
J . Math. Kyoto Univ.
5-3 (1966) 209-250

On iterated suspensions II.

By

Hirosi TODA

(Received May 6, 1966)

Introduction.

The present paper is the continuation of the previous work
[12] with the same title. The sections of this paper are numbered
from Section 8 which follows from the last section of the previous
w ork. The notations and the results of the psevious work will
be referred such as (1. 7), Proposition 3. 6, etc.

In Section 8, we shall have a periodicity of the following type :

i (irQ r -1
) n'1

4  22-1 p ) v

for i< 4mp — 6, 1 < k <  m  and k - 2 p .  It  is  an open question
whether this periodicity holds for meta-stable cases or not. Our
method of the proof is a mod p  analogy of relative J-homomor-
phism in [11] and a stunted lens space will be used in place of
a stunted real projective space.

Section 9 is a discussion on the homomorphism A :  7ti + ,(S 2 "+ 1 : p )
p )  in the exact sequence (2. 5). The results will

be applied, in Section 11, to  the computation of r i (CA7 4 - 1  : p )  for
unstable cases. We shall see that many of unstable elements are
cancelled by A.

In Section 10, the existence of unstable elements 7 of the
third type (7 Elm S 2 , S 2 4 7  0, S 2 2 7 = 0) and the fourth type
('y ImS 2 , S 2 P7*0, S 2P 2 7 = 0) will be proved.

The homotopy groups 7r2 „, k ( S  1 p )  will be determined for
k <2p 2 (p  —1)— 3 in Section 11. The result is stated briefly as
follows :
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7r2m I 1+k(S 2 m  "  p) A (m , k )+B (m , k )+E=1.U .
t (m, k) (direct sum)

where the subgroup A (m , k )+B (m , k ) is a maximal subgroup which
is mapped under S -  isomorphically into the stable group ( 4 :

 p),
t (m , k ) are subgroups generated by unstable elements of the t-th

types respectively.
The structure of the groups 7 2„,+ ,+ ,(S 2 '  :  p ) o f meta-stable

cases will be discussed in Section 12. We shall have an existence
theorem of unstable elements of the second type in the groups
7r 2m 2s p( p - 1)- 2GS 2 m  V i P )  for s$0 (mod p).

8. Periodicity o f v i (Qt7 - ' : p ) .

In Chapter X I o f [11 ] we have a map

f r k : S n -v n i  k--1 I p  n--1 ) Qrkt fgresn i-k , sn)

which induces 02-isomorphisms f o f  h o m o t o p y  groups 7 r1  for
i< 4n — 3 [11, Theorem 11. 7], where Pr denotes the r-dimensional
real projective space. L e t  E g (P k - 1 )  be the stable class of the
canonical line bundle over P' 1, then the order of J( ) in J ( P )
is v = 24'( k - 1 ) [1, Example (6. 3)], where « k - 1 )  is  the number of
integers j  such that 0< j <k — 1 and j 0, 1, 2, 4 (mod 8). By Pro-
position 2.6 o f [3 ] P m ' *- 1 /Pn- 1  and 13 "-' k l 1 I P " " - 1  have the same
stable homotopy type. Since Sn - i(P n ' ' I P ' )  is (2n-2)-connected
we have an isomorphism mi (Sn-

 1(p n  f k -i I p n - 1 ) ) , _ ,  i  2 , ( s n

Pn" - l)) for i <4n — 3. Therefore we have obtained the following
(probably well-known) periodicity of 71-1(Q't : 2).

Theorem 8.0. L e t  71 = 24 " - 1 ) . I f  i < 4n — 3, then the  groups
7ri(Q) 

a n d
 n - i+2(Q7, -" )  are C 2 -isomorphic.

In  th e  follow ing we shall try to prove a  periodicity of
z i (O r - 1  : p) for odd prime p and to make some applications. The
periodicity of the following type is obtained.

Theorem 8.1.  L e t  v =  p k '.  I f  i < 4mp— 6, 1 < k < m  and
k<p2 -2p then n- i(C g r')  is  Cp -isom orphic to  n- ii2vp(CAT I 2 ' ) ,  i.e.,

i( Q P ) i  2VP(( 2 ,17 "  - 1  : p).
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PROBLEM. Does the above periodicity hold for meta-stable cases
(i<2m ,p 2 - 5 )  and for general k ?  This is true fo r k =1 .

Denote by .14,' 1 —S 2 3 - " I Z p  the usual (2s+ 1)-dimensional lens
space given as in [ 5 ] .  4 ,  r< 2 s + 1 ,  will be the r-skeleton of
g,,s+1 w ith  the usual cellular decomposition g s "  = S 1 U e 2 U •••
U e" U e" In the notation of [5 ],  g 8 = L ap ) and =Ls(p).
It is proved in Theorem 3  of [5 ]

(8. 1). Let v = p f k / C P - 1 ) 1 ,  then L i,m 1 L r" )  has the same stable homo-
topy  type o f L r+"  la rn - k ) +".

Lemma 8. 2. There exists a map (m >1)
h _  h n i :  s 2111 1 L (i 2, M I 1)(P -1)-2 S  2 M  I 1

such that in the mapping cone K =S 2 n' 1 U h CS 2 m+1L r ' 1 1 ) ( P- 1 ) - 2  of h
the Steenrod operations (5) -1 : 11 2 m +'(K ; Z p ) -+H 2 m+2 -" - ' ) ' 1 (K ; 4 )  and
hence A P i are isomorphisms fo r  1 <j<m .

P roo f. Let S = S 2 m1 1 x••• x S 2 "" 1 b e  the product of p  copies
of S 2 m+ 1 and let Op be the subspace o f Sp  which consists of the
points having the base point *  as one of the p  coordinates. As
the permutation of the factors, the symmetric group s(p ) of p
letters acts on Sp  and O .  Let 0 : (E2m l, S 2 m)--›(S 2 m+1 ,  * )  be a
characteristic map of the (2m + 1)-cell S '  ' 1 — *. From the p-product

( p c )p-of 0, we have a characterictic map O  (E 2m u , s 2 m  iP: 1)— >(S  61 )P P

o f th e  (2m+ 1)p-cell Sp —Op  such  that s ( p )  acts on  (E ( 2 m+1 ) P,
S( 2m+1)P- 1 ), compatible with OP and for each permutation MS(p)
CO(P) the action of on E 2 "z+1 ) P is given by a  matrix ''O E  where
E  stands for the unit (2m+ 1)-matrix. L e t  be a cyclic permuta-
tion which generates a  cyclic subgroup 4  o f s ( p ) .  Then the
characteristic equation o f  th e  m a tr ix  O E  is  (xP— 1)2 m+1 = O.
Thus, by suitable orthogonal transformation of the coodinates in
E ( 2 m+1 ) P  we may identify E"'n ' 1 ) P with a  join 5 ( 2 n+1 " - 1 ) - 1 * E 2 m+1 ;
Z p  acts freely on  S( 2 m1 1 " - 1 ) - 1 , trivially on  E 2 -  "  and linearly
with respect to  the parameter of the jo in . It follows that the
cyclic product S p /Z p  o f  S '+ ' is obtained from Op /Z p  by attaching
( S " + 1 )( P- 1 )- 1 /Z p ) *  E '' 1 by a map h0 :(S 2 m )(P - 1 )- 7 Z p )* 5 2 m Z p .
Up to homotopy equivalence we may change the joins * S '  and
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*E 2 m+1 b y  the (2m+ 1)-suspension S 2 m+1 and its cone CS2m+1, then
we have

S p / 4  = ep/zp u ho CS 2m 11(S n i 1 ) (P - 1) - 1/4 )

This lens space S ( 2 m""P - 1 ) - 1 /Zi ,  is slightly different with the
usual LPn 1-1"P - 1 ) ' .  A  representative : S 1 .--). S " ' " - " - 1 /Zp  o f  a
generator o f  z i (S"m± 1" - " - 1 /Zp )  can be extended over a  map
f :

 L r  I  ix p - i)-1 / zp . From the cohomological structure
of the lens spaces it follows that f  induces isomorphisms of mod p
cohomology groups and so does S 2 m " f .  The map S '  If defines
a  m ap from  th e mapping cone Op /Zp  U h ,

 CS 2 'n' L r ' ' ) ( P- 1 ) - 1  o f
h i =h 0 .S 2 ' i f  into Sp /Zp  which induces isomorphisms o f  mod p
cohomology groups.

It was proved in [6] that for a generator u of H 2 m 1 1(S p lZ p ; Zp ),
V ic and ,60(Piu, 1< j< m ,  are non-zero elements which lie in the
image of the injection homomorphism 1* : H *(S p l Zp , 0 p l Z p ; Zp ) —>
H*(S p lZ p ; Z n ). B y  the naturality a  sim ilar assertion holds for
the mapping cone of h,.

Let 7 : û / Z h
— >O p/S (P ) be the natural projection. The space

Op /S(p) coincides with the ( p -  1)-symmetric product Sp _i /S(P— 1)
o f  S'm ". It is  k n o w n  (see  [ 7 ] )  th a t the canonical inclusion

S 2 m ' 1 = S 2 'n ' 1 /S(1) -.0  p 1S(p)— S p _,IS(p— 1) induces an isomor-
phism  i* : H*(O p IS (P ); Z p ),---J, H*(S 2 'n " ;  Z n ). R e m a r k  th a t  7 *  :
H2m-1-1(0p 1 S (p ) ; Z p ) ,H 2 m Zp ;

r o (h , s2 m + iL r+ i)(p -i)-2 ‘ ,) then the above non-triviality o f ( p i  and
A63 .1 holds for the mapping cone of h2 . Apply Theorem 1. 1 to
S2m+iLr+ 1 ) ( P- 1 ) '  and then apply Theorem 1. 2 to the maps h2 and
i ,  then we have the existence of a map h :  - - > S 2 m - 1
such that lo l l  i s  homotopic to h „  Consider the mapping cone K
of h  and compare w ith that of h „  then the non-triviality of 63 -1
and A V  in K  is obtained and the lemma follows. q.e.d.

Theorem 8. 3. A ssume t h a t  m > k > 1 . L et K (m ,k )  an d  G:
K(m, be a C W -com plex  and a m ap  sa tis fy in g  the assertion
of  Proposition 3 . 6 , t h u s  G :H i ( K ( m ,  k ) ;  Z p )  f or
i < 4 m p -5 * ) .  T h en  th er e  ex is ts  a  map

* )  I n  Proposition 3.6, (ii), 4 m p - 3  should be read 4mp —5.

Z p ) is an isomorphism. Put 1'12 =
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f  s z m  - 2 ( L 2 i l t n  k  i ) ( p - 1 ) 1 L r ( p - 1 ) - 2 ) K ( n ,  k )

such  tha t t h e  induced h o m o m o rp h ism  f *  : H * (K (m , k )  ; Z  p ) —>
H *(S 2 m- 2 (a m l  k - 1 )(P- 1 ) I Lm(P - 1 ) - 2 ) ; Z p )  is a  m onom orphism .

P ro o f. Put n = m +  k - 1  and L p ---L r(P - 1 ). Let h" :  S '" L p —>
S 2 " b e  the restriction of the map h n o f  Lemma 8.2 and let
K =S 2 " -' 1 U C S ' 1 1L p be a mapping cone of h " .  We use the notation
of Section 3. Extend the canonical inclusion S 2 n c K 2 .1 -1  to a map
k: K—

K 2 , , , and consider the induced map ilk : S 2"+1) —> X2.1-1
= 12(K 2 n+1, S 2 ' 1 ). The cone-construction of K  defines naturally a
m a p  h , :  s 2n+ir p  —>SZ(K, S 2 " ' 1). Then it is easily verified that

(f lk oh')*(cr(P"w )* 0  in  H 2 " ( 5 2 '" 1L p ; 4 )

for the fundamental class w of H 2 "  1(K2nd 1; Z p ) = H ' ( Z ,  2n+1; Zr ).
As in the proof o f Lemma 3.5, we may identify (A 'r 2 t-' 1- with

X 2 n - 2 1 + 1 )  and w e have also that 0-4 19 w  is defined and
generates 11 2 " P - 3 (Q " - 1  ;  4 ) .  L et i ,f 2 3 X 2n I , --> V '  b e  the map
equivalent to the inclusion, then by the naturality of we have

(n 3 (nhohl)*i*(0- 4 6 " w ) *  0  in  H 2 nP- 3 (S 2 " 2L p  ; Z p ) .

By Theorem 3.1 and by the assumption 1 < m < k ,  we have an
isomorphism ( 0 _2k -2)-1 0i *  H 2 n P - 2 k - 1 ( Q rka- 1  ; Z,,)H 2 t 1 P - 3 ( q n - 1  ;  Z p ) ,

From this we conclude
f ,* ( 2k I 2p n  k- 1 w • 0  in  H 2 "  I"k-1)(P-0_3(sz,,,2a , , ,  k - ix p -1 )  ;  zp ) ,

w h e r e  f  = i
, ,(nkoh,) S2m_2L,, çL2 1 X2 ,, 11 c  n ( r / 2 k X 2 . „

I f  m = 1 ,  then m = k = 1  and K (1 , 1 )=  n ( P- 1 ) i s  homotopy
equivalent to U P - 1 )/U P - ') - 2 . Thus the theorem is obvious if
m = 1 .  So, we may assume that m > 2 .  Then S 2 m- 2 /4(m 1 ) is
homotopy equivalent to a complex as in Theorem 1 .1 .  The map
G induces isomorphisms of H i( ; Z p )  for i <2m+2(m 1Xp — 1)
<4m p —6 ( 1 < k < m ) .  Applying Theorem 1 .2  to the maps G  and

f '  we have the existence of a map f  : S 2 'n - W m +k - i)(P- 1 ) K ( m ,  k )
such that G o f ,  is  homotoptic to f '.  Since K (m , k )  is (2mp—  4)—
connected, we can choose f ,  such that f  ••=-- f  .S 2 m- 2 7r for a map

f k - i x p - 1 7  L ; m cp-i ) -2) K ( n ,  k )
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and for a map 71' of Lk'n ' 
1 —  i e x p -

1 )  shrinking Lr(P - 1 - 2 .
P—We have seen that f "*  is  an epimorphism of I f - 3  1 2 (k -1 )( 1)

(  ; Z p ), then  so  are 1 1  and f * .  Thus the following statement
(8. 2)i  is  tru e  for (i, 6)=(1, 0).

