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Introduction.

The present paper is the continuation of the previous work
[12] with the same title. The sections of this paper are numbered
from Section 8 which follows from the last section of the previous
work. The notations and the results of the psevious work will
be referred such as (1.7), Proposition 3. 6, etc.

In Section 8, we shall have a periodicity of the following type :

”i(Q%T_l : p)%n'; t—zvp( 3?42\4—1 : p) ’ v = pk_l ’

for i<4mp—6, 1<k<m and k<p*—2p. It is an open question
whether this periodicity holds for meta-stable cases or not. Our
method of the proof is a mod p analogy of relative J/-homomor-
phism in [11] and a stunted lens space will be used in place of
a stunted real projective space.

Section 9 is a discussion on the homomorphism A : 7, (S**#*': p)
—7;.,(S*?71: p) in the exact sequence (2.5). The results will
be applied, in Section 11, to the computation of z(Q%"': p) for
unstable cases. We shall see that many of unstable elements are
cancelled by A.

In Section 10, the existence of unstable elements ¢ of the
third type (ye&Im S? S?27*y £0, S?»%y =0) and the fourth type
(yeIm S?, S??y 40, S*?'*y=0) will be proved.

The homotopy groups 7,,, ... (S*”*'': p) will be determined for
k< 2p(p—1)—3 in Section 11. The result is stated briefly as
follows :
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Tomriei(S* 1 p) = A(m, k)+B(m, k)+23:..Um, k) (direct sum)

where the subgroup A(m, k)+ B(m, k) is a maximal subgroup which
is mapped under S> isomorphically into the stable group (=% : p),
U/(m, k) are subgroups generated by unstable elements of the #-th
types respectively.

The structure of the groups 7,,..+,(S*"'':p) of meta-stable
cases will be discussed in Section 12. We shall have an existence
theorem of unstable elements of the second type in the groups
Tomriraspp-n-AS° " 12 p) for =0 (mod p).

8. Periodicity of =,(Q%'': p).
In Chapter XI of [11] we have a map

Z:+k : Sn—1(Pmk-1/Pn—1) — Q? — Q(kan+k’ Sn)

n+k

which induces C,-isomorphisms f73* of homotopy groups =z; for
i<4n—3 [11, Theorem 11. 7], where P” denotes the »-dimensional
real projective space. Let £ K(P*') be the stable class of the
canonical line bundle over P*"!, then the order of J(£) in J(P%")
is p=2%%-v [1, Example (6.3)], where ¢(k—1) is the number of
integers j such that 0<j<k—1and j=0, 1, 2, 4 (mod 8). By Pro-
position 2.6 of [3] P***'/P"'and P™'*'*~'/P"*~! have the same
stable homotopy type. Since S* (P"'#7'/P""")is (2n— 2)-connected
we have an isomorphism z(S" (P™*"* '/ P" )= n; ,(S"V (P ?+v-1/
P10 for i<4n—3. Therefore we have obtained the following
(probably well-known) periodicity of z(Q%: 2).

Theorem 8.0. Let v=2%*"0 If i<4n—3, then the groups
7{(Q%) and m; ., (Q') are C,~isomorphic.

In the following we shall try to prove a periodicity of
7{@3r': p) for odd prime p and to make some applications. The
periodicity of the following type is obtained.

Theorem 8.1. Let v=7p*" If i<4dmp—6, 1<k<m and
k<p*—2p then =;(Q3'™") is C,~isomorphic to m; Q5" >™"), ie.,

Q5™ 1 p) & mipmp(QE TN 1P
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PROBLEM. Does the above periodicity hold for meta-stable cases
(I <2mp*—5) and for general k? This is true for k=1.

Denote by LX*'=S**'/Z, the usual (2s+ 1)-dimensional lens
space given as in [b]. L5, »<2s+1, will be the 7»-skeleton of
L¥+' with the usual cellular decomposition L%*'=S'Ue*U -
Ue*Ue*"™. In the notation of [5], L% =L{p) and L%''=L(p).
It is proved in Theorem 3 of [5]

(8.1). Let v=p*/*="1 then L;™|L;""* has the same stable homo-
toﬁy type Of L;m+2'//LZ(m_k)+2v.

Lemma 8.2. There exists a map (m>1)
h = h : S2mIlL(;ntll)(P—l)—2_)SZMQI

such that in the mapping cone K=S*""'U,CS* LGP~ D=2 of |
the Steenrod operations ®7: H*"* (K ; Z,)— H*"****"""(K; Z,) and
hence A®7 are isomorphisms for 1<j<m.

Proof. Let S,=S*""'x...xS*" be the product of p copies
of S*”*' and let 0, be the subspace of S, which consists of the
points having the base point * as one of the p coordinates. As
the permutation of the factors, the symmetric group S(p) of p
letters acts on S, and 6,. Let ¢: (E*™', S*)—(5*"", %) be a
characteristic map of the (2m+ 1)-cell S*”''—x. From the p-product
of ¢, we have a characterictic map ¢?: (E@™'0?, SE™1vP=1) (S, 0,)
of the (2m+1)p-cell S,—6, such that S(p) acts on (E®"*?,
Semtvr-1) - compatible with ¢? and for each permutation {&S(p)
cO(p) the action of £ on E®™*"? ig given by a matrix {QE where
E stands for the unit (2m+1)-matrix. Let ¢ be a cyclic permuta-
tion which generates a cyclic subgroup Z, of S(p). Then the
characteristic equation of the matrix {QFE is (x?—1y""=0.
Thus, by suitable orthogonal transformation of the coodinates in
E¢®™*? we may identify E®”*P? with a join S@”+>@-b-1y pamit.
Z, acts freely on S®™'P®~b7' trivially on E**"' and linearly
with respect to the parameter of the join. It follows that the
cyclic product S,/Z, of S*”*'is obtained from 6,/Z, by attaching
(Semrv=v=1) Z Y« E*™ " by a map h,: (S**PP D Z )« S —0,/Z,.
Up to homotopy equivalence we may change the joins *S*” and
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xE*"*! by the (2m+ 1)-suspension S?”*' and its cone CS?*”*!, then
we have

S,/ Zy = 0,]Z,U,, CS™ (Sem v/ 7 ),

This lens space S®"'>*~"1/Z is slightly different with the
usual Lg”+>®-b-1 A representative: S'—>S¢"tO@ DY Z 0 of a
generator of 7, (S¢”*P>®"Y"'/Z ) can be extended over a map
fiLgmivemnmt Gemina-n-1/ 7 From the cohomological structure
of the lens spaces it follows that f induces isomorphisms of mod p
cohomology groups and so does S*”''f, The map S**'"'f defines
a map from the mapping cone 6,/Z,U, CS*"'L§m+>*~0"1 of
h,=hy,oS*""f into S,/Z, which induces isomorphisms of mod p
cohomology groups.

It was proved in [ 6] that for a generator u of H*"*X(S,/Z,;Z,),
®/u and AQ®7u, 1<j<m, are non-zero elements which lie in the
image of the injection homomorphism j*: HXS,/Z,, 0,/Z,; Z,)—
H*S,/Z,; Z,). By the naturality a similar assertion holds for
the mapping cone of #,.

Let »: 6,/Z,—0,/S(p) be the natural projection. The space
6,/S(p) coincides with the (p—1)-symmetric product S, ,/S(p—1)
of S*", It is known (see [7]) that the canonical inclusion
i: S =8"11/5(1)—0,/S(p)=S,-,/S(p—1) induces an isomor-
phism *: H*(0,/S(p); Z,)~ H*S*"; Z,). Remark that =»*:
H*™0,/S(p); Z,)—>H"™'0,/Z,; Z,) is an isomorphism. Put 4,=
wo(h, | ST LE™TP-D2) then the above non-triviality of &7 and
A®7 holds for the mapping cone of %,. Apply Theorem 1.1 to
Sezmafgmtu-b=2 and then apply Theorem 1.2 to the maps %, and
i, then we have the existence of a map A : S*”"LE» v@#-b-2_, §2mHl
such that io% is homotopic to %,. Consider the mapping cone K

of # and compare with that of #4,, then the non-triviality of 7
and A®7 in K is obtained and the lemma follows. q.e.d.

Theorem 8.3. Assume that m>k>1. Let K(m, k) and G:
K(m, k)— Q3p~ be a CW-complex and a map satisfying the assertion
of Proposition 3.6, thus G*: Hi(Q3y; Z,)~ H K(m, k) ; Z,) for
i<dmp—5%. Then there exists a map

*) In Proposition 3.6, (ii), 4mp—3 should be read 4mp—5.
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f: Szm—z(sz("H k—l)(ﬁ“l)/Lzm(ﬁ_l)—z) - K(m; k)

such that the induced homomorphism f*: H*(K(m, k);Z,)—
HX(SPm =3 (Lym+k-ve=n [ 2mb=D=2) - 7 Y is a monomorphism.

Proof. Put n=m+k—1 and L,=L;**">, Let h":S5*"L,—
S#' be the restriction of the map 4, of Lemma 8.2 and let
K=8§"""UCS*"'L, be a mapping cone of #”. We use the notation
of Section 3. Extend the canonical inclusion S***'c K,,,, to a map
k:K—K,,., and consider the induced map Qk: QK, S*"*)— X,
=K,,.,, S*'"). The cone-construction of K defines naturally a
map A':S*"'L,—QK, S**''). Then it is easily verified that

(Qkol'Y(ae®"w)+0 in H™(S*™''L,;Z,)
for the fundamental class w of H**'(K,,,,; Z,)=H""'(Z,2n+1;Z,).

As in the proof of Lemma 3.5, we may identify @3 **' with
U X1, Xyn_ne1) and we have also that o*®"w is defined and
generates H*"*7*(Q3*';Z,). Let i:0°X,,,,—@?""' be the map

equivalent to the inclusion, then by the naturality of & we have
(QX(Qko )i (o*'®"w) =0 in H™¥S*L,;Z,).

By Theorem 3.1 and by the assumption 1<m <k, we have an
isomorphism (O_Zk-Z)—lo]'* : HZ"P—ZIZ-!(Q%T—I ; Zﬁ) ~ HZ"P-B(Q%”-—I ; Zp),
7:Q7'>Q3r'. From this we conclude

f/*(o_zk—l 26)m-| k—1w):*:0 ill Hzmm 2(k—1)(p—1)—3(szm—2L12’(m LE-1)p-1) ; Zp) ,

where f'=i'0Q* ' (Qkoh'): S L, —>Q*"'X,,,, C QUQ*X,.. 1, Xpm-1)
=Q5

If m=1, then m=k=1 and K(1, 1)=Y;*® is homotopy
equivalent to L;*°/L;*>7% Thus the theorem is obvious if
m=1. So, we may assume that m>2. Then S 2L}™*+k-b2-D g
homotopy equivalent to a complex as in Theorem 1.1. The map
G induces isomorphisms of H¥( ; Z,) for i<2m+2(m+k—1)Xp—1)
<4mp—6 (1<k<m). Applying Theorem 1.2 to the maps G and
f’ we have the existence of a map f,:S** 2L "+k-0&-D s K(im, k)
such that Geof, is homotoptic to f’. Since K(m, k) is (2mp—4)-
connected, we can choose f, such that f,=foS** %z for a map

F i Semer(Lxm k=nw-n [ amb-0-2) L, K (i k)
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and for a map = of L;™''"%*~Y shrinking Lj™? "2

We have seen that f’* is an epimorphism of H?™?-*+ak-1r-b
(;Z,), then so are f§ and f*. Thus the following statement
(8.2); . is true for (i, &)=(1, 0).

(8.2);.. f*:HY(K(m, k); Z,)~HY(S™ H(Lym *>xb-0 Lgmt=07%): Z)

for t=1(i, &)=2mp—3+2Ak—iXp—1)+& (i=1,2,--- , k;E=0, 1).

