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In a series of papers [3],---,[7] a theory of connections of
Finsler spaces has been developed from the standpoint of fibre
bundles. Let P(M, =, G) be the bundle of frames over a differ-
entiable manifold M, and B(M, +, F, G) be the tangent bundle over
M. The Finsler connection is defined in the induced bundle @
from P by the projection = of B, and many concepts about con-
nections of Finsler spaces are generalized and systematically
treated.

On the other hand, the differential geometry of tangent
bundles has been studied by several authors. S. Sasaki [12], [13]
introduced a Riemannian metric into tangent bundles of Rieman-
nian manifolds in order to study the behavior of geodesics. K.
Yano and E.T. Davies [16] generalized the notion to the case
where the base manifold has a Finsler metric. T. Nagano [9]
and P. Dombrowski [1] defined the natural almost complex and
product structures on tangent bundles. Recently, K. Yano and
A.J. Ledger [17], [18] investigated linear connections on tangent
bundles and showed that it is possible to obtain some interesting
connections from a connection on the base manifold.

The purpose of the present paper is to develop synthetically
the differential geometry of tangent bundles from the viewpoint
of Finsler connections. Thus, connections, metrics and other
structures of tangent bundles may be regarded as a part of con-
tents of the Finslerian geometry.

The terminology and signs of previous papers will be used
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in the following without too much comment. The theory of
Finsler connections from the standpoint of fibre bundles were
published systematically in Seminar Note 4 [8] in Japanese.

§1. Linear Finsler connections

Let P(M, =, G) be the bundle of frames over a differentiable
n-manifold M, where G is the general linear group GL(»n, R), and
7 is the projection P— M which maps a frame p at a point x&M
into x. It is well known [2], [10] that a linear connection T in
P is a distribution peP—T, such that

1. P,=T,+P; (direct sum),
2- Egzp = Eﬁg ’

where Pp is the tangent vector space of P at a point p, P; the
vertical subspace of P,, and K, the right translation of P by an
element g=G. If we denote by G the Lie algebra of G, the
connection form w of the above connection I is a G-valued I-form
on P, which is defined by equations

1. oF(A)=A,
2. wX =0 (Xen),

where F(A) is the fundamental vector field on P corresponding
to AeG.

Let B(M, , F, G) be the tangent bundle over M, where F is
the real vector n-space, and + the projection B— M which maps
a tangent vector X at xM into x. Throughout the present
paper, we take a fixed base (¢,), a=1,-+,n, of the vector space
F. Then, a matrix g=(g$)eG operates on F by the rule g-e,
=g%,. On the other hand, a frame p=(p,)=P is regarded as
an admissible mapping F—B which maps f=f%¢,F into the
tangent vector pf=(p,f)er'z(p). If f&F is then fixed, we
obtain a mapping «,:P—B such that peP—pf. By means of
this mapping, the associated connection H with the linear con-
nection I' is naturally defined in B by the equation

1.1 H,=xT, (b=pf).
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Now, we consider the induced bundle r'P=@Q(B, =z, G) over
the total space B of the tangent bundle, where the total space @
is the set {(b, p)eBx P|7(b)==(p)} [3]. The projection 7z is such
that #(b, p)=>, and further we have the induced mapping »:Q —P
which maps g¢= (b, p) into p.

In previous papers [3], [4], we gave a notion of a Finsler
connection (I'*, I'¥) in @ such that

Q,=T:+T0+Q; (direct sum),
2. Rgl-‘g = T‘Zg, Rgrz = Fgg ’
ﬁrz = g )

where €, is the tangent vector space to @ at g, @, the vertical
subspace of Q,, B, the vertical subspace of the tangent vector
space B, to B at b, and R, the right translation of @ by ge&G,
namely, Ry (b, 9)=(b, R()=(b, 12).

We shall show how to obtain a special Finsler connection
from a linear connection I" in P. First of all, from the connection
form @ of T and the induced mapping », we define a G-valued
I-form » on @ by the equation

1.2) ©0=wy.
It is easy to verify that o satisfies conditions of a connection form
on @, that is,

1. wFA)=A4,

2. oR,=ad(g o,

where F(A) is the fundamental vector field on @ corresponding
to AcG. Therefore, we obtain a connection I" in @, whose con-
nection form is the above w. We denote by /, the operation of
lift with respect to the connection I', and define

1.3) T* = I,H,, T%=1B.

Then, it is obvious that the pair of distributions (I'*, I'*) as thus
obtained is a Finsler connection in €, which will be called the
linear Finsler connection derived from the linear connection T.
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In the following, we shall find certain special properties of
the linear Finsler connection. It follows from (1.3) that

(1. 4) =T = H,,

which means that the nonlinear connection [3] induced from
(T*, T*) coincides with the associated connection with the original
I'. Next, we shall show the equation.

(1.5) B (f)e = E;B(f),  (a=(fs, D)),

where B(f) is the basic vector field on P with respect in T, cor-
responding to feF [2, p. 119, the standard horizontal vector
field], [10, p. 497], while B*(f) is the #A-basic vector field on @
with respect to the linear Finsler connection [3]. And the map-
ping &, : P—@Q is such that peP—(pf,, p).

Proof of (1.5). Denoting by /{ the operation of life with
respect to the nonlinear connection H, the A-basic vector field
B(f) is defined by B*(f),=l;pf at ¢g=(b, p). From the defini-
tion of the linear Finsler connection, it follows that /j=x,/ , at
b=pf,, where [, is the operation of lift with respect to the
original linear connection I'. Thus we see first

(1.6) B¥f)q = lars B(S),, .

On the other hand, we get //l/” Q
2E, B, = w7 B, P l 7

and further, by means of (1.2), 1’111 - ”/P
ot B(f), = wB(f), = 0. hedt

Therefore (1.6) gives (1.5).

