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In a series of papers [3] ,•••, [7], a theory of connections of
Finsler spaces has been developed from the standpoint of fibre
bundles. Let P(M , 7 C , G ) be the bundle o f frames over a differ-
entiable manifold M , and B(M, T ,  F, G) be the tangent bundle over
M . The Finsler connection is defined in the induced bundle Q
from P  by the projection T  of B , and many concepts about con-
nections o f  Finsler spaces a re  generalized and systematically
treated.

O n the other hand, the differential geometry of tangent
bundles has been studied by several authors. S. Sasaki [12], [13]
introduced a Riemannian metric into tangent bundles o f Rieman-
nian manifolds in order to study the behavior o f geodesics. K.
Yano and E. T. Davies [16] generalized the notion to  the case
where the base manifold has a Finsler metric. T. Nagano [9]
and P. Dombrowski [1] defined the natural almost complex and
product structures on tangent bundles. Recently, K. Yano and
A. J. Ledger [17], [18] investigated linear connections on tangent
bundles and showed that it is possible to obtain some interesting
connections from a connection on the base manifold.

The purpose of the present paper is to develop synthetically
the differential geometry of tangent bundles from the viewpoint
of Finsler connections. Thus, connections, metrics and other
structures of tangent bundles may be regarded as a part of con-
tents of the Finslerian geometry.

The terminology and signs of previous papers will be used



252 Makoto Matsumoto

in  th e  following without too much comment. The theory of
Finsler connections from the standpoint o f fib re  bundles were
published systematically in Seminar Note 4  [8 ] in  Japanese.

§ L  Linear Fins l e r  connections

Let P(M, z , G) be the bundle o f frames over a differentiable
n-manifold M , where G is the general linear group GL (n,R ), and
7 is the projection P.--M  which maps a fraxne p  at a point xEM
into x .  It is well known [2], [10] that a linear connection U in
P  is a distribution P P - -F  such that

1. P  =  P  +P" (direct sum),P --p P

2. R g r p = rp g ,

where Pp  is  the tangent vector space of P  at a point p , P ; the
vertical subspace o f P p ,  and R g  the right translation of P  by an
element g E G .  I f  we denote by 6  the Lie algebra o f  G , the
connection form co of the above connection F  is a 6-valued /-form
on P, which is defined by equations

1. G)F (A) = A  ,

2. X = 00 (X E r) ,
where F(A ) is the fundamental vector field on P  corresponding
to AE6.

Let B(M, T, F, G) be the tangent bundle over M , where F  is
the real vector n-space, and T  the projection B , M  which maps
a tangent vector X  at xE M  into x. Throughout the present
paper, we take a fixed base (ea ) , a=1 ,••• ,n , of the vector space
F .  Then, a matrix g = ( e ) E G  operates on F  b y  the rule g•e a

= e x , .  On the other hand, a frame p =( p 0 )E P  is regarded as
an admissible mapping F - 4 3  which maps f - f a e a E F  into the
tangent vector Pf  -(P a fa)E-r - in-(P). I f  f E F  is then fixed, we
obtain a  mapping ,c1 :  such that p E P -->p f . By means of
this mapping, the associated connection H  with the linear con-
nection r  is naturally defined in B  by the equation

(1 .1 ) 1 4  =  It f r p ( b = p f ) .
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Now, we consider the induced bundle T 'P=Q(B , 77, G ) over
the total space B of the tangent bundle, where the total space Q
is the set {(b, p) Bx PIT(b)= 7r(p)}  [3]. The projection Tr is such
that 7-,(b, p)=b, and further we have the induced mapping 77 : Q
which maps q—(b, p) into p.

In  previous papers [3], [4], we gave a notion of a Finsler
connection (f h, I " )  in Q  such that

1. Q , = F: + F: + Q: (direct sum),

2. Rg r: = r:, , R „rtg) = r:, ,
3. 7-erv, ,

where Q , is  the tangent vector space to Q  at q, Q: the vertical
subspace o f Q ,, B : the vertical subspace of the tangent vector
space B b  to  B  at b, and Rg  th e  right translation of Q  by gEG ,
namely, R g (b, p)=(b, R g (p))= (b, pg).

We shall show how to obtain a  special Finsler connection
from a linear connection r  in P .  First of all, from the connection
form co of r  and the induced mapping 72, we define a  6-valued
/-form co on Q  by the equation

(1.2) =  COV .

It is easy to verify that w satisfies conditions of a connection form
on Q, that is,

1. coF (A ) — A  ,

2. (oRg a d ( g - 1 )(0 ,

where F(A ) is the fundamental vector field on Q  corresponding
to AE6. Therefore, we obtain a connection f in Q , whose con-
nection form is the above w. We denote by l ,  the operation of
lift with respect to the connection r ,  and define

(1. 3) r : / J i b , lam  .

Then, it is obvious that the pair of distributions ( f  h , ry) as thus
obtained is a Finsler connection in  Q , which will be called the
linear Finsler connection derived from the linear connection r.
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In  the following, we shall find certain special properties of
the linear Fins ler connection. It follows from (1. 3) that

(1.4) 7 - e r :  =  Hb

w hich m eans that the nonlinear connection [3 ]  induced from
(rh, I') coincides with the associated connection with the original
r .  Next, we shall show the equation

(1. 5) B h (f ) ,  =  f o B ( f ) p  ( q — ( p f „  p)),

where B ( f )  is  the basic vector field on P  with respect in r, cor-
responding to f e F  [2, p. 119, the standard horizontal vector
field], [10, p. 49], while B h (f )  i s  the h-basic vector field on Q
with respect to the linear Finsler connection [ 3 ] .  And the map-
ping &,,.0 : is such that pEP—>(pfo , p).

Proof o f (1. 5). Denoting by l g  the operation o f  life w ith
respect to  the nonlinear connection H , the h-basic vector field
B h (f) is defined by B h (f ),= 1 ,g p f a t q=(b, p). From the defini-
tion of the linear Finsler connection, it follows that /r, = Kf o /p  a t
b  pf 0 , where /p  i s  the operation o f  l i f t  w ith  respect to  the
original linear connection F. Thus we see first

(1. 6) B h (f), = lecf 0 B (f ) p .

On the other hand, we get

77 f 0 B (f ) p = K f e B (f ) p ,

and further, by means of (1. 2),

(o f o B (f ) p  =  (0B(f) p =  0 .

Therefore (1. 6) gives (1. 5).

It follows from (1. 5) that

(1.7) = K f o B (f ) p ,

(1. 8) n B h (f), =  B (f) p .

In terms of canonical coordinates (x i, p ia )  of P  and (x 1, bi, p ia ) of
Q  [3 ], basic vector fields B ( f )  and B h (f) are written in the form
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13( f )  fa_N ( ax
a _ p p 5 k 1
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where r i ki (x ) are components of the connection parameter of r,
while Fi i (x, b), b )  components of connection parameters of

in. Hence we have

a•  k   a falY0. (
a

ax i
— bkrk i i • ap,) •

Thus the equation (1. 5) gives the relation between those com-
ponents of connection parameters as follows :

(1. 5') Fi1 = bkr k i i (x) , F i ik  =  r i ik (x) .