(8. 2 ) .  f ' : H t(K (rn, k ); Z ) Ht(S 2m 2(L m  ' ' 1" - " I Lr(P - ') - 2 ); Z ,)

f or t =t(i, 2mp — 3+ 2(k— i)(P— 1)+6  (1= 1, 2, ••• , k ; 6 =0 , 1).
W e shall prove (8. 2) b y  induction on i. For t= t(i, 0) the

Bockstein homomorphisms A are isomorphisms of the both sides of
(8. 2)i  . By the naturality of A, (8. 2)i3 O and (8. 2) i ,i are equivalent.
B y  use of the relations in Theorem 3. 1, w e see that fo r  each

1 <i<k ,  there exists E= 0 or= 1 such that (P'Ht(K (m ,k ); Z p )
f o r  t = t( i, 6). I f  t h e  sam e non-triv ia lity  o f  O p ' h o ld s in
S 2m- 2 (L ( 'n f k - ' ' ) / L r ( P - 1 ) ' ) ,  then (8. 2) i ,, and (8. are equiva-
lent, hence (8. 2) is proved by induction on i.

L e t u  b e  a  generator of H l( Lkm+k - 1 )(P- " ; 4) and choose
generators (2 o f  1-12mP- 3 '21 " ) ( S 2m- 2 /,;( ' - ' 1)(P- 1 ); 4 ) such that
(7.2m- 2 (a',)= u•(Aur+ixP - 1 )- 1 . B y use of 6D1u= 0, P(Au)= (Au)P and
Cartan's formula, we have

6) , (u .(A urP -i)--)  =  ( s ( P ) —  1  )u • (A O '

and T t((A u) p- ( s ( P  1 ))(p u y txr -1)

Since 0-2m- 2 (A di,) = Ao-
2 m l a 'i ) =  (u • ( u m  ' P - 1 )- 1 )= (A u)" ' i"P - 1 )  we

have

(8.3)t a ' ,  =  ( " I +  i X P  1 ) a n d

(PtA a; = ( ( m + i XP- 1 ) )A a;„

H ere w e m ay consider th at a  is  a  generator o f  1-12" - 3  2 i ( p - 1 )

(S 2 m I L .
2p( "" - 1 ) ( P- 17 L r ( P- 1 ) - 2 ) ;  4 ) .  In particular the relations

= — (m +i +1)a' and (P'Ad, = —(m+i)Aa' +1

show the required non-triviality of IS". (8. 2) has been proved and
the theorem follows.
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Corollary 8. 4. Under th e  assum ption o f  Theorem 8. 3, the
following relations hold f or suitable generators ai  o f  Theorem 3. 1.

1 ),((m +iXp-1 )-1 )
a i ,  a n d

TtAa i  ( - 1 ) ( ( m + i )

t

( P - 1 ) » a i , t ,

0 < i< i+ t< k .
Next we shall discuss on some homotopical properties of a

sort of complexes containing K(m , k) and stunted lens spaces.
First we have

(8. 4). L et k and b be  in tegers such  that k  —b (mod p -1 ) , 0<b
< p - i .  Then w e have

( i )  7.(k - i (Y p ; Y )= 0  i f  k<b(P 2

7r2
5

0( Y ;;  Y ) = 0  i f  k < (b -1 x p 2 — p— 1)+p-2.

This follows from (6. 1) and (4. 1), or more precisely from the
list of e,(Y p  ; Yp ) in [13].

Lemma 8. 5. L e t L  be a  CW-complex hav ing a  sequence of
subcomplexes *—L o c L, C  L 2  • • • L r  =  L  such that L i  i s  a  mapping
cone L,_,U f i  C y r , -  o f  a m ap  f i :  w here n1< n2< • • •

<  n r  an d  nr < 2 n , -1 .  Then, up to homotoPy equivalence, L satisfies
the  follow ing condition. For each i ,  1 < i< r , let J (i) be the set of
integers j  such that n3 <n 1 —b(p2— p-1 ) i f  —b (mod p-1)
an d  0 < b < p — i. T hen the union M (n ,)= *+  U ;E./co C n n i - i  i s  a
subcomplex o f  K.

Pro o f . Remark that the assumption nr <2n 1 — 1 means that K
is in a stable range. The lemma is proved by changing inductively
the attaching map f i in  its homotopy class. Assuming that L i _,
has been already modified to satisfy the condition, it is sufficient
to prove the injection homomorphism

m o (n i ) )— L1_1)

is an epimorphism, where M 0(n 1)=M (n 1) —Cnni -1  and  it is  a  sub-
complex o f L i _ , since M o (n i )  is  the union of the subcomplexes
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M(n i )  of L 1_1 fo r  j < i  and jE J ( i ) .  L 1_1 is obtained from Mo(ni)
by attaching some C n n k ',  k E J( i ) .  I f  X= X' Uf  C17 "k- i  and X '
is (2n 1 -2)-connected, we have an exact sequence

7 4
z (  n n  ;  X ') 71-( n . , - ;  X ) rt( n n i - 1  ; n %).

The last group vanishes by (8. 4), (i). Thus 4  is an epimorphism.
Using this fact we have easily that i*  is  an epimorphism. q.e.d.

F or example, i f  L  = S 2 m ( 4 n ,  21 7 4 n - 2 \  7) m + k < n - 1  and  k <
then up to homotopy equivalence L  is one point union

of p - 1  subcomplexes M(m+ n+ k— i), 1= 0, 1, •• • , p— 2.

Lemma 8.6. L e t  K =  Y 2 m 1  U C Y r 2 - 1  U • • • U C Y r. , '  and M 1 =
Y . 1 U  C n n 2- 1 U • • • UCY " r - 1  b e  CW -com plexes satisfying th e  con-
dition of  Lemma 8. 5; m1< m2 <  •  <m s , n,<112< • • • <n r . Assume that

==- m2 =- • • • --=-• ms (mod p - 1 ) ,  n m ,+ 1  (mod p - 1 ) ,  n .  < m1+
(p-3)(p2 — p —1)+ p —2 and  that n; <n r —b(p 2 — p —1) i f  n,, —n;

— b (mod p - 1 ) ,  0 < b < p - 1 .  Then we have 7z-s(M ,; K )=0.

Proof. Let — b (mod p— 1). B y  th e  assumption,
n r —n;  — ( p - 2 — b ) ,  0  — 2— b<P-1 and
n — m ; <n r — (p-2— b)(p 2 — p-1)—  m i <(b — 1)(p 2 — p -1 )+p  — 2. It
follows from (ii) of (8.4)  z

S( ; 0  for 1 <i<s  and 1 < j <r.
By use of homotopy exact sequences we have easily 7cs(M 1 ; K )= 0.

Proof o f  Theorem 8. 1. Since G : K (m , k )--.07 - 1  induces an
isomorphism of H ( ; Zp ) for i < 4mp —5, G * : i (K(m, k))— > i(01" - ')
is  a  Cp -isomorphism for i <4m p — 6 . Similarly mi ,„ p (QL74 2 1 )  is
Cp -isomorphic to  7 r i  n p (K (M ±  V , k )) fo r i < 4mp —6 <4(m + v)P— 6
— 2vp. Since K (m , k ) is  (2mp-4)-connected, S 2 : x i(K(m, k))—>

p (S" K (m , k )) is an isomorphism for i<2(2mp—  4 )+  1  4nzp — 7.
For i= 4pm-7 , S "  is an epimorphism and its kernel is at most of
order 2, hence it is a Cp -isom orphism . So, it is sufficient to prove

(8. 5). I f  v = pk - i, k  < m  an d  k < p2— p, then K (m + u,  k )  is
homotopy equivalent to S"PK(m, h).

By Theorem 8. 3, there are maps
f  s2m -2(urn+k -i x p-1)  L ;, . (P-1) _2) _4  K ( m ,  k )

andF :  S " ' " ) -
2(Lk,,, 1, +k-1)(p-1)1 L ; ( ,,, v x p - i ) - 2 ) K o v  4_ I),
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which induce monomorphisms of H*( ; Zp ). Since [((k - i x p - 1 )
w e have by (8.1) that Lkm+h - 1 ) /L;m(P- " - 2

a n d  L r  -" +
k- -1 )  iL k m + 1 0 (.1 2 -1 )-2  have the same stable homotopy

type. For the simplicity we put

L = S 2""+" - 2 (4 '+ '+ ' 1)( P- 1 )1(Lr ")(P - " ')  .

L  has a sufficiently large connectedness and is in a stable range.
Thus L  is homotopy equivalent to S 2 M - 2  2 1 P ( L 2 ( M - 1 - k - 1 ) ( P - 1 ) / L 2 m ( p - 1 ) - 2 ) .

We have obtained

(8. 6). There are m aps F: K(m+ v, k) and F ':  L—>S"PK(m, k)
which induce monomorphisms o f  H*( ; Z ) .

Now apply Lemma 8. 5 to this complex L  and consider the
the subcomplexes

M =  M OEn2+4+(k-1X P—  1) —  1)
andM ,  =  M((n2 + 4 + ( k — P - 1)(P - 1)).

The complexes M i  and K= K(m+ p,  k) (or= S"PK(m, k)) satisfy the
assumption o f  Lemma 8. 6, where nr  (n2+ 14 + ( k — P —  1X P — 1),
m i— (m + -  1 and the assumptions k< p2  - 2p  o f Theorem 8.1
implies nr  <m i + (p - 3x p2 - p - 1) + p - 2. It follows from Lemma
8.6 that the restrictions FIM , and F'1M, are homotopic to zero.
Thus there exist maps h  and h ' such that the following diagram
is homotopy commutative :

S"PK(m, le)

M/M, .

From the definition of M and M, we see that the dimensions of
the cells of L—M and M i —* differ from those of K(m+v,k) and
S2 4 ' K(m, k) and that the numbers of the cells o f MI M„ K(m+ v, k)
and S"PK(m, k) are equal. Then it follows from (8. 6) that h*
and h'* are isomorphisms o f  H*( ; Z)  hence of H *( ; Z ). Thus
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h and h ' are homotopy equivalences. (8. 5) has been proved and
we conclude Theorem 8. 1. q.e.d.

Observing (8. 5) and Proposition 3. 6, we have

Proposition 8. 7. Under the assum ption o f  Theorem 8. 1, the
periodic isomorphisms commute w ith the exact sequence (3. 3), i.e.,
we have the follow ing commutative diagram.

i(CAT, p )  
i *

7ti(QL7- 1  p )  
_I  2 h  0 4

j * >

i*
7ri-12,,P(O r 2 v - 1 P) --> ri 2,0 L 7 + 2 1 1 - 1  p)__›

d *  . 1-22 h ,
p) » i ( O r  P )

'7 1 1
rra+2h2 -i 21+-1 p ) zvp -1(427:"+" - 1  :10 •ri I 2h I 2.4 (o r

r p

2k— h

As an application of the periodicity theorem, we have the
following sequences of unstable elements of the second type.

Proposition 8. 8. F o r  e ac h  positive in te g e r h  su c h  th at
h=p  or2 p  ( m o d  p 2 ) ,  there ex ists a  sequence {y") ;t = 1, 2, •••,

[(hp — P —2)/(P + 1)] } of elements ry ( t )  7 r 2 h p . . ,2 t _ 3 ( s 2 h - 2 t  - 1
:  p )  satisfying

the following relations:

S27(1) P * P ( 1 2 h p - 1 ) ,

s2 7 ( t )  _  p 7 ( t i ) for t > 2
and H(2)7") = x t • I' ce; +1 (2(h — t —1)p-1) * 0

for som e x t * 0  (mod p ) .

I f  t < Min (UhP 2)1(p + 1 )]• .P2) then p•7")=S 2 7(t+1)*0 hence
the order of  7") is  a multiple of  p2 , moreover the order of  11(4)7")

is P2 .

P ro o f . For h =p  and h=2p, we have seen in Theorems 7. 1
and 7.4 the existence of 7 ( " ,  in particular, of 7" ) E 7r2„p _5(S 2 ' :  P )
such that S 2 7 " ) = p * r ( 1 2 h p - i ,

)  and 1/( 2 ) 7" ) — x i . F cq2(h — 2)P — 1 ) for
some x 1 $0  (mod p).

From the commutativity of the diagram
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7r2hp-3(QZ h  1 :  S 2P) P * 7 r2hp-3 (S 2 h  1 : P) :E -  7 r2h p -5 (S 2 h  3  : P )

1H") t H")

7r2hp_8(n 5Q 22h- 1 : p )  c *  7 r 2 h p ,(Q 2h - 5 : p ) : 1 '- 7r2hp_8(Q 22h - 5 : i 3 ) ,

we have

1 1 ( 4 P*P(z2hp-1)=d*frr(t2hp-i)= xl•i*FagA h —  2)13 - 1) , h= p  or 2 p .

Apply Proposition 8. 7 to the lower sequence, then we see that this
relation holds for each positive integer h such that p, 2p (mod p2).

Consider the following exact and commutative diagram :

2hp-5 (S 2 h - 3  P ) 2 h p -3 (S 2 h -1  P ) -1 :1 1 :)  g ip - X ( 2 221 1 - 3  P )

2 h p -8 (Q 221 5 : p ) - - k 2 h p - 8 (Q r  
-5  P ) 7r2hp-8 ( 22(222h-3 P) •

W e have H ("p 1)- r2 - 2. i*H(4)p * 17(t„ p , ) =1 -1- 2 j * i* F(aX 2(h
- 2 ) p  - 1 ) ) =  0, and this implies the existence of an element 

r y ( l )

 such
that S 2 7( 1 ) =p * f (  The element 7 '"  satisfies i* (H( 2 )7("— x 1 •
P a(2(h —2)P —1)) = O. S in c e  7r2hp-7(n2q h - 3 :P) —  7r2hp_5(Qr - 3 : p ) =  0
by (6. 4), i*  i s  a  monomorphism by  the exactness of (3. 3), and
the relation H( 2 )7( 1)= x 1 •I'ag2(h-2)p—  1) follows.