It follows from (1.5) that
(L.7) 7B"(f)e = 7, B(f),
1. 8) 7B"(f)s = B(f),

In terms of canonical coordinates (x¢, p2) of P and (x¢, &%, pi) of
Q [3], basic vector fields B(f) and B*(f) are written in the form
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B = 10l —pinsils)

A, .0 ; 0
B (f)=f“ '<——FJ,~—_— fF-";—),
(f) fpa ax‘- ab] [l 6pl§

1.9

where TI';%(x) are components of the connection parameter of T,
while F//(x, b), F/*(x, b) components of connection parameters of
(r* T*). Hence we have
ar | : 0
B(f)=r" ;(—.—b’T S === ’L‘-k,-—).

Efo (f) f oxf k ab’ b=j ap:
Thus the equation (1.5) gives the relation between those com-
ponents of connection parameters as follows :

1.5) Fiy = b i [x),  Ffp=T;jux).

7

Next, as to a v-basic vector field B’(f), we shall show the
equation

(1. 10) 7B (f) = 0.

B’(f) is defined [3] by the equation B*(f),=l,pj,f at q, where
» is the differential of the admissible mapping p, v the character-
istic field @ = F such that ¢=(b, p)—p7'b, and j, the so-called
parallel translation F—F, (= the tangent vector space to F at f).
The above (1.10) will be easily verified from the fact that pj,f
is vertical and #/,=/r.

Let 6 be the basic form on P and #* be the A-basic form on
@, which are defined by 6,=p7'z and O;=p"'r=, g=(b, p). It is
obvious that

(1.11) 0" = 6.

Now, we consider covariant derivatives. Let #*X be the I'*-
component of Xe@,, and then we have »k*X=7B*0*X)=B(07X)
= hnX, where AnX is the horizontal component of »X& P ,+ There-
fore it follows that

D*o» = doh* = dgmh" = th’? = Q7n,

where Q is the curvature form of the original connection I', while
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D'o=Q" is by definition the A-curvature form of the Finsler con-
nection. Hence we obtain Q*=Q». On the other hand, as for
the T'"~-component, it follows from (1.10) that 72X =2B"(0"X)=0,
where 6” is the v-basic form [3]. Referring to this equation, we
have Q’=0 and Q*=0.

Similarly, about A-torsion forms @®* @ and @™? we have
O®Wr=@n and " =0, where © is the torsion form of T, while
O®? vanishes from the first.

Finally, in order to obtain v-torsions of the linear Finsler
connection, we shall first show the following lemma.

LEMMA [8, p. 105]. If a Finsler connection satisfies condi-
tions F and C,, its v-torsion tensors R', P' and S' are given by
equations

Rl(fn fz) = _F(Rz(fn fz))'Y» P](fn fz) = _F(Pz(fn fz))'y’
S'(fi, fo = —F©S(fo, )y, (fi, LEF),

where R?, P* and S* are h-, hv- and v-curvature temsors respec-
tively, «v is the characteristic field on Q, and F the symbol of
constructing a fundamental vector field.

Proof. We shall remember the dual equations of structure

[3, 1.4)]:

[B*(f), B f)1=F RS, £))+ BT (f,, £))+ B (R'(f1, 12)
(1.12) [B"(f), B'(f)1=FP*(f., £))+BNC(f,, L))+ B (P'(f1, f2)»
LB°(f0, B*(f)1=F(S*(f, f2) +BY(S*(f1, £.) -

According to propositions given in [4], the condition F is that
B*(f)y=0, while the condition C, is that B"(f)y=f. Hence,
Lemma is immediately proved from (1.12).

We now return to consideration of a linear Finsler connec-
tion. The definitions of conditions F and C, are that o I;=H,
and o I;=0 respectively, where o, is the mapping @ —B such
that ¢=(b, p) —pf for a fixed f&F. Therefore it is clear that the
linear Finsler connection satisfies both of conditions F and C,, and
thus its v-torsions are given by Lemma.

Summarizing above results we obtain
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PROPOSITION 1. Curvatures and torsions of the linear Finsler
connection derived from a linear connection T are given by equations

curvatures : R*(f,, f,) = R(f,, f»), P*=0, $=0,
h-torsions : T(f., f,) = T(f,, f,), C=0,
v-torsions : Rl(fn fz) = _F(B(fn fz))')'y P = 07 St = 0’

where R and T are the curvature and the torsion of the original

connection T respectively.

In terms of the canonical coordinate (x¢, &), the above equa-
tion Rl(fl; f2)= _F(E(fl’ fz))'y are expressed by

Rz, b) = bRy (%)

where R, and R).;. are components of R' and R respectively.
In the following we shall consider frequently the famous
Cartan’s connection of Finsler space. In this case, we have shown
in a previous paper [7] that the (%)/Z-torsion 7 vanishes identi-
cally, and the (%)kv-torsion C coincides with the symbol C used
by Cartan, while (v)%- and (v)hv-torsion R', P' are given by
equations of Lemma, and the (v)v-torsions S* vanishes identically.

§ 2. Connections of a Finsler type on tangent bundles

We consider the bundle of frames P’(B, =/, G’) over the total
space B of the tangent bundle, where G’ is of course the general
linear group GL(2n, R). Let F’ be the real vector 2n-space, and
then F is identified with F'x F. Let us recall the fixed base (e,)
of F in §1, and then ¢,=(e,, 0) and e¢/,,=(0, ¢,), a=1,---, n, con-
stitute a base of F’, where indices with parentheses will run from
n+1 to 2n throughout the remainder of this paper. The above
identification F'x FF— F’ will be denoted by p. Then, a 2rn-matrix
g'=(g’3)eG’ operates on F’ by the rule g’-ei=ghe}, where Greek
indices run from 1 to 2x from now on.