Next, as to  a v-basic vector field B "( f ) , we shall show the
equation

(1. 10) 77B v ( f )  = 0 .

B v (f ) is defined [3 ]  b y  the equation B "(f ) q = l q f i j , f  a t  q ,  where
p is the differential of the admissible mapping p, y  the character-
is tic  field Q --->F such that q = (b , p ) --p - 1b, and t  th e  so-called
parallel translation F-->Ff  (= the tangent vector space to F  at f ) .
The above (1. 10) will be easily verified from the fact that pi,,f
is  vertical and

Let O be the basic form on P  and Oh be the h-basic form on
Q , which are defined by Op =p - irt  and 61 =p - 1,- ,  q=  (b, p ) .  It is
obvious that

(1.11)O h  =  O n  .

Now, we consider covariant derivatives. Let hhX  be the r" '-
component of XE Qq ,  and then we have 'h "X =7 B h (O h X )=B (0 X )
=h a , where hnX is the horizontal component of TIX E P

• 
There-

P
fore it follows that

(1.9)

Dhco =  chohh =  chonhh =  chohn [In ,

where SI is the curvature form of the original connection r , while
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D hco=  S r is by definition the h-curvature form of the Finsler con-
nection. Hence we obtain (Iii —S277. On the other hand, as for
the r-component, it follows from (1. 10) that 7711v.X=77Bv(rX)— 0,
where 61" is the v-basic form [ 3 ] .  Referring to this equation, we
have " O  and n h v = O.

Similarly, about h-torsion forms 0(h) h, e ( h ) h v  and 0 ( h) v, we have
e(h)h= 872 and e( h ) h v  =0, where C) is  the torsion form of r ,  while
e( h ) v  vanishes from the first.

Finally, in  order to obtain v-torsions o f th e linear Finsler
connection, we shall first show the following lemma.

LEMMA [8, p. 1 0 5 ]. I f  a  Fin s le r connection satisfies condi-
tions F  an d  C „ i t s  v -torsion tensors RI', P ' an d  S ' are  given by
equations

f 2 )  = — F(R 2(f i, f 2))7 f 2 ) =  — F(P 2(f i, f 2))7
f2) —  — F (S 2 (f i,  f2 ))7  A F ) ,

w here 1?2 , P 2 a n d  ,S2 a re  h - ,  h v -  and v -curv ature tensors respec-
tiv ely , y  i s  th e  characteristic f ield o n  Q , an d  F  the  symbol of
constructing a fundamental vector f ield.

P ro o f . We shall remember the dual equations of structure
[3, (1. 4)] :

EB h (f i), B h (f 2)]=F(R 2(f i,f 2 ))+13 "(T (f1,f2))+B "(R 1(f i, ,

(1 . 12 ) P h ( f  B "  AA= F (13 2 ( f  f 2 ) )+B "(C ( f 1, f 2 ) ) + B v ( 1 3 1 ( f i ,  f2)),
E B v(fi) , B V 2 ) ] = F ( s 2 ( f i ,  f2)) + B " ( S 1 ( f i ,  f2 ) )

According to propositions given in  [4 ] ,  the condition F  is that
B h ( f )y =0 , while the condition C ,  is  th a t B " ( f ) y = f .  Hence,
Lemma is immediately proved from (1. 12).

We now return to consideration of a  linear Finsler connec-
tion . The definitions of conditions F  and C, are that o-f r, = H b

and o-1 1  0  respectively, where Of  i s  the mapping s u c h
that q= (b, p ) - - . . p f  for a fixed f  E F .  Therefore it is clear that the
linear Finsler connection satisfies both of conditions F  and C „ and
thus its v-torsions are given by Lemma.

Summarizing above results we obtain
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PROPOSITION 1. Curvatures and torsions of  the linear Finsler
connection derived from a  linear connection r are given by equations

curv atures: R 2 ( f „ .0 = R ( f „ f , ) , = O, ,S 2 = O,

h - to rs io n s : T ( f „ f 2) = T ( f „ f , ) ,  C  =  O,
v -torsions : R 1( f „ 1 .0 = — F(R (f „ f 2))7  , = O, S ' =  O,

w here R  an d  T  are  th e  curvature and the torsion of  the original
connection r respectively.

In terms of the canonical coordinate (xi, be), the above equa-
tion R i( f „ f 2)=— F(R (f „ f 2) )7  are expressed by

R i ' k (x, b) = b 4 R,,t4 ,(x) ,

where R .,' k  and R I : 4 k  are components o f R ' and R  respectively.
In  the following we shall consider frequently the famous

Cartan's connection of Finsler space. In this case, we have shown
in a previous paper [ 7 ]  that the (h)h-torsion T  vanishes identi-
cally, and the (h)hv-torsion C  coincides with the symbol C  used
b y  Cartan, while (v )h -  and (v)hv-torsion 121, 17 '  are given by
equations o f Lemma, and the (v)v-torsions S ' vanishes identically.

§  2 . Connections of a Finsler type on tangent bundles

We consider the bundle o f frames P'(B, G') over the total
space B  of the tangent bundle, where G ' is of course the general
linear group GL (2n, R ). Let F ' be the real vector 2n-space, and
then F ' is identified with F x  F . Let us recall the fixed base (ea )
of F  in § /, and then ea' —(ea ,  0 )  and e 0 ) =(0, ea ), a=1 ,•••,n, con-
stitute a base of F ',  where indices with parentheses will run from
n +1 to 2n throughout the remainder o f this paper. The above
identification F x F , F '  will be denoted by p. Then, a 2n-matrix
g '=(g ';)E G ' operates on F ' by the rule g'•eg,=gter,, where Greek
indices run from 1  to 2n from now on.

First of all, we shall establish a homomorphism (43, p) of the
bundle Q  into P ' .  Let us define the mapping (7) : by the
equation 95(g).= g 0\, g E G .  Next, corresponding to the fixed

\O g)
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base (e a )  o f F  and the Finsler connection under consideration,
there are  h -  and v-basic vector fields .13::=Bh(e a ) , 131a) =B v(ea),
a = 1 ,• • • ,n .  These 2n vectors span the horizontal subspace Ph+ r
at each point of Q .  Hence

= 7703%  , X .) = kr(113:)

form a frame p ' - ( p ,  p 6„ )E P ' at the point b = * q ) E B .  There-
fore we obtain the mapping 0 : Q  P '  such that (13(q)= p'. T h e
equation 'J )=  77 obviously holds. According to the fact that
R ,B h(f )=B h(g - ' f )  and R g B "(f )=B v (g - l f )  [11, (3. 2)], it is seen
that c13(q) p(g) = c13(qg). Consequently, we obtain the bundle homo-
morphism (0, .99).

It is well known [2, p. 76], [10, p. 36] that the homomorphism
(0, cp) gives a  connection I" in  P ' from the Finsler connection
r = ( r h , r v )  in  Q ,  which is defined by th e  equation ro w

= 0(11 + I I ) ,  and, at a point p '  which does not belong to 43(Q),
the horizontal subspace is obtained from T' ( q )  b y  the suitable
right translation from a point in (13(q). The I "  as thus defined
is called the connection of a Finsler type derived from the Finsler
connection r= (r", r ) ,

A point p 'E P ' is regarded as an admissible mapping F'— B ',
where B ' is the total space of the tangent bundle over B , similar
to the case of the bundle o f frame P  over M .  Especially, for
q E Q  and f1 f 2 E F , we have

(2. 1) 0 ( f 1  7-e(Bh(f,)+B"(.0),

which is easily verified by the definition of the mapping 0.