Now, applying Theorem 5. 4, (i) to the element 7( 1), we have
th e  ex is ten ce  o f an  element 7( 2 ) satisfying p • 7")=S 2 7(2 ) and
H( 2 ) 7 ( 2 )  = x 2•F c e ( 2 ( h - 3 ) p - 1 )  fo r  some integer x ,*  0 (mod p ).
This process can be continued in  meta-stable range, i.e., for t <
( h p -  p  -  2) / (p +1). I f  t  (hp -  p  -  2 )1  (p  + 1 )  w e  h ave b • 7r2hp-2t-6

((e - 2 ' : p )=  0 by Theorem 2. 2, 4 2 ( h —  -  5) and a;., 1(2(h— t —1)
p — 3) exist by Propoition 4. 4, (iii) and  Lemma 2. 1. Then by
Theorem 5. 4, (i), there exists an elemen ,y(t) satisfying p •7" - i) —
S 27") and 11( 2 ) 7(t ) =x,•Pa',.,.,(2(h— t — 1)p -  1) for some ieteger x,*0
(mod p )  provided the existence and the similar relations for 7(' - ').
Since e i * ait _,, =7r*i*cet8a= atSco3* 0  b y  (4 . 5 ), w e  h a v e  that

ceic+ ,  is not divisible by p  and that f a it+1 (2(h—t —1)p - 1 )

=Qh - t - i(a/
Let t <Min c h p  -  p  - 2 )1 ( p  + 1 ) ] ,  p 2 )  and consider the following

commutative and exact diagram :
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2h - 2t -1 p)5 (s 2h-2t -3 . 4,\ S 2

7 r 2hP - 2t • P 7r2hp-2t-3(S

t 1°) 1H")
d* 42 - 3 i *

zhp - 2t -5  (Q P - 2 t P ) 7r 2hp— 2t _
8 (W - 2 t  -5

' h ) 71 . 2h  p  - 2  t - 8 (Q 24h  2 t  5  p),

where 4011 - 3 = H( 2 ) 0 p * by (5. 2). First we have

p. H (4),y (t) =  H  (4 ) S yt +1) i*HC2)7ct +1)

= X t +1 • a', +1(2(h — t — 1)p —1)
and ,(2(h — t —1)p —1) = o

We see also in (6. 4) the group 7r2hp-2t-5(QP - 2 t - 3 : p) is generated
Q h -t-

( a t
)  and additionally by Q h -t- v 3 r )  i f  t  + p 2  p  1

and by Q h -t- i(exii3T -1.)  i f  t  + 1  p 2  •p  By (6.5)
4 1-2-3c2h-t-1(a t ) H (2)p * Q h -t - i ( cy, )  _ 0

In the case t + 1= p2 — p — 1, w e have h — t —  2  —  (t  + 2)s 0 — 1
(mod p) and

d*s-2_ _  i s r 1) _  H (2)p * Qh - t - v r i ) _  x .c2„_,_2(a1or i )

for some x * 0  (mod p), by Lemma 6. 1, (ii). By (4. 6), the elements
Qh-t - 2' a l PY  ) and Qh - t - 2 (a /(p_i)p) are independent generators. In the
case t + 1=p 2

— p , we have Q h - t-1 (a,g r1 )_  h  t  i ( a i ) 0 ori(20 ____ op
—5) by use of (1. 3), (ii). Then

H ( 2)p *Q h-t-1(c1 ) om. -1(20 ryp _ 8) = 0

by (6. 5). W e have seen that in all case P a' 1(2(h— t —  2)P — 1)
is  n o t in the im age of d e n '.  T h u s  p • H( 4 )7") = x t+ i • i* f
(2(h— t — 2)p —1)* 0  and p • 7 ( t ) *  O. B y Theorem  2. 2, P2 H( 4 ) 7" ) =

i* (P • IP '7 " -1 1 ) ) =  0 . Thus the order of 1/(4 ) 7(t )  is  p2

9. The homomorphism A : A S 2 '"P ' 1 : p ) — >  1 d_2 (S 2 mP - 1 : p ) .

The homomorphism A  in the exact sequence (2. 5) is de-
termined for the image of S ' by the formula

A S 2(a) = p • a
of (2. 7). We shall consider the behaviour of A  for elements not
in the S 2 - im age . According to Section 2 , we understand the
homomorphism A  as follows.
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(9. 1). F o r  t h e  spaces 1-1Q„, and Q .  in  S e c t io n  2 ,  there  are
maps h : n Q m ->S14S2mP+1, h' : Q --.slY  and i: Q 2 S 2 m ' —>S2Y  which
induce Ci r isomorphisms of  the homotoPy groups and the cohomology
groups. B y  these isom orphism s o f  th e  p -p rim ary  components:
ri+4(S 2 m P ± 1 : P)":"--"-7 r i( f2 Q m : p), 7 ti+ 2(S 2 m P - 1  P ) 74"-- m i(V .:  p ) ,  the homomor-
phism

A : 7r1, (S 2 '" + 1  P ) 7 r i , ( s 2 mP - 1  P )

is equivalent to a homomorphism

d* : ni(nt)„,,: p ) p )

induced by a map d : SIQ „„= SI(SY S'" , reS;, 721) - - >V n= fl(f2S,"21,
L e t 6 E  7r2 m p -3 (n Q m ) a n d  6' G  7r 2 t n p - 3 ( Q , In )  be elements which

correspond to generators of 7r, p + i(S 2 mP + 1 )--=.:7r,m t , , ( S 2 " - ') ,----.'Z .  Then,
by (2 . 3), we have

= p • 6' .

By use  of mapping-cylinder arguments, we may assume that
6 and 6 ' are represented by inclusions of S 2 mP- 3  into ,f2Q„, and Q .
respectively, and d maps S 2 m P' into S 2 m1 - 3  by degree p . Further-
more, we may assume that S 2 " - 3  is imbedded in  1-245 2 mi'±

1 and
112S 2 mP- ' canonnically and in 12 Y such that h , h ' and i  are identical
on S 2 " - 3 .

Consider the following commutative and exact diagram :

i * a
••• m i(S 2 m "  : p ) p ) i(S2Qm, S 2 m " : p )

14 td* Id*
i* i * a

• • • : p ) 7ri (C )'„ : P ) t S2mP-3 : p ) • • •

The 4 of the left side satisfied d* (a)=p •a by (1. 10). The middle
one is equivalent to A. The 4 of the right side is equivalent
to a  homomorphism

P ) —  i-1 (Q :m P - 3  P )

by the following isomorphisms (9. 2) obtained from (9. 1) :

S 2 mP - 3  : p ) ,  , ( 1 2 4 S 2 1 , s— P - 3 : p) ,  7C i i (Q2
4

" -  3  : p )  ,
(9. 2) s2mp_3: p) ( 2S 2 M P - 1 7 S 2 M P - 3 7r1 i ( q mp-3 p)
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Then we have the following commutative and exact diagram

P* S4 H ") P*
i(S 2 m P  P ) "  i + 4 ( S 2 "  P ) i-i(Q24" - 3  P ) • •

P* S2 11(2) P*
• • • — * ri(S 2 "  P ) i F2(S 2 " - 3(7 2 "  P )

where the four groups of the left side square are considered to
be Z  if  i=  2m p —3.

Lemma 9. 1. A ccording to Proposition 3 . 6 , choose m aps g :
,Q :m p -3

qm P - 3  which induce isomorphisms of  H i(  : Z )  f o r j< 4 ( m p - 1 ) p - - 5 .
L et 7 r  :  K (m P -1 ,2 ) , Y " 2 - 4  b e  th e  shrink ing m ap o f  Y2C" -

1)P- 2 •

T hen there ex ists a  m ap D : n m P 2 - 4  Y;(mP-1)P-2 such that the fol-
lowing diagram is commutative:

7r* D*
7ri-1(K(mP — 1, 2) :P) g i -1 ( 1 7 p2 m P 2 - 4  f i )  " m i - i ( Y r 2; m P - 1 ) P - 2  : P )

1G*

i- i(Q 24m "  P)

 

i g *
i --1(Q 22" - 3  P )

 

Pro o f . The isomorphisms of (9. 2) are induced by the maps
nh : SI(SIQm  , S 2 " - 3 ) ( 2 4 2 4 S 2 "  S n h ' :1 1 ,(Q 7 „  s 2 -P - 3)

S 2 " 3 ) and n i Q 2
2 " - 3 =SI(SYS 2 mP', S 2 'n")— > f2(f2Y, S 2 " - 3 ).

Since these maps induce Cp -isomorphisms of the homotopy groups,
they induce isomorphisms of 7r(K (m p  — 1, 2) ; ) by Theorem 1.2.
Thus there are maps G1 , G 2 and G, suchithat the. following diagram
is homotopy commutative :

D'
K (mP — 1, 2)

G G, G2 I g
nhf l / i '

Q42 p_3 , 1_2 (s-w m , s2„,»   n(nY, Q22n1P .

W e have also that g * : 71(K(mp — 1, 2) ; 17 ;,( mP- "P - 2 )--> n-(K(mP — 1, 2) ;
q m P - 3 )  is an isomorphism onto by Theorem 1. 2. Thus there exists
a  map D ' such that G , is  homotopic to g c , D i .  Then by the de-
finition of A  the following diagram is commutative :

(9. 3)

and  G : K (mp —  1, 2) = Y 2 (nP- ')P- 2  U  C Y r 2 - 5
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1(K(mP - 1, 2): p) : p)
G.t g *

- > p)
Consider the case i = 2(mp— 1)p - 2. T h en  the above four groups
are isomorphic to 4, and from (9. 3) we have the following com-
mutative and exact diagram :

H " )  p *
7r2c.p-Dp+2(S 2 m P + 1 : 1, ) Z 71" ) ( S 2 m "  :  p)p - 3

H 2  4 p*
p) Z 7r2(mp-i)p-3(S2m "  :P).71.2(mp-1)0 2 "

Here, H") = 0 by the triviality of p  Hopf homomorphism. Thus
p* Zi(Zp ) = p•p * (Z p ) = 0  implies (Z p ) — O. This shows that D'
is homotopic to a  map D "  such that DA S 2 ('" - ') P- 3 ) = *. Since
7r2cmp- 1)p-2( 7 "  1 ) P

-
2 ) = 0 ,  D " is homotopic to a  map Do such that

D0(Y;( " - "P- 2 ) =* .  Thus Do =D or for a map D :1 7; " 2 - 4

q.e.d.

Lemma 9. 2. The map D of Lemma 9. 1 represents a generator
x • a(2(mp —1)p - 2) o f n-(Y r 2 - 4 ;1 7 " - " " ) ,--:=4  fo r  some integer
x s 0  (mod p).

Proof. The group 7r( Y 2 " 2 ; Y i
27 " - 1 ) P- 2 )  is  stable, hence iso-

morphic to 4 _ 2( Y ;  Y p ),':•-/-Z p  and generated by a(2(mp —1)p-2).
Thus D  represents x• a(2(mP — 1)p-2) for some integer x. We
assume xz—: 0 (mod p )  and lead to a contradiction. To  do this it
is sufficient to give an element 7  of 7t1 + 4 (S 2 " 4 - 1 : p )  such that
11(4)7EIMG *  and 6.7 (4Im S 2 .  Then TS11( 4 )7= H"),A7 *0 but, since D
is homotopic to zero by the assumption xO , H " ) 7 EIm ( g e D e n , * )

= 0  which is a contradiction.
First consider the case m $ 1 (mod p) and let m = a p — b ,  a>1 ,

O b<p - 1 .  In Proposition 8. 8, le t h= (ap +i)p and t= (b+i)p.
Then there exists 7 ( t-1 ) m1+4(s2mp+i : p )  and 7" ) e 7i-1 ± 2(S 2 " - 1  : p),
i =2hp — 2t — 5= 2mp+2(ap+1)p(p -1)- 5, such that SY "= p • 7" - 1 )

and the orders o f  H")7(' - 1 ) and H")7(t) are p2. Consider the
following commutative and exact diagram :
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S 2H ( 2 )
7r1(S 2 " - 3 :P) 2(S2mP-1 p) mi_1(Q2:"P - 3:P)

tip ) . t H ")

p) ri-3(Q24"-5 :13 ) (VmP-3 :13 ) .

By (2. 7), p • H ")A 7" - "=11("A S 27 ( "= p • H ("ry (" . Thus the order of
H( 4 ),6,7" - 1 )  is p 2 . By Theorem 2. 2, p • _ 3(Q22 -P - 5 : p)= 0. It follows
that H( 2 t - " * 0  and r y (t ImS 2. The fact that H " ) 7" - 1 ) E
Tm G*  is essentially proved in the proof of Theorem 5. 4, (i) and
the details are left to the readers.

For the case m1 (mod p) and m >1 , the proof is quite similar
to  the above. W e use Proposition 8. 8 for h----(ap+2)p and t =
(p  -1 )p  where m =( a+1 ) p +1 , a>0.

Finally consider the case m = 1 . Let i = 2(p + i)p- 7 and con-
sider the groups 7ri , ( S 2 P + 1  : p) and z1-I2(S2 P - 1 : p ) .  By Theorem 7. 2
and Lemma 6. 1, (iii), these groups are isomorphic to 4  and
generated by unstable elements of the first type : p*f(c2cp+Dp-i)
and p * OP(a,) respectively. Put N  b  ( 1, *F. 24 D p -i). By Lemma 6. 1,
(iii), 11( 2 )P a P (a1))=x'•Q P - 1 (a2)* 0 , x'$0 (mod p ) .  By the exactness
of (1. 7), S 2P* (QP(a i ))= O. Then, by Lemma 2. 6, p * (QP(ai ))= z  • Ay
for some zs 0 (mod p ) .  Thus we have Ay= (11 z)P* (QP(ai ))€41m S 2 .
Since G* : mi_i(K(P —  1, 2)) — >7.ri-1(Q:P - 3 )  is  a 3-isomorphism onto
if i — l< 4(p -1)p - 5, we have H 4 ) 7  in1 G* .

Consequently, in all cases we have a contradiction from the
assumption xs 0 (mod p ) .  Thus xS 0 (mod p). q.e.d.

The following theorem is the main result of this sectin.

Theorem 9. 3. L e t g :  Y " 2 - 2  —>Q22mP- 1  a n d  g ' :  n o " - "P - 2

Q : " - 3  be maps of  Lemma 2. 5. For an element a o f  71- i+4(S 2 " + 1 :
assume that there exists an element [3 o f  Tri _2(17 " 2 - ' : p) such that

H ( " a  g ( S 30 )  a n d  (a8(2(mp -1 )p  — 2 ) ) . 8  O.