First of all, we shall establish a homomorphism (&, @) of the
bundle @ into P’. Let us define the mapping ¢:G—G’ by the
equation <p(g)=<g 0), geG. Next, corresponding to the fixed

g
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base (¢,) of F and the Finsler connection under consideration,
there are k- and wv-basic vector fields B’=B"*e,), B,=B"(e.,),
a=1,-,n. These 2n vectors span the horizontal subspace I'*+T"
at each point of @. Hence
pt{l = TT(BZ)q ’ p(a) = 7?(32) )

form a frame p'=(p,, pls,)EP’ at the point b==(q)eB. There-
fore we obtain the mapping ®:Q — P’ such that ®(gq)=p’. The
equation #'®=# obviously holds. According to the fact that
R.B¥(f)=B*g™'f) and R,B'(f)=B'(g™'f) [11, (3.2)], it is seen
that ®(¢) p(g)=®(gg). Consequently, we obtain the bundle homo-
morphism (®, ¢).

It is well known [2, p. 76], [ 10, p. 36] that the homomorphism
(®, @) gives a connection IV in P’ from the Finsler connection
I'=(T*T" in @, which is defined by the equation IV,
=®d(I%+T%), and, at a point p’ which does not belong to ®(Q),
the horizontal subspace is obtained from IV4, by the suitable
right translation from a point in ®(g). The TV as thus defined
is called the connection of a Finsler type derived from the Finsler
connection I'=(I'*, '),

A point p’e P’ is regarded as an admissible mapping F'— B’,
where B’ is the total space of the tangent bundle over B, similar
to the case of the bundle of frame P over M. Especially, for
ge® and f,, f,eF, we have

@.1) Q) p(f, f) = =(B()+B(f)),
which is easily verified by the definition of the mapping &.

PRrOPOSITION 2. Let F'(A’) be a fundamental vector field on
P’ corresponding to A'eG’ (the Lie algebra of G'), and &' be the
basic form on P’. Further, let o' be the connection form of the
connection of a Finsler type, and B'(f’') be the basic vector field
on P'. Then we have
(2.2) DF(A) = F'(pA), 2.3) P =,
2.4 0D = po", 67, (2.5) @B"(f) = B/(p(f, 0)),

2.6) @BYf) = B(p(0, /).
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Proof. (2.2) will be easily proved. In order to show (2.3),
consider the G’-valued I-form a=w'®—@w on Q. According to
(2.2) we have aF(A)=0 for any AcG, and further, from the
definition of I, we have aB*(f)=0, aB’(f)=0 for any fe&F.
Hence we obtain a=0, which is (2.3). Next, we are concerned
with (2.4). For Xe@,, we have

0'D(X) = D(g)"7'D(X) = @(g)"'7(X)
= ®(q)"'=(B*0"X)+ B"(6"X)) ,

and hence (2. 4) will be obtained in consequence of (2.1). Finally,
it follows from (2.4) that

0B f) = p(0(B*(f)), 0°(B(f)) = p(f, 0),

and it is clear that ®B*(f) is horizontal with respect to the con-
nection IV. Therefore we establish (2.5), and (2. 6) similarly.

In order to obtain the expression of the covariant derivative
A%Y with respect to the connection I'V in terms of the one with
respect to the Finsler connection (I'*, T'*), we need following con-
siderations. We first treat a classical vector field X of a Finsler
space. It is well known that X depends upon not only a point
XeM but also an element of support x/, and hence X is not
regarded as a tangent vector field to M. It is also obvious that
X is not considered as a tangent vector field to B, because a
tangent vector to B has 2z components. Thus, it is natural that
X should be regarded as a mapping @ —F such that the equation
XR,=g X holds for any gG [8, p. 68], (cf. [10, p. 53, Lemma]).
In the following, we shall adopt this point of view.

Then, let us construct vector fields X= and X~ of the Finsler
space from a tangent vector field X to B, which are mappings
Q — F defined by equations

2.7) X=(q) = 0",X, X*(q) = 0I,X,

at a point g€@Q. X~ and X are called Finsler h~ and v-vector
fields derived from X respectively.

Next, given a tangent vector field X to the base manifold M,
we obtain the horizontal lift X* and the vertical life X* with
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respect to the nonlinear connection H [1], [12], [14], [16], [17].
The horizontal life X* is nothing else but the life /;X, while the
vertical life X¥ is naturally defined by
(2.3) X3 = pisp7X  (y=p7"D),

where p is the differential of the admissible mapping pe=~'r(d).
It is easy to show that the above definition does not depend upon
the choice of p. Then, Finsler vector fields derived from the
horizontal and the vertical lifts of a tangent vector field X to M
are obtained as follows:

2.9 (X" =0, (X" =0,
(2.10) (X%~ = (X")*=p"X  at a point g=(b, p),

which are easily verified from definitions of 8* and 6°. Moreover,
it follows from (2.1) that

(2.11) (@p(fi, £)) = Fir (®@p(fis L) = fo.

We now are in a position to be concerned with the covariant
derivative A%Y, where X and Y are tangent vector fields to B.
(A%Y), is by definition equal to p’- X*(§'Y*), where p’ is a point
of z/7'(b) and X*, Y* are lifts of X, Y respectively with respect
to the connection IV. Since we can take p'=®(q), gz '(b), we
have

(A%Y), = D(q)- DL, X(O'PLY).

It follows from (2.4) and (2.7) that
= @(g)+(BHX")+B"(X))(p(Y~, Y4)).
Consequently we have from (2.1) that
(2.12) ALY = =] BY((BXX ")+ B(X )Y ")
+B((B(X)+B(X)YH)].

Or, according to (2.11), we have
(2.13) (A%Y)™ = (BH(X")+B"(X")Y~,

(AKY)" = (BH(X )+ B(XH))Y™*.
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We shall consider the covariant derivative in the special case
where the connection TV is the connection of a linear Finsler type,
that is, the one derived from the linear Finsler connection. First
of all, putting X=X* Y=Y"* where X and Y are tangent vector
fields to M. Then it follows from (2.9) and (2.12) that A%Y

—zB"B(X")Y~), and hence from (2.10) that
AKY = =B{(Bp7X)p™'Y) = =B B6LX)(6LY)7).
Then, it follows from (1. 8) that
= =zB{BOIX)01Y) = =BY(p™'AxY) = I'AxY,

where A denotes the covariant derivative with respect to the
original linear connection I'. Thus we obtain Ak»Y"=(AxY)"
In case of X=X* Y=Y" and so on, we may proceed in the

similar manner, and thus following equations are obtained :

A/ Yh= Yh, A,"Yh:();

@2.14) X' (A’—‘—), 202
AxrY” = (AxY)", AxrY*=0.