PROPOSITION 2. Let F'(A ')  be a fundam ental v ector f ield on
P ' corresponding to A ' O ' (the Lie algebra o f  G '), and 19' be the
basic f o rm  on P'. Further, le t co' be the connection form of the
connection o f a  Finsler type, and B '( f ')  b e  the basic vector field
on P '.  T h e n  w e  have

(2. 2) OF(A ) = F'(99A ) (2. 3) (0 '0  =  99W,

(2. 4) 0 '0  =  p(Oh, V ), (2. 5) 0B h(f ) =  B '(p(f , Q)),

(2. 6) 43.13v(f) —  B(p(0, f )).
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Proo f . (2. 2) w ill be easily proved . In order to show (2. 3),
consider the O'-valued /-form a = (A) —  99o) on Q .  According to
(2 .2 ) w e  have aF(A )= 0  fo r any AGO, and further, from the
definition o f r ,  w e  have aB h (f )=0 , aB v ( f )=0  fo r  an y  f e F .
Hence we obtain a = 0, which is (2. 3). Next, we are concerned
with (2. 4). For X E  we have

0'43(X) = c13(q) - 1 7ricP(X) = 43(q) - * X )
= 0(q) - *B h(OhX )+ MO' X)) ,

and hence (2. 4) will be obtained in consequence of (2. 1). Finally,
it follows from (2. 4) that

O'cl3B h(f ) = p(Oh(B h(f )), 0"(B h(f )) = p(f , 0)

and it is clear that B h ( f )  is  horizontal with respect to the con-
nection rv. Therefore we establish (2. 5), and (2. 6) similarly.

In order to obtain the expression of the covariant derivative
p 'x Y  with respect to  the connection r  in  terms of the one with
respect to the Finsler connection (Ph, 1 1 , we need following con-
siderations. W e first treat a classical vector field X  of a  Finsler
space. It is w ell know n that X  depends upon not only a point
X E M  but also an  element of support x ',  and hence X  is not
regarded as a tangent vector field to M .  It is also obvious that
X  is not considered as a  tangen t vector field to  B , because a
tangent vector to B  has 2n components. Thus, it is 'natural that
X  should be regarded as a mapping Q— >F such that the equation
X R g =g - iX  holds for any g G  [8, P .  6 8 ], (cf. [10, P .  53, Lemma]).
In the following, we shall adopt this point of view.

Then, let us construct vector fields X = and X  of the Finsler
space from a tangent vector field X  to B , which are mappings
Q -* F defined by equations

(2. 7) X ( q )  O h l ,X ,  X ( q )  = O v l q X ,

a t a point q Q. X =  and X ' are called Finsler h - and  v-vector
f ields derived from X  respectively.

Next, given a tangent vector field X  to the base manifold M,
we obtain the horizontal lift X " and the vertical life  X ' with
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respect to the nonlinear connection H [1], [12], [14], [16], [17].
The horizontal life Xh is nothing else but the life g X ,  while the
vertical life Xv is naturally defined by

(2. 8)X  =  Pl./P- 1 X (7=p - 'b),

where p  is  the differential of the admissible mapping p E z - 1 7-(b).
It is easy to show that the above definition does not depend upon
the choice of p .  Then, Finsler vector fields derived from the
horizontal and the vertical lifts of a tangent vector field X  to M
are obtained as follows :

(2. 9) (X h ) ' =  0 ,  ( r ) =  = 0 ,

(2.10)( X 9 =  =  (Xv) - L  =  p - ix a t a point q—(b, p ) ,

which are easily verified from definitions of Oh and 6r• Moreover,
it follows from (2. 1) that

(2.11) (4)(0P(f1 , f2))= = fi , ( 4)(0P ( f 1 , fo ) - L  =  f2.

We now are in a position to be concerned with the covariant
derivative Y, where X  and Y are tangent vector fields to B.
(A 'x Y ),  is by definition equal to P'•X*(O 'Y*), where p '  is  a point
of 7r' - ' ( b )  and X*, Y* are lifts of X, Y respectively with respect
to  the connection I - .  Since we can take p i= (13(q), qE7-e 1(b), we
have

(Y ,(17)b = (13(q) • 01,X09'(T31 g Y ) .

It follows from (2. 4) and (2. 7) that

= 43(q)•(Bh(X - ) +B "(X - L ) ) ( p ( Y - , Y - L))

Consequently we have from (2. 1) that

(2. 12) A 'x Y  rc[Bh((Bh(X - ) + B"(X - L ))Y  - )

+ B *B h(X - ) + B "(X l - D Y ')] .

Or, according to (2. 11), we have

(2.13)( 6 ,  'x  Y) -= = (Bh(X =) + B " ( X l  Y= ,

=  (Bh(X =) + Bv(X - L)) .
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We shall consider the covariant derivative in the special case
where the connection r  is the connection of a  linear Finsler type,
that is, the one derived from the linear Fins ler connection. First
of all, putting X= X h, Y =Y h, where X  and Y are tangent vector
fields to  M .  Then it follows from (2. 9) and (2. 12) that A'x Y

— 7T-Bh(Bh(X =)Y1, and hence from (2. 10) that

A'x Y  =  Bh(Bh(p - ix )p - - iy )=  f f , Bh(13h(01X)(01Y )77).

Then, it follows from (1. 8) that

=  Bh(B(19/X) 0/ = TEBtp - ip x  Y) = Y  ,

where A denotes the covariant derivative with respect to  the
original linear connection T h u s  w e  o b ta in h Y h = (AxY) k .
In  case of X =X h, Y=  Y ", a n d  so on, we may proceed in the
similar manner, and thus following equations are obtained :

(2. 14) Y Lch  h  (-A-XY)h =  0  ,
4 h r = (AXY A r.Y v  = 0

Finally, we shall be concerned with the torsion T ' and the
curvature R ' of the connection r' of a Finsler type. Those tensors
will be derived from the dual equation of structure

(2.15) U r ( f ) ,  13/ ( f ) i=  F '( 1 ? '( f ,  f ) ) + 1 3 / ( T V I ,  fD ) •

In  this equation, taking f „  f , E F  and putting f l = p ( f „  0),
1. — p(f ,, 0), the left-hand side at a point p'=c13(q) is written in
the form EcID/3h(f1) ,  (13Bh(f2)]= 0 [Bh(A), B h ( f 2 ) ]  in consequence of
(2. 5). Therefore, according to (1. 11), we first obtain R 'p ( f „ 0),

p(f2, 0))43=99R 2 (f i,  f2 )  a n d  T '(p ( f „ 0), p ( f „ 0 ) )0 =p (T ( f „ f ,) ,

R i ( f „ f , ) ) .  By the same way on taking f ;.=p ( f „ 0), f =P ( 0 ,  f ;),
and so on, we conclude that

R'00 (f1, 0 ), P ( f2 ,  0 )) cl)  =  q)R2 (f1,
(2. 16) /4 0 ( f „  0), p( 0  , f2))<=1) 9 9 / 3 2 ( f „  f 2 ) ,

R /(P( 0  f i ) ,  )0 (0  , =  0 2 ( f 1 ,
and
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T (P ( f „ 0), P(.1.2, 0)»  =  p (  T(f1, f2), f2))

(2.17)T / ( p ( f „  0), P( O, f 2 ))(13 p(C(f„ f 2 ) , Pl( f „ f 2 )),

T'(p( O , f 1), p( O , 1 '0 )0  = p (0 , S i(f „ f 2 )) .

