 3, Prop. 4. Hence E(a’) is contained in F, and con-
sequently in &,. (ii) is thereby proved. (i) and (iii) follow from
Prop. 5. &, is Z-open since D, is Z-open on W and A is single
valued everywhere on F,. When that is so, it is clear that &,
is defined over k. '

Let # be a generic point of F over k. Set w=xu) and w’'=
A(b). Denote by m(w) the W*-cycle = '(w). Since (W*, z) is a
normalization of W in a finite algebraic extension of the rational
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function field of W, and since W is also normial, it follows that
m(w) has a uniquely determined specialization over % in the
ambient projective space, over the specialization w—w’ ref. k.
Denote this by ni(w’). The support of this is the set of points on
W* which are mapped to w’ by . Among such points, there is
at least one point of DF by the definition (cf. Lemma 18, Prop. 5).
Therefore, from (i) and from Cor. of Lemma 18, we see that E(b)
is the uniquely determined specialization of E(u) over k, over
the specialization w—w’ ref. k, since the specializations and the
operation of intersection-product are compatible. Since (w, E(u))
—(w’, E(b)) ref. k can be extended to a specialization (w, E(u), v)
—(w’, E(b), b) ref. k, where v is a point of E(u), and since we can
take v to be a generic point of F over k, our assumptions imply
g(u)=g(), glu)=h(w) and consequently that % is single valued
at w’. When that is so, % is defined at w’. Our proposition is
proved.

COROLLARY. Assume that b, is in F*. Denote by S, , D, , N,
the Z-open subsets O,, D, and the rational map n. Let b, be
another point of F*and &, , D, , N, the corresponding Z-open sets
and rational map. Then, there is a birational correspondence T, ,,
between D, and D, determined by \,(u)—>n,(u). The graph of
this birational correpondence is Z-closed on D, x D, .

Proof. This follows from our proposition, from Cor. 6, Prop.
4, and from the fact that w—w’ ref. & on W determines E(u)—
E(b) ref. k uniquely on F,, as we have seen in the above proof.

When we sum up the results of this §, we get the following
theorem.

THEOREM 1. There are, a normal algebraic variety D, a
rational map n of F into D, an open subset U of X and a holo-
morphic map p of U onto D satisfying the following conditions :
(a) Let F* be the largest Z-open subset of F, contained in the set
of points of F which are equivalent to some points of o(X); then
there is a Z-open subset F, of F containing F* such that \ is single
valued at every point of F,; (b) When b is a point of F,, the set
E(b) of points on F which are equivalent to b is contained in F,;
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N is single valued at every point of E(b) and has the constant value
Mb); moreover, when b’ is in F, and Mb)=\b"), then b’ is in E(b);
(c) When x is a point of U, then w(x)=NMep(x)); (d) U is a G-
invariant open subset of X, and x,y of U are such that uw(x)= u(y)
if and only if x and y are congruent modulo G; (e) There is an
isomorphism between the field of G-invariant meromorphic functions
f, algebraic over K(F|R), and the field of rational functions on D
determined by f=fou; (f) When a G-invariant meromorphic func-
tion f, algebraic over K(F|R), is holomorphic at a point x of U,
the rational function f is defined at u(x); (g) When g is a rational
function on F such that there is a rational function h on D with
g=hox and that g is finite at a point b of F,, then h is defined
at \(b).

CoroOLLARY. If (B) is satisfied by (X, Z) instead of (B), then
we can take U=X and F, to be the set of points on F which are
equivalent to some points of p(X).

§ 7. In this paragraph, we assume that (X, Z) is an analytic
family of non-singular varieties in a projective space, satisfying
(A), (B), (C) and (D). Let k, be the smallest common field of
definition of F and the equivalence relation of F. We fix k, and
all fields we shall consider will be assumed to contain k,.