We assume further that 7 r 1 _ 1 (Y r " - 1)P - 2 : : p )  is
an  epim orphism , which holds i f  i <2 (m p2 - p -1)p - 4. Then the
following relation holds:

H( 2 )(A a)  x • g g a( 2 ( m p  -1 )p -2 ).S O )

f o r some integer x *  0 (mod p).
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Pro o f . Choose a map G : K(mp - 1, 2)-4(22
4 m "  of Proposition

3. 6, which is an extension of g ' .  We have the following (homo-
topy) commutative diagram :

Compare g "  with the map 2, g : 17 " 2 - ›  S I 2Q22" - 1  induced by g.
Both maps satisfy the condition of Lemma 2. 5 , hence they are
equivalent up to a homotopy equivalence o f Y '" 2 - 4  representing
y• G y  for some y  0  (mod p ) .  Thus we may assume that 2 2g= g"
without loss of generality. By Proposition 4. 5, the attaching map
h in K (m p -1, 2 )-  Y i

2,cmP- " P ' U  C  Y r 2 - 5  represents -  ce8(2(mp - 1)p
- 2 ) .  By the assumption a8(2(m p- 1)p - 2)0 0 , there exists a
coextension is ?' E  z i ,(K(mp - 1 ,  2) : p )  o f 8 .  Then j * G* /8 = gW7r* i3

gW(S13).
Now we have the following commutative and exact diagram :

H( 2 ) P*
1+2(S 2" )  —k 7t - i(Q r P  - 3 ) 7z. i _1(S 2 "

IS'
H "' ti*

i 4(S 2 " " ) zi-i(V4mP-3)
II V' 1..1*

z i  (Q rp -1 )

By use of (1. 3), we have 11,2(g* S'0)=-- (EV g)* (S1(3)- gW(S13)-- -- j * G13.
By the first assumption,

j * G4:18 = EV( g * S' 0) = 1 -1211(2 )a= j * Hc 4 'a

By the exactness and by the last assumption of the theorem, there
exists an element 7 ' of 7-c1_1( Yrn P  1 ) P - 2 :p )  such that H a =  G$ +
48-‘,/. Put y +47', then 110 ) a  G * 7 .  Applying Lemma 9. 1,
Lemma 9. 2 and (9. 3), we have

11(2)(6.a) = 1H( 4)a = = g W * 7.rai + 4 7 ')
= g W * (S1(3) x  •  e i,(a(2(mp -1)p - 2). s 0) .

Finally consider the homomorphism g.;K for i <2(mp 2 - p -  1)- 4.
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Let a  be an arbitrary element of 7t1-1(QrP - 3 : P) and consider the
exact sequence (2. 5). By (2. 7) and (2. 8), p • I(a)=- O. B y  (2. 8),
there exists an element s  o f  z i2(S 2 (" - 1 )P- 3  : p )  such that S 40—  Ia
and p • = O. Let E : p )  be a  coextension of p.
By Lemma 2. 5, Ia = S 4 /3 = S 3(7r* b) = g ; S  fo r  some y' $ 0
(mod p). By th e  exactness of (2. 5), a= )1' g4, 13 + P 7 ' fo r some
7/E 7-ti _"(S 2 ( " - " - i : p ) .  By (2.8) we can put ry'=S 27 .  By use of
Lemma 2. 5, we have a= y ' • gV 3+FS 27 = g 4f( y' • +  x • iily). This
shows that g4; is  an epimorphism if  i<2(m f  —p— 1)p — 4. q .e .d .

The following two corollaries are important in Section 11.

Corollary 9.4. A ssum e i<2(m p 2 —p— 1)p — 4. I f

11(2)a = F(S 57)

f o r a e r i + 4 ( S 2 m P + 1 : 1 1 )  an d  7 E7 i _2(S 2 nP 2 - 6  :11), then w e have

H p ( A a )  I l l ( 2)(z Ia)= x •a 1(2(mp— 1)p +1)0S47

f o r som e integer x $0 (mod p).

P ro o f . By Lemma 2. 5, H")a= x' • g* S 3(4 7 )  for x' $ 0 (mod p)
and for the inclusion  j :  - ÷ r , " ' .  P ut 0= x'• 4 7 .  Then
H")a= g * (S 3 ,3). We have also a8(2(mp — 1)p— 2). g = xi • a(2(mp — 1)
p-2).47,- *47 = O. B y  use of Theorem 9.3 a n d  Lemma 2. 5 we
have

H (L a )=  xx' • I(g a(2(mp — 1)p — 2)0S(iily)) f o r  x  0 (mod p)
= xxly•S 3(7t* i*a(2(mp-1)p—  2)0S7) fo r  y  $ 0 (mod p)
= x x 'y •a 1(2(mp— 1)p +1)0S47 q.e.d.

Corollary 9.5. A ssu m e  1 <k <m f  — p —1. I f

H" ) a = 1 1 (4 2 m p 2 —1))

f o r a E  4 ( S 2 r n P - 1  p ) ,  j = 2m p2- 5 + 2k(P— 1), then

H 2 ( a) = x•na'k+1( 2 (nP - 1 )1) - 1 ))

f o r som e integer x$0 (m od p).

Pro o f . Remark that a ( t )  exists if t >2k + 1 or if k  0 (mod p)
and t >6, and defined by the relation i* a;,(t)= M ak - '8a(t +1)) in
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Proposition 4.4. We have a(t +1)• i * a;(t +2p - 3)= a(t +1) • i*(ak - 1 8a
(t +2p - 1 ) )  i*(ock8a(t +1)) = i * a ; , ( t ) .  Then the corollary is an
easy consequence of Theorem 9. 3. q . e . d .

Remark that unstable elements of the first type in Proposition
6. 2 may be taken as the element a  in one of the above two
corollaries.

1 0 .  Unstable elements of the third and the fourth types.

We start from the following remarks. By (1. 3), the homomor-
phism lick): n-i + k (S ")---.7 r i _i (0 ,) in the exact sequence (1.7) satisfies

(10. 1). H(k)(aoS k ±10)-= H( 11)a.13 f o r  aerc i+ k ( S '" ) , 3 E r j _1(S 1 - 1 ).

It follows

(10. 2). I f  S 2 7 = p gry ' f o r  7 E :  p), 7' E  i+ „((e n p)

a n d  
p * :  2 r ( Q r  F  2Y -1 7 r i + 2 , . (  :pS 2 M + 2 Y - 1  •  \)  then we have S 2 r(7 0.538)

=p * (7 / .S2r+3 0) f o r  e n-; (Si - 3  : p ) .  S o, if  H")(70S 30)=--- H")7(>13 *0
an d  S 2r(7.S 3 0) = P* (7') ,>S2 r+3 *  0  an d  r = p —2 (resP.r = p) then
ry.S30 is an  unstable element of  the third (resp. the fourth) type.

Next we prepare two lemmas.

Lemma 1 0 . 1 .  I f  m <p , then th e  complex K (m , p) o f  Propo-
sition 3. 6 can be chosen such that the cells e2mP- 3 +2-1cP- ", j =0,1, ••• ,
p - i ,  together with the base point * form a  subcomplex Ko(m, P)—
S 2 mP- 3  U e2 mP- 3 +2 ( P- " U • • U e2 n " + 2 - 1 ) 2  o f  K( 1 1 , P).

Proof. We shall prove by induction on j < p that K o(m , j)=
S 2 mP- 3  U • -.e2"' - 1 - 1 ) ( P - 1 )  is  a  subcomplex of K (m , j) by changing
K (m , j) in its homotopy type. The case j= 1  is  trivial. Assume
K(m, j — 1) has the subcomplex K ,(m , j — 1), I< j < p  K (m , j) is
obtained by attaching a  cone C r , " - "c-f - ' ) ( P- i) b y  a  map h:
Y 2 mP- 3 ±2(j - 1 )(P- 1 )—> K(m, j -1 ).  L e t  h0 : 5 2 mP- 4 ±"l - 3 " - "--). K (m , j)  be
the restriction of h. h ,  represents an element of 7 r

2 m P - 4 + 2 ( j -  1.)(p

(K(m, j — 1): p ) .  By (6. 1), we have 7r z m p -4 + 2 ( j— ix p — i) ( K o ( M ,  — 1 )  U
K (m , i),K o(m, j —1)U Km, i— i): v l -2,,,p-4-12(;-1)( 1,1)(S 2 " - 2 ± 2 " - 1 )  :P)

p)- 0 for 1<i<  j— 1. By use of homotopy exact
sequences, it follows that 7r2mp- 4  F .2 ( j -  1 ) 4 -

K ( m ,  j  — 1 ) ,  K 0 ( m ,  j ) :  p ) =  0
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and the injection homomorphism 7t 2mP— 4+2C j —1)(p—D( K o (M ,  j —  1
)  P) — >

7 r 2mp - 4+2( j -  1)(p- 1)( K(m, j — 1): p) is an epimorphism. Thus h, is homo-
topic to a  map 14: SzmP-4+2(J-ixp-i) K o ( m ,  •j  1 ) .  Extending the
homotopy, we have a map h ' which is homotopic to h  and is an
extension of 1 1 .  Change the attaching map h  to h', then K (m , j)
is changed in  its homotopy type and K o (m, j)— lf ,,(m , j — 1) U
e2" - 3 +2(1 - 1 ) (P- 1 )  is  a subcomplex of K ( m , j) .  By induction on j  the
lemma is proved. q . e d .

Lemma 10.2. A ssu m e  that 6 " - ' * 0  i n  a  complex K 0=S N  U
eiv±" - ')  U • •• u eN±2 cP- 1 )2 and N >2(P — 1) 2 — 3, for example Ko— Ko(m,p)
for m==0 (mod p), nt_>_P or Ko— K(m, P)1K0(m, p) for m 1 (mod p),
m >  p .  L et h : s N + 2 ( P - 1 ) - 1  — > N r+ 2 (P -2 ) (P - i)  be th e  attaching map of
the top cell eN+2 (P- 1 )2 an d  le t  i : SN —>K 2 P- 2 " - ')  be the inclusion.
Then we have

h* (a,(N  +2 (P-1 ) 2 —1)) = x • i*(13 i(N))

f o r some integer x $ O (mod p ) .  (See [10: Lemma 4. 10].)

P roo f. By Corollary 8. 4, for a generator a, of 1-P m " (Q - I : Z p )
we have CPP-

1a0 =ap_ 1 * 0  if m 0 (mod p ) and CPP- 1 a0 = Aa p _i *0
i f  m  1  (mod p ) .  B y  Proposition 3. 6, the sam e is  true for
H*(K(m, P); Z p ) .  It follows that G3 P- 1 *0  in Ko(n, p) if 0 (mod P)
and in K (m , P)1K 0(m, p) if m (mod p ) .  As in the proof of the
previous lemma, we see rt-N±,pcp- i) - 2(K r " - ' 1 ) , : p)= 0. Thu s
h* (ce,(N  +2(p — 1) 2 — 1)) belongs to i*n.N+2p(p-i)-2(S N )  generated by
i*131(N ). Put h* (ai(N  + 2 (P - 1 )2  — 1 ))= x  • 48 1(N )  for some integer
x .  Assume x 0 (mod p), then h*(cei(N +2(P — 1)2

- 1))= 0 and there
exists an extension h : S N+2(p-1,2-1 u  . i e N+2p(P-1) -1 , K 4v+2(P-2,cp-i ) o f  h .

Consider th e  mapping-cone o f  h , then it is easily seen that
63 '6 " - i* 0  in the mapping-cone. But this contradicts to Adem's
relation 6) 1 63 P- 1 = O. T h u s  x 0 (mod p). q.e.d.

The following four theorems indicate the existence of unstable
elements of the third type.

Theorem  10. 3. A ssume that )17 0 (mod p) an d  m >  p .  Then
there exists an  element y  o f  n-2,”p  2  ,p (p - „ (S 2 " "  1  p  ) such that
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11( 2 7 = x•F(/am P - 1)) f o r some integer x O (mod p) ,
S2P- 4 7 = p * P(ce1(2(m+p-1)p - 1 ) )  and S 2 2 7 = 0.

Thus f o r an  arbitrary element is .  of  7-r1(S 2 " - 5 +2 " - " )  we have H " )

(7°S31(3)=x•riC31(2mp-1)oi3 and s2p-4(7.S30)=P*Ra1(2(m+P-1)P
—1).S 2 P- 1

13).

P ro o f. Choose a complex K(m, p) as in  Lemma 10. 1 and ap-
p ly  Proposition 3. 6 , th en  w e h ave  th e  following commutative
diagram :

h
P -1 * i * 1

Y r P - 3 + " P  1 ) ' ) zi(K(rn, z i(17"-2)

(10. 3)
t g * d

Gp -1* g*
1*7 r i (s-e p - m n 2 + 2 p - 3 )   7r1(0 7 ,1 ) 7ri(Q22m -

Îû2P_12P-1in H(2p-2)

7 r i ( Q 2 t n - F 2 p - 3 ) n ,i 1_,p_i (s2m -1-2p-a)

(i= 2mp— 5 +2p(p-1)).

By Lemma 10. 2 with h=h p _,IS 2 m " + " - 1 ) 2 , we have

hp _ 1 * ( i 1 * a 1 (  2mP —  4+ 2(p-1)2)) = x' • i ( i 2 * (3,(2mp— 3))

for som e x'0 (m od p), where i,: 5 2 " - - 4 +2 ( P- 1 ) 2 — YrP - 3 +2 ( P- 1 ) 2  and
i2 : S 2 " - - 3  n - P - 2  are the inclusions. By Lemma 2. 5 ,  ( re p-1 ) -1

e i,i1 * a1 (2mp— 4 + 2 (p - 1)2) = y  • fa, (2( m + p  - 1 ) p - 1 )  an d  g*i2*R1
(2mp— 3) = y'• F01(2mp — 1) fo r  y , y ' 0  (mod p). From the corn-
mutativity of the above diagram it follows

1/(2 P- 2 ) (p * Fa 1(2(m +p— 1)p-1)) = x • i* r g a m p  -1 )

for som e integer x0 (m od p ) .  Next the following diagram is
exact and commutative :

(10. 4)
52 P- 4 H 2P-4)

7r i+ 3 ( 0 7 3 1 1) 1 1 '.' 7 r id -3 (S 2 M + 1  7ri+ -> 7t i+ 2 ( 0 ; : - E41)
,̂-'...1(231  H (2 )

--> zp- 1 (S2 m + 2 " )
I I r 2 P - " „Ire

d4: i* j*
7ti(f1307,=4” --)- mi (Q: -  1 ) -  7riM,7:21 ) '  7, i (n 2Q2;4 ) •

Since I f 2 P - 4 ) (P * Fa 1 (2(m +P - 1)P - 1))= x • 12- 2 .4 i *F131(2m p-1)= 0,
there exists an element y ' of 7r i d  3 ( S 2 m + 1  :  p) such that S2 P - 4 y'=Nrce1
(2(m+ p - 1 ) p  - 1 ) .  B y  the commutativity of the above diagram,
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we have i * (H( 2)7' x • I' 18,(2mp-1))= 0. Thus there exists an ele-
ment 7" such that 4'7" = H ( "7 ' x•I 0,(2m p- 1 ). Put 7 P * 7 "  f

then we obtain

1/( 2 ) 7  =  x•F3 1(2mp- 1 )  a n d  S2 P
 -  4 7  =  P* 1' a,(2(m+ p -1)p-1) .