W e sh a ll tre a t the torsion T ' in  detail. Equations (2. 17)
giving the torsion T ' are written in the concrete form

ba  —  T b a T Y %  — Rb a r  b a  (c )  — Cb a
 5

(a) ab (0 P b c r  a(b) Cc) — 0 ( b ) ( a )  Cc) sba

where it should be remarked that left-hand sides are components
o f  T ' with respect to the frame p'= (1)(q), while right-hand sides
are components of torsions of the Finsler connection with respect
to the frame p=n(q). I f  (x i, p ia )  is the canonical coordinate of p,
the canonical coordinate (x 1, b 1, p/) of p' is  as follows :

(2 . 18 ) = p ,  p 'T  =  P Y i p' s, = 0 ,  P %  =
The inverse matrix (p' - ') o f (po is given by

(2 . 19 ) Y - 1 7 =P- 1 7 , p ' - '7 ) =P - 1 7 / r 1(7)=0  P '1 7 >=P - 1 7
Therefore, for example, components T' 5

1) , , ,  o f  T ' w ith respect
to  the canonical coordinate are obtained by the following com-
putation:

(i) = ci(e) P i  r  ( 1 )(k)
= ab (c)P / ( ja )P e l P '— i rk>+  T' b( a ) (c)P / C:4)P/ I P ' T

+  T  (a) ' - i(bcb) (,)P '>  P ;
)

=C ab c(— 1.1 7'i\ aP b
+ Sba  f i u.(P - 1 W 1 - 1 eJ) P k

C  k Fi + P i t k + S  k F! ,

where C lk ,  P 3
1 k and Si i k  are components of torsions C, 13 1  and S 1

respectively with respect to the canonical coordinate. Thus, com-
ponents T',]'. o f th e tors ion  T ' with respect to  the canonical
coordinate ( x i ,  bi) are given by equations

(2.20)=  T  k —C k i ,FI J +C i i ' F t  ,
=  R  k — + S ,Fh J F'

+ (13 .
1

1— C i h iF 1h )F 1( P k i i —  C k hi F i k )F !  ,
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T'/ ch ., — C i i
k r i ci)( k )  =  P  j ik F i  1  ±  k F l

(i ) i ( k )  -  0  , ( j )  ( k ) =  S  j i  k •

In case of the connection of a linear Finsler type, it follows from
Proposition 1 that components of the torsion tensor T ' vanish
except T y k (= T i ik )  and T 'lo k = Tihkriih). Therefore the
connection of a Finsler type derived from a Finsler connection is
not symmetric even if the orig inal connection be linear and
symmetric, and it seems undesirable to leaves something as it is.
In the next section, we shall consider a symmetrization of the
connection.

§  3 . A  generalization o f th e connection o f Yano and Ledger

Let rpx, be connection parameters o f a  connection r  on a
differentiable manifold, and T,,x, be components of the torsion
tensor T  of the connection, that is, Tp x,—r p x,— rY  ,,. Then we
obtain the symmetric connection F*, whose connection parameters
r x ,  are given by the equation r*,x,=rpx-1T,,x,. This symme-
tric connection r *  will be called the one obtained from r  by
canonical symmetrization.

In this section, we shall be concerned with the connection F*
in P', obtained from the connection r' of a Finsler type by canonical
symmetrization. Therefore connection parameters r*,,x,, of the
connection F* are defined by the equation

(3. 1) = rpx,-  1  T' p x„
2

where T ' is given by (2. 17). Then, it is well known that any
symmetric connection in P ' may be obtained by adding to
a symmetric tensor of (1, 2)-type.

In order to study the property of the connection r*, we shall
be concerned with the covariant derivative AtY with respect to
T .  T h e  equation

(3.2) p t Y  =  A "K Y+  1  T'(X , Y)
2
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will be obtained immediately, where T (X , Y ) a s  usual is the
tangent vector to B  which is given by the equation T V , 17 )b
—p' • Ti(p' - '1X, p' - '17 )  at bEB, P'E nl - 1 (b).

Let us treat (3. 2) in  detail. I f  we take tangent vectors X
and Y  to  the base manifold M , and put X= Xh, } 7  and if
we consider the point y= c13(q), q e - '(b), we have from (2. 1)

c13(q) - 1 Xh = (13.(q) - '771q Xh =  p(Ohla Xh, 0) =  p(p - 1 X, O).

Therefore, as a consequence o f (2. 17), we obtain

r(Xh, Yh) = (-13(q)71p(p - 1 X, 0), p(p - 1 Y, 0))

=  (1).(q)p(T(p - 'X, p - 1 17 ) , R 1 (p -1 X , p - ly ) ) ,

and it follows from (2. 1) that

- (.6"(T (p - 1 X , p- 'Y)) + B " (R 1 (p -1 X , p ly )))

- 4 p . T (p - i X, p - i y ) + p • j ,R 1(p - 1 X,

Similarly to the case of T', let us write T (X , Y)—p • T(p - 'X, p - 1 Y),
and R 1(X , Y )= p -R 1(p - 1 X, p - 1 Y ) ,  and thus the equation Ath Yh

= Aix h Yh + 1(( T(X, Y))h+(R 1(X ,  Y ) ) " )  will be obtained, where

superscripts h  and y were introduced in § 2. Thus, and by the

same way, we shall obtain following equations :

(3. 3)

A t h yh _= yx h 7, 12 1 ((7 . (X, 17 )) h  (R '(  X, Y ))"),
- 2 --

,61h Y" = Yy+ -1—((C(X, Y))h + (P '(X , Y )) 1')
- 2

At. Yh = Yh +  1 —  (C( Y, X))h — (P1( Y, X ))"),
2

Y v  =  A'x v + ( Sl(X, Y)) .
2 —

We shall treat the special case where the connection of a
Finsler type is linear. According to (2. 14) and Proposition 1,
above equations are reduced to
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1171 ( A x Y + 12 T(X , Y )) fi +(R (X , Y )7) v .

(3. 4) A t h r  =  ( A x 1 7

A lv Y k  =  0,Y v  =  0.

Thus we know that the canonical symmetrization V  o f  the connec-
tion of a linear Finsler type coincides with that o f  Y ano and Ledger
[17], and hence we shall call in* the generalized Y ano-Ledger
connection.