We shall prove (8.2) by induction on i. For £=£(i, 0) the
Bockstein homomorphisms A are isomorphisms of the both sides of
(8.2);,. By the naturality of A, (8.2);, and (8.2);, are equivalent.
By use of the relations in Theorem 3.1, we see that for each
i, 1<i<k, there exists €=0 or=1 such that ®'H/(K(m, k); Z,)+0
for t=t#(i,€). If the same non-triviality of ' holds in
S Ly rEovny [ P2y then (8.2);, and (8.2);_,, are equiva-
lent, hence (8.2) is proved by induction on i.

Let » be a generator of H'(L;™+¥»>#-b;Z) and choose
generators a; of H*"P7tH@-p(S§emozsomik-n-n. 7y such that
" a)=u-(Au)"r¢-0-1 By use of P'u=0, ®(Au)=(Au)? and
Cartan’s formula, we have

G)f(u.(Au)s(P-l)—l) _ (S(p_t].)_ 1 )u.(Au)(H Hp-1-1

and Pt((Au)?=) = (3( l’t‘ 1)>(Au)‘“‘ AN

Since " (Aa})=Ac*" " (a})=Alu-(Au)™' PP D)= (Ay)" 2P D we
have

(8.3) Ftal = ((’””Xé_l)—l)a;” and
A, — ((m”)(l"l))m;”.
t

Here we may consider that a} is a generator of H*"/~312&#-b
(S#H( Ly ik-ve-vLpme-b-2y s 7). In particular the relations

®Pa, = —(m+i+1ai,, and @'Aa} = —(m+i)Ad},,

show the required non-triviality of ®'. (8.2) has been proved and
the theorem follows.
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Corollary 8.4. Under the assumption of Theorem 8.3, the
Jollowing relations hold for suitable generators a; of Theorem 3. 1.

®a; = (—1)’((m+i)(‘i_1)_1)a,~+, and

A, = (— 1),< (’””)t@— 1) )Aam ,

0<i<i+t<k.

Next we shall discuss on some homotopical properties of a
sort of complexes containing K(m, k) and stunted lens spaces.
First we have

(8.4). Let k and b be integers such that k=—b (mod p—1), 0<b
<p—1. Then we have

(1) 72a(Y,; Y,)=0 if k<H(p*—p—1),
(i) 73(Y,; Y,)=0 if k<(b—1Xp'—p—1)+p—2.

This follows from (6.1) and (4. 1), or more precisely from the
list of #3(Y,;Y,) in [13].

Lemma 8.5. Let L be a CW-complex having a sequence of
subcomplexes x=L,cL,cL,C---CL,=L such that L; is a mapping
cone L,_ Us,CYy" of @ map f;: Y '—=L, |, where n,<n,<--
<n, and n,<2n,—1. Then, up to homotopy equivalence, L satisfies
the following condition. For each i, 1<i<r, let J(i) be the set of
integers j such that n;<n,—b(p*—p—1) if n,—n;=—0b (mod p—1)
and 0<b<p—1. Then the union M(n;)=%+ U ;e;nCY;"i7' is a
subcomplex of K.

Proof. Remark that the assumption #,<2#n,—1 means that K
is in a stable range. The lemma is proved by changing inductively
the attaching map f; in its homotopy class. Assuming that L,_,
has been already modified to satisfy the condition, it is sufficient
to prove the injection homomorphism

fy (Y3770 My(ny)) = n(Y3" 75 Lysy)

2n.—1

is an epimorphism, where Myn,)=M(n;)—CY:" ' and it is a sub-
complex of L, , since Myn;) is the union of the subcomplexes
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M(n;) of L, , for j<i and jeJ(i). L, , is obtained from Myn;)
by attaching some CY;"', k& J(i). If X=X'U,CY;" "' and X’
is (2n,—2)-connected, we have an exact sequence

;! ’
RV X) =5 m(Y3 5 X) (Y3 V3.
The last group vanishes by (8. 4), (i). Thus ¢4 is an epimorphism.
Using this fact we have easily that 7, is an epimorphism. q.e.d.
For example, if L=S**(L;""*/L;"?), m+k<n—1 and k<
p*—p—1, then up to homotopy equivalence L is one point union
of p—1 subcomplexes M(m+n+k—i), i=0,1,.--,p—2.

Lemma 8.6. Let K= Y;”*UCY;":"'U - UCY}"s™" and M, =
Y;HUCY " 'U---UCYR" ™" be CW-complexes satisfying the con-
dition of Lemma 8.5 ; m,<m,<---<mg, n,<n,<-<n,. Assume that
m=m,=--=m;, (modp—1), n,=m+1 (mod p—1), n,<m,+
(p—=3)p*—p—1)+p—2 and that n;<n,—b(p°—p—1) if n,—n;=

—b (mod p—1), 0<b<p—1. Then we have =5(M,; K)=0.

Proof. Let n;—m;= —b (mod p—1). By the assumption,
n,—n;=m+1-n;=b+1= —(p—2-5), 0<p—2-b<p—1 and
n,—m;<n,—(p—2-0)p—p—1)—m<(b-1Xp"—p—-1)+p—2. It
follows from (ii) of (8.4) »5(Y;"i; Y;7:)=0 for 1<i<sand 1<j<r.
By use of homotopy exact sequences we have easily #5(M,; K)=0.

Proof of Theorem 8.1. Since G: K(m, k)— Q3% induces an
isomorphism of H¥( ; Z,) for i<4mp—5, Gy : n(K(m, k))—n Q57
is a C,-isomorphism for i<4mp—6. Similarly 7;,, (@3> ") is
C,~isomorphic to =;,,,(K(m+v, k)) for i<4mp—6<4(m+v)p—6
—2vp. Since K(m, k) is (2mp—4)-connected, S*? : z(K(m, k))—
i) (S*?K(m, k)) is an isomorphism for i<2(2mp—4)+1=4mp—7.
For i=4pm—"7, S™? is an epimorphism and its kernel is at most of
order 2, hence it is a C,~isomorphism. So, it is sufficient to prove
(8.5). If v=p*" 1<k<m and k<p*—p, then K(m+v, k) is
homotopy equivalent to S*?K(m, k).

By Theorem 8.3, there are maps

f . Szm—Z(L;(m-;-k—x)(p—1)/L;m(p—1)-2) s K(m, k)
and F:Szcm+V)—2(L;(m+v+k—1)(1:—1)/L;(m+v)(p—1)—2) N K(Wl-l—v, k)
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which induce monomorphisms of H*( ;Z,). Since [((k—1Xp—1)
+1)/(p—1)]=k—1, we have by (8.1) that Ljm+k-1x2-n /] tmcp-1-2
and Ljomtvik-n@-n /[ xmivs-n-2 haye the same stable homotopy
type. For the simplicity we put

L — SZ(m+V)—2(L;(m+V+k—l)(p—l)/(L;(m»l—‘u)(p—1)—2) .

L has a sufficiently large connectedness and is in a stable range.
Thus L is homotopy equivalent to S22 2([jom+k-Dp-1 ] dmcp=1-2)
We have obtained

(8.6). There are maps F: L— K(m+v, k) and F': L—S*”K(m, k)
which induce monomorphisms of H¥( ; Z )

Now apply Lemma 8.5 to this complex L and consider the
the subcomplexes

M= M(m+v)p+(k—1Xp—1)—1)
and M, = M((m+v)p+(k—p—1Xp—1)).

The complexes M, and K= K(m+v, k) (or=S*?K(m, k)) satisfy the
assumption of Lemma 8.6, where #n,=(m+v)p+(k—p—1Xp—1),
m,=(m+v)p—1 and the assumptions k<p*—2p of Theorem 8.1
implies n,<m,+(p—3Xp*—p—1)+p—2. It follows from Lemma
8.6 that the restrictions F|M, and F’|M, are homotopic to zero.
Thus there exist maps % and 4’ such that the following diagram
is homotopy commutative :

M
FIM F'|M
K(m+v, k) 7 S K(m, k)
h /4
M/M,.

From the definition of M and M, we see that the dimensions of
the cells of L—M and M,—=x differ from those of K(m+v, k) and
S*?K(m, k) and that the numbers of the cells of M/M,, K(m+v, k)
and S K(m, k) are equal. Then it follows from (8.6) that A*
and 4™ are isomorphisms of H*( ; Z,) hence of H*( ;Z). Thus
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h and &’ are homotopy equivalences. (8.5) has been proved and
we conclude Theorem 8. 1. q.e.d.
Observing (8.5) and Proposition 3.6, we have

Proposition 8.7. Under the assumption of Theorem 8.1, the
Deriodic isomorphisms commute with the exact sequence (3.3), i.e.,
we have the following commutative diagram.

i Q—zhoj
Q1 p) — > Qi p) —>
Tirons(@on 27 1 D) = 7wy QT P) —

°Q2h+1

dy

w2l QSR 2 ) miA Q3 2 1)

il zvp(QgT:ZZ;:sz_l P) —>7; |~2vp—1(Q§;tn+zv_l ~p) .

As an application of the periodicity theorem, we have the
following sequences of unstable elements of the second type.

Proposition 8.8. For each positive integer h such that
h=p or =2p (mod p?), there exists a sequence {y*;t=1,2, .-,
[(hp—p—2)/(p+ 1)1} of elements ¥ P Emyy o S #7': p) satisfying
the following relations :

SZ'Y(D = p*I/(Lzhp—l) ’
Sz,),(t) — ﬁ.fy(t—l) for t22
and H®y® = g Tl (2h—t—1)p—1) %0
for some x,%£0 (mod p) .

If t<Min([(hp—p—2)[(p+1)], p*) then p+y® =Sy =x0 hence
the order of v is a multiple of p*, moreover the order of HWy™®
is pi

Proof. For h=p and h=2p, we have seen in Theorems 7.1
and 7.4 the existence of v, in particular, of Y&, {S**:p)
such that S*y™=p I (¢snp-,) and HPyP=x,.I'ay(2Ah—2)p—1) for
some x,%£0 (mod p).

From the commutativity of the diagram
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b S?
”ZhP"S(Qgh_l 'p) s ”Zhﬁ‘S(S_Zh—] 1p) — 7f2hx>—s(Szh_3 :p)
~Jor e

_ * _ ] _
Tanp-a (VQY 1 P) = Ty s (QF 71 )+ 7y, o(QF°: D),

we have
Hp oI (tp- )= AV L (t33p-1) = X1 oty ' af(2AR—2)p—1), h=p or 2p.

Apply Proposition 8.7 to the lower sequence, then we see that this
relation holds for each positive integer % such that 2= p, 2p (mod p?).
Consider the following exact and commutative diagram :

2h-3 Sz h - H(Z) 2h-3
”2hp—5(S p) and 752):1;—3(82 ' P) —_— ”zhp—s(Qz p)
1H(2> ) lHu) ) %192
Tanp-s(Q4 ) 0 1y (452 ) Lo, (QVQE 2 1),

We have HPpultaps)= O sH DIty )= QY ainl (i 2R
—2)p—1))=0, and this implies the existence of an element ¥ such
that S*v®=pyt(¢s4p-1). The element y® satisfies iy (H @y —x,-
Fa(2h—2)p—1))= 0. Since mpp (QLQ": )= myy Q7 1) =0
by (6.4), i, is a monomorphism by the exactness of (3.3), and
the relation H®y®=x,.I'aj(2(h—2)p—1) follows.

Now, applying Theorem 5.4, (i) to the element y®, we have
the existence of an element y™® satisfying p.y®P=S%*y® and
H®y® =x,.I'aj(2(h—3)p—1) for some integer x,=%=0 (mod p).
This process can be continued in meta-stable range, i.e., for ¢ <
(hp—-p—2)[(p+1). If t<(hp—p—2)/(p+1) we have pemyp »-s
(Q3**7*: p)=0 by Theorem 2. 2, aj(2h—t)p—>5) and a}.,(2(h—t—1)
p»—3) exist by Propoition 4.4, (iii) and Lemma 2.1. Then by
Theorem 5. 4, (i), there exists an elemen ‘® satisfying p.y“* P=
Siy® and H®y®P=x,.I'a, .,(2Ah—t—1)p—1) for some ieteger x,%=0
(mod p) provided the existence and the similar relations for y¢“ .
Since #*i ol = 2**a'da = a'dad+0 by (4.5), we have that
iyt 0, af,; is not divisible by p and that I'al, (2(h—t—1)p—1)
=Q" " at.1)*0.