Finally, we shall be concerned with the torsion 7” and the
curvature R’ of the connection I'V of a Finsler type. Those tensors
will be derived from the dual equation of structure

2.15) [B(f0), B = P(R(fL, £4)+B(T(f1, £9).

In this equation, taking f,, f/,€F and putting fi=p(f,, 0),
fi=p(f,, 0), the left-hand side at a point p’=®(g) is written in
the form [®B*(f)), ®B*(f,)]1=®[B*(f.), B*(f,)] in consequence of
(2.5). Therefore, according to (1.11), we first obtain R’p(fl, 0),

p(f,r 0)@=pRf,, f,) and  T/(p(fi, O, p(fr 0))@=p(T(f:s £,

R\(f, f,)). By the same way on taking f{=p(f,, 0), f5=P(0, f.),
and so on, we conclude that

R/(p(f) 0), p(f2r 0)@ = @RSy, £,
2.16)  R'(p(f1, 0), PO, £))® = @PX(f., f),
R'(p(0, f1), PO, £))® = @S*(fi, )

and
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T'(p(f1, O), p(for O)@ = p(T(fs, £, R(fis 1)
@17y  T(p(f.s 0), P(0, £))® = p(C(f,, £, PY(fus 1)
T'(p(0, £2), P(0, )@ =p(0, S'(f,, £))-

We shall treat the torsion 77 in detail. Equations (2.17)
giving the torsion 7’ are written in the concrete form
T,bac = Tbac ’ T/b(a)c = Rbar ’ T/ba(c) = Cbac >
T’b(a)u) = Pbac ’ T/(b)a(c) =0, T/(b)(a)u) = Sbac ’
where it should be remarked that left-hand sides are components
of T’ with respect to the frame p’=®(q), while right-hand sides
are components of torsions of the Finsler connection with respect

to the frame p=7x(qg). If (x¢, p.) is the canonical coordinate of p,
the canonical coordinate (x?, b%, p’3) of p’ is as follows:

(2.18) plh=0pi, PV = —DiF';, P& =0, PQ3=1:.

The inverse matrix (') of (p’) is given by

(2.19) pre=p, pUC=pEL, pUGE=0, pUB=p7%.
Therefore, for example, components 77, of T’ with respect

to the canonical coordinate are obtained by the following com-
putation :

le(i)(k) — T/ﬂwyp/(‘i‘)p/—lgp/—l(-’ya)
= T ot C 750 R+ T Pt &b 507 ®
Tt 3 079 7'
Cl (—peFDp b e+ Pl pip™507"%
+ S DD )P
= ——CjIkFi1+Pjik+SlikFlj ,

Il

where C/,, P/, and S/, are components of torsions C, P' and S*
respectively with respect to the canonical coordinate. Thus, com-
ponents 77,%, of the torsion 77 with respect to the canonical
coordinate (x'*)=(x¢, b’) are given by equations
(2.20) T'j,= T;/e—Ci'F';+C/Fy,
T/j(i)k _ i;k_ lekFil_l_ShithjFlk
+ (Pt = CF i )F  — (P — C i) F Y
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v : . : ; . .
Tj‘(k) — Cj’k , T,j(’)(lz) — Pj‘k_ jlle'l'l—SI'kFlj ,

;. S o o
T =0, T 5P = Sie -

In case of the connection of a linear Finsler type, it follows from
Proposition 1 that components of the torsion tensor 7’ vanish
except 177 (=Tj,) and T',,=b'(R};s—T;"+L/s). Therefore the
connection of a Finsler type derived from a Finsler connection is
not symmetric even if the original connection be linear and
symmetric, and it seems undesirable to leaves something as it is.
In the next section, we shall consider a symmetrization of the
connection.

§3. A generalization of the connection of Yano and Ledger

Let T',», be connection parameters of a connection I" on a
differentiable manifold, and 7,%, be components of the torsion
tensor T of the connection, that is, 7, =T, —T.%.. Then we
obtain the symmetric connection I'*, whose connection parameters
T*,} are given by the equation I'**,=T,*,—47,%. This symme-
tric connection T* will be called the one obtained from T' by
canonical symmetrization.

In this section, we shall be concerned with the connection I'*
in P’, obtained from the connection IV of a Finsler type by canonical
symmetrization. Therefore connection parameters I'*,*, of the
connection T'* are defined by the equation

B3.1) T*A=T2— % TN,
where 77 is given by (2.17). Then, it is well known that any
symmetric connection in P’ may be obtained by adding to T'*},
a symmetric tensor of (1, 2)-type.

In order to study the property of the connection T'*, we shall
be concerned with the covariant derivative A%Y with respect to
T*. The equation

3.2) ARV - AS;Y+%T'(X, Y)
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will be obtained immediately, where 77(X, Y) as usual is the
tangent vector to B which is given by the equation 77(X, Y),
=p'-T'(p7'X, p7'Y) at beB, per’"'(b).