R em ark . We should pay attention to the difference in alge-
braic signs between the first o f (3. 4) and (14) of the paper [17].
If we denote by r ,  T  k  and R ip , ' symbols used in the reference

(2 ) ( 2 ) - (2 )

book [2 ], instead o f  our 1-7 , ,  T,i k  and R II", w e obtain  r i i,
L i k =  — k , R jtk j =  — R iPel, according to [2, pp. 143-145],

(2 ) (2 ) - (2 )

(c f .  (1. 9) of the present paper). Therefore we have T (X , Y)
= -T (X , Y), R (X , Y )= -R (X , Y), Moreover, a c c o r d in g  t o

(2 ) (2 )

symbols used in [17], we have R(X , Y )= Y) ' y ) "  by means
of the equation (7) o f [1 7 ].  Consequently we find that the above
(3. 4) coincides with (12), (13), (14) and (18) o f [17] entirely.

§ 4. The lifted Riemannian metric

We have studied, in  preceding sections, connections on the
tangent bundle arising from Finsler connections, and a Finsler
metric, however, was not under discussion. Now we suppose that
a Finsler metric function L  be given. Let G be the usual Finsler
metric tensor defined by L .  Then, G is a tensor fie ld  o f (0, 2)-
type, which is regarded as the mapping Q -).F*® F* (tensorial
product of the dual space F*  of the real vector n-space F) [7],
[8, p. 106]. I f  we take Finsler vector fields X ,Y :Q - .F ,  then
the value G(X (q), Y (q)) is called the scalar product of X  and Y
at a point qE Q , or, more precisely, the one with respect to the
elem ent of support b =  q .  Thus the value [G(X (q), X (q))]i is
called the Finslerian length.

Let X  and Y be tangent vector fields to B , and then Finsler
h - and v-vector fields X - ,  X ',  Y - ,  Y '  are given by the rule
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(2. 7). Then the equation

(4.1) G (Xb, Yb) = G(X - (q), 17 - (q ))+G (X -` (q), 17 - `(q)), q = (b, p),

gives a  tensor field G  of (0, 2)-type on B .  It is easy to show
that G  is well defined by (4. 1) and does not depend upon the
choice of qE7-? - 'b. From the property o f G , it follows that G  is
symmetric and positive-definite. Therefore, if G(X b ,  xb )  is
defined as the scalar product of X and Y, and further [0 (X ,,  X b ) ] i
as the length o f X , we have a Riemannian metric G  on B , and
thus the tangent bundle B  over the manifold M  is a Riemannian
manifold of 2n dimensions [12], [16]. The tensor G as thus defined
will be called the lifted Riemannian metric.

L e t ga b  and -go  be components o f  tensors G  and G  with
respect to frames p = ( q )  and p'= ci)(q) respectively, and then we
have from (4. 1)

(4. 2)a b —  g  ( l b ga (b ) k a ) ( b )  =  g a b  •

Moreover, let g u  and be components o f G  and 0  with respect
to canonical coordinates respectively, and then we obtain

i i  — gu + g b i Fk i Ft i ,
ga p  — Fk i gk j  •  g ( i ) ( ; ) — g i ;  •

Returning to the connection r  of a Finsler type, we shall
find the covariant differential of the lifted Riemannian metric G
with respect to this connection V .  For this purpose, we first
define mappings 10 1, P,: F ' F  as follows :

Pi(fa seL) = [ ' e a ,  P,(Twe') =  f"a)e.,
and denote by pi* ,  p  their dual mappings. The lifted Riemannian
metric G  is considered as the mapping F '— )-F*O F '* such that
G( f  Ç, f  '2) =  G (p ' f  p ' f  0 ,  p,  f o r  p ' P '  and  f  Ç, f  Let us
take specially p'— (13(q). Since ci)(q)f '=4:1D(q)p(p,(f '), Mr)), we
have from (2. 11) and (4. 1)

0 ( (q) )(f 1, f ) =  G(Pi(f f), Pi(f 1))+G(P2(f 19 2(fD)

Hence, by using tensorial product o f  mappings, we obtain the
equation

(4. 2')
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(4. 3) Gcl) = p 0 "  +  p 2  ®4G.

Now, it follows from (2. 5) and (2. 6) that

A'G = dG(13'(e))(10e"" B (Gc13)0e -  + /137,(Gc1:00e' (a) ,

and from (4. 3) that

0 "  +  p 0 4 G )O e ' a + IgPit OPP G + p OPTG) Ø e ''.

According to definitions o f I t -  and v-differentials A", A" [3], we
thus establish

(4. 4) AT; = (Pi Opt Øp + P?Î OPP) A hG
+ (Pt 0404 +  p  014 014) A "G

In  terms o f  components with respect to frames  p = ( q )  and
P' = c1)(q), (4. 4) is expressed in the form

g a b ; c  =  k a ) ( b ) : c  =  g a b l c

(4. 4') g a b ; ( c )  =  -g (a) (b ) ;( c ) g ab lc

g a ( b ) ;  c  =  g a ( b ) ; ( c )  =  13

where semicolons mean the covariant differentiation with respect
to F', and go a b l c  g a b l c  are Finslerian convariant derivatives, that is,

g a b i c  = , g a b l ,  =
a

g i i  p
g i j l k a x k 1 k k  g i l F  j i  k  7

a g i j
g i a b k k —  g  i l C j  k

Next, we shall investigate the covariant differential A*G with
respect to the generalized Yano-Ledger connection r*. First, for
any f;., f ,

 f e F ' ,  we have from (3. 1)

A* G (fi, =

+  1 ( y 4 <( f t f ; ,  f ) ) ,2

where we p u t TV ff ,  f , f G(p/ • T  (  f  ,  f  y  f ) ,  that is,
T , ' ,  in terms o f canonical coordinate. If follows from

(4. 1) that
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f G ((P' f, fD)==, (P'-fD1
+ O P '. TV . , f 0 ) -`, ( P' -1. 0 1  •

Putting y  c D (q ) ,  and  paying attention t o  (2.11), w e  have
(y  r ( f l ,  f  - - P i r ( f ; . ,  f a  and (y  r (  f  f, f 0 j - = P 2 r( f i ,  f O •
Therefore we obtain from (4.4)

A* G (fl,
= A h G (p i(f D , P1(f0, Pi(f0)+AhG(P2(f1), P2CfD, P1(f0)

+ ,A"G( P1( ff), Pl( fa P2(f0)+A"G(P3(ff), P2(fa P3(f0)
(4.5)+   1  (G (P iT '(f , P1n + G (P 3 T (P 2 , f ; ) ,  P i f 0

2
+ G(P,r(f 1, n ,  P 2 f D + G ( P 2 r ( f ,  f ; ) ,  P 2 f 0 ) .