Let t<Min([(hp—p—2)/(p+1)], »*) and consider the following
commutative and exact diagram :
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Tohp-2t-5 (SZh_Zt—a :p)— ﬂzhp—zt—s(SZh—Zt_l )
_3 lH(z) ) lH(‘)
1
mhp-zt—s(Qﬁh—zt_a ) -)nzhp—zt—s(Qgh_Zt_s ) R ”th_Z,_s(Qﬁ"‘z“5 ),

where dyoQ = H®op, by (5.2). First we have

p.H(‘),y(t) — H(‘)Szfy(f'f'l) — i*H(Z)(y(t+1)
= xt+1'i*1/a;+1(2(h_t_1)p_1)
and o a(2(h—t—1)p—1) = @ ai.) #0.

d*oﬂ

We see also in (6. 4) the group 7,,, ., Q2" *°:p)is generated
by @*¥a,) and additionally by Q"*7(8t™) if t+1—p'—p—1
and by Q"' {a,@™) if t+1=p>—p. By (6.5)

dQ7°Q" " (a,) = H®p,Q" " (a,) = 0.

In the case t+1=p"—p—1, we have h—t—2=—(t+2)=0x%=-1
(mod p) and
du07 QBT = HOpu@ ™) = - Habr™)

for some x=0 (mod p), by Lemma 6. 1, (ii). By (4. 6), the elements
Q" *a,87") and Q" *"*(a(,-p,) are independent generators. In the
case t+1=p*—p, we have Q" * N, N)=Q " a,)o B (Ah—1)p
—5) by use of (1.3), (ii). Then

d407Q By ) = HOpuQ " ew)o Ry (2 —1)p—8) = 0
by (6.5). We have seen that in all case I'al,,(2h—t—2)p—1)
is not in the image of dyoQ™. Thus p-H®y®=1x,,, i, I'a;.,
(Ah—t—2)p—1)%=0 and p-v*=+0. By Theorem 2.2, p’H®y® =
iy pe H®y@)=0, Thus the order of H®y® is p°

9. The homomorphism A: =, (S**"': p)—>=, (S*?7': p).
The homomorphism A in the exact sequence (2.5) is de-
termined for the image of S? by the formula
AS¥at) = p-a
of (2.7). We shall consider the behaviour of A for elements not

in the S?-image. According to Section 2, we understand the
homomorphism A as follows.
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(9.1). For the spaces QOQ,, and Q! in Section 2, there are
maps h:QQ,,— QS+ B QL—QY and i: QS QY which
induce C,~isomorphisms of the homotopy groups and the cohomology
groups. By these isomorphisms of the p-primary components :
ST P (QQ,, 1 D), 7S p)=w(Qr: D), the homomor-
Dhism
A7 (ST p) = (ST )

is equivalent to a homomorphism

Ay 7{QQ,,: ) = 7(Qh: D)

induced by a map d : QQ,,= QQ’S*™, Q*SI™) — QL= YOS, S 7).

Let €€ m,,-,(QQ,,) and €& € n,,, (@) be elements which
correspond to generators of 7,,,,(S*"?*")~n,,, (S**?")~Z. Then,
by (2.3), we have

d*E = p-El .

By use of mapping-cylinder arguments, we may assume that
& and €& are represented by inclusions of S*”#~* into QQ,, and @,
respectively, and d maps S*”?~* into S*”*~* by degree p. Further-
more, we may assume that S~ is imbedded in Q'S*”**' and
Q2S?™?-! canonnically and in QY such that 4, #’ and ¢/ are identical
on S*”*3,

Consider the following commutative and exact diagram:

: : ,

o (S 1) e 2 (0Q,, 1 ) T m(0Q,,, ST p) =
ld* i ld* j ld* 5

(ST ) =B Qi D) T (@, ST )

The d, of the left side satisfied dy(a)=p-a by (1.10). The middle
one is equivalent to A. The dy of the right side is equivalent
to a homomorphism

Arm; Q2721 p) = 7 Q771 D)
by the following isomorphisms (9.2) obtained from (9.1):

(9 2) ”i(QQm’ Szmp—a :p)z 7[{(0482mp+1’ Szmp—a .p)z ”i_l(Qimp—a 'p) ,
Y w{Qh, ST p) me (IS, S p) e (QF 71 ).
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Then we have the following commutative and exact diagram

St H®
e &, (Szmp 3. )__,”H_ (Szmpn p) 7 l(Qng 3. p)
(9.3) p* l b Sz lA 2 lZ

H
(Szmp -3, P) __,”Mz(szmp 1. p) — 7, I(szp 3. p) vee

where the four groups of the left side square are considered to
be Z if i=2mp—3.

Lemma 9.1. According to Proposition 3.6, choose maps g:
Yimemor=2 Q0 gnd G: K(mp—1, 2) = Ypme-ve-2, CY"P*° -
Q¥ which induce isomorphisms of Hi( : Z ») Jor j<4(mp—1)p—5.
Let =: Kimp—1, 2)>Y;""** be the shrinking map of Yim?-vr-2,
Then there exists a map D: Y3?*~*— Y;"2-00=2 sych that the fol-
lowing diagram is commutative :

D
7o (K(mp—1,2): p) 75 my (Y3 s p) = m, ((YEmo-or72: p)
7 Q71 B) =7 Q701 p).
Proof. The isomorphisms of (9.2) are induced by the maps
Qh : Q(Qme Szmﬁ—S)__)Q(QASZMp l-l’ Szmp—3)=QZmp—3’ Qh/ . Q(Q;;, SZmp-S)
—-Q(QY, S*7%) and Qi : Q" =Q(Q2S*1, S QY S0,
Since these maps induce C,-isomorphisms of the homotopy groups,
they induce isomorphisms of n(K(mp—1,2); ) by Theorem 1.2.
Thus there are maps G,, G, and G, suchjthat the.following diagram

is homotopy commutative :

’

D
1{(’711) 1 2) (-—-,) Y 2emp - 1ip -

/ / ¢ 1 £
QI oQd Qi

1
Q2m[) 3 ’Q(QQm, b 2mp - !)_ > Q(QY Szm/) ) s Q;mﬁ—s.
We have also that gy :=(K(mp—1, 2); Y;*? 0?2 > n(K(mp—1, 2);
Q?"?7%) is an isomorphism onto by Theorem 1.2. Thus there exists
a map D’ such that G, is homotopic to goD’. Then by the de-
finition of A the following diagram is commutative :
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o (K (mp—1, 2): )2z, (Vim-08 ; )

16 5 &
e Q0 ) s (P ).
Consider the case i=2(mp—1)p—2. Then the above four groups

are isomorphic to Z,, and from (9. 3) we have the following com-
mutative and exact diagram:

H(‘) p
7’2(»;1)—1)p+z(szmm—1 : p) - Zp =% ”z(mp—l)p—a(szmp—:i p)
lA H® lK » l-P

_ X -
7’2(mp—1)p(szmp ! 17) - Zp - ”z(mp—l)p—a(szmp : p) .

Here, H®=0 by the triviality of p Hopf homomorphism. Thus
PsA(Z,) = p-p(Z,)=0 implies A(Z,)=0. This shows that D’
is homotopic to a map D” such that D”(S*™?~®#~%)= %, Since
Tomp-vp-& Yo 72" P?7%)=0, D” is homotopic to a map D, such that
D Ypm?=2-%)=x  Thus D,=Dor for a map D: Y,"*~* — Y cmr-0r-2,

q.e.d.

Lemma 9.2. The map D of Lemma 9.1 represents a generator
x-a2mp—1)p—2) of m(Y"**; Y- \~Z, for some integer
x%£0 (mod p).

Proof. The group =(Yzm™?*-*; Y;™?-1#-%) is stable, hence iso-
morphic to 7z3,_(Y,; Y,)~Z, and generated by a(2mp—1)p—2).
Thus D represents x-a(2(mp—1)p—2) for some integer x. We
assume x=0 (mod p) and lead to a contradiction. To do this it
is sufficient to give an element v of =, (S*"”*':p) such that
H®yeImGy and Avye&Im S%. Then AH®y=H®Ay +0 but, since D
is homotopic to zero by the assumption =0, AH““y&lm (gxoDomy)
=0 which is a contradiction.

First consider the case m=1 (mod p) and let m=ap—0b, a>1,
0<b<p—1. In Proposition 8.8, let A=(ap+1)p and t=(b+1)p.
Then there exists ¢ P& x, (S :p) and Y & 7, (S : p),
i1=2hp—2t —5=2mp+2(ap+1)p(p--1)—>5, such that Sy =p.y*»
and the orders of H®y“ b and Hy® are p°. Consider the
following commutative and exact diagram :
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2 @

S
ST p) T mo (ST p) > m (QFT0 1)
e e |
1
o Q75 ) > (QP0 ) — m (QEP D).

By (2.7), p- H®Ay* 0= HOAS*y®=p. HPy®, Thus the order of
H®Ay* b is p?. By Theorem 2.2, p.m;_(Q2"?°: p)=0. It follows
that H®Ay® %0 and Ay* P &Im S’ The fact that H®y¥ Pe
Im G is essentially proved in the proof of Theorem 5.4, (i) and
the details are left to the readers.

For the case m=1 (mod p) and m>1, the proof is quite similar
to the above. We use Proposition 8.8 for A=(ap+2)p and t=
(p—1)p where m=(a+1)p+1, a>0.

Finally consider the case m=1. Let i=2(p+1)p—7 and con-
sider the groups z;,(S***':p) and =, (S**"':p). By Theorem 7.2
and Lemma 6.1, (iii), these groups are isomorphic to Z, and
generated by unstable elements of the first type: pul’(taprnp-1)
and p,Q%a,) respectively. Put y=p(typ,1p-,). By Lemma 6.1,
(iif), H®p(Q?(a,))=x"-Q? (a,)*+0, ’%=0 (mod p). By the exactness
of (1.7), S?p(@*#(,))=0. Then, by Lemma 2.6, p(Q@%a,))=z:Ay
for some z=£0 (mod p). Thus we have Ay=(1/2)p(Q%(c,))&Im S>.
Since Gy : m; (K(p—1, 2))—>m;(Qi?°) is a C,-isomorphism onto
if i—1<4(p—1)p—>5, we have H®yeIm G,.

Consequently, in all cases we have a contradiction from the
assumption x=0 (mod p). Thus x==0 (mod p). g.e.d.

The following theorem is the main result of this sectin.

Theorem 9.3. Let g: Y;7”"7?> Q""" and g': Y, v?*
Q*?* be maps of Lemma 2.5. For an element o of ;. (S*"*': p),
assume that there exists an element B of m,_(Y;™*~°: p) such that

H®a = g4(S°8) and (ad(2(mp—1)p—2))eB = 0.
We assume further that gi:m,_(Y;7P P2 p)—m, (Q""73:p) is
an epimorphism, which holds if i <2(mp*—p—1)p—4. Then the
following relation holds :
H®(Aa) = x-gi(a(2(mp—1)p—2)oSPB)
for some integer x==0 (mod p).
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Proof. Choose a map G: K(mp—1, 2)>Q*"*** of Proposition
3.6, which is an extension of g’. We have the following (homo-
topy) commutative diagram :

Y;(mﬁ-l)ﬁ—z i.) K(mp_ 1’ 2) L Y;mﬁz-‘i
lg/ ; lG lg//
Q:mp—s Qimp-a Q"’Q:mi’_l .