Let us treat (3.2) in detail. If we take tangent vectors X
and Y to the base manifold M, and put X= X" Y=Y*% and if
we consider the point p'=®(q), gz '(b), we have from (2.1)

D) ' X" = D(q) 7l X" = p(0",X", 0) = p(p7' X, 0).
Therefore, as a consequence of (2.17), we obtain

T/(X", Y*) = ®(q)T'(p(p7'X. 0), p(p7'Y, 0))
= o(@p(T(p7'X, p7'Y), R(p7'X, p7'Y)),
and it follows from (2.1) that

= #(BAT(p7'X, p'Y)+ B'R(p7'X, p7'Y)))

=Lp-T(p7'X, p7'Y)+0-,R(p7X, p7'Y).
Similarly to the case of 77, let us write T(X, Y)=p-T(»7'X, p7'Y),
and RY(X, Y)=p-R(p7'X, p7'Y), and thus the equation A%»Y”
=AY+ 3((T(X Y)Y'+(R(X, ¥))") will be obtained, where
superscripts # and » were introduced in §2. Thus, and by the
same way, we shall obtain following equations:

ApY* = A Y+ L (T NP+ (R, V)),
ABrY? = A Y7+ %((C(X Y)Y+ (P Y)Y,

& APY* = Ao Y+ (=€ XV —(PUT, X)),
AfY" = MY+ (S 1))

We shall treat the special case where the connection of a
Finsler type is linear. According to (2.14) and Proposition 1,
above equations are reduced to
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AB Y = (ég%l‘(_x, V) +(RX Y)v) .
(B.4)  ABY’ = (AxY),
ApY" =0, AfY'=0.

Thus we know that the canonical symmetrization T* of the connec-
tion of a linear Finsler type coincides with that of Yano and Ledger
[17], and hence we shall call T* the generalized Yano-Ledger
connection.

Remark. We should pay attention to the difference in alge-
braic signs between the first of (3.4) and (14) of the paper [17].
If we denote by T',, T/, and R, symbols used in the reference

(¢2) @ @

book [2], instead of our I'j,, T/, and Rj,, we obtain I/,
=T, T/,=—T;,, Rin=—Riu, according to [2, pp. 143-145],
)

@ @ B

(cf. (1.9) of the present paper). Therefore we have T(X, Y)
=—TX Y), RX, Y)=—R(X, Y), Moreover, according to
@ @

symbols used in [17], we have R(X, Y)= ~(I_i’(X, Y)'y)” by means
of the equation (7) of [17]. Consequently we find that the above
(3.4) coincides with (12), (13), (14) and (18) of [17] entirely.

§4. The lifted Riemannian metric

We have studied, in preceding sections, connections on the
tangent bundle arising from Finsler connections, and a Finsler
metric, however, was not under discussion. Now we suppose that
a Finsler metric function L be given. Let G be the usual Finsler
metric tensor defined by L. Then, G is a tensor field of (0, 2)-
type, which is regarded as the mapping Q@ - F*®QF* (tensorial
product of the dual space F* of the real vector n-space F) [7],
[8, p. 106]. If we take Finsler vector fields X, Y:Q—F, then
the value G(X(q), Y(q)) is called the scalar product of X and Y
at a point g€, or, more precisely, the one with respect to the
element of support b==q. Thus the value [G(X(q), X(g))]t is
called the Finslerian length.

Let X and Y be tangent vector fields to B, and then Finsler
h- and v-vector fields X=, X*, Y=, Y+ are given by the rule
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(2.7). Then the equation
4.1) G(X,, Y,) = G(X~(g9), Y (@)+G(X (), Y*(0)), a=(b p)

gives a tensor field G of (0, 2)-type on B. It is easy to show
that G is well defined by (4.1) and does not depend upon the
choice of g7 . From the property of G, it follows that G is
symmetric and positive-definite. Therefore, if G(X,, X,) is
defined as the scalar product of X and Y, and further [G(X,, X,)]?
as the length of X, we have a Riemannian metric G on B, and
thus the tangent bundle B over the manifold M is a Riemannian
manifold of 2# dimensions [12], [16]. The tensor G as thus defined
will be called the /lifted Riemannian metric.

Let g,, and g, be components of tensors G and G with
respect to frames p=7n(g) and p’'=®D(q) respectively, and then we
have from (4.1)

4.2) Zav = 8abr Ba» =0, B> = Las -

Moreover, let g;; and g be components of G and G with respect
to canonical coordinates respectively, and then we obtain

8ij= 8ij+8&uF* F!;,
Gip=F* 8o Gy = &ij-

Returning to the connection IV of a Finsler type, we shall
find the covariant differential of the lifted Riemannian metric G

with respect to this connection IV. For this purpose, we first
define mappings p,, p,: F’ — F as follows:

p(f%) = ['eq, PASf'%€]) = [ Ce,,
and denote by p¥, p¥ their dual mappings. The lifted Riemannian
metric G is considered as the mapping F’— F*QF'* such that
GfL, =G f{, p'fhep for p’eP’ and f{, ft=F’. Let us
take specially p'=®(g). Since @(q)f'=D(q)r(P.(f"), PLS")), we
have from (2. 11) and (4. 1)
G(@@))f1, £5) = G, pFD)+G(pL D), PLSE)).

Hence, by using tensorial product of mappings, we obtain the

(4.2)

equation
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(4.3) GD = pf Rp¥G +p¥ QPG .

Now, it follows from (2. 5) and (2. 6) that

A'G = dG(B'(e})) Qe = BAG®)®¢e* + BYGD)Re' @,

and from (4.3) that

= Barf ®p¥G + p§ QpEG) Q¢ + Bi(r¥ @t G + pF QpFG) e’ .
According to definitions of %~ and v-differentials A%, A" [3], we
thus establish
(4.4) A'G = (pf @} ®prF + pF QP Q¥ A'G

+(P¥ Q¥ ®pF + p¥ RPF QP A'G .

In terms of components with respect to frames p=7x(q) and

'=®(q), (4.4) is expressed in the form

Gavic = Baxpric = Bavle »
(4.4) avicor = Barwricor = Zasle

Zawric = awricor = 0,
where semicolons mean the covariant differentiation with respect
to IV, and g,;., £.s/. are Finslerian convariant derivatives, that is,

Bavle = gijlkpfzp{;pf s Zasle = gijlkpipipﬁ ’

0g:; 0g:;
gijix = WZ—W;FIk_gljFilk _giIFjIk;

08, It 7
giile = W—gljci e—8&iCJle .