Let b, be a point of F, (cf. Th.1) and ®,, &,, A, the Z-open
sets and the rational map constructed in Prop. 6 with respect to b,.
®, contains b, (Prop.5). Let b, be a point of F,—®,. Because
of the axiom (C’), Cor. 6 of Prop. 4, Prop. 5, Prop. 6 and it Corol-
lary, it is possible to construct ®,, &,, A, for b, such that &,
contains &, and that ®, can be identified as a subset of P, by an
isomorphism. When that is so, there is a positive integer s such
that &,=F,. Therefore, we get the following theorem.

THEOREM 2. When (X, Z) satisfies (A), (B'), (C'), (D), then D
in our Theorem 1 can be taken so that it is a locally Z-closed
subset of a projective space. Moreover, U can be taken to be X and
Fy can be taken to be the set of points of F which are equivalent
to some point of p(X).
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Moreover, when we apply Weil's result on the field of defini-
tion of an algebraic variety (cf. Weil (IV)) and Th. 1, Th. 2 to our
situation, we immediately get the following theorem.

THEOREM 3. Under the same conditions as stated in our
Theorem 2, D in Th. 1 can be taken to be a locally Z-closed novmal
algebraic variety defined over k, in a projective space and N a
morphism defined over k,.

THEOREM 4. With the same notations and assumptions as in
Theorem 1, let k be a common field of definition of F, ® and
over which the equivalence relation on F is defined. Let u be a
point of F. Then k(\(u)) is the smallest field, containing k, satis-
fying the following condition: When L is a field, containing k, u’
a point of E(u’) and o an L-isomorphism of L(u’), then a(u’)~u.

Proof. This follows easily from (B').

When we consider the deformation of algebraic varieties, then
we consider usually all possible projective embeddings of members
of the family % by ample polar divisors. For instance, in the case
of Example 2, we consider all possible embeddings of polarized
complex tori. Then usually, the following situation arises. There
is aset § of non-singular polarized varieties in projective spaces
such that ¥ contains ¥ as a subset. Moreover, and equivalence
relation is defined on %, usually in terms of isomorphisms of
members of &, and this equivalence relation induces the equival-
ence relation on ¢ stated in the axiom (B). In this case, we
further have the following theorem.

THEOREM 5. Assume that (X, Z) satisfy (A), (B), (C), (D) and
that § satisfies the following two conditions: (i) There is a sub-
field k* of k, such that, when o is a k*-automorphism of the field
of complex numbers, A, BEF, A°=F, A~B imply B*°cT and A*~
B®; (ii) When P is the ambient projective space of members of F
and ' an algebraic family (absolutely irreducible) of non-singular
varieties in P which contains a member of K, then I is contained
in 5. When we take ® and N\ as in Theorem 3 and u a point of
F,, then k(\(u)) is the smallest field, containing k*, satisfying the
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Sfollowing property (M). (M): Let L be a field, containing k¥, and
o an L-automorphism of the field of complex numbers. Then there
is @ member A of % satisfying A~A, (A)€Eu), A*=%. Moreover,
when B in F satisfies A~B with respect to this A, then B~B°.

Proof. From (i) and Th. 4, the field k(N\(u)) satisfies the
condition (M). Let L be now a field satisfying the condition (M)
and o an L-automorphism of the field of complex numbers. Let
A be a member of § such that A~A, «(A)eE(n), A*c%. From
(i), it follows that A®~A® A°c®. When we denote by ¥ the
algebraic family determined by %?, then A® is a member of F”.
Comparing dimensions and using (ii), we get §*=%. Hence from
(i), it follows that L contains k,. From (M), it follows that
A®~A. Consequently, a leaves E(«) invariant. This implies that
o leaves every element of k(Mu)) invariant. Our theorem is
thereby proved.

It would be clear how we apply this theorem to the question
of the field of moduli. Therefore, we shall not go into the detail
of it, except to mention the following. In the case of the para-
modular family of polarized Abelian varieties, Theorem 5 shows
that the field of moduli of a polarized Abelian varieties over @
is generated by the special values of paramodular functions.

Brandeis University.
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