Compare g” with the map Q’g: Y;"?**—Q*Q!"?"! induced by g.
Both maps satisfy the condition of Lemma 2.5, hence they are
equivalent up to a homotopy equivalence of Y;™?*"* representing
y-ty for some y=£0 (mod p). Thus we may assume that Q’g=g"
without loss of generality. By Proposition 4.5, the attaching map
hin K(mp—1, 2)= Y;?-vr2) , CY;™?*° represents —ad(2(mp—1)p
—2). By the assumption ad(2(mp—1)p—2)oB3=0, there exists a
coextension B & m,_(K(mp—1,2):p) of B. Then j,GuB = gliinyB
=g%(SP).

Now we have the following commutative and exact diagram :

H® Dx

7 ST T (@) T (S7m0)

lSz H® li* Pk II
T (ST T (Q ) s (ST

e ‘j

l2"‘!’—1 o l2 *mlr—1

”i-n(Qz ) = 77:—1(0 Q ) .
By use of (1.3), we have Q(g4S’8)=(Q’g)(SB)=g¥(SB)=7+GxB.
By the first assumption,
74GBB = QX g4S*B) = CH®a=j,H%a .
By the exactness and by the last assumption of the theorem, there
exists an element v of ; (Y™ ™"*:p) such that H Oa=GuB+
1.24y’. Put fy=/§+i*ry’, then H®a=G,y. Applying Lemma 9.1,
Lemma 9.2 and (9. 3), we have
H®(Aa) = AH®a = AGy,y = gka*”*(B“‘i*'}’/)

= g4Dy(SB) = x-gi(c(2Amp—1)p—2)°SR).

Finally consider the homomorphism gf for i<2(mp*—p—1)—4.

J
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Let a be an arbitrary element of z;_ (Q¥*?*:p) and consider the
exact sequence (2.5). By (2.7) and (2.8), p-I(a)=0. By (2.8),
there exists an element B of n;_(S*™?~#=3: p) such that S*‘B=I«a
and p-8=0. Let Ben, (YZ™ ?"2:p) be a coextension of S.
By Lemma 2.5, Ia=S'8=SnwB)=y-IgiB for some ¥ =0
(mod p). By the exactness of (2.5), a=y'giB+ Iy’ for some
v Em; (SH™PVP71: ), By (2.8) we can put y’=S%. By use of
Lemma 2.5, we have a=y-giB+I'S*y =g{(y -B+x-iyy). This
shows that gf is an epimorphism if i<2(mp*—p—1)p—4. q.e.d.
The following two corollaries are important in Section 11.

Corollary 9.4. Assume i<2mp*—p—1)p—4. If
H®a = I(S°)
for acm; (S p) and yEx,_ (S p), then we have
H(Aa) = IH®(Aa) = x-a(2Amp—1)p+1)oS*y
for some integer x=%=0 (mod p).

Proof. By Lemma 2.5, H®a=x"-g,S%(iyv) for =0 (mod p)
and for the inclusion 7:S*"?*~°*—Y3™**, Put B=x'-iyy. Then
H®a=gy(S*B). We have also ad(2(mp—1)p—2)oB=x"+a(2Amp—1)
D—2)oiymyiey=0. By use of Theorem 9.3 and Lemma 2.5 we
have

Hy(Aa) = xx’+ I(g ka(2Amp—1)p—2)oS(ix7)) for x =0 (mod p)
= xx'y SN myt*a(2mp—1)p—2)oSy) for y=0 (mod p)
= xx’y-a(2Amp—1)p+1)oS*y . q.ed.

Corollary 9.5. Assume 1<k<mp*—p—1. If
H®a = I'(ay(2mp*—1))
for acnm; (S p), i=2mp*—5+2k(p—1), then
H®(Aa) = x-I(a;n(Zmp—1)p—1))
for some integer x=%=0 (mod p).

Proof. Remark that «(?) exists if £>2k+1 or if £%0 (mod p)
and ¢#>6, and defined by the relation i,ai(t)=i*(a**6a(t+1)) in
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Proposition 4. 4. We have a(f +1)-izai(t +2p—3)=a(t +1)-i*(a* 8a
(t+2p—1))=i*(a®ax(t+1)) = igor,1(2). Then the corollary is an
easy consequence of Theorem 9. 3. q.e.d.

Remark that unstable elements of the first type in Proposition
6.2 may be taken as the element « in one of the above two
corollaries.

10. Unstable elements of the third and the fourth types.

We start from the following remarks. By (1.3), the homomor-
phism H®: 7z, (S™*) -z, (Q}) in the exact sequence (1. 7) satisfies

(10.1). H(k)(a°5k+lﬁ):H(k)a°:8 Sfor aEm+k(S"+k)’ Beﬂj—l(si—l).
It follows

(10.2). If S¥y=puy’ for yE€r(S*™ 7 :p), ¥ E 7 (R 71 D)
and Py i 7 Q7N ) >, (ST ), then we have S¥(voS*R)
=pulv'oS¥H°B) for BER(S T p). So, if H®(yoS*B)=H®yB+0
and S?(yoS’B)= pu (v ) S* B +0 and r=p—2 (resp.r =p) then
voS3B is an unstable element of the third (resp. the fourth) type.

Next we prepare two lemmas.

Lemma 10.1. If m<p, then the complex K(m, p) of Propo-
sition 3.6 can be chosen such that the cells e*"?—*+*/#-0 j=0, 1, .-,
p—1, together with the base point x form a subcomplex K (m, p)=
Szme-3 g P Sk I g2mP—3+2p- 12 of K(m, P)

Proof. We shall prove by induction on j<p that K(m, j)=
S2mP3 | J . gPmPT3NEG-DA-D g g subcomplex of K(m, j) by changing
K(m, j) in its homotopy type. The case j=1 is trivial. Assume
K(m, j—1) has the subcomplex K,(m,j—1), I<j<p. K(m,j) is
obtained by attaching a cone CY;"?73*%i"0@#-D by a map #h:
Yyime-342G-0@-0 5 K(m, j—1). Let h,: S*P~4+%i~b®-b 5 K(m, j) be
the restriction of 4. £, represents an element of 7,,, s4a;-10p-1
(K(m,j—1): p). By (6.1), we have 7, iro;j-vcp-o(EKo(m, j—1) U
K(m, 1), K(m, j—1) U K(m, i—1) 2 D)~ amp- 11 sj-1cp-n ST 244070 p)
~(7%;_i-vep-n-2: p)=0 for 1<i<j—1. By use of homotopy exact
sequences, it follows that 7,,,, rx;j-vp-(K(m, j—1), K(m, j):p)=0
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and the injection homomorphism 7, ,-s+zj-vep- (Ko, 7—1): p)—
Tomp-s+2j-p-0(K(m, j—1): p) is an epimorphism. Thus 7%, is homo-
topic to a map Af: S¥PPRGL b S K (m, j—1). Extending the
homotopy, we have a map %' which is homotopic to % and is an
extension of #}. Change the attaching map % to &/, then K(m, j)
is changed in its homotopy type and K,(m,j)= K,(m,j—1)U
2mPTIHG~DU-D g g subcomplex of K(m, j). By induction on j the
lemma is proved. q.ed.

Lemma 10.2. Assume that ®* %0 in a complex K,=SVU
eNFTHLD o Y N0 gpd N >2(p— 1) — 3, for example K,= K(m, p)
for m=0 (mod p), m>p or K,=K(m, p)/K,(m, p) for m=1 (mod p),
m>p. Let h:SN*txe-DI1_, NN+26-2XP=D po the gttaching map of
the top cell eN**2~2% gud let i:SN— Ky *2=2P=D be the inclusion.
Then we have

hal et (N+2(p—17—1)) = x-ia(BN))
for some integer x%=0 (mod p). (See [10: Lemma 4.10].)

Proof. By Corollary 8.4, for a generator a, of H***~(Q3;7:Z,)
we have ®*'a,=a,_ ,+0 if m=0 (mod p) and ®?'Ag,=Aa, ,+0
if m=1 (mod p). By Proposition 3.6, the same is true for
H*(K(m, p); Z,). It follows that ®?~'=0 in K (m, p) if m=0 (mod p)
and in K(m, p)/K,(m, p) if m=1 (mod p). As in the proof of the
previous lemma, we See myiypcp-n-K§ PP SN p)=0. Thus
hy(a(N+2(p—1)—1)) belongs to iyumnizp,-n-SY) generated by
158:(N). Put hy(a(N+2(p—1Y—1))=x-iyS,(N) for some integer
x. Assume x=0 (mod p), then Z.(a;,(N+2(p—1)*—1))=0 and there
exists an extension & : SNt VI, NTRHP-D1_, KN4EPTDOD of
Consider the mapping-cone of %, then it is easily seen that
®'®?*+0 in the mapping-cone. But this contradicts to Adem’s
relation ®'®?"'=0. Thus x=%=0 (mod p). q.ed.

The following four theorems indicate the existence of unstable
elements of the third type.

Theorem 10.3. Assume that m=0 (mod p) and m=>p. Then
there exists an element v Of Topp_si2pcp-(S*™" 1 ) such that
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H®y = x.I'(B,2mp—1)) for some integer x=0 (mod p),
Sty = pl(a,2m+p—1)p—1)) and S** 2y =0.

Thus for an arbitrary element B of =;(S*"?~5*22~Y) ywe have H®
(oS*B)=x-I'8,(2mp—1)oB and S***(v°S’B)=pxl'(a,(2(m+p—1)p
—1)oS?27R).

Proof. Choose a complex K(m, p) as in Lemma 10.1 and ap-
ply Proposition 3.6, then we have the following commutative
diagram :

hy_o, i
7 (Ygmo-ovso-o) 278 o (K (m, p—1)) < 7, (VE™)

lg,é le—l* i lg*
(10.3)  m (Qp1Qem+2r-0) %, 1 (Qiny (@)
~ T Qzp-1 TH‘”"Z’

Trrap (@) Lo (SP070

(G=2mp—5+2p(p—1)).
By Lemma 10.2 with h=h, ,|S??~*%#~? we have

hp—l*(il*al(zmp —4+2(p—1))) = &' +i4(i,4B:(2mp—3))
for some x’=£0 (mod p), where i,: S2mP-4+xe-D2_, y2Zmp-3+2p-12 gpd
i, 1 S*?7* » Y;"*~% are the inclusions. By Lemma 2.5, (Q**7%)*
il (Zmp—4+2(p—17)=y-I'a,(2(m + p—1)p—1) and gyix6:
@2mp—3)=y - I'G(2mp—1) for y, y¥=£0 (mod p). From the com-
mutativity of the above diagram it follows
He™5(pyl'on(2(m+p—1)p—1)) = x-iyI'B(2mp—1)

for some integer x==0 (mod p). Next the following diagram is
exact and commutative :

(10.4)
p* . 2p—4 @p-4)
7iva(QF528) = m;1o(S) > ”i+zp—1(.sm+2p—3) > 7@
zlgs chz) ) lH(zp—z) zlﬂz
4 £3
r(QQ3 ) — m Q") — 7 Q5% 7 (VQ53) -
Since  H®*™(pul'ct,(2(m+p—1)p—1)) = x - Q %4z I'B,(2mp—1) = O,
there exists an element v’ of 7,,,(S*”*': p) such that S***y'=p. l'«a,

(2(m+p—1)p—1). By the commutativity of the above diagram,

Jx
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we have i (H®y'—x-I'8,(2mp—1))=0. Thus there exists an ele-
ment v” such that di/y”’=H®y'—x-I'B,(2mp—1). Put y=v"—puv",
then we obtain

H®y = x.I'8,(2mp—1) and S***y = pl'a,(2m+p—1)p—1).

By the exactness of (1.7), S*”"%y=0. The remaining part of the
theorem is a direct consequence of (10. 2). g.e.d.

Theorem 10.4. Assume m=0 (mod p) and m=>p and let
Y E Tomp-2tapp- (S 1 p) be the element of Theorem 10.3.

(i). If 0<r, 1<s and r+s<p—1, then the composition
voBiB,(2mp—2+2p(p—1)) is an unstable element of the third type,
ie., by putting v'=voBiB,2mp—2+2p(p—1)) we have H®y'=%0,
Sy’ £0 and S*?**y'=0. The elements S*vy’', 0<j<p—2, generate
divect summands isomorphic to Z,.