By the exactness of (1. 7), S 2 P- 2 7 = 0 .  The remaining part of the
theorem is a direct consequence of (10. 2). q.e.d.

Theorem  1 0 .  4 .  Assume m 0  (mod p )  and m> p and let
7 Er2mp-2+2p(p-1)(S 2 '  :  p )  be the element o f Theorem 10. 3.

(i). I f  0 < r, 1 < s and  r +  s  <p -1 , then the composition
ogN

3
(2mp -2  + 2 p (p -1 )) is  an unstable element of the third type,

i.e., by  Putting 7' -700 138(2m p-2+2p(p -1 )) w e have 11( 2)7' *0,
S 2P- 4 7' *0 and S 2P- 2 7' =O . The elements S2 -171 , 0 _< j<p-2, generate
direct summands isomorphic to Z .

(ii). The element 7 is  an unstable element of the third type,
i.e., H 2 ) 7*0, S 2P- 4 7 *0  and S 2 27 =0. Let the order of 7 be pt,
then 1_<t pf-1•S2P-2/-27=x;•p*Fai(2(m+p-j)p-1) for 1_<
j <  p -1  a n d  fo r some integer x i  S 0 (mod p ) and the order of
S2P- 2 -" 7  is  pm- " 'D .  Thus p* Fa si(2(m+p- p p -1 )+ 0  for j < t
and = 0  f o r  t < j p - 1 .

Proof. (i). The element ry' =  7.131y33 (2m p -2+2p (p -1 )) be-
longs to 77 2nt±i+ k(S 2 m + 1  p )  fo r k = 2(m+ (r + s +1)p+ s-1)(p-1)-
2 r  -5 .  Since 3ÇR3(2m p-2+2p(p-1 )) is a stable element of order
p, we have p•7'= O. By Theorem 10. 3, 11(2 )7'= x •I' f i ' s(2mp- 1)
for some x $O (mod p ) .  Thus 7 ' is  o f order p  and not divisible
by p  since the same is true for H ( 2 ) 7, by Theorem 2. 2, where
we have 2m+ 1+ k< 2p2 m -5  from the assumption m>p and Theo-
rem 2. 2 can be applied fo r our case. N ow , it is sufficient to
prove that S 2 P - 4 :7r2„H-i+k(S2 "" 1 :p) - >m2.,+2p-3-E-h(S2 m  2 P  3  p )  is an iso-
morphism onto . By (6. 4), 7 r2 .+ 2 J + 1 + k (C e n ' - 2 / + ' : p )- 0 for 0. j< p - 2 .
W e have also, by (6. 4), 7r2.+2;41,(Qr + "  :  P)= 0  for j< p -  2  if
(r, s)*(p -3 , 1 ) and generated by Om-Li+1 (a cp _D p _i , )  if  (r, s)
= (p -3 , 1). On" »  i (ce(p-Dp- i _2) is  n o t  in  th e  I-1(2 )-im age since
p* Om

, 5 1

'(a,p _1 ) p _i _2) * 0  by Lemma 6.1, (iii). Then, from the ex-
actness of the sequence (1. 7), it follows that 5 2 "  is an isomor-
phism onto,
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(ii). The fact H " ) 7 # 0  is proved a s  above. Since S 2 P- 4 (7. 181

(2mp— 2+ 2p(p -1))* 0  by (i), we have S 2 P- 4 7 * 0 .  By Theorem
10. 3, p* I'a 1(2(m+ p - 1)p - 1) = S 2 P - 4 7  * 0 . Apply Theorem 5. 3, (ii)
to 8 - I 'a 1(2(m+p - 1)p — 1), then there exists an  element 7, such
that S 2 71 — p*E=S2P - 47 and p • 7i = x.P * Fa2(2(m+ p- 2)p- 1) for some
x $ 0  (mod p ) .  By th e  exactness of (1. 7), we have 71 =S 2 1 ' - 6 7+
y•p* I'a 2(2(m+ p -2)p -1) for some integer y .  It follows p • S 2 P- 6 7=
x•p* fa 2(2(m+p— 2)p - 1). Repeating this process (ii) is proved.

q.e.d.
Before proving the next theorem, we need some remaks on the

concept of the coextension. Let f :  Y--->X be a  map and construct
a  mapping cone

X * = XU f CY

of f .  Let J: (CY, Y)--, -(X*, X) be a characteristic map, i.e., II 17 = f
and J  is a homoemorphism of CV— Y onto X *— X . A coextension

igE7r(SZ ; X)

of (S'En-(Z; Y ), with the relation f * /3 0 ,  is defined a s  follows.
Let g: Y be a  representative o f /8 .  Represent each point of
SZ and CX by pairs ( z , t ) , z E Z , t e l  and (y, s), yE  Y , zE L  Then
$  is represented by a  map g :s z - . . x  given by g(z, t)= (g (z ), 2t)
for 0<t<1/2 and g (z , t)e  X  for 1/2< t< 1. We see that 7rog is
homotopic to Sg fo r  a  map 7r: X*-->SY shrinking X .  Consider
the relativization

j * : 7r(SZ ; X*) = 7r(CZ, Z; X*, *) , 7r(CZ, Z; X*, X) .

Then from the above definition we have

(10.5). An element 7 of z(SZ; X *) is  a coextension of "SE 7r(Z ; Y)
i f  and only if the following relation hold:

i* (7 ) A O - 1 M ,

where J:  7r(CZ, Z; CV, Y) , 77-(CZ, Z; X*, X ) is induced by f and
a : 7r(cz, Z ;  CY , Y) -'471-(Z ; Y ) is  the boundary may (restriction).

The map f  defines canonically a map Of : Y—)-1-2(X*, X ) .  Then
we have
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(10. 5)'. 7E 7r(SZ  X *) is a coextension of g E z (Z  ; Y) if and only i f

f2(/*7) = (nf)*(3,

w here n :  t (C Z , Z ;  X ,  X )  n (Z ; S2(X*, X ) )  is one-to-one map of
(1.1).

These (10. 5) and (10. 5)' can be taken as the definition of the
coextension.

Lemma 1 0 .  5 .  Assume th at X  i s  arcw ise connected. Let f :
S ' - - ) .X  be a map, X * =X  U f er a mapping cone off  and X *  - - ->S r

be a  m ap shrink ing X . T hen f o r  arbitrary  elem ent a  o f r i (X *),
its  suspension S aE z i+ ,(S X *) is a coextension o f ( ±1 r )o7t* aE7r i (Sr).
Thus, i f  7r* a = 0  then Sa is in the image of the injection homomor-
phism  (S i) * : 71" i ( S X )  r i , i (SX *).

Pro o f . The canonical inclusion Sljoic, : X *
— >I1SX*c11(SX*, SX)

can be extended over a  map i,: X * U cx-->n(sx*, sx) since ioX c
S X ) and 11(SX , SX ) is contractible to a point, n  defines a

homotopy equivalence of X * U C X  onto S r=  S S ' (by shrinking
C X ) .  Let h:Sr.— >X *UCX  be a homotopy inverse. It is easily
seen that h,=i,oh : S r— >f l(S X *, S X ) represents a  generator of
7tr([2(SX * , SX ))-7rr+1(SX * , SX ),---,Z . The map 1-2(sf):Sr--)42(SX*,
S X )  induced by the characteristic map SI:CSr--->SX * of the
(r+1)-cell in S X * represents also a generator o f n-

r (S),(SX*, SX)).
Thus n(Sf) is homotopic to h, up to sign. For a c r i (X *) we have

f l((Sj) * Sa) = (12j) * ,f2(Sa) = (n,j) * i o * a = h 1 * 7r* a = (±  S IS  ) * (7r* ce)

by use of (1. 2). This shows, by (10. 5)', that Sa is a coextension
o f (± t r ).7r* a .  I f  7r* a= 0, then (Sj) * Sa= S1 - 1 ((± nsf ) *r* a)= O. B y
the exactness of the homotopy sequence of the pair (SX *, SX ),
we have that Sa is in the image of (Si)* . q.e.d.

Theorem 10.6. L e t  m 1 (mod p) and m > p  +1 . Assume that
p) = 0 f o r l< j< p - 1. Then for an arbitrary

element IS of 7- 2p ,(S 2mP- 2 ±2(P- 1 )2 : p), there ex ists elem ents 7 c7ri ,
p) and e, 2p _1(Qrn' 2 P- 3  : p) such that
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H p y - I I I ( 2)7=x • 13,(2m p+1).S 2P- 1 ,3 fo r  som e integer x s  0 (mod p ) ,

S 2 4 7  = P * 7 ',  1 7 ' =  a1(2(m +P -  1)p+ 1).S 4 P- 2
13  and S 2P- 2 7 = 0.

Pro o f . Choose a complex K (m , p) as in Lemma 10. 1 and let
hp _1 : Y r1P- 3 4 "P - " 2 -› K(m, p -1 ) be the attaching map as in Propo-
sition 3. 6. Consider th e  subcom plex Ko(m, P -  1 ) U  Y r "  of
K(m, p —1) and let io be the inclusion of this subcom plex. Since the
complex Ko(n, p — 1)U nniP - 2  is in a stable range, we may assume
that it is a mapping cone

K o( n, p —1)u Y 2mP - 2 = s2-P - 3 U C (MV ,S 2 m P - 3 ) ,

where M v.S 2 " '  is a one point union of a complex M = S 2 " - *±2 P- 1 )
U ••• U e2 "  4 1 "P "

( P
 "  and 5 2 " - 3

• A lso  w e m ay assume that M -
S2 P- 5 M0 fo r a  complex Me = ,S2 " - 1 U ••• U e2 " - i+"P - 3 "P - ".

F irs t w e  p ro ve  th e  following (1 0 . 6 )  f o r  a  coextension
i*a(2m p- 3+ 2(p-1)2) o f a 1(2m p- 4+ 2(p-1)2) given in Section 4.

(10. 6). hp_,*(i*a(2m P- 3 + 2 (p -1 ) 2 )) =  i0*(e)
fo r  a  coextension El E n ,p _ 4 + 2 p (p - i ) (K o (m ,  P -  1 ) U  Y r P - 2 : p )  of an

_2mp-5+2p(p-i)(M)element v ex •O ,(2 m P-3 ), x $ 0  (mod p ) ,  where
and ED indicates the direct sum decomposition: 7r,(M )len - ,(S 2 " - 3 ),- --,

7 r t (M V  S '" ) ,  t  =2 m P -  5+ 2p(p — 1).

Since m>p+1, the homotopy groups considered here are stable.
In particular, 7r t+,(K(m, P - 1), Ko(m, P - 1)U Y r P - 2 )";"-'- n t Fi(K(12, P - 1)1
(K 0(m , p — 1) U YrP - 2 ))  and this has a trivial p-p rim ary component
by a  similar reason as in the proof o f Lemma 1 0 . 1 . W e have
also 7/-„,1(K0(m, P - 1) U Yr P - 2 , S 2 " - 3 ),---tIz t (M v S 2 " 3 ) and this shows
that every element o f 7r,„(K o(m, p — 1), 17-P - 2) is a coextension of
an element o f 71-,(M V S 2 " - 3 ). It follows the relation of (10.6)
fo r a  coextension E ' o f v e ,8 ', I 3'E7r 1(S 2 " - 3 : p ) .  T o  show 13'----
x •8 1(2m P- 3), we shrink the subcomplex Ko(m, P - 1) o f K(m, p-1),
then Lemma 10.2 implies f3'= x • 13,(2m p- 3).

Next let i' : Y rP - 2  ->K (m , p -1 )  be the inclusion. Then we
have

(10. 7). hp _,* (i*a(2m p- 3 + 2 (p  — 1 )2 ).s 2 P - 4 4(E ) f o r  a  coexten-
sion E  77. ( Y r P - 2 : p )  of x• 131(2m p-3).S 2 P- 73, x $ 0 (mod p ).
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To prove this it is sufficient to show voS 2P- 5
13 = 0. Since

m  p + 1 ,  s 2 1  5  : 7r2mp-2,(p_02(m.)—>7t2mp_5+2p(p_0(m) is  an  isomor
phism onto. Let v= S 2 P- 5 1/ for some v'. Consider a map 7r' :  Mo—>
S 2 mP- 1 +2cP- 3 )(P- "  which shrinks lower dimensional cells, then 74(1/0/3 )
belongs to 7ri - 2 p  ,4(5 2 " - '+2(P- 3 )( P- ')  p )  which vanishes by the as-
sumption of the theorem. By Lemma 10. 5, S(1/00)= i* v" for some
p rr e 2 p 4  5 ( s y rom p-1+2 (p -4 )cp-i) p) .

p =
 3 ,  p o s 2p_5

1 3
 s ( / .  0) *77

=0. I f  p > 3 ,  we consider S v " and repeat the process, then the
relation voS 2 P- 5 /3= 0 is proved as the image of n-i _1(* : P)= O.

Now considering the commutative diagram (10. 3), we have

H"P - 2 ) P* (f1 - ( 2 P- 1 ) g‘i*a(2mp—  3+ 2(p —1)2)0s2P - 4,3 ) =  i* g* E.