Especially, if  we take p(f, 0), p(0, f), instead of f 'F F ,  it follows
from (2.17) that

A* G(P(fi, 0 ), P (A , 0), P(f3, 0 ))

=  AhG(f„ f2,./ .2)+-1- ( T*(f1, f 2 ,  f3 )+T*(f2 , f „ f 2 ) ) ,

A* G (P (fi, 0), P(f2, 0), p(0, f3))

= A vG(fi, f 2 , f 2 )+ 1  ( c * ( f i, f 2 , f 3 )+C * ( f 2 ,  f 1 ,  f 3 )) ,
2

A*G(p(f„ 0), P(0, f2), P(f3 , 0))

=  -1
2' . (14 (f2 , f i ,  f 2 ) - C * ( f 3 , f i ,  f 2 ) ) ,

A*0- (P(f1, 0), P(0, f2), P(0, f3))
1-
2  

P 1*(f2, f  f 3 ) ,

* (p (0 , f i ) ,  P(0, f 2 ) , P(f 2 ,0 ))

=  AhG(f„ f 2 , ( P ( f i ,  f 3 , f2)+ PVf2, f i ,  f i ) ) ,
2

*(p(0, f1), P(0, f , ) ,  P(0, f2))

= A v G ( f i ,  f 2 ,1 .2 )++(‘S 1* ( f i ,  f 2 ,  f3 )+ S (f3 ,  f 1 , f2)) •

where we used covariant torsion tensors

(4.6)
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C* J i k  g i 1 C  k T * i i k  =

R * i ik k  , P v i k  — 5' k S v i k  — k •

We now consider the Riemannian connection r  in P  derived
from a Riemannian metric G on the base manifold M .  From the
connection r ,  we have the linear Finsler connection (F i ' , r") by
the method as shown in § 1. Therefore, we obtain the connection
of a linear Finsler type r/ in P ' derived from ( p h ,  r"), which will
be called the connection of a Riemannian type. As have already seen
in § 2, this connection is not always symmetric, and, however, we
obtain the generalized Yano-Ledger connection F* by the canonical
symmetrization. The symmetric connection r*  will be called the
Riem annian Y ano-ledger connection. On the other hand, since we
have the lifted Riemannian metric G from the Riemannian metric
G, the Riemannian connection r is defined on B .  Thus, we have
two symmetric connections r*  and T. It is obvious that, with
respect to r, the covariant derivative o f G  vanishes identically.
Besides, it is easy to see from (4. 6) that there are non-zero com-
ponents of the covariant derivative o f  G  with respect to the
Riemannian Yano-Ledger connection r*, that is, -0oct(b)*c

=
R e b a c

where * means the covariant differentiation with respect to F*.
Consequently we obtain

PROPOSITION 3. The R iem annian Y ano-Ledger connection 1-*
derived from the Riemannian metric G coincides with the Riemannian
connection w ith respect to  the lif ted R iem annian m etric G if and
o n ly  i f ,  the base R iem annian manifold M  adm its an absolute
Parallelism.

§ 5 .  Almost complex structures on tangent bundles

W e  now return to consideration o f  a  Finsler connection
(P h , r") in the induced bundle Q  over the tangent bundle B .  On
the total space Q , there are three kinds of essential vector fields,
that is, the fundamental vector field F(A ), corresponding to A EO,
which is vertical, and two kinds of basic vector fields Bk(f) and
B " ( f ) ,  corresponding to f  F ,  which are h -  and v-horizontal
respectively.
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Let us define a tensor field J  o f (1. 1)-type on Q  such that

(5. 1) :IF (A ) = F (A ) , JBh(f) = By( f) , JB"( f) = —  Bh( f) ,

I f  we take a tangent vector X  EQ  , X  is decomposed, with re-
spect to the Finsler connection, as follows :

X = F(NX)+ Bh(Oh X)+ B"(O"X),

where CO is the connection form, and Oh, O" are h-, v-basic  forms
respectively. It follows from (5. 1) that the action of J is given by

JX  =  G(wX)— Bh(0"X)+ B"(OhX) .

As for those forms co, Oh and O",,  it is easily proved that

(5.2) (DJ =  ,  OhJ = — 0" , .

Further, as for the right translation Rg  o f  Q  by g E G , w e  have

(5.3) JR ,  =

B y a direct computation from (5. 1), we obtain the important
equation

(5 . 4) PX =  — X , for the horizontal X.

Now, by making use of the above tensor 1, we obtain an
almost complex structure J  of the tangent bundle B  such that

(5.5) J  =  77.T1

where l  is  the operation of lift with respect to the Finsler con-
nection under consideration, and 7-T the projection Q — B .  The
tensor J  as thus defined is really an almost complex structure,
because, given XE B b ,  we take any point q  -7e- lb, and then 1/Q X
horizotal by means of (5. 1), and hence J 2 X = —  X  is obtained in
consequeace o f (5. 4). This J  will be called the natural alm ost
complex structure derived from the Finsler connection.

We shall next show that

(5.6) J77- = 7T- J ,

(5.7) J /  =  /J.
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Proof  o f (5. 6). Denoting by v X  the vertical part of XE Q, ,
we have

j7TX =  77.1177X =  7711( X  VX = V V X

The vector Iv X  is vertical and hence rdvX = O. This prove (5. 6).
Proof  of  (5. 7). I f  w e take X EB b ,  J/X  i s  horizontal and

hence we have /JX =/77J/X =f /X , which completes the proof.
We shall recall F in sle r h -  and v-vector fields X = and X '

derived from a tangent vector field X  to B .  It follows from (2. 7)
that (JX )=-6 0 /JX . It follows from (5. 7) and (5 .2 ) that (JX ) -

= OhJ/X= — 0"/X = — X '.  B y  th e  sim ilar way we obtain two
equations

(5.8)( J X ) -  =  — X ,  ( J X ) - ` = X = .

Next, we shall be concerned with horizontal and vertical lifts
Xh, X " of a tangent vector X E M ,.  Then, we shall prove

(5.9)= X " ,

which are equivalent to the equation (15) o f [1].
Proof  o f (5. 9). Taking a point q—(b, p )E Q , w e  have an

element p - ix = f e F ,  and then

j X h  =  7711qg X =  77figif,pf , ,

which is written, according to definition o f B h(f ) and B "(f ), as
follows :

= 77-JBh(f) q  f e B " ( f ) q  = p j,f  = pj,p - ix ,

which is the vertical lift X ' in consequence o f (2. 8). Similarly,
the second of (5. 9) will be verified.

It is concluded from (5. 9) that, though the natural almost
complex structure J  is defined by means of the Finsler connection
(rh, r) ,  J  really  depends on ly  upon  th e  nonlinear connection
H = F", because any X E B , is decomposed into the form

X  ("ex ). + ( p j p - iv/x)" , ( p  71. ' 4 )  ,

where v 'X  is the vertical part with respect to the nonlinear con-
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nection H , and therefore the above decomposition is determined
by H  only.

PROPOSITION 4 . [14 ] L e t G  be the lif ted R iem annian m etric
deriv ed f rom  a  Finsler m etric G, and J  b e  the natural alm ost
complex structure. Then, (G, J) is  the almost Hermitian structure.

P ro o f . From the definition (4. 1) of G, it follows that

G(JX, JY)= GOXY , (JY)1+G((JX)',(JY

and from (5. 8) that

= G(— X - , —Y - ")+G(X - - , Y ) = G(X, Y) ,

which completes the proof.
It is well known that there exists a  symmetric connection

with respect to which the structure tensor J of the almost com-
plex space is covariant constant, if and only if, the structure is
integrable. We shall show, in the next section, that the natural
almost complex structure J is not necessarily integrable, and hence
there is generally no possibility of finding a symmetric connection
w ith  respect to which J  is  covariant constant. We, however,
obtain such a nonsymmetric connection by the natural process as
follows :

THEOREM 1. T h e  natural alm ost com plex  structure J  is
covariant constant with respect to the connection of a Finsler type r.