(ii). The element v is an unstable element of the third type,
ie., H®y=x0, S?*~*y+0 and S** *y=0. Let the order of v be p’,
then 1<t<p—1, p71-S?* % 2y=x . p la 2m+p—j)p—1) for 1<
i<p—1 and for some integer x;%0 (mod p) and the order of
Sep-2iz2y js pMintd Thus pil'a(2(m+p—7p—1)=%0 for 1<j <t
and =0 for t<j<p—1.

Proof. (i). The element v’ = yoB;B3,(2mp—2+2p(p—1)) be-
longs to m,,414x(S**:p) for k=2(m+@r+s+1)p+s—1)(p—1)—
2r—5. Since BiB,2mp—2+2p(p—1)) is a stable element of order
p, we have p.v’=0. By Theorem 10.3, H®y’'=x.I'Bi*'B,(2mp—1)
for some x=%=0 (mod p). Thus v’ is of order p and not divisible
by p since the same is true for H®y, by Theorem 2.2, where
we have 2m+1+Ek<2p*m—>5 from the assumption m>p and Theo-
rem 2.2 can be applied for our case. Now, it is sufficient to
prove that S*™*: 7z, .1 1 (S 1 D) = Topiop-arx(S**27° 1 p) is an iso-
morphism onto. By (6. 4), 7,,15;:14£(Q;" 1 p)=0 for 0<j<p—2.
We have also, by (6.4), mupiss(@;" " :p)=0 for 0<j<p—2 if
(r, 5)*=(p—3,1) and ~Z, generated by Q™ /" (acy_pp-;-») if (7, )
=(p—3,1). Q™' a, n, ;-») is not in the H®-image since
PxQ™ ' (Acp-vp-;-)+0 by Lemma 6.1, (iii). Then, from the ex-
actness of the sequence (1.7), it follows that S*”7* is an isomor-
phism onto,
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(ii). The fact H®y =0 is proved as above. Since S* *(yo@,
(2mp—2+2p(p—1))+0 by (i), we have S?**"*y=0. By Theorem
10.3, pyl'a(2(m+p—1)p—1)=S**"*y=+0. Apply Theorem 5.3, (ii)
to é=Il'a(2(m+p—1)p—1), then there exists an element 7, such
that S*y,=p.e=S*"*y and p-v,=xpl'a,(2(m+p—2)p—1) for some
x%+0 (mod p). By the exactness of (1.7), we have v,=S2"°y
ypxl'o(2(m+ p—2)p—1) for some integer y. It follows p-S?*y=
xpyl'a(2(m+p—2)p—1). Repeating this process (ii) is proved.

q.e.d.

Before proving the next theorem, we need some remaks on the
concept of the coextension. Let f: Y—>X be a map and construct
a mapping cone

X*=XU,CY

of f. Let f:(CY, Y)—(X*, X) be a characteristic map, i.e., f|Y=f
and f is a homoemorphism of CY— Y onto X*—X. A coextension

Ber(SZ; X)

of Ben(Z;Y), with the relation f,8=0, is defined as follows.
Let g: Z—Y be a representative of 8. Represent each point of
SZ and CX by pairs (2, t), zeZ,tel and (y, s), ye Y, z€l. Then
B is represented by a map g:SZ—X given by g(z, t)=(g(2), 2t)
for 0<#<1/2 and g(z,t)eX for 1/2<t<1. We see that zog is
homotopic to Sg for a map =»: X*—SY shrinking X. Consider
the relativization

Jx:7(SZ; X*) = n(CZ, Z; X*, x) > n(CZ, Z; X*, X).
Then from the above definition we have

(10.5). An element v of =(SZ; X*)is a coextension of BE=n(Z;Y)
if and only if the following relation hold :

Is(y) = F(07'8),
where fy:n(CZ, Z;CY, Y)—>n(CZ, Z; X*, X) is induced by f and
0:7(CZ, Z;CY, Y)Sn(Z; Y) is the boundary may (restriction).

The map f defines canonically a map Qf: Y—-Q(X*, X). Then
we have
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(10.5Y. ye€#r(SZ; X*) is a coextension of BE=(Z; Y) if and only if

Q7x7) = Q)48

where Q:7n(CZ, Z; X*, X)—»=(Z; Q(X*, X)) is one-to-one map of
(1.1).

These (10.5) and (10.5) can be taken as the definition of the
coextension.

Lemma 10.5. Assume that X is arcwise connected. . Let f:
S7'—> X be a map, X*=X U ;e” a mapping cone of f and n: X*—-S"
be a map shrinking X. Then for arbitrary element a of =,(X¥),
its suspension Sacw;,(SX*) is a coextension of (xt,)orgaEn,(S7).
Thus, if nwo=0 then Sa is in the image of the injection homomor-
phism (St)x : 7;,(SX) =7, (SX*).

Proof. The canonical inclusion Qjei, : X*—QSX*cQ(SX*, SX)
can be extended over a map i, : X* UCX—Q(SX*, SX) since i, XC
Q(SX, SX) and Q(SX, SX) is contractible to a point. =z defines a
homotopy equivalence of X*UCX onto S”=SS”' (by shrinking
CX). Let A:S"—>X*UCX be a homotopy inverse. It is easily
seen that A ,=ioch:S"—>Q(SX* SX) represents a generator of
7, (QSX*, SX))=~r,,(SX* SX)~Z. The map QSf):S"—>Q(SX*,
SX) induced by the characteristic map Sf:CS”—SX* of the
(r+1)-cell in SX* represents also a generator of =, (Q(SX*, SX)).
Thus Q(Sf) is homotopic to 4, up to sign. For acx,(X*) we have

Q(S)wSa) = (U)aUSa) = (U)sdont = hugmgat = (£ QST )y(m4)

by use of (1.2). This shows, by (10.5), that Sa is a coextension
of (x¢,)omgar. If mypa=0, then (S7)ySa=Q7 (£ QSf)4rsa)=0. By
the exactness of the homotopy sequence of the pair (SX*, SX),
we have that So is in the image of (57).. q.e.d.

Theorem 10.6. Let m=1 (mod p) and m>p-+1. Assume that
i (SEPHRITDRD py=0 for 1<j<p—1. Then for an arbitrary
element B Of 7;_,p  (ST™P7HHXLD: b)Y there exists elements yEx,,,
(S*™ 12 p) and v Emyppp (Q7P70 1 p) such that
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H,y=IH®y=x-8,2mp+1)oS**7'B for some integer x=0 (mod p),
S*ty=pyy’, Iv'=a,2(m+p—1)p+1)oS**B and S***y=0.

Proof. Choose a complex K(m, p) as in Lemma 10.1 and let
hy_ i Yyrrm3ixe=0t s K(m, p—1) be the attaching map as in Propo-
sition 3.6. Consider the subcomplex K,(m, p—1)U Y;"?* of
K(m, p—1) and let 7, be the inclusion of this subcomplex. Since the
complex K (m, p—1)U Y;™?7? is in a stable range, we may assume
that it is a mapping cone

Kj(m, p—1)U Y372 = S™2 yC(MV S™*~),

where M\/S*”?7* is a one point union of a complex M= S?"#-++x#-D
U Ugtmpmttze-ar-n gand S*”#-3,  Also we may assume that M=
S?2°M, for a complex M,=S?"?"1{J... |J g?mP - 1+xP=3P-D,

First we prove the following (10.6) for a coextension
*a(@mp—3+2(p—1)*) of a,(2mp—4+2(p—1)) given in Section 4.

(10. 6). By is(F(2mp — 34-2(p— 1)) = ip4(€")

for a coextension & Em,,, 4iopp (Ko(m, p—1)UY;"?72:p) of an
element v®x-B,2mp—3), x£0 (mod p), where vET,,p si2pcp-1(M)
and D indicates the direct sum decomposition : =, (M)Pn,(S*"* %)~
m M\ S*P7%), t=2mp—5+2p(p—1).

Since m>p+1, the homotopy groups considered here are stable.
In particular, =, (K(m, p—1), K(m, p— 1)U Y;"? ==, (K(m, p—1)/
(Ky(m, p—1)U Y3™*"?)) and this has a trivial p-primary component
by a similar reason as in the proof of Lemma 10.1. We have
also 7z, . (Ky(m, p—1)U Y772 S*2 N~ 7 (M S*?7%) and this shows
that every element of =, (K(m, p—1), Y;"*7*) is a coextension of
an element of =,(M\ S*?7%). It follows the relation of (10.6)
for a coextension & of vPF’, B'cx,_,(S*"?*:p). To show @'=
x+3.(2mp—3), we shrink the subcomplex K (m, p—1) of K(m, p—1),
then Lemma 10. 2 implies B8'=x.8,(2mp—3).

Next let ¢': Y;”?*— K(m, p—1) be the inclusion. Then we
have

(10.7).  hy 1y ((*a(@mp—3+2(p—1)")oS**7*B) = il(€) for a coexten-
sion E€n (Y72 p) of x-B,(2mp—3)eS**7°B, x=%=0 (mod p).
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To prove this it is sufficient to show »oS**°@=0. Since
m>p+1, S oy siap- M) > Topmpsi2pcp-(M) is an isomor-
phism onto. Let v=S%*"° for some ». Consider a map =»’: M,—
Semp-1tap=5r-b which shrinks lower dimensional cells, then 74 (v"o3)
belongs to 7, ,, . (S*"?7'¥2=H*=0: p) which vanishes by the as-
sumption of the theorem. By Lemma 10.5, S(v'oB)=1i4v"” for some
V' Em;_ypys (SMEmPT1HER=0P=D s py - If p=3, oS °B=S o B)=1iw"
=0. If p>3, we consider Sv” and repeat the process, then the
relation voS**7°R=0 is proved as the image of =, ,(x:p)=0.

Now considering the commutative diagram (10. 3), we have

Hp (e 0g i¥a(@mp—3+2(p—1))oS™*B) = ixgut .
Putting v'=x-Q ** Vgli*a(2mp—3+2(p—1))oS*?*83 for suitable
x’%0 (mod p), we have by Lemma 2.5

Iy’ = S (myi™*a(2mp — 34 2(p—1))oS**7*B3)
= a,(2(m+p—1)p+1)oS*7°3.
Next considering the diagram (10. 4), we have
HEP(pyry") = Q7 HP™(p37") = Q% 4bngs(€) = 0.
Thus there exists an element v, of 7;,,(S*”*':p) such that S?? %y,
=p.v’. As in the proof of Theorem 10.3, modifying v, by v=
v,—Dxv. for some v,Ex;,(Q52*]: p), we have
H®y = g,&, Sy =py’ and S¥* % =0.

Since & is a coextension of x.8,2mp—3)oS**°R by (10.7), we
have using Lemma 2.5

Hyy = IH®y = Igy€ = y-S’my€ = xy-B(2mp+1)oS**7'3,

for some y=0 (mod p). Changing xy to x, the theorem is proved.

q.e.d.

The proof of the following theorem is similar to one of
Theorem 10. 4, using Theorem 10.6 in place of Theorem 10. 3.

Theorem 10.7. Assume m=1 (mod p) and m>p+1. If 0<r,
1<s and r+s<p—1, then there exist elements

Y € TomptaCris+Dp +s—1><p-1>—zr—3(sm+l )
and '}"E Tomp +2(r s H);+s)(p—1)—zr—5(sz1 2p-3 Zp)
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such that

H,y=ITH®y=x-81"'B,2mp+1)+0 for some integer x=0 (mod p),
Sty =pyy’£0, Iv'=aiBiB(2(m+p—1)p+1) and S**7*y=0.