Next, we shall investigate the covariant differential A*G with
respect to the generalized Yano-Ledger connection T'*. First, for
any f1, f%, f5€F’, we have from (3.1)

A*G(f1, fi, f3) = AG(A, fi, f5)
+ (T4, fo PO+ T4 S5 1),
where we put T4(f{, f4, f=G(#"-T'(f{, f4),0'-f4), that is,

Thaw=28.T'\, in terms of canonical coordinate. If follows from
(4.1) that
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Tl f1s i, 5 = G((0"- T'(FL, £9)s (07 F5))
+G((p"- T(SFL IS (/-3
Putting p'=®(¢), and paying attention to (2.11), we have
(#-T(fL, FO) = T(fL, £3), and (2~ T(FL, £ =P, T(f%, f5)

Therefore we obtain from (4. 4)
N*G(FL, fh, 3
= AG(p(F1), PAFE) PASFR)+AG(pF1), PASE, PASH)
+AG(p(F1) PLSE), PLIR)+AG(pLF1), PASE), PLSH)
+ LG T, £, pFD+GOTF4, £0) 2D
+G, T (f1, 14, PofD)+G@,T(f4, F5), P.SY)) -

Especially, if we take p(f, 0), p(0, ), instead of f’F’, it follows
from (2.17) that

A*G(p(f1, 0), P(f, 0), P(fsy 0))

= NG,y for £+ (T For For £+ T for £20 1),
A*G(p(f, 0), P(f2r 0), P(0, S))

= NGUfor for £+ 5 (CulFir For FITCl S fir £),
A*G(p(fir 0), (O, f), P(Sfi, 0))

= H(RU s S F)=Cil s 110 1)),
A*G(p(f:, 0), P(0, £,), PO, £3))

— LPUSu fur £,
A*G(p(0, £) PO, £.), P(fs, 0))

= AGC(for fur =5 (PU s fos L)+PU Sy or 1),

A*G(p(0, £, PO, 1), P(0, £3)
= NGfoy fur £+ (SUSe For FO+SU S fir 1),

(4.5)

(4.6)

where we used covariant torsion tensors
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Cujir = &C'%s Tajir = Ty,
Ryiin = 8uR'ws Puije = &iPi'es  Swiju = &:uSi'e -

We now consider the Riemannian connection I" in P derived
from a Riemannian metric G on the base manifold M. From the
connection I, we have the linear Finsler connection (I'%, T'”) by
the method as shown in §1. Therefore, we obtain the connection
of a linear Finsler type I'’ in P’ derived from (T'*, T'”), which will
be called the connection of a Riemannian type. As have already seen
in § 2, this connection is not always symmetric, and, however, we
obtain the generalized Yano-Ledger connection IT'* by the canonical
symmetrization. The symmetric connection I'* will be called the
Riemannian Yano-ledger connection. On the other hand, since we
have the lifted Riemannian metric G from the Riemannian metric
G, the Riemannian connection T is defined on B. Thus, we have
two symmetric connections T* and T. It is obvious that, with
respect to T, the covariant derivative of G vanishes identically.
Besides, it is easy to see from (4.6) that there are non-zero com-
ponents -of the covariant derivative of G with respect to the
Riemannian Yano-Ledger connection T'*, that is, Z.cxe=1%7 Resac,
where * means the covariant differentiation with respect to T'*.
Consequently we obtain

PROPOSITION 3. The Riemannian Yano-Ledger connection T*
derived from the Riemannian metric G coincides with the Riemannian
connection with respect to the lifted Riemannian metric G if and
only if, the base Riemannian manifold M admits an absolute
parallelism.

§5. Almost complex structures on tangent bundles

We now return to consideration of a Finsler connection
(I'*, T*) in the induced bundle @ over the tangent bundle B. On
the total space @, there are three kinds of essential vector fields,
that is, the fundamental vector field F((A), corresponding to A=G,
which is vertical, and two kinds of basic vector fields B*(f) and
B(f), corresponding to feF, which are /.- and w-horizontal
respectively.
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Let us define a tensor field J of (1.1)-type on @ such that

(6.1) JF(A)=F(A), JB"f)=B'(f), JB'(f)= —B"f),

If we take a tangent vector Xe@,, X is decomposed, with re-
spect to the Finsler connection, as follows:

X = F(oX)+B"0"X)+ B"(0"X),

where o is the connection form, and 6* 6" are k-, v-basic forms
respectively. It follows from (5. 1) that the action of J is given by

JX = GloX)—B"(0"X)+ B"(0"X) .
As for those forms w, 6 and 6, it is easily proved that
5.2) o] =w, OJ=—-6", 6°]=0".
Further, as for the right translation R, of @ by g=G, we have
(5.3) JR,=R,J.
By a direct computation from (5.1), we obtain the important
equation
(5.4) J’X= —X, for the horizontal X.

Now, by making use of the above tensor J, we obtain an
almost complex structure J of the tangent bundle B such that

(5.5) J==JI,

where [/ is the operation of lift with respect to the Finsler con-
nection under consideration, and z the projection @ —B. The
tensor J as thus defined is really an almost complex structure,
because, given X&B,, we take any point g=='b, and then JI,X
horizotal by means of (5.1), and hence J?X= — X is obtained in
consequeace of (5.4). This J will be called the natural almost
complex structure derived from the Finsler connection.
We shall next show that

(5.6) Jz =],
6.7 J=1.
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Proof of (5.6). Denoting by vX the vertical part of Xe@,,
we have

JzX = zJlzX = zJ(X—vX) = z]X—zJvX.

The vector JvX is vertical and hence zJvX=0. This prove (5. 6).

Proof of (5.7). If we take Xe&B,, JIX is horizontal and
hence we have [JX=I=z]JIX=]JIX, which completes the proof.

We shall recall Finsler %2- and w»-vector fields X~ and X+
derived from a tangent vector field X to B. It follows from (2.7)
that (JX)"=6"/JX. It follows from (5.7) and (5.2) that (JX)=
=0"JIX=—0"IX=—X". By the similar way we obtain two
equations

(5.8) JXy =-X+, (JX)=X".