Putting 7 '=x '• f l - r2 P- 1 ) gi*a(2m p—  3+ 2(p— 1)2).,s2P - 40  fo r  suitable
x '$ 0  (mod p ) ,  we have by Lemma 2.5

= S 2 P+2 (7r* i*a(2mp— 3 +  2 (p -1 ) 2 )05 2P- 4 13)

=  ce1(2 (m +P-1 )p + i ) o s o - , 9

Next considering the diagram (10. 4), we have
H -(2p-4)( p * r y /) _ c y 2i * H ( 2p_2) ( p ..),,)  = 0

Thus there exists an element y i o f z 1 , (S 2 m+1 : p )  such that S 2 P- 4 7 1

=p * 7 ' .  As in the proof o f Theorem 10. 3, modifying 7 1 b y  7 =
71 — p*rY 2 fo r some ry2E7r„F3((g27:f il  p ) ,  we have

H( 2 )7  =  g & ,  S 2 4 7  = p * 7 '  an d  S 2 P- 2 7  =  0.

Since & is  a  coextension o f  x•0 1(2mp— 3).S 2 P- 5 /3 by (10. 7), we
have using Lemma 2. 5

147 = 111( 2 ) 7  = Ig * E = y -S 3 71-* 5 = xy•13 1(2m p+1).S 2 P- 1 0 ,

for some y$ 0 (mod p ) .  Changing xy to x , the theorem is proved.
q.e.d.

Th e proof o f th e  following theorem is similar to one of
Theorem 10. 4, using Theorem 10. 6 in place of Theorem 10. 3.

Theorem 10.7. A ssum e m =1  (mod p )  and m > p + 1 .  I f  0 <r,
1 <s  and r + s < p - 1 ,  then there exist elements

E  
7
t2np+2((r+s+Dp i)C p -i)-2 r-3 (S 2 m + 1  p )

and 7 'E  7r2rnp t-2(( r I s r i)p + s )C p --1 )-2 ,2 (q m  I 
2 P 3

 p )
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such that

H p 7 — IH")7= x•i31. +1 ,61, ( 2 m p +1 ) * 0  for some integer x $  0 (mod p ),
s2P - 47 = p4,7 ' *0 , 17 ' R 3 ( 2 ( m +p - 1 ) p +1 )  and S 2 2 7  O .

T hus y  i s  an unstable elem ent of the th ird  type. The elements
S 2 1 y ,  0< j< p—  2, generate direct summands isomorphic to Z .

The corresponding results for m = 1 will be seen in the next
section.

For unstable elements of the fourth type, we have the following

Theorem 10. 8. Assume m  0  (mod p ) ,  m $ ( p - 2 ) p  (mod p2)
and m > 2 p .  Then there exist elements 'Y f l "-  -2 m p + 2 (2 p + 0 4 -1 )-2 (S 2 m + 1

and y 'E r ± , ( 2 p + 2 , ( ,(Q2""± 2 P+1 : p )  such that

H( 2 )y x • I ' 8 2(2 m p -1 ) fo r  som e integer x  $  0  (mod p) ,
S 2 1'7  = 17' =  8 1 ( 2 ( m +p +1 ) p +1 )  a n d  S 2 P+2 y  = 0 .

P ro o f . By Theorem 2. 2, there exists an element y '  such that
= 0 1(2(m+ p + i)p +  1). Let t = 2m p+ 2(2p + 1.)(p —1)— 2  and con-

sider the exact sequences

S2 H(2)
P *( Q 2.+ 2 .1 _,.) . ±21(s2 2;„ . 7 r t m + + ,. ,

) 7 r t - F 2 J - 3 (Q r  J - 1 )+ 2 • • •t -2"-'

for j=  0, 1, 2, •••, p .  B y  (6. 4), n- t ± 2 i , ( Q r + 2 5 - 1  : p )= 0  if
generated by Qm(132)= r Ramp-1) if j= 0 and generated

by (r+P(a i le i )  if O'n+P(a181) is characterized by the relation
I r r ± P (a1131)=a113 1(2(m + p)p+ 1). Then, by use of Theorem 10. 7,
P*Cr + P (a iR i)*O . From the exactness of the above sequences, the
above S 2 a r e  epimorphisms of the p-p rim ary components for
i < j < p .  Thus there exists an element yEn- t (S 2 'n+1 : p )  such that
S 2 1 3 y = P* 7'. We can put H( 2 ) 7= x •I',3 2(2 m p -1 )  for some integer x.

W e assume x (2 1  (mod p )  and lead to a contradiction. From
this assumption it follows y  S 2 7  fo r  some y o . Consider the
following exact and commutative diagram :

t -3 4 - 1 (47 -T 14)

n i*
7rt+2p (Q r + 2 P + 1 )  n 2-_,P + 3 + 3(S-1211-1 m+2P4 1-3Q: )

P*s2p+2 id
2 m -1   

*
(s2.42p+1) 1 1 . ( 2 P + 2 2 f  2m-1

t 4 S ) -  
±
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W e  have d * S-22P+37' = H(2p4 21,4y  H ( 2p+2),s2p f 2 0y 0. Thus there
ex ists  E ' c  rt t  _3(SIQZ7+- 41 P )  such  that (1-2j)* E' =  n 2 P+3 7'. Consider
E  = 11- 1 61 e7r,_2(QP;+- 41 : p ) , then j * 8 = 2 2P+27' fo r j *  : t  - 2(Q rp"' 414)
7 r t - 2( n 2 P + 2 ( 2 22 ' 2 '

) .

Since m >2 p , b y  Proposition 3 . 6  and Lemma 2 . 5 , we may
replace QZ;171-

4 an d  n,2P+2Q2
2""P+ 1 b y  K(m, p+2) a n d  Y(rn+P)P - 2 P- 1

respectively and we may consider that (22P+2 7 ' is  a coextension of
x'• ,8,(2(m + p )p  -2 p -  2 ) , x ' (mod p ) .  A s  a  characterization of
the element IS „ w e  know [ 1 3 ]  [ 1 0 ]  th a t in  a  mapping cone
Y;(m+P) P- 2 P- 1  U et - 1 o f  SI2P' 2 7 '  w e  have PPH 2cm+P)P- 2 P- 2 (  ;  Z , )  z  0,
hence the same is true in a mapping cone K (m , p +2)U e t '  of E.
By identifying H*(K (m , p + 2) ; Z p )  with H * ( ( g 1  ;  Z p ) in  lower
dimensions this is indicated by (Pa p  ,, * 0  in K(m, p + 2)U e t ' .  By
Corollary 8 . 4 , we have IT P+1ao = m ( P - 1I )  — 1 \p )a p+i= ((m P) + 1 )a p-1 1 7

P(Plao = — ((m +1)(P-1))ap-1,— (m 1P)ap+1. On the other
hand, b y  A d e m 's  relation , 63 P(PP 1 1 = (8) 2 1 n- l + (9 2 (P1 =  3 3 1 6 ) 2 P +
((1/2)(PP(PP-

) W e have (26 2 P+ PP - 2 8) 1 63 1 )a,— 0  since there is no
cell of the corresponding dimension. Thus 0= CPP(2(5 — CPPP)ao

=((m 1P)+ 2 )V a p , .  This contradicts to (PPap ± 1 * 0  since m*—  2p
(mod p2). We conclude x $ 0 (mod p). q.e.d.

In the following section we shall see the above theorem holds
for m =p>5.

I t is  an open question whether the above theorem holds for
R s and  Os + , instead of /8, and 132 respectively.

11. Unstable groups — II.

The main theorem of this section is briefly stated as follows.

Theorem 11.1. For m > 1  and  k<2p2(p —  1) —  3 ,  w e have the
follow ing direct sum decomposition:

k (S : p )  =  A (m , k )+ B (m , k )+ Ê  U  t (m, k) ,
t=i

w here the subgroups A (m , k ) and B (m , k ) are mapped isom orphically
into the stable group under S -  and  th e  subgroups L 1 t (m , k ) are

3D2p-i(p1)(31, 6p(2 6,p4i p 6,1(26)2P ±
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generated by unstable elements of the t- th  ty pe. (T he precise defini-
tion o f  these subgroups w ill be given in  the sequel.)

The fundamental tool of the proof is the following two exact
sequences :

(11. 1) = (1. 7)

(11. 2)= (2. 5)

H(2) P* S2
2. - 1-Fh(Q m - 1 : p) '  7r 2,,,-, I- k(S : p ) — '

H ( 2 )
7( 2,1-1+ k(S 2 m + 1  :  p ) —' 7r 2,.- 2+ k(Qr n - 1  : p )

I A I'
••• '  7r2,,,-,3+1,(S2 m P + 1  : 13 ) ----* 7r 2,n+, 1 k(S 2 m P  - 1  :  p ) - - -*

I
7r 2,,,-1+ k(Qr n  - 1  : P) —  7t2 m + 2  1  k (S 2 m " 

1 :  P) ---* -

We shall use the notation Qm(y) and Om(7) o f (6. 3), i.e. Qm(y)
is an element of 7t 1(Q r - 1 : p) such that Qm(7)=.17 (7 ')  and S - 7' =7
fo r  some 7 '; Q m (7 )  i s  an  element o f  7 r i (Q r n : p) such that
S - K r(7 )=  T.

In the following we always assume m > 1 and k <2p 2(p — 1)— 3.
We start from the definition o f A (m , k ) . W e have seen in

Section 4  that there exists a r (2m+1)=S 2 m 2 a r (3 ) fo r  each r> 1
which is of order p  and satisfies S - a r (2m +1)= a r . Also we have
seen in Lemma 7.3 that there exists a„(2m +1)=S 2 m- 4 a '„ (5) for
m > 2  and 1<s<p which is is order p 2 and  S ° 'a ( 2 m +1 ) = a .
Remark that we can define a'.(2m +1) = x • a ,(2m  +1) for r  0 (modP)
fo r some x $  0  (mod p ) . (See ( 6 .2 ) ) .  B y use of these elements
A (m , k) is defined as follows.

(11.3).A ( m ,2 s p ( p - 1 ) - 1 ) . ' ,----Z p 2 generated by a( 2 m +1 )
f o r m >2  and 1.__s<P ,

A (m , 2r(p generated by a r (2m +1)
(or a'.(2 m +1 )) f o r m =1  and f or r $ 0  (mod p) ,

A (m , k ) = 0 f or - -1  (mod 2p-2) .

In order to define B (m , k ) we prove

Lemma 11. 2. There exists an element p 1(2p —1)E 
7 r 2 P - 1 - 1 - 2 p ( - 1 ) - 2

(S2 P - 1  : p )  w hich is o f  order p 2 a n d  satisf ies S V ,(2P-1 )= 9 ,  and
11(2),31(2p -1 )=x •Q P - 1 (a 1 ) ,  x $ 0  (m o d p ) .  T he order o f  f31(2m +1)

s2m-2p+20 1 (21 )
 1) is p f o r m >p.
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Fo r 2 <s<p , there ex ists an  element 8 (2p+3)Ez— 2p+3+2(sp+s-1)
. c p - o _2(S 2 1'+3 :  p ) o f  order p staisfy ing S73 3 (2p + 3 )=  3 .

T he  order o f  a i 0,(3)=a 1(3).Sg i ( 2 p - 1 )  i s  P. F o r  2 < s < p ,
there exists an  element 

a i R s ( 5 ) E 7 1 - 2 ( s p f s x p - i ) + 2 ( S 5 :
 p) of  order p such

that S 2(a1R3(5 ))— ce1(7)0SP8 (2p + 3).

P ro o f . The first tw o  assertion w ere seen  in the proof of
Theorem 7. 1. The th ird  assertion for 13 8 (2p +3) follows from
Corollary 6. 4, (ii).

By use of (1. 3), (iv), we have P(ail e 1(3))= P • ai(3)0S/3,(2P - 1)= 0.
Since S - ( c e 1 R I ( 3 ) ) = c 0 1 * 0 ,  the order of a 10 1(3) is p .  According to
(1. 9), decempose Sa 1 (5)088 (2P+2) in to  a direct sum  S(a1i3 .(5 ))+
[ 16, Idol , . S in c e  p(Sce1(5)0133(2P+ 3 ))=Sa1(5 ).P.R8(2 p+ 3 ) = 0, we
have p•a1i8s (5)— 0. As in (1.10), (ii), we have S2(a113 8(5 ))=S(Sa1(5 )°
198 (2p + 3))= cr1 (7).S0 s (2P + 3). q . e . d .

We denote 168(2m+1)=S2"1-2P-2 0s(2p+ 3) for m > p + 1 . As com-
positions o f 8 1 (  )  and Rs( ) ,  we define Ri9 8 (2m +1) fo r  m >p - 1
i f  r>1  or s=1 as is seen in the proof of Lem m a 6.1. W e also
define a1RiOs(2m+1) for m>1 i f  r> 1  or s=1  and for m >2 if
r =0, s  b y  a1f3113A2m+ 1) = ce1(2m +1)0ings(2m+ 2P— 2) and by
the element a 1 13 s ( 5 )  o f Lemma 11.2. We define B(m, k) as follows.

(11.4). B (m , 2 ((r+s)p+s-1)(p  —  1) —2(r+1)),-,---,-z p generated by
873

8
(2m+1) f o r m >p -1  i f  r>1  an d  s >1 ,

f o r m >p  if  r= 0 and  s =1 ,
f o r m >p +1  if  r=0  an d  s >2 .

B (m , 2 ((r+s)p +s)(p -1 )-2 (r+1 )-1 ) , ,------ z p  generated by
a1R;138 (2 m +1 ) f o r m >1  if  r>1  o r s =1 ,

f o r m >2  if  r= 0 an d  s>2 .

For the other cases we put B (m ,k )=0.

Lemma 11. 3. T h e  subgroups A (m , k )+B (m , k ) are  d irect
factors of  the groups -

77-
2 m + 1 + k

(S 2 m + 1
 :  p) for m >2 and k <2p 2(p— 1)-3.

This follows easily from (6. 1) and the above definitions.
The homomorphism S 2 m a p s  A (mp-1, k)+ B (mp —  1, k )  iso-

morphically onto A (m p, k)+B (m P, k) except the case m =1, k =
2p(p-1)— 2. Then the homomorphism A  in the sequence (11.2)
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is determined by the formula (2. 7) : AS2 a=p•ce. From the cxact-
ness of (11. 2), we have

(11. 5). Qm(t), Qm(a'.) an d  Q'n(a,.) exist f or Qm(g0s) and
Qm(137,138 )  exist f o r  m > 2 an d  f o r m =1 i f  r> 1 . Q 1(8 1 )
exists. Qm(a i g R s )  and Qm(ce1 ,8133 )  exist f o r m>1.

Remark that 0'(,8,) does not exist since A 31(2p +  1 )*0  as is
seen in the proof o f Theorem 7. 2. We shall see also that 0'(3 s )
and Q1 (136 )  do not exist for s >2.