Thus v is an unstable element of the third type. The elements
S?y, 0<j<p—2, generate direct summands isomorphic to Z,.
The corresponding results for m=1 will be seen in the next
section.
For unstable elements of the fourth type, we have the following

Theorem 10.8. Assume m=0 (mod p), m=(p—2)p (mod p?
and m>2p. Then there exist elements ¥ Empmprrcprip--LS"1" 1 p)
and 'yle”zmp+2(2p+z')(p—1)(Q:m+2p+l : p) such that

H®y = x.I'B,2mp—1) for some integer x % 0 (mod p),
Sty = pyvy', Iv' = B(2m+p+1)p+1) and S*y =0.

Proof. By Theorem 2.2, there exists an element ’ such that
Iv=BR,2(m+p+1)p+1). Let t=2mp+2(2p+1)(p—1)—2 and con-
sider the exact sequences

. : . (2) Dx

Tp12j-l S T) =y (ST > g QT e
for j=0,1,2, .-, p. By (6.4), m4,;5(@;"* 7 :p)=0 if 1<j<p,
~Z, generated by Q™(8,)=1'8,2mp—1) if j=0 and ~Z, generated
by Q™*¥a,B,) if j=p. Q™+?(a,83,) is characterized by the relation
IQ™(a,B,)=a,B,(2(m+p)p+1). Then, by use of Theorem 10.7,
PxQ@™ ?(a,3,)+0. From the exactness of the above sequences, the
above S? are epimorphisms of the p-primary components for
1<j<p. Thus there exists an element yexr,(S*”*': p) such that
S*?y=p.y’. We can put H®y=x.I'8,(2mp—1) for some integer x.

We assume x=0 (mod p) and lead to a contradiction. From
this assumption it follows v=S%*y, for some v,. Consider the
following exact and commutative diagram :

7, (QQ335)
25+3 1 Q7
Tivap (Q;m+2p+1) ~ > 72-[_3(02#+3Q:m+2p+ 1)

Szp+2 l p* H(2p+2) 1 d*

> Ty (ST >y Q3570 «

71',4_3(82"‘_1)
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We have d, Q"' = H®p ' = Her*+5S2420 — (), Thus there
exists & en, (QQ5nd: p) such that (Qf),& = Q****y’. Consider
E=Q07¢ Enm, (Q33 1 p), then ju&=Q**y" for jy:m, (Q57s) —
”1_2(02P+2Q§m+2p+1).

Since m>2p, by Proposition 3.6 and Lemma 2.5, we may
replace Q3r7i and Q**7°Q" ' by K(m, p+2) and Y;ripe-ze-t
respectively and we may consider that Q****y’ is a coextension of
2B, 2(m+p)p—2p—2), x'£0 (mod p). As a characterization of
the element B,, we know [13] [10] that in a mapping cone
Y:(m+ﬁ)ﬁ—2ﬁ—luet—l Of QZP+2,Y/ we have (PPHZC"H—P)P"ZP—Z( ;Zp)#:O,
hence the same is true in a mapping cone K(m, p+2)Ue*™* of &.
By identifying H*(K(m, p+2); Z,) with H¥Q377i; Z,) in lower
dimensions this is indicated by ®#%a,,,#+0 in K(m, p+2)Ue'"". By
Corollary 8.4, we have (P”“a(,z(m(‘z,;ll)_1>ap+1=((m/p)+1)ap+1,
(P"(P‘aoz—(P"a,=—((m+1§ﬁ_1))a,.1=(m/p)ap+,. On the other
hand, by Adem’s relation, ®?@?* = P2+ 4 @22@1 = @ P?* +
((1/2)@2@* — @*'@H®', e, CPQE"' —E*EP) = @P(2F? +
@2r2@'®"). We have (20**+@®***®'®')a,=0 since there is no
cell of the corresponding dimension. Thus 0=®?2®*"— F?®")a,
=((m/p)+2)®?a,,,. This contradicts to ®?a,,,+0 since m=*E—2p
(mod p*). We conclude x3=0 (mod p). q.ed.

In the following section we shall see the above theorem holds
for m=p>5.

It is an open question whether the above theorem holds for
B, and B,,, instead of B8, and B, respectively.

11. Unstable groups—II.
The main theorem of this section is briefly stated as follows.

Theorem 11.1. For m>1 and k<2p(p—1)—3, we have the
following direct sum decomposition :

T s S?71 B) = Alm, &)+ B(m, )+ 33 Ulm, &),

where the subgroups A(m, k) and B(m, k) are mapped isomorphically
into the stable group ni under S= and the subgroups U/ m, k) are
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generated by unstable elements of the t-th type. (The precise defini-
tion of these subgroups will be given in the sequel.)

The fundamental tool of the proof is the following two exact
sequences :

H® : b Sz
11.D)=Q.7) - — 7y, 11(Q3"": p) % Tom 1 s i(SP 10 D) —>
@
Tom 165" L D) = Ty (3”71 P) — o

I A I
(L D=(25) = s s S5 1) = Tar (S5 )

I
Tom-1i(QE7 711 D) = Ty (S0 1 ) —> -

We shall use the notation @™(y) and Q™(vy) of (6.3), i.e. @™(y)
is an element of z,(Q3™':p) such that Q™(v)=I(y") and S~y =«
for some v’; Q™(y) is an element of z Q3™ ':p) such that
S=IQ™(v)=".

In the following we always assume m>1 and k<2p*(p—1)—3.

We start from the definition of A(m, k). We have seen in
Section 4 that there exists «,(2m+1)=5""«,(3) for each r>1
which is of order p and satisfies S*«a,(2m+1)=«a,. Also we have
seen in Lemma 7.3 that there exists «},(2m+1)=S"""*a;, (5) for
m>2 and 1<s<p which is is order p* and S~ «a;,2m+1)=aj,.
Remark that we can define a/(2m+1)=x-a,(2m+1) for »==0(mod p)
for some x%0 (mod p). (See (6.2)). By use of these elements
A(m, k) is defined as follows.

(11.3).  A(m, 2sp(p—1)—1)~Z,> generated by o, (2m+1)
for m>2 and 1<s<p,
A(m, 2r(p—1)—1)~Z, generated by a,(2m+1)
(or ay(2m+1)) for m=1 and for r=0 (mod p),
A(m, k) =0 for k=E--1 (mod 2p—2).

In order to define B(m, k) we prove

Lemma 11.2. There exists an element B3,(2p—1)Em,p 142pcp-1-2
(S**7': p) which is of order p* and satisfies S=B,(2p-1)= B, and
H®R(2p—1)=x+-Q? (ar,), x£0 (mod p). The order of B,(2m+1)
=823 (2p—1) is p for m>p.



238 Hirosi Toda

For 2<s<p, there exists an element B (2p+3)E wypraissprs—1)
xp-0-AS?1% 1 p) of order p staisfying S*RB,(2p+3)=4,.

The order of o,B,(3)=a,3)eSB,(2p—1) is p. For 2<s<p,
there exists an element o,B(5)E myspioxp-1+AS°: p) 0Of order p such
that S*(a,B45))=a,(7)oSBL(2p+3).

Proof. The first two assertion were seen in the proof of
Theorem 7.1. The third assertion for B,(2p+3) follows from
Corollary 6. 4, (ii).

By use of (1.3), (iv), we have p(a,B:(3))=p a,(3)oSB,(2p—1)=0.
Since S~(a,6,(3))=a,8,+0, the order of @,5,(3)is p. According to
(1.9), decempose Sa,(5)eB,(2p+2) into a direct sum S(a,545))+
[¢s, teloy. Since p(Sa(5)oB,(2p+3))=Sa,(5)cp-B,(2p+3)=0, we
have p.a,8,5)=0. Asin (1.10), (ii), we have S%a,5,(5))=S(Sa,(5)e
B:(20+3))=a,(7)oSB,(2p+ 3). q.e.d.

We denote B,2m+1)=S*""*t28(2p+3) for m>p+1. As com-
positions of 8,( ) and B,( ), we define B8,2m+1) for m>p—1
if »>1 or s=1 as is seen in the proof of Lemma 6.1. We also
define a,B878,(2m+1) for m>1 if »>1 or s=1 and for m>2 if
r=0, s>2 by a,BiB,2m+1)=a,(2m+1)oBiB,(2m+2p—2) and by
the element «,8,5) of Lemma 11.2. We define B(m, k) as follows.
(11.4). B(m, 2((r+s)p+s—1)(p—1)—2(r+1))~ Z, generated by

BiB,(2m+1) for m>p—1 if r>1 and s>1,
for m>p if r=0 and s=1,
Sfor m>p+1 if r=0 and s>2.
B(m, 2((r+s)p+s)(p—1)—2(r+1)—1)~Z, generated by
a1 BiBR,2m+1) for m>1 if r>1 or s=1,
for m>2 if r=0 and s>2.

For the other cases we put B(m, k)=0.

Lemma 11.3. The subgroups A(m, k)+B(m, k) are direct
factors of the groups my, .+ (S 11 p) for m>2 and k<2p*(p—1)—3.
This follows easily from (6.1) and the above definitions.

The homomorphism S* maps A(mp—1, k)+B(mp—1, k) iso-
morphically onto A(mp, k)+ B(mp, k) except the case m=1, k=
2p(p—1)—2. Then the homomorphism A in the sequence (11.2)
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is determined by the formula (2.7): AS°a=p.a. From the cxact-
ness of (11.2), we have

(11.5). Q™(), Q™) and Q™(a,) exist for r>1. Q™(BiB,) and
Q™(BiB,) exist for m>2 and for m=1 if r>1. QY(B,)
exists. Q™(a,BB,) and Q™(c.B;8,) exist for m>1.

Remark that Q'(8,) does not exist since AB,(2p+1)=0 as is
seen in the proof of Theorem 7.2. We shall see also that @'83;)
and Q'(B,) do not exist for s>2.

Note that in meta-stable cases the above elements of (11.5)
are independent generators of order p as is seen in (6.4), but for
smaller values of m the non-triviality of these elements has to be
checked in the inductive proof of Theorem 11. 1.

The definition of U,(m, k) starts from the case t=4.

(11.6). U(ip+j, 2((s+Dp+s—1)p—1)-3)=Z,
generated by an element Sul, B,) for [>1,s>2, s+I<p
and j=0,1,2, .-, p.

For the other cases we put Ufm, k)=0. The element u/l, 8,) is
required to satisfy

H®u(l, 8;)) = x-Q*(B,),  x%0 (mod p),
S*#(ul, B.) = p+Q* "N B,-.) and  S**(u(l, B,)) = 0.

Note that we know the existence of such w(/, B,) only for
the case />2 and s=2 in Theorem 10. 8.

AL.7). Ulp+j, 2(r+s+)p+s—1)(p—1)-2(r+1)—-1)=Z,
generated by an element SVu(l, 8i8,) for r=0,s>1,/>1,
and j=0,1, -, p—2 except the case r=0, s>2.

Up+1+7, 2((r+s+Dp+s)p—1)-20r+1)=2Z,
generated by an element S*u,l, BiB;) for r>=1, s>1, />0,
and j=0,1, -, p—2.

For the other cases we put Ufm, k)=0. The above generators are
requived to satisfy, for some x, ¥’ =0 (mod p),

H®ul, BiB,) = x-Q"(BiB.), H®u I, BiB.) = «'-Q"**(BiB,),
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St u(l, BiB,) = xR ? (BT Bs) (=pxQ* " ay) if =0, s=1),
S22, B8,) = py@'? (e B 7'B,) .

Note that except #,(0, Bi5,), the existence of the elements
u(l, Bi8,) and ,(/, BiB,) has been obtained in Theorem 10.4 and
Theorem 10.7 respectively.

(11.8). U m, 2sp(p—1)—2)~Z,> generated by v, (2m+1) for 2<m
<sp—1 and for m=p—1, s=1(v,(2p—1)=L,(2p—1)).

UQ, 2sp(p—1)—2)~Z, generated by v/(3).
Usp—1, 2sp(p—1)—2)~Z, generated by S’v(2sp—3), s>2.