P ro o f . For tangent vector fields X and Y to B, the formula

A ix(JY) = (AU Y + J (A /xY)

is derived. From (2. 12) and (5. 8) it follows the A, c( JY)— J(A.0 7 ),
and hence we get (A'x  J)Y= 0 for any X  and Y . Thus the proof
is complete.

Finally, we shall find the covariant derivative A t j  of J with
respect to the generalized Yano-Ledger symmetric connection F*.
From (3. 1) and Theorem 1 it follows that

(5. 10) (AM Y  =  1  (T'(X, JY)— P A X , Y))
2
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According to (2. 1), (5. 1) and (5. 6), we see that

T/(X, JY) = (13(q) * ( X = ,  X "), p(—  Y', Y=)),
Jc13(q)p(f

1 ,  f 2 )  =  « 4 )P ( — f2 , f i ) .

Therefore, taking tangent vector fields X , Y  to the base manifold
M, and referring to notations used in (3. 4), we have

(A th J)Yh =  (C (X , Y )+R'(X , Y )) 11 + (P 1(X, Y)— T(X, Y))"

(A thJ)Y "
(5 11)

= (P(X, Y)—  T(X, Y))h— (C(X, Y)+ Ir(X,  Y ))",
. -

( 0 , J )  Yh = — (P'( Y, X))h+(C(X , Y))v

(6,41 .J )Y " =  (C(X , Y))h+(/'"(Y, X ))".

In case of a linear Finsler connection, we see that both of (A t.J )Y h
and (AIv J ) Yv vanish.

§ 6. The condition of integrability of the
natural almost complex structure

Following other authors [1], [14], [16], we shall find the con-
dition of integrability of the natural almost complex structure J
on B .  Let E  be the torsion tensor of the structure J ,  that is,

(6. 1) E(X, Y ) =  EX, 11 -  _TUX , 1 1 —  JEJY, X7-UX,

for tangent vectors X , Y  to B .  The condition of integrability is
of course that E  vanishes identically. P. Dombrowski [1 ]
evaluated the value of E  for horizontal and vertical lifts of
tangent vectors to the base manifold M .  In the following, we
shall, however, make use of the dual equation of structure (1. 12)
by introducing the tensor E  such that, for tangent vectors X , Y
to Q,

(6.2) E(X, Y) = [X , 1 7 ]±.TEIX, n — J[.T Y , X ] — ,

which is the torsion tensor of 1,  as it were.
First of all, we shall show that

(6. 3) E (1.,f, /, 17 ) E(X, Y ) ,

for X , YEB,, b=7-eq.
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Proof  o f  (6. 3). From (5. 6) and (5. 7) it follows that

l,Y ) 4111+ l„Y ]
— .1.77 [ 1JY ,  l q X ] 4 l q JX , l,JY ].

It is well known [ 1 0 ]  that the horizontal part of [l,X , l,Y ] is
eq u a l to  th e  l i f t  o f  [X , Y ] ,  and hence fe[t a X , / ,Y ]=  [X , Y].
Therefore we obtain (6. 3).

Now, referring to the dual equation of structure (1. 12) and
paying attention to  the relations S U I , f 2)=C(f t, f 2) — C(f2,
we obtain easily values of E  for basic vectors B h (f )  and B "(f )
as follows :

E(B h(f ,), B h(f 2 )) =F ( U ( f i , f 2 ))+B h(V (f 1 ,  f 2 )) +B "(12'(f„ f2 )),

(6 . 4 ) E(B h(f .
i ), B"(f2))= — F(U(A , f2))+B h (R 1(f i, f2))— By( V (f „ f 2 ))

E (B "(f1 ), By(f2 )) = — F(U(f„ f 2 )) — B h(V (f„ f 2 )) —B"(R 1(f „ f 2 ))

where we used tensors U  and V  defined by

(V I  f2) =  R 2( f i, f 2 )+P(A , f 2 ) — P 2(f2,(6. 5)
2 = T ( f i  f2) — P 1(f 1 , f 2 )+P 1(A ,

In consequence o f (6. 3) and (6. 4), we now find values of E  as
follows :

E(7711"(f,), 77B h ( f2)) = TtB h ( 17( f i ,  f 2 )) +7-tEr(R 1( f „  f 2 )),

(6 . 6 )  E k B h (f 1 ),77-Br(f2 )) — 7rBh(R 1(f „  f 2 )) —  B " (V (f „ f 2 )),

E k B v (f  1), feBv(f 2 )) = —  -7-i-B "(V (f „ f  2 ))—  feB"(IP(f„ f 2 )) .

Since feBh(ea )=Y , and 7T-B"(ea )=Y a 1 constitute a base of the tangent
space B b  (cf. § 2), equations (6. 6) give the value of the torsion
tensor E  fo r  a n y  X , Y EB b . Therefore, E = 0 is equivalent to
vanishing o f tensors V  and R 1. Thus we conclude that

THEOREM 2 .  [ 1 ] ,  [ 1 6 ]  T he condition of  integrability  of  the
natural almost complex structure J  is that tensors 1?1 an d  V  vanish
identically.

The tensor 121 i s  the (v)h-torsion tensor of the Finsler con-
nection under consideration, which, in  term s o f th e  canonical
coordinate, has components
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(6.7) R  k    Fi,
ax* - abi '

And we observe from (6. 5) that components of the tensor V are

_aFi, ± aFi (6. 8) Vi 1 ,
abk abi

We shall treat the Finsler connection of Cartan. As already
shown in the end of § 1, 13 1  is  eq u a l to  P otli k = f l i ik io  (C artan 's
symbol), which is symmetric with respect to subscripts, and hence
V =0  in consequence o f (6. 5). On the other hand, is equal to
YR/.../k . Thus, Theorem 4. 1 of [1 6 ]  is obtained as a special case
of Theorem 2.

§ 7. The condition of the almost Kahler structure

S. Tachibana and M. Okumura showed [1 4 ]  that, in Rieman-
nian case, the structure (G, J) is always almost K ä h le r .  In the
present section, we shall be concerned with F in sle r case. The
structure (G, J) is by definition almost Kâhler if and only if, the
2-form J , ,

 on  B  be closed, where J,1,  is given by the equation

(7.1) J *  (X , Y )  =  2
1  (a(x, G( Y  j x ) ) , X , Y EB b •

It follows from (4.1) and (5. 8) that .14, is written in the form

(7.2) M X ,  Y ) = G(X - `, Y =)— G(Y - ,̀X =).

In the following, instead of the form J *  o n  B , we shall first
consider the 2-form ../* = J 4, on Q ,  Since, for X, Y E Q ,, we have
( X ) --- ----A9hX  and (&X )'-= 0"X  according to (2. 7), it is seen that

(7.3) J * (X , Y) =  G(0°X, OhY ) — OhX).

It is clear that the projection Te:Q—>B is onto-mapping, and
hence the condition of the almost K a le r  structure, i. e.,
coincides with d j-* — O. Therefore, in order to find the condition,
we shall evaluate the value of d j*  in the following.