Note that in meta-stable cases the above elements o f (11. 5)
are independent generators o f order p  as is seen in (6. 4), but for
smaller values of m the non-triviality of these elements has to be
checked in the inductive proof of Theorem 11. 1.

The definition o f Ut (m, k) starts from the case t= 4.

(11. 6). Ugp+ j, 2((s+ 1)p + s-1)(p —1)—
generated by an element S2 1 u4 (1, Os ) f or 1> 1, s> 2, s +1 <p
and j=  0, 1, 2, • • • , p .

For the  other cases we p u t  U4(m, k)= O. T he element u4 (1, 0,) is
required to satisfy

H( 2 (u4 (1, gs )) = x•VP( 138 ) ,x 0 (mod p),
S21'(u4 (1, Rs)) P*Q1 P + P ± '(03-1) a n d  S2 2 (u4 (1, Rs )) 0.

Note that we know the existence of such ua, Os )  only for
the case />2• and s = 2 in Theorem 10. 8.

(11.7). U 3 (1p+j, 2((r+ s+l)p+s-1)(p—  1)-2(r+ 1)— 1) , -- Zp

generated by an element S2 1 u3 (1, gig s ) f o r r>0, s>1, l>1,
and j=  0, 1, •••, p —2 except the case r = 0, s > 2 .

U3 (lp +1+ j, 2((r + s +1)p + s)(p 1)— 2(r +
generated by an element S2 1 713 (1, 131.13s ) f o r r>1, s>1,1>0,
and j=  0, 1, •• • , p - 2 .

For the other cases we p u t  U3 (m,k)= O. The above generators are
required to satisfy, f o r some x, x' $0 (mod p),

H 2 )u3 (1, 131.03 ) x.(2 1P(ODG'8 ), H")143 (1, /310. ) = x'•Q 1 P 4"(0; Rs),
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S2 P  4 u3(1 ,  01. s) = P a P + P - 1 (a101- 1 0s) (=P*Q'''' P - 1 (a i )  i f  r = 0, s=1),
S2 P- 4 U3(1, P*Q1P+P(aiR1-1138)

Note that except t13(0, RI. R s), the existence of the elements
u,(/, [3iRs )  and fi,(/, 8i08) has been obtained in Theorem 10.4 and
Theorem 10. 7 respectively.

(11.8). U 2 (m, 2sP(P— 1)— 2) 4 2  generated by ry3 (2m+1) f o r 2.- m
< s p -1  and f or m=p— 1, s =1(7 ,(2P — 1) = Ri(21,  — 1))

u2(1, 2sp(p — 1)— z p  generated by  ys (3).
U2(s p -1 ,2 s p (p -1 )-2 )--%-.'Z p  generated by  S2 78 (2sp— 3), s>2.

For the other cases we p u t U2(m,k)— 0. These elements y3(2m+1)
are required to satisfy

S2 y8(2m+1)=P•T8(2m+ 3 )  f o r 1<m<sp— 2 and for m =P -1 ,s=1 ,
H( 2 78 (2m+1)= x r n •Q n i (a „ , )  f o r some X„,$ 0  (mod P),
1-1 ( 2 ) 7,(2P— 1) = x • QP - 1 (ai) f o r som e x$ 0 (mod p) .

Note that the above fact is known for s= 1, 2 by Proposition
8. 8 and the results of Section 7.

(11.9). U ,(m , 2(1. 2 — p+ rn )(P -1 )-2 ) ,-----Z p + Z p  generated by
p * Qm-"(a p 2_p _i )  and p* Q - ( 131.'' )  f o r  1, n1 < p — 1 .

U1(m ,2r(p-1)—  2),---,Zp  generated by  p * Qm-"(a )
(by p* Q- - "(t) if  m = r -1 )  f o r 1 < m (r ,r$  0 (mod p))
and r— m *p 2 —p.

ul (m, 2((r+ s)P + s+m)(p — 1) — 2(r+ 2)) Z p  generated by
p * Qm+1(0';(3s ) f or —1 (mod p), r> 0, s> 1 except
the case (r,  )= (P -2 ,1 )  and the  case  m =1, r=0 ,
s> 2 .

U,(m, 2((r+ s)P+s+ m)(P— 1)— 2(r+ 1)— generated
by p* Qmf 1(0 7

1
. 0

5
)  for m $ 0 (mod p), r>0, s>1 except

the case m =1, r=0 , s>2 .
U,(m, 2(tp + t)(p — 1) — f o r 2  m< t.

For the other cases we p u t U1(m,k)=0.
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Lemma 11. 4. A ssume that T heorem  11. 1 is  true  f o r 7r2 m ± ,± i

(S 2 '+' : p ), i<k . Then f or j<k + 2p — 4, the groups 7r2 _1-1- J(Q r - 1 : 13 )
are generated by the elements in  (11. 5) and the following elements
of  the corresponding dimensions:

r(p * Qm P(L )), 1<m <P,
Q'n(u4(133)) = r(S 2 P - 2 u4(m - 1, R s)), s >2 , m +s <P

and Qm(u4(0.)) s a t i s f y i n g  I ( n ti4(R3))=S 2 P u4(m - 1, Rs)), s>2 ,
m + s < p .  These elements are  independent in the following sense:
i f  t  i s  the  num ber of  th e  above elements contained in  th e  group

p )  then the order of  the group is pt.

Pro o f . Since S2 : U 4(mP —1, i)—>U4(mP, i) is an isomorphism by
the definition (11. 6), w e have the existence of Q m ( u 4 ( 0 5 ) )  and
Cr(u 4(0 s )) by use of (2. 7). For the case 1<m <P, P* QmP(/) is a
generator o f  7 r 2 „ 0 2 - 3 ( S 2 " - 1 :

 a n d  7 1 - 2 „ , p 2 - 1 ( S 2 " 4 1  : p ) = O. Th u s
f ( p * QmP(t)) exists. Remark that for the case n i =1 , P Q ( 1 ) =
P • R i (2p —1) is cancelled with /31(2p+1) and gives none.

Since the exact sequence (11. 2) indicates the independence of
the elements in  the lemma, it is sufficient to prove that the
generators o f E ,U ,(m p, i )  and E%1U,(mP— 1, i )  are cancelled
by A, excepting the generators 01(2p+1), R1( 2 P - 1)=7 1(2p - 1) and
p * Qm P(t). By checking the generators, we see that the following
pairs are the candidates which are cancelled by A :

(i) (P*Q m P + 1 (t), P*Q m P (ai)),
(ii) ) (P* Q "± i(a r , ) ,  P* Q "(a r )) f o r  r * 0  (mod p), r 2,
(iii) (y 2(2mp + 1), 73(2mp— 1) f o r  1 < m< s,
(iv) (u,(m, 0;./3.), P*Q m P (RI.R.)) for r > 1  or s= 1,
(y ) (u4(m, Os), P*Q m P (Rs)) f o r  s>2,
( v i )  (P*Q m P  ' 1(810 8 ), s2 P- 4 a3(m-1, /31— 're2)) f o r  r > 0, s> 1, m > 2,

By Lemma 6. 1., (iii) w e have H( 2)P* 0 " 4 1 (a r ,)= x ' •Qm P(a',.)
and H")p * C2'nP(ar )= x"•QmP - Acr'.+1) fo r  some x ',  x " * 0  (mod p).
Then it follows from Corollary 9. 5 that H( 2),A(P* QmP+1(cer „))=
xxi•QmP - 1 ( a ',) =( x x ' I x ")-H("p * OmP(ar ). By the exactness of the
sequence (11. 1) we have

A(P*Q m P
-
1
-

1(ar - i)) - PP*O m P (ar) mod Im. S2
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for some y* 0 (mod p ) .  This shows that the pair (i) is cancelled
b y  A . The proof for the pairs (ii), (iii), (iv) and (N) is similar to
the above, by use of Corollaries 9. 5, 9. 4, Lemma 6. 1 and the
relations in (11. 6)-(11. 8). Consider the pair (vi). B y  (11. 7),
S 2 4 /43 (m —  1, Rirf i Rs) = P*0- "(aii3 7;Rs). C o m p a r e

 0 " ( a v e l . 8 s )  and
the composition Qm P

(/
3 1.13 s)°a1(t) for some suitable t. The /-images

o f these two elements coincide, hence the difference is in the
l'-image which vanishes in  our case. Thus S 2P- 4 f,t3(m— 1, i3 4

- 1 0s)
= P *0" (RI R 8). ai (t) . Similarly, P *Q m P + 1 (8 1 1 3 8 ) coincides with
tt,(m, MR,)0 a i (t— 3) or u4(m, Rs)° cri(t — 3) up to non-zero contant.
By the commutativity o f A  w ith  the composition, the case (vi)
follows from the cases (iv) and (v). q . e . d .

Lemma 11. 5. u p  to  som e non-zero constants, w e have the
follow ing relations:

11( 2 ct1(3) = Ql(t), H( 2 ) a r (3) = (2 1(a r _i) f o r  2 r < P 2

H( 2 )ce (5) = Q 2 (a s p _,) f o r  l _ s < p
H 2 )(13fie.,(2P-1)) = QP - 1 (cr1 M - 1 0 8 ) f o r  r> 1  or s=1

an d  1 / ` 2 ) (aveiRs(3)) (AM /3s) f o r  r> 1  or s =1 .

P ro o f . First remark

(11. 10). In Lemma 11.4 of the case m =1, the groups 7-r1+ ; (Q1: p) are
isom orphic to 0, Z p  o r  Z p + Z p . n +  (Q  p +  Z  p  only  f or the
cases j=2 (p 2 — p)(p —1), 2(p2—p +1 )(p -1 )-1 , 2 (p2 — p+1)(p —1),
2p2(p — 1)— 2 and =2p 2(p— 1)-1.

The first half o f  (11. 10) is obtained just by checking the
numbers o f  generators. Consider the last half. For the second
and third cases of j ,  we see that the group are isomorphic to
zp+zp by I' and / respectively. For the first case of j ,  the group
z i + J (CA : p) ; (s3 : p) contains Z p +Z p ,--.,-- A(1, j— 1)+B (1, j —1).
For the remaining two cases the groups are generated by q(cr 1 le p _1),
(2163 11 and OUT ), V (a p 2_1)  respectively. The elements Qi(g) and
Q1(ap2,) are of order p .  Also the other two elements are of order
p  since they are represented by some suitable composition. Thus
(11. 10) is proved. Then the relations for cer (3) is obvious. (The



On Iterated Suspensions II. 243

relation for a,.(3) is true for general r  which can be proved by
use of Lemma 2 . 7  easily.) (11. 10) also shows that a ( 5 )  is not
contained in S 2-im age  since it is of order p2 . Thus H("a; p (5)*O.
From Lemma 11. 4  we can check that the only possibility is
H( 2 )ces p (5)= x• Q2(ce3 p _2 ), x  0  (mod p ).  The relation for Ol ies  follows
from the relation 01(2p - 1)= x • QP- 1 (a,), x $ 0 (mod p), of (11.8).
The last relation follows from (2. 13). q.e.d.

Now we consider the structure of the groups 7t2„,, , i (Q r - 1  : p)
o f Lemma 11. 4. It is directly checked that the orders of the
groups are at most p2 . Consider the cases that the orders are p 2 .
For metastable cases the groups are isomorphic to Z p + Z p  a s  is
seen in (6. 4). The possibility to be isomorphic to Z p2 occurs for
the cases of the first five ones o f (6. 4) of lower m and the cases
that the generators listed in Lemma 11. 4 overlapping to some other
ones. Let m > 2 . Then the first case of (6. 4) is meta-stable. By
a similar reason to the proof of (11. 10), the group splits for the
fourth and the fifth cases of (6. 4). The same is true for the third
case of (6. 4) since the generator Qm(a ( p _D p _i )  can be obtained as
an image of i*a (2mp- 2 )  which is o f  order p .  Together
with (11. 10), we obtain

(11. 11). The group 71-2 ,n _i ± ; (Qra - 1  : p) in  Lemma 11.4 is isomorphic
to  0 , Z p  o r Z p + Z p  ex cept the cases that the groups are generated
by the followings :

{Qm (cesp+s-,), Qm (0. )1 f o r  2<m<s ,

{V(Riles), (2 2 (u4(R2))1 for s > 2 .

We prove Theorem 11. 1.

Proof  o f  Theorem 1 1 . 1 . We define a  subgroup 71/(m, k) of

7c2.+1+k(S2 '4 + 1 : P ) bY

71/(m, k) A(m , k)+ B ' (m , k)+ g(m , k)+ U(m , k) ,

where B'(m, k) is obtained from B(m, k) by omitting the generators
/32 (2m+1), s> 1 , and ce1 38 (2m+1), s>2; Ul(m , k) is obtained from
Ui (m, k) by putting UÇ (m, 2(tp + t)(p - 1) -  4 ) -  0  and tg(m , k) is
obtained from U3 (m, k) by omitting the generators S2ju3 (/, 0 ,)  and
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g iSs ). The generators of r'(m , k ) satisfy the required con-
ditions and the group ri(m , k ) is  a direct factor of 7r2.+1+k(S2 m + 1 : P).
This is shown by use of Lemma 6.1, (11.11), Lemma 11.2, Lemma
11.3, Lemma 11.5, Theorem 10,4 and Theorem 10.7. Put t'(m , k )
= 71-2,„,, + h (S : P)17-1(m, k), then

7r2.+1+AS 2 m ± i P ) e ( m ,  k)+ 77-(m, k) .