For the other cases we put US(m, k)=0. These elements v (2m+1)
are required to satisfy

Sy Cm+1)=p-v,.Cm+3) for 1<m<sp—2 and for m=p—1,s=1,
H%y (2m+1)=x,-Q™(cth,_n) for some x,%£0 (mod p),
H®y (2p—1) = x-Q? () for some x%£0 (mod p).

Note that the above fact is known for s=1,2 by Proposition
8.8 and the results of Section 7.

(11.9). U(m, 2(p*—p+m)p—1)—-2)~Z,+ Z, generated by
PO ape-, ) and p Q™GB for 1<m<p—1.

U(m, 2r(p—1)—2)~Z, generated by p,Q"  a,_,,_,)

(by p Q@™ (o) if m=r—1) for 1<m<r,r=0(mod p))
and r—m=£p'—p.

Um, 2((r+s)p+s+m)(p—1)—2r+2))~ Z, generated by
Q7 (BiB;) for m=E=—1 (mod p), r>0, s>1 except
the case (r,s)=(p—2,1) and the case m=1, r=0,
s=>2.

U(m, 2((r+s)p+s+m)(p—1)—2(r+1)—-1)~Z, generated
by pQ™ N (BiB,) for m=0 (mod p), r>0, s>1 except
the case m=1, r=0, s>2.

U(m, 2(tp+)(p—1)—-4)=Z, for 2<m<t.

For the other cases we put U,(m, k)=0.
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Lemma 11.4. Assume that Theorem 11.1 is true for 7., .+;
(S 1 p), i<k. Then for j<k+2p—4, the groups m,, .. (Q:"': p)
are generated by the elements in (11.5) and the following elements
of the corresponding dimensions :

I/(p*QmP(L)) ’ 1<m<p )
Q™(u(B,)) = I'(S* *u(m—1, B,)), m>2, s>2, m+s<p

and Q™(uB,)) satisfying I(Q™u(B,))=S"* u(m—1, B,)), m=>2, s>2,
m+s<p. These elements are independent in the following sense:
if t is the number of the above elements contained in the group
o1+ AQ3™ " p) then the order of the group is p'.

Proof. Since S*: U(mp—1, i)—>U,(mp, i) is an isomorphism by
the definition (11.6), we have the existence of @Q™(u,(8,)) and
Q™(u(B,)) by use of (2.7). For the case 1<m<p, pQ™"?() is a
generator of 7,2 (S™? 7' p)~Z, and m,,,2_(S*?*':p)=0. Thus
I'(p.Q7"(.)) exists. Remark that for the case m=1, p,Q?()=
p-B.(2p—1) is cancelled with B,(2p+1) and gives none.

Since the exact sequence (11.2) indicates the independence of
the elements in the lemma, it is sufficient to prove that the
generators of >_,U/(mp,i) and >3_,U(mp—1, i) are cancelled
by A, excepting the generators B,(2p+1), 8,(2p—1)=v,(2p—1) and
pxQ™(:). By checking the generators, we see that the following
pairs are the candidates which are cancelled by A:

(1) (21Q™?4(0), psQ™()),

(ii) (p4Q@™*Y(et,_,), px@7*(at,)) for r#0 (mod p), r>2,

(iii) (vs2Cmp+1), v (2mp—1) for 1<m<s,

(iv) (u(m, BiBs), p+Q™(BiB,))  for r>1 or s=1,

(v) (u(m, BS), p+Q™(B;)) for s>2,

(vi) (p4Q7?N(BIB), St (m—1, Bi7'B,)) for >0, s>1, m>2,

By Lemma 6. 1., (iii) we have H®p, Q" (a,_,) = x'-Q"*(a’)
and H®p, Q" (a,)=x"-Q™* Y a},;) for some x/, x”%=0 (mod p).
Then it follows from Corollary 9.5 that H®A(p.Q™* (a,_,))=
22 - Q" aly)= (x4 [x") H?p,Q™*(ax,). By the exactness of the
sequence (11.1) we have

A(psQ" N at, ) =y-04Q™at,)  mod Im. S*
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for some y=0 (mod p). This shows that the pair (i) is cancelled
by A. The proof for the pairs (ii), (iii), (iv) and (v) is similar to
the above, by use of Corollaries 9.5, 9.4, Lemma 6.1 and the
relations in (11.6)-(11.8). Consider the pair (vi). By (11.7),
S, (m—1, Bi*'B,) = p4@™ (o, BiB,). Compare Q™(a,B;8,) and
the composition Q™?(B;B,)oa,(t) for some suitable . The I[-images
of these two elements coincide, hence the difference is in the
I'-image which vanishes in our case. Thus S* ‘g, (m—1, £7*'3,)
= p Q™ (B8,)o, (). Similarly, pQ™**'(B;B,) coincides with
u(m, BiB)ca,(t—3) or u(m, By)ea,(t—3) up to non-zero contant.
By the commutativity of A with the composition, the case (vi)
follows from the cases (iv) and (v). q.e.d.

Lemma 11.5. Up to some non-zero constants, we have the
following relations :

H®a,3) = Q(), H®a,(3) = Q¥a,.,) for 2<r<p*,

H®a,,(5) = Q(a,,.,) for 1<s<p,

H®(BiB(2p—1)) = Q* (auBi7'B,) for r>1or s=1
and H™a,Bi1B,(3)) = Q(BiB,) for r>1 or s=1.

Proof. First remark

(11.10). In Lemma 11.4 of the case m=1, the groups m,. (Q3: p) are
isomorphic to O, Z, or Z,+Z,. = Qi:p)=Z,+Z, only for the
cases j=2p"—p)(p—1), 2Ap"—p+1)(p—1)—1, 2(p°—p+1)(p—1),
20 (p—1)—2 and =2p*(p—1)—1.

The first half of (11.10) is obtained just by checking the
numbers of generators. Consider the last half. For the second
and third cases of j, we see that the group are isomorphic to
Z,+Z, by I’ and I respectively. For the first case of j, the group
m4 Q% p)~m (S°: p) contains Z,+Z,~A(1, j—1)+B(1, j—1).
For the remaining two cases the groups are generated by Q‘(al,BP_,),
Q(B}) and QY(BY), Q' (a,z.,) respectively. The elements Q'(37) and
Q'(ayz_,) are of order p. Also the other two elements are of order
b since they are represented by some suitable composition. Thus
(11.10) is proved. Then the relations for «,(3) is obvious. (The
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relation for «,(3) is true for general » which can be proved by
use of Lemma 2.7 easily.) (11.10) also shows that a,(5) is not
contained in S’-image since it is of order p°. Thus H®a/,(5)=+0.
From Lemma 11.4 we can check that the only possibility is
H®a,,(5)=x-Q%a,,-,), *£0 (mod p). The relation for 3783, follows
from the relation H®B,(2p—1)=x-Q? (a,), x£0 (mod p), of (11.8).
The last relation follows from (2.13). q.ed.

Now we consider the structure of the groups =,,_,,;(Q3™": p)
of Lemma 11.4. It is directly checked that the orders of the
groups are at most p°. Consider the cases that the orders are p°
For metastable cases the groups are isomorphic to Z,+Z, as is
seen in (6.4). The possibility to be isomorphic to Z,2 occurs for
the cases of the first five ones of (6.4) of lower m and the cases
that the generators listed in Lemma 11. 4 overlapping to some other
ones. Let m>2. Then the first case of (6.4) is meta-stable. By
a similar reason to the proof of (11.10), the group splits for the
fourth and the fifth cases of (6.4). The same is true for the third
case of (6.4) since the generator @™(a,_5,-,) can be obtained as
an image of *a? *7(2mp—2) which is of order p. Together
with (11.10), we obtain

(11.11).  The group m,, . (Q3" " : p) in Lemma 11.4 is isomorphic
to 0, Z, or Z,+Z, except the cases that the groups are generated
by the followings :

{Q7(ctsprs-1), Q™(B)}  for 2<m<s,
{QB.B,), Qu(B.))}  for s>2.

We prove Theorem 11.1.

Proof of Theorem 11.1. We define a subgroup ='(m, k) of
7”2m+1+k(52m'H . p) by
7'(m, k) = A(m, k)+ B'(m, k)+ Ui(m, k)+ Us(m, k),
where B’(m, k) is obtained from B(m, k) by omitting the generators
B(2m+1), s>1, and a,8,(2m+1), s>2; Uj(m, k) is obtained from

U(m, k) by putting U{(m, 2tp+t)(p—1)—4)=0 and Uj(m, k) is
obtained from U,(m, k) by omitting the generators S¥u(/, B,) and
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S%i,0, BiB,). The generators of z'(m, k) satisfy the required con-
ditions and the group ='(m, k) is a direct factor of =,,,.,.x(S*"*: p).
This is shown by use of Lemma 6.1, (11.11), Lemma 11.2, Lemma
11.3, Lemma 11.5, Theorem 10,4 and Theorem 10.7. Put z(m, k)
=114 xS P) /' (m, k), then

Toms1+ (S 1 D) = '(m, k) +7(m, k).

We shall determine the group #(m, k). Denote by Q’(m, k) a sub-

group of 7,,,_,,,(Q3™ ' : p) generated by H®»'(m, k+1) and a maxi-

mal subgroup @,(m, k) which is mapped monomorphically into

n'(m—1, k) under p4. The subgroup Q,(m, k) is generated by cor-

responding elements of (11.5) which appear in (11.9) and in the

last two relations of (11.7). Then we have an exact sequence
S2 (€]

e Qo 1) P m—1, 1) S om, ) @, 1) e
we put P(m, k)=r,,,_,, (@3 : p)/Q'(m, k), then we obtain an exact
sequence
(11.12)

SZ H(Z)

e POy B) 25 mm—1, 8) 2 m(om, B) s P, b 1) — -
from (11.1). The group P(m, k) is generated by the correspond-
ing one of the following elements :

(i) Q™ap_p) for 1<m<p—1; Q'”(a,,_,,.) for 3<m<p—1 and Q?(v),

(ii) Q™(lpm) for 1<m<sp—2, Q™(Ayp_m) 3<m<sp—1 and Q°#(v),
where s>2,

(iii) @* Y(a,) and Q**~%(B,) for s>2,

(iv) Q'BiB;) and Q¥a,F7'B,) for r>1, s>1,

(v) Q*7Y(B,) and Q"***(B3,_)) for [>1, s>2,

(vi) the elements listed in Lemma 11. 4,

(vii) @**Y(B,) for s>1,

First consider the case k=2sp(p—1)—1, s>1. In this case,
we see that P(m, k)=0 for all m. Thus =(m, k) is mapped iso-
morphically into z(m+1, k). In the stable range we see that
z(m, k)=0. It follows that =z(m, 2sp(p—1)—1)=0 for all m. Next
consider the case k=2sp(p—1)—2, s>1. For the case s=1 we
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quote Theorem 7.1. Let s>2. By the result just obtained we
have exact sequences

0— P(m, k)— z(m—1, k) —=(m, k) —P(m, k—1)—>=z(m—1, k—1)

for m=1, 2, --- (=(0, &)=#=(0, k—1)=0). We see =(m, k)=0 for
sufficiently large m. The elements of (ii) and the first element of
(iii) are in the exact sequence. By Theorem 10. 4, (ii) p4Q°* ()
#+0. Thus we can omit @2 (a,) in computing z(m, k). By count-
ing the number of the generators of (ii), we have that the order
of #(m, k) is p* if 2<m<sp—2 and is p if m=1 or m=sp—1.
The cyclicity of the groups #z(m, k) for 2<m<sp—2 is obtained
by use of Theorem 5.4, (i), as in the proof of Theorem 7.1. Then
we have that =z(m, k) is isomorphic to U,m, k) and generated by
the element v,(2m+1) of (11. 8).

The remaining cases are computed rather simply. We mention
that the elements of (iv) and (v) produce the elements #,(0, 5i8;)
of (11.7) and =/, B,) of (11.6) respectively, the elements of (vi)
produce the groups U(m, 2(tp+t)(p—1)—4) in (11.9) and the
elements «,83,,,(2m+1), and the element Q”'(8,) produces PBii,.
The details are left to the readers.