Next, we shall be concerned with horizontal and vertical lifts
X", X" of a tangent vector XeM,. Then, we shall prove

(5.9) JXr=Xx", JX*= -X",

which are equivalent to the equation (15) of [1].

Proof of (5.9). Taking a point ¢=(b, p)@Q, we have an
element p~'X=feF, and then

JX" = =l X = =]l pf,
which is written, according to definition of B*(f) and B'(f), as
follows :
= zJB"(f); = #B"(f), = bivf = pip7' X,

which is the vertical lift X in consequence of (2.8). Similarly,
the second of (5.9) will be verified.

It is concluded from (5.9) that, though the natural almost
complex structure J is defined by means of the Finsler connection
Tk, T?), J really depends only wupon the mnonlinear connection
H=#zT", because any Xe&B, is decomposed into the form

X = (#XY+(pis'p vXY,  (pExrh),

where v’X is the vertical part with respect to the nonlinear con-
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nection H, and therefore the above decomposition is determined
by H only.

PROPOSITION 4. [14] Let G be the lifted Riemannian metric
derived from a Finsler metric G, and J be the natural almost
complex structure. Then, (G, J) is the almost Hermitian structure.

Proof. From the definition (4.1) of G, it follows that

GUX, JY) = G((JX), (JY))+G((JX)(JY)*),
and from (5. 8) that
=G(—X*+ —YYH)+GX", Y)=G(X,Y),
which completes the proof.

It is well known that there exists a symmetric connection
with respect to which the structure tensor J of the almost com-
plex space is covariant constant, if and only if, the structure is
integrable. We shall show, in the next section, that the natural
almost complex structure J is not necessarily integrable, and hence
there is generally no possibility of finding a symmetric connection
with respect to which J is covariant constant. We, however,

obtain such a nonsymmetric connection by the natural process as
follows :

THEOREM 1. The natural almost complex structure J is
covariant constant with respect to the connection of a Finsler type T”.

Proof. For tangent vector fields X and Y to B, the formula

Ax(JY) = (Ax )Y + J(A%Y)

is derived. From (2.12) and (5. 8) it follows the A%(JY)=J(A%Y),
and hence we get (A%J)Y=0 for any X and Y. Thus the proof
is complete.

Finally, we shall find the covariant derivative A%J of J with
respect to the generalized Yano-Ledger symmetric connection T'*,
From (3.1) and Theorem 1 it follows that

(5.10) (A%X)Y = é(T’(X, JY)=JT(X, Y)).
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According to (2.1), (5.1) and (5.6), we see that

T(X,JY) = AT (X", X*), (=Y, ¥7)),

](I)(q)p(fn fz) = CI’(Q)P(—fz, fl) .
Therefore, taking tangent vector fields X, Y to the base manifold
M, and referring to notations used in (3.4), we have
(A5 NY* = (C(X, Y)+R(X, Y)Y+ (P(X, Y)-T(X, Y)),
@)Y = (P(X, V)—-T(X, V))'—(C(X, V)+R(X, Y)),
A% NY" = — (P, X)) +(CX V),
(A%NY = (CX, V))+(P(Y, X))

(5.11)

In case of a linear Finsler connection, we see that both of (A%»])Y*
and (A%»J)Y" vanish.

§6. The condition of integrability of the
natural almost complex structure

Following other authors [17], [14], [16], we shall find the con-
dition of integrability of the natural almost complex structure J
on B. Let E be the torsion tensor of the structure J, that is,

(6.1) EX, Y)=L[X YI+JLJX, YI-JLJY, X]-LJX, JY],

for tangent vectors X, Y to B. The condition of integrability is
of course that E vanishes identically. P. Dombrowski [1]
evaluated the value of E for horizontal and vertical lifts of
tangent vectors to the base manifold M. In the following, we
shall, however, make use of the dual equation of structure (1.12)
by introducing the tensor E such that, for tangent vectors X, Y

to @,
(6.2) EX,Y)=[X, YI+J[JX, Y1-JLJY, X1-[JX,JY],

which is the torsion tensor of J, as it were.
First of all, we shall show that

6.3) =zE(,X,1,Y)=EX,Y),
for X, YeB,, b==q.
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Proof of (6.3). From (5.6) and (5.7) it follows that
77'E—(lq)(’ 1Y) =z[lX, 1,Y]+]z[1,]X, Y]
—J7zllJY, 1, X1-=[1,]X, I, JY].
It is well known [10] that the horizontal part of [/, X, /,Y] is
equal to the lift of [X, Y], and hence =[/X,/Y]=[X, Y]
Therefore we obtain (6. 3).

Now, referring to the dual equation of structure (1.12) and
paying attention to the relations S'(f,, f,)=C(f., f,)—C(f,, 1),
we obtain easily values of E for basic vectors B*f) and B'(f)
as follows:

E(B'(f), B(£.))=F(U( £, 1))+ B( V(f., £.))+B'(R(f,, 1)),
(6.4) E(B'(f), B'(f)=—F(Uf,, £.))+B(R(f,, ) B (W, 1)),

E(B(£), B(f)=—F(Uf,, 1))~ B(V(f,, £))— B (R(f., 1)),
where we used tensors U and V defined by

U(fl) fz) = R2(fl) f2)+P2(f1, fz)_PZ(fzy fl)’
V(.fn fz) = T(.fl’ .fz)_Pl(fl» f2)+Pl(f2’ f1)~

In consequence of (6.3) and (6.4), we now find values of E as

(6.5)

follows :
E(zB'(f.), zBXf,)) = zB"(V(f,, 1.))+=B'(R'(f,, 1)),
(6.6) E(zB'(f), zB'(f,)) = zB"(Rf,, f))—=B"(V(£, f2),
E(zB"(f)), #B"(f)) = — =B V(f,, £))—7B(R'(f,, 1))
Since zB*(e,)=p., and =#B"(e,)=pl., constitute a base of the tangent
space B, (cf. §2), equations (6.6) give the value of the torsion

tensor E for any X, YeB,. Therefore, E=0 is equivalent to
vanishing of tensors V and R'. Thus we conclude that

THEOREM 2. [1], [16] The condition of integrability of the
natural almost complex structure J is that tensors R* and V vanish
identically.