According to the well known formula of exterior differential
of forms, we have



276 M akoto Matsumoto

3dJ* (X , Y, Z ) = X (J* ( Y , Z ))+ Y (J* (Z , X ))+ Z (J* (X , Y ))

Y ], Z ) — J([Y , Z ], X ) — .M [Z , X ],  Y ),

for X, Y, Z E Q q . Referring to (7. 3), the equation is rewritten in
the form

= X (G(0"Y , 0hZ)— G(0"Z, 0"Y ))+  Y (G(0"Z, OhX)—G(0°X, OhZ))

+ Z(G(0"X , 0hY )—G(0"Y , OhX))— G(0"[X, Y ], OhZ)
+G(0"Z , 01X , Y ])— Q(7[Y , Z ], 0hX )+G(0"X , 01Y , Z ])
— G(0"[Z, X ], Oh Y )+G(0"Y , 01Z , X ])

Then, if we take basic vector fields B h(f ), B "(f ) in place of X, Y, Z
in the above, and refer to the dual equation of structure (1. 12),
following equations are obtained :

3dA (B h (f1), B h (f2), B h (f3)) —  Si23[R*(f  A,
3dJ* (Bh(f1), B h(f ,), B y (f ,)) = A hG (f„ f„ f2)—  A hG(f„ f„ f 1)

+T * ( f i ,  f i ,  f2) — P(.f 1 , f i ,  f 3 )+PV f 2 , f i ,  f i ) ,

3dJ* (Bh(f 1), B "(f ,), B "(f 3) )  = A "G (f „ f ,, f 3)— A"G(f i ,  f , ,  f , )

+C * ( f i,  f „  f3) — C * (f „ f i ,  f3) — S*(f1, f i ,  f i ) ,

d j* (Bv(f,), M A ), B "(f ,)) = 0

where S121 ....... ]  is  the symbol o f summation of terms obtained
by cyclic permutation of subscripts. It will, however, be easy to
show that the right-hand side o f the third equation o f (7. 4) is
identically equal to zero . Hence, the condition is given  by
equations

S ,„[R *(fi f „  f i ) ] = o ,

(7.5) A h G (f„  f i ,  f2) —  A h G(f2, f i ,  f i ) + T * ( f i ,  f i ,  1 2 )

—P 1* ( f 1 ,  f i ,  f 3) +P% (f2, f i ,  f i )  =

THEOREM 3. The structure (G , J)  is  almost K a h l e r  if and
only i f ,  equations (7. 5) are satisfied.

In  terms o f the canonical coordinate, above equations are
expressed as follows :

( 7 .  5 , ) g i t Ri l k + g » R h i i + g k ,R i ' O,
gijik - g ,k ii+g u T lk - gi,Pk z i +gw.13 1 , =  O.

(7.4)
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We shall consider the Riemannian case, that is, G is the lifted
metric derived from the Riemannian metric G  on the base mani-
fold M , and J  is the natural almost complex structure defined by
the associated linear connection H with the Riemannian connection,
In this case, the first o f (7. 5') holds by the well known identities
S i k i [R i j k ,]= 0  with respect to components of the curvature tensor.
Further we observe that every terms of the second of (7. 5')
always vanish. Consequently we obtain th e  theorem due to
Tachibana and Okumura.

Finally, we shall treat the F insle r connection o f  E . Cartan.
Then, the first o f  (7. 5 ') is reduced to Sikr[Ropej= O (C a r ta n 's
symbol), which has been shown by Cartan. Besides, the second of
(7. 5 ') is also satisfied, because C artan 's  connection is metrical,
symmetric ( Ti ik = 0) and g i / Pk ii =A i k i l o  (C artan 's symbol). There-
fore we have

C O R O L L A R Y . In  case of the Finsler connection o f E . Cartan,
the structure (G, J )  is alm ost lah le r.

From this point of view, the Finsler connection o f E. Cartan
seems to be very reasonable.

Institute o f Mathematics, Yoshida College,
Kyoto University.

REFERENCES

[  Dombrowski, P .: O n  th e  geometry of the tangent bundle, J. reine angew.
Math., 210, 73-88, 1962.

[  2  ]  Kobayashi, S. and K. Nomizu : Foundations o f differential geometry, Inters.
Tracts in pure and applied Math., 15, Vol. 1.

3M a t s u m o t o ,  M . .1  A f f in e  transformations of Finsler spaces, J. Math. Kyoto
Univ., 3, 1-35, 1963.

[  4  ]   Linear transformations of Finsler connections, ibid. 3, 145-
167, 1964.

[ 5 ]  • Paths in a Finsler space, ibid. 3, 305-318, 1964.
6 ]  • On R. Sulanke's method deriving H. Rund's connection in a

Finsler space, ibid 4, 355-368, 1965.
[ 7 ]   A Finsler connection with many torsions, appear in Tensor

(N.S.)
8 ] Matsumoto, M. and T. Okada : Connections in Finsler 'spaces, Seminar in

differential geometry, Vol. 4, Kyoto University (Japanese).



278 Makoto Matsumoto

[  9  ]  Nagano, T .: Isom ctries on complex-product spaces, Tensor (N.S.), 9, 47-61,
1959.

[10] Nomizu, K .: L i e  groups and differential geometry, Publ. Math. Soc. Japan,
2, 1956.

[11] Okada, T.: Theory of pair connections, Sci, eng. review of Doshisha Univ., 5,
35-54, 1964.

[12] Sasaki, S.: O n  th e  differential geometry of tangent bundles o f  Riemannian
m anifolds, Tôhoku M ath. J., (2), 10, 338-354, 1958.

[13] :  On th e  differential geometry of tangent bundles o f  Riemannian
m anifolds II, ibid., 14, 146-155, 1962.

[14] Tachibana, S. and M . Okumura : On the almost-complex structure of tangent
bundles of Riemannian spaces, ibid., 14, 156- 161, 1962.

[15] Yano, K. and E. T . Davies : On some local properties of fibred spaces, Kôdai
Math. Sem. Reports, 11, 158-177, 1959.

[16] :  O n the tangent bundles o f Finsler and Riemannian manifolds,
Rend. Cir. Mate. Palermo, (2), 12, 211-228, 1963.

[17] Yano, K. and A. J. Ledger : Linear connections on tangent bundles, J. London
Math. Soc., 39, 495-500, 1964.

[18 ]  : The tangent bundle o f  a  locally symmetric space, ib id ., 40,
487-492, 1965.

R E M A R K . In  § 2, the bundle homomorphism c13. : Q--->P' was
introduced in  order to derive the connection o f  a  Finsler type.
That is , fo r a  po in t q=(b, p)FQ , the im age (13(q) is the frame
p/ y a ) ) ,  where x = t.m , and y„) =. ff'BT,. On the other hand,
we defined the horizontal lift X h  and the vertical lift X" of a
tangent vector X E M , .  It will be easily seen that, if P= (P .),
a=1 n ,  then x = (PO I' and Y .,=(Pa)" From this point of view,
the bundle homomorphism (0, 99) seems to be n atu ra l. Moreover,
it can be seen that the homomorphism depends only upon the
nonlinear connection H.