Finally we remark that above discussion has been done by
the induction on k< 2p*(p—1)—3, starting from the assumption of
Lemma 11. 4. q.ed.

In the above proof we have

(11.12). Up to some non-zero constants the following relations hold :

H®B,(2p+3) = Q*'Y(B,.,)  for 2<s<p,
H®a,B,5) = I'(pxQ°%()))
and H®a,B,5) = IQu(B,) for 3<s<p.

12. Meta-stable groups—II.

In the results of the previous section, we have seen the exist-
ence of an element v (2sp—3)Em, 2 (S**°: p) for 1<s<p such
that H®y,(2sp—3)=x-Q*? *at) for some x=0 (mod p), S’y ,(2sp—3)
+0 and S*y,(2sp—3)=0. The kernel of the homomorphism
S? 1 s p2- o STPTV I P) > 7ye,2- (S p) is generated by the element
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DsQ72(0)= Pl (tysp2-y). It follows that pul’(e,,2 ,)=S*x" v, (25p—3))
of some integer x’. In the proof of Proposition 8.8, we see that
the existence of such an element y®=x'-v(2sp—3) implies the
assertion of Proposition 8.8 for A=sp (mod p?). Thus we have
the following

Theorem 12.1. For each positive integer s with s=0 (mod p),
there exists a sequence {y® & my 2, (S*P771: p); t=1,2, -,
[(sp’—p—2)/(p+1)]} satisfying the following relations.

Sly® = p*I/(Lzspz—l) = p*Qsp(L) s
SPy® = p.yt-D for t>2,
and H®Py® = x,-T'al ((2sp—t—1)p—1) = x,-Q°* " Ha),1) + 0
for some x,%=0 (mod p). If t<Min ([(sp’—p—2)/(p+1)], p°), we
have that the order of H®y™® is p°
Next we prove the following

Theorem 12.2. For each positive integer s with s=0 (mod p),
there exists a sequence {y,(2m+1)E mppisepcp-»-(S1 1 p); Max
(1, sp—p)<m<sp—2} satisfying the following relations:
S*y(2sp—3) = pxQ"%(¢) *+ 0,

S*7u(2m+1) = p+ 7 (2m+3) = 3, D5Q" (A pom-2) £0  for m<sp—2
and

H®y (2m+1)=2x,,-Q™(ct},_)#0 (mod Q™(e, 37" if sp—m=p*—Dp),
where x,,, v, £0 (mod p). The order of v,(2m+1) is p* if Max
1, sp—pY)<m<sp—2.

Proof. Apply Theorem 5.3, (i) for m=k=sp and 2<m<sp—1,
then we have elements eme7"'2m+2s1:c(1>-1)—1(Q§m-H 1 p), e:roE”szrzep(p—D—a
Q3711 p) and ¥, € Tomraepcp-0-o(S™" 11 p) satisfying
p*em = SZ'Ym’ p*e-:n= P")'m, I(S:n):xvln'asp—m(zmp_‘_ 1)) x'{n * 0 (mOd p) ’
Epor = %) and I(E,)=0p,,(2(m+1)p+1), m<sp—1.

By the exactness of (11.2)=(2.5), I(x}.*&,,_..—&L)=0 implies &,=
X+ €,y mod I,”2m+zvp(p—1)—1(s @1 p). Thus

DYm= Xme Sz")’m—l mod 17>|<I’(7t-zm+2sp(p—1)—1(82’”!’_l D).
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If sp—m<p® and sp—m=+p’—p—1, the group I'(wypmrzspcp-v-1
(S*"*7*: p)) vanishes by (6.1) and Lemma 11.4. If sp—m=p'—
p—1, this group is generated by I’G:'(2mp—1)=Q™(S™), and
then p-v,,=x0-S%,, _.+2-p4Q™(B:*) for some integer z. Apply
the homomorphism H® to the both sides of the last relation,
then p-H®y,,=2z- H®p, Q"(B)=22"-Q" (a,B;7*) for some 2'%0
(mod p), by the exactness of (11.1) and by Lemma 6.1, (ii). We
have p- H®y,=0 and @ *(a,577')+0 by Theorem 2.2 and Lemma
11.4. It follows that z=0 (mod p) and p-v,,=x-S*v,,-, for sp—
m<p’. By putting v,(2sp—3)=",,-, and v,(2m+1)= (113272 22))Y 1
for 1<m<sp—2, we have

(12.1). There exists a sequence {v,(2m~+1)E X ppisspcp-1-(S 1 D) ;
m=1,2, -+, sp—2} satisfying

S*yy(2s—3) = pxQ°*(0),
Szys(zm_!—l) = ym°p*Qm+2(asp—m—2) ’ for 1Sm<3ﬁ—2
and S*v,(2m+1)= p-v,(2m+3) for Max(1,sp—p'—1)<m<sp—2,

where y,,%£0 (mod p).

Now, we compare the element S’y (2m+1) with the element
Sty@P-m=b of Theorem 12.1. For m=sp—2, we have S’y (2sp—3)
= p*Q*?(1) = S*y. By the exactness of the sequence (12.1),
Sy, (2m+1)=S*y“*~""" implies v,(2m+1)=7“*"""" mod p47sm+2sp
xp-p-1(Q3" 1 p) and S’y (2m—1) = p-v,(2m+1) = p-y©P "V =
SPy©?=™% mod p*(p'”zmﬂsp(p—l)—l(Q%mH 1 p). If s<p, D amtasptp-D-1
Q3" :p)=0 by (11.11). If s>p, then m<sp—p* implies
2m+2sp(p—1)—1<2(m+1)p°—5, hence P+mypisspcp--1(Q3" 1 p)=0
by Theorem 2.2. By induction on decreasing m we have

(12.2). S*v,(2m+1) = S*y?~"Y and y,(2m+1) = ¥¢*~"" mod
p*”2m+zsp(p—1)—1(Q§m+l :p) for Max @a, sp—pz—l)Smgsp——Z .

By Theorem 12.1, we have then
H®y,2m+1) = H®y<?" "™ = x,,.Q™(asy-m) F+ 0

mOd H PPyt 15 pep-1-1(Q3™ ' 1 p). For m>sp—p’, by (6.1) and
Lemma 11.4, the group m,, sp-0-,(Q3"" 1 p) is generated by
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Q™ (A p-m-r)y @™ (B and @™+(cyB77"). Then, as is seen in the
proof of Proposition 8.8, we have

H®y (2m+1) = %,,-Q™(tp_m) for m=sp—p°—p and

Max (1, sp—p)<m<sp—2
and
H®y (2m+1) = x,,-Q™(a},_) mod Q™ (a,f77Y) if m=sp—p'—p>1.

We see also that Py, zspp-n-1(@3" 1 p) does not contain v,(2m+1).
Thus S%y,(2m+1)= py,(2m+3)+=0. Obviously p*-y,(2m+1)=
Sy, (2m—1)=py,, Q" (A p-m-1)=0. Thus the order of v,(2m+1)
is p* for Max (1, sp—p)<m<sp—2. q.e.d.

By use of the exact sequence (3.3) we can see that for
Max (1, sp—p°—1)<m<sp—2 the element H®v (2m~+1) generates
a direct summand isomorphic to Z,2 The following corollary
follows.

Corollary 12.3. The elements v (2m+1) of Theorem 12.2 gene-
rates a direct summand U 2m-+1, 2sp(p—1)—2) 0f Zomrospop-1-1
(S 1 p) isomorphic to Z, if Max(l, sp—p*—1)<m<sp—2.
If s+1, S*y(2sp—3) generates a direct summand isomorphic to Z,.

The above last assertion follows from the fact that S:m, 2
(S273 1 p) > myp2-5(S¥?7' 1 p) is an epimorphism for s>1 which is
a consequence of the result pyul'a,(2(sp—1)p—1)=S*?"*y=+0 in
Theorem 10. 4, (ii).

Lemma 12.4. The following elements in (11.7) generate direct
summands isomorphic to Z,:

S%uyl, 8,)  for I%—1 (modp), 0<j<p—2,
S¥ul, BY)  for 0<j<p—2.

Proof. wu(l, B, is the element v of Theorem 10.4 for m=Ip
and belongs to m,,.. xS p) for k=2m+p)(p—1)—3. By
Theorem 12.2, for 1<j<p—1 the elements I'a;(2(m+p—j)p—1)
=Q™**"i(a;) are in the H®-images. Thus pul'a,(2(m+p—7)p—1)
=0. By (6.1) and by the exactness of (12.1), this result implies
that S™7*: 7,14 k(S 1 D) = Topiopa p-o(S" P71 p) is an isomor-
phism onto. We have also, by (ii) of Theorem 10.4, that the
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orders of S%u,/, B, are p. These elements S*u,(/, 8,) generate
direct summands isomorphic to Z, since H® maps u,(/, B, to a
generator of 7,,,,,4(Q3" ' : p)=Z,.

We may assert that w,(/, 82)=u,({, B)eB'Cm+1+k)En,iria
(S™*: p), h=2(m+1+p)(p—1)—3. By a similar reason, but
using Lemma 6.1, (iii) in place of Theorem 12.2, we have that
S0 Tomrs (ST 1 D) = Toprapra-o(STT7° 1 p) is an isomorphism
onto. Consider the exact sequence

p 2m+1 j 2m+3
Toms1+n(@37 11 D) _ﬂf’ﬂzmxwh(s L P) T Topra i (ST D)

@

B @ 5).
This H® is trivial since 7,,,,,(Q3"*": p) is generated by Q"(5,-,)
and p4Q" " (By-1)=%-Q™(ct,8,-,)+0 by Lemma 6.1, (ii). The group
Tomien(@37 12 p) is generated by @™(8,-,) and H®p,Q™(B,-,)=0
by Theorem 5.1, (i). Since H®u,(/, 82)=x"-Q™(B?), x=£0 (mod p),
generates a direct summand of 7,, ., (@5 ':p), we concludes
that wu,(/, B%) and S*,(/, B}) generate direct summans isomorphic
to Z,, and so does S™u,(/, B7) for 0<j<p—2. q.e.d.

We define subgroups U,(m, k), U(m, k) and U,(m, k) of 7,11
(S*™+': p) as in the previous section. We define also Uj(m, k)
as a subgroup of U,(m, k) generated by S*u,(/, 8,). Then we have
the following

Theorem 12.5. Let k>2p*(p—1), then the group m,m,.11 k(S
D) is isomorphic to a direct sum

(”f: p)+2?=lUt(m» k)+ Ui(m’ k)
if the pair (m, k) satisfies the following conditions :
(ii) m>(—p+1)p+1 if 2sp(p—1)—4<k<2(s+1)p(p—1)—4,
(iii) m>(s—7r)p+2 if k=2(sp+r)(p—1)—2 and 2<r<p—1,

@iv) m>(s—r)p+1 if k=2(sp+r)(p—1)—3 and 2<r<p—1,
(v) m>(s—r—0p—1 if k=2sp+r)(p—1)—4 and 2<r<p-—1.

By Lemma 6.1, Theorem 10.4, Theorem 10,7, Corollary 12,3
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and Lemma 12. 4, the subgroup >i_,U,m, k) of m,,.14s(S*: P)
is a direct summand under the above conditions. We have also
that the subgroup Uji(m, k)~Z, is a direct summand by use of
Theorem 10.8 and Lemma 6.1, (iii). Then the method to prove
the above theorem is similar to that of Corollary 6.4 in Section
6, and the details are left to the readers.

We finish this paper with the following two remarks on the
above theorem. If we can prove the existence of U(s—7r—1, 5,..),
as a generalization of Theorem 10. 8, then the conditions (iii), (iv)
and (v) can be removed replacing Uj(m, k) by U,(m, k). The
condition (ii) may be weakened until m>[(k+4)/2(p—1)]—p°+1
if u(s—p, ) and @,(s—p, ) have no influence over the group

”2m+1+lz(Szm+l : ﬁ)

Kyoto University
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