R

The tensor R' is the (v)k-torsion tensor of the Finsler con-
nection under consideration, which, in terms of the canonical
coordinate, has components
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oF
ab

6Fii_aFik_6Fii 7 ik 7
oxt  ox’ abIF’sz 7l

(6. 7) Rjik -

And we observe from (6.5) that components of the tensor V are

Vi, = _OF% OF,

6.8 .
(6.8) abt  ob

We shall treat the Finsler connection of Cartan. As already
shown in the end of §1, P' is equal to P);,=A/},, (Cartan’s
symbol), which is symmetric with respect to subscripts, and hence
V=0 in consequence of (6.5). On the other hand, R' is equal to
U'Rj;,. Thus, Theorem 4.1 of [16] is obtained as a special case
of Theorem 2.

§7. The condition of the almost Kihler structure

S. Tachibana and M. Okumura showed [14] that, in Rieman-
nian case, the structure (G, J) is always almost Kihler. In the
present section, we shall be concerned with Finsler case. The
structure (G, J) is by definition almost Kéhler if and only if, the
2-form J, on B be closed, where J, is given by the equation

@.1) JuX V)= J(GXJV)-GY.JX)), X, YeB,.

It follows from (4.1) and (5.8) that J, is written in the form
(7.2)  J«X, Y)=GX", Y7)-G(Y+X7).

In the following, instead of the form J, on B, we shall first
consider the 2-form Jy=/,# on @, Since, for X, Ye@,, we have
(zX)"=6"X and (zX)*=6"X according to (2.7), it is seen that

(7.3) J«(X,Y)=GX, 6Y) — G(0'Y, 00 X).

It is clear that the projection #:€— B is onto-mapping, and
hence the condition of the almost Kihler structure, i.e., dJ,=0
coincides with dJ,=0. Therefore, in order to find the condition,
we shall evaluate the value of dJ, in the following.

According to the well known formula of exterior differential
of forms, we have
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3dT (X, Y, Z) = X(T\Y, Z))+ Y(JuZ X))+ Z(J«X, Y))

~J{[X, Y], Z2)-J«LY, Z], X)-J«[Z, X], 1),
for X, Y, Z=Q,. Referring to (7.3), the equation is rewritten in
the form

=X (G(G” Y, 0" Z)—G(0'Z, 6" Y)) + Y(G(H"Z, 0"X)—G(6"X, 0"Z ))
+Z (G(G”X, 0"Y)—-G('Y, * X ))—G(e”[X, Y] 6"2)
+G(6°Z, [ X, Y])-G@O'LY, Z], " X))+ GO’ X, 6" Y, Z])
—GO'LZ, X], 0"Y)+G(0"Y, 0" Z, X]).
Then, if we take basic vector fields B*(f), B’(f)in place of X, Y, Z

in the above, and refer to the dual equation of structure (1.12),
following equations are obtained :

3dJ{(B'(f.), BXf.), BNS))) = —SuwlRi(fs for £,

3dT4(Bf.), BAS), B'(f) = AG(f,, for )~ AG(fy, foy £)
+ Tyl fur for F)—PY S for £+ PU S, For ),

3dJu(B'(f)), BU(f.), BS)) = A'G(f,, for F)— NG, for £)
+Cy(far for F)=Ca(frs For F)—SulFur Fur £,

dJ(B"(f), B(f), B'(f)) = 0,

where S, [ 1 is the symbol of summation of terms obtained
by cyclic permutation of subscripts. It will, however, be easy to
show that the right-hand side of the third equation of (7.4) is
identically equal to zero. Hence, the condition is given by

(7.4)

equations

S123[R*(fl’ fz» fs)]zo s
(7.5) A'G(fys for )= A"GC(fos foy L)+ TS, fo) 1)
—Px(fy, for f3) +Px(fos f1s f3) = 0.
THEOREM 3. The structure (G, J) is almost Kdhler if and
only if, equations (7.5) are satisfied.

In terms of the canonical coordinate, above equations are
expressed as follows :

guR/ v+ guRy :+8uR!; = 0,

(7.5
gijlk“gikli“"gillek—gszkli+gk1lei =0.
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We shall consider the Riemannian case, that is, G is the lifted
metric derived from the Riemannian metric G on the base mani-
fold M, and J is the natural almost complex structure defined by
the associated linear connection H with the Riemannian connection,
In this case, the first of (7.5’) holds by the well known identities
Sjul R;;:]=0 with respect to components of the curvature tensor.
Further we observe that every terms of the second of (7.5
always vanish. Consequently we obtain the theorem due to
Tachibana and Okumura.

Finally, we shall treat the Finsler connection of E. Cartan.
Then, the first of (7.5") is reduced to Sju[Rojz]=0 (Cartan’s
symbol), which has been shown by Cartan. Besides, the second of
(7.5") is also satisfied, because Cartan’s connection is metrical,
symmetric (7,/,=0) and g;,P,’;= A, (Cartan’s symbol). There-
fore we have

COROLLARY. In case of the Finsler comnection of E. Cartan,
the structure (G, J) is almost Kihler.

From this point of view, the Finsler connection of E. Cartan
seems to be very reasonable.

Institute of Mathematics, Yoshida College,
Kyoto University.
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REMARK. In §2, the bundle homomorphism @ :Q — P’ was
introduced in order to derive the connection of a Finsler type.
That is, for a point g=(b, p)€Q, the image d(q) is the frame
p'=(ps, Dla), where pi==B" and pl,,==B.. On the other hand,
we defined the horizontal lift X* and the vertical lift X’ of a
tangent vector XeM,. It will be easily seen that, if p=(p,),
a=1,--,n, then p,=(p,) and pl,,=(p,)’. From this point of view,
the bundle homomorphism (®, @) seems to be natural. Moreover,
it can be seen that the homomorphism depends only upon the
nonlinear connection H.