We shall determine the group T r(m , k ). Denote by Q'(m , k ) a  sub-
group of 7r2„,_,+ k (grn - 1 : p )  generated by 11( 2)e (m , k + 1) and a maxi-
mal subgroup Qc (m , k )  which is mapped monomorphically into
r * - 1 ,  k )  under p * . The subgroup Qo (m, k )  is generated by cor-
responding elements of (11. 5) which appear in  (11. 9) and in the
last two relations of (11. 7). Then we have an exact sequence

P* S2 H(2)
• • • —> Q'(m, k) 7r1(ni —  1, k) --* ri(m, k) Q'(m, k - 1 )  —> • • • .

we put P(m , k )= P )IV (m , k ), then we obtain an exact
sequence

(11.12)
P* S2 H")

••• P(m , k ) 7T(m-1, k) 77(m , k ) — P(m , k  — 1) •••

from (11. 1). The group P(m , k ) is generated by the correspond-
ing one of the following elements :

( i ) Qm(c )  for 1:<m<p-1 ; Qm(a ) for m<p — 1 and QP(/),
(ii) Q m (a_„,) for 1 . m <sp—  2, Qm(a„_„,) 3_m_.<sp—  1 and V P(t),

where s> 2 ,
(iii) Q$P- 1 (a 1)  and Q 8 P - P ( 1 3 )  fo r  s> 2 ,
( iv )  Q I (R igs) and QP (aireç - 1 05) for r>1 , s>1 ,
(y )  V P - 1 (i3s )  and (21" " ( 0 )  for />1, s 2 ,
(vi) the elements listed in Lemma 11. 4,
(vii) QP +V s )  for s > 1 ,

First consider the case k = 2 s p ( p - 1 ) - 1 ,  s > 1 .  In this case,
we see that P(m, k)—  0  for a ll m .  Thus T r(m , k )  is mapped iso-
morphically in to  7 r(m +1 , k ) . In  th e  stab le  ran ge  we see that

()‘rt, k) = 0. It follows that -7e(m , 2 sp (p -1 )-1 )= 0 for all m .  Next
consider the case k =2sp(p -1 )—  2 , s> 1 . For the case s= 1  we
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quote Theorem 7. 1. Let s > 2 . B y the result just obtained we
have exact sequences

—>P(m, k)—> k —1)—> (m -1 , k — 1)

fo r  m =1, 2, •-• WO, k)= 77(0, k —1)= 0). W e  s e e  7-e(m, k)-- 0  for
sufficiently large m .  The elements o f (ii) and the first element of
(iii) are in the exact sequence. By Theorem 10. 4, (ii) P*V P - 1 (a1)
* 0 .  Thus we can omit Q " 1 (a 1) in computing 7 7 (m , k). By count-
ing the number of the generators o f (ii), we have that the order
of 77(m, k) is p2 i f  2<m <sp—  2 and is p  i f  m =1 or m =s p -1 .
The cyclicity of the groups 7 T (m , k ) for 2<m <sp—  2 is obtained
by use of Theorem 5. 4, (i), as in the proof of Theorem 7.1 . Then
we have that 7-e(m, k) is isomorphic to U2(m , k ) and generated by
the element 7(2m+ 1) of (11.8).

The remaining cases are computed rather simply. We mention
that the elements of (iv) and (IT) produce the elements /43(0,
of (11. 7) and ua, Rs) o f (11. 6) respectively, the elements o f (vi)
produce the groups u 2(tp+t)(p — 1)-4 ) in (11.9) and the
elements a 1i3, + 1 (2m +1), and the element QP 1(3 ,)  produces gs + i .
The details are left to the readers.

Finally we remark that above discussion has been done by
the induction on k <2p 2 (p - 1) — 3, starting from the assumption of
Lemma 11. 4. q . e . d .

In the above proof we have

(11. 12). up to some non-zero constants the following relations hold:

11(2 )132 (2p + 3) = QPIJ(13 ) f o r  2 . s < P
H 2 ) cr1g 2(5) r(P*Q21'(z))

and Il(2a10,(5) = I(Q 2 u4(13,)) f o r  3. s<P •

1 2 .  Meta - stable g ro u p s — II.

In the results of the previous section, we have seen the exist-
ence of an element 7 8 (2sp— 3) e z 2 s p 2_5 ( S " P '  : p ) fo r  1 < s < p  such
that H( 2 )78 (2sp— 3)= x • Q 2 ( a )  for some x $  0 (mod p), S 2 7 3 (2sP —3)
* 0  and S4 7s (2 sp -3 )=  0. T h e  kernel o f  th e  homomorphism
S2 : 7 r 2 5 1 , 2  3 ( s 2sp, p )  7 r ,  p 2  i (S 2 S  P  I p ) is generated by the element
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P*Q 3 P (t)=P*F(t„p2_1). It follows that p * r (1 ,p 2 -1 )= S 2 (x/ •7,(2 sP —  3 ))
of some integer x ' .  In the proof of Proposition 8. 8 , we see that
the existence of such an element ry" ) =x'•7.,(2sp— 3 )  implies the
assertion of Proposition 8.8 fo r  h-=-sp (mod p2). Thus we have
the following

Theorem  1 2 . 1 . For each positive integer s with s *0  (mod p ) ,
th e re  e x is ts  a  sequence {,y(t) En.up2_2t_3(s2sp-21-1; p ); t= 1 , 2, • • • ,
[ ( s p 2 — p -2 )/ (p +  l a  satisfy ing the following relations.

S27( 1 ) p*F(12sp2-1) P*Q"(z)
s y t )  _  p.,y(t-1) f o r  t> 2 ,

a n d  I I ( 2 )7 ") =  x t •f a + 1 (2 (s p — t-1 )p — l)  x t •Q " - t - 1 ( a , i ) *  0

f or som e x t *  0  (mod p ) .  I f  t<  Min ( u s p 2 — p -2 )/ ( p + p 2), we
have that the order o f  H " ) , y( t) is p2.

Next we prove the following

Theorem  1 2 . 2 . For each positive integer s with s *0  (mod p ) ,

there  ex ists a  sequence { 7 s ( 2 m + 1 ) E 7 r 2 . + 2 3 p c p - o _ i ( S 2 " 1 :  p ) ;  Max
(1, sP —p2)< in sp — 2} satisfy ing the following relations:

,S27 t (2sP — 3) = P Q (c) *  O,
S27,(2m +1) = P•7.,(2m+ 3 ) = Yrn*P*Qm + 2 (a3p-m-2) * O  f o r  m<sp— 2

and
11( 2 ) ry .,(2m + 1) = x„,• Qm ( a - . ) *  0 (mod Q m ( a 1 0 1 7 1 )

 i f  sP—m=P 2 — 13),

where x„„ y„„* 0  (mod p ) .  T he order o f  7 2(2m  +1) i s  p 2  i f  Max
(1 ,  s p — p 2 )< m sp —  2.

P ro o f . Apply Theorem 5. 3, (i) for m= k= sp and 2<  m < sp — 1,
then we have elements Ern E 7r2m+2sp(p-i)--1(Qr+ 1 p ) ,  6 ,/.. E 71-2.+23pcp—i)-3

(Q r n - 1  : p )  and 7 „ ,  7 1 - 2 . + 2 , p ( p — i ) - 3 ( S 2 " "  p )  satisfying

p * sm  =  S2ry„,, p X „= p . ry„,, I (E )= 4 • cesp-.( 2 mP +  1 ) ,  4  0 (mod p),

Esp-1= Q 8P (1) a n d  /(En ,)= asp-m-1(2 (m +1)P + 1), m <sP-1  .

B y  the exactness o f (11. 2) = (2. 5), /(x,". • 6„,—  E0= 0  implies
x '.• 6 ,„ _ , mod /'7 r 2m -f-asp (p-i)- i(S  2 m P p ) •  Thus

p-7„,..- x',.„- S27,„_, mod p * r (7 , 2m+23p(p_1)_,(s 2 - P  1 : ,p)) •
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If sP— m < p2 and sp— m*p2— p—  1, the group F(7r2m+p(p-i)-1
(S 2 " - ' : p)) vanishes by (6. 1) and Lemma 11. 4. If sP — m= p2 —
p — 1, this group is generated by .P3 - 1 (2mp— 1 )=  Q m (gr), and
then p • 7„,= x'n• S 27 , „ , ±  z-P*Qm (M - 1 )  for some integer z. Apply
the homomorphism 1-1(2 )  to  the both sides o f th e  last relation,
then p  11( 2 ) 7,„=z•11 ( 2 13* (r(131) - 1 ) =zz'-(2'(a1137 - ' )  for some z' 0
(mod p), by the exactness of (11. 1) and by Lemma 6. 1, (ii). We
have p • H")7,,,= 0 and Qm- i(cti O r ) =0 by Theorem 2.2 and Lemma
11.4. It follows that z 0 (mod p) and p • 7 „,= 4 •S 2 7„„_, for s p -
m<p 2 . By putting 7 s(2 sP — 3 ) —  7sp - 1 and rr8 (2m +1)= (rvf:-. 2+2x'.1)7„,,
for 1 < m < sp— 2, we have

(12.1). There exists a sequence {7,(2m+1)E7t2.+2.,p(p-i),(S 2 ' : p ) ;
m= 1, 2, • • • , sp— 2 } satisfying

S 2 78 (2s— 3) = p*Q3P(t) ,
S273 (2m+ 1) = y„,•M r + 2 (a s p _m _,), f o r  1<m<sp— 2

an d  S2 78 (2m +1 )=  p • ys (2m+ 3 ) f o r Max (1, sp — p2 —1) < m< sp — 2,

where y S  0 (mod p).
Now, we compare the element S2 7.,(2m+ 1) with the element

S2 7"P - m- 1 )  of Theorem 12. 1. For m= sp —2, we have S2 72 (2sp— 3)
P*Q "(t) =  5 2 7"). B y  th e  exactness o f th e  sequence (12. 1),

S2 7s (2m + 1) = SysP -  "2 - 1 )  implies rys(2m+1)-=-7" - - 1 )  mod P* 7r2m-F23p
x ( p - i ) - 1 ( Q r n + 1  :  p )  a n d  S2 7., (2 m -1 ) =  p • 7 , (2 m + 1 )  p • y (3 P m - =
S2 7"P - m- 2 ) mod b  h  7r*% , -2 m + 2 s p (p -D -1 (Q 2 m + 1  :  p)). If s<10, .P.7r2.+2sp(p-0-1
( O r ' :  p) = 0  b y  (11. 11). I f  s >  p, t h e n  m — p 2  implies
2m+ 2sP(p — 1)— 1< 2(m + 1)p2 —5, hence b.r •  2 m + 2 s  p ( p - 1 ) - 1 ( C A m + 1  p) = 0
by Theorem 2. 2. By induction on decreasing m we have

(12.2). S 2 78 (2m +1 ) =  S2 7"P - m- i)  a n d  7 2 (2m+1) .=  7 " - m- 1 )  mod

P*7t2m+2sp(p-1)-1((Am ± 1 : p )  f o r  Max (1, sp — p2 — 1) < m < sp — 2 .

By Theorem 12. 1, we have then

H( 2 )7s (2 m + 1 )  H ( 2 ) 7 " - m- 1 ) =  x m •Qm(a'0 , )  *  0

mod H ( 2 )P*7r2.+2.9p(p-i)-1(Qr + i  :  p ) .  F o r m  sp—p 2 ,  b y  (6. 1) and
Lemma 11. 4, th e  group 7r,„,+ „ 0 ,_, ) _,(Qr+ 1 : p )  is generated by
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Q " l (asp -m-1), Qm - ARY- 1 )  and 0 " 1(ai/j7 - 1 ). Then, as is seen in the
proof of Proposition 8. 8, we have

H ( 2 ) 7 s (2m +1) xm •Q m (oev-.) f or m *sp— p 2 —p and
Max (1, sp—p2 ) m<sp— 2

and
H ( 2 ) ry ,(2m +1) x ,,,•Q ' n (ce;,,, )  mod Qm ( a i g r )  i f  ffl= SP— p2 — p>i.

We see also that P*71' 2m H  2 s  p (p - i) -1 ( (e n +1  : p) does not contain 7,(2m+ 1).
Thus S'y s  (2m +  1) P • Ts (2m + 3 ) *  0 .  Obviously p 2 . s (2m +1) =
p.S 2 7 8 (2m -1)=py ,„C r "(a s i ,_„,„)= 0 .  Thus the order of 75(2m + 1)
is p2 for Max (1, sp—p2 ) <ffi sp— 2. q . e . d .

B y  use of the exact sequence (3. 3) we can see that for
Max (1, sp—p2 -1)<m_<.sp— 2 the element H( 4 ry2 (2m + 1) generates
a direct summand isomorphic to Z, 2 . The following corollary
follows.

Corollary 1 2 .  3 .  The elements ry2 (2m+1) o f  Theorem 12.2 gene-
rates a d ire c t  summand U2(2m+ 1, 2sp(p— 1) —  2 )  o f  7r2.+2spcp-0-1
(S 2 " 1 : p )  isomorphic to Zp2 i f  Max (1, sp — p2 — 1)<m<sp—  2.
I f  s *1, S 2 73 (2sp— 3) generates a direct summand isomorphic to Z.

The above last assertion follows from the fact that S 2  7 r2 sp 2 -5

( S 2 s P - 3  p ) - 7 r 2 3 p 2 _ 3 (s 2 " - :  p )  is  an epimorphism for s> 1 which is
a  consequence o f th e  result p * Fa 1(2 (sP -1 )p -1 )= S 2" - 4 7 * 0  in
Theorem 10. 4, (ii).

Lemma 1 2 .  4 .  The following elements in (11. 7) generate direct
summands isomorphic to Z p :

S2 5 u3(1, Ri) fo r  IS  —1 (rnodp), <p— 2 ,
,S2 1 u3 (/, M ) f o r  0< j.<_p— 2 .

P roo f. u,(l, 8,) is the element y  of Theorem 10. 4 for m = lp
and belongs to 7c2 .  i i - k ( S " n  :  p )  for k =  2(m  + P)(P — 1)-3. By
Theorem 12. 2, for 1 < j p — 1 the elements I' a ; (2(m+ p — j) p —1)
=Q-+P - i(ce; )  are in the H" ) - im a g e s . Thus p * I' c ei (2(m+p—pp—l)
= 0 .  By (6. 1) and by the exactness o f (12. 1), this result implies
that S 2 1' 4 : 7r2m +11  k (S 2 m -1  p )  7r2m1 k - 3 (5 2 m  2

)2
— p )  is  an isomor-

phism onto. W e  have also, by ( i i )  o f Theorem 10. 4, that the
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orders o f S2 3 113(/, R i) are p .  These elements ,S2 1u3 (l, 80 generate
direct summands isomorphic to Z p  since H ")  maps u3(/, R I) to a
generator o f 7r 2 „,+ 4+ Or n - 1  :

We may assert that u a ,  RD= u3(1, 81).81''(2m +1+ k) E  2m+1-

(S "  :  p ) ,  h — 2(m +1+ p )(p -1 )—  3. B y  a  similar reason, but
using Lemma 6. 1, (iii) in place of Theorem 12. 2, we have that
s 2p_6 : I

2m F 3 h(S2m
3 .

P) 7r2m I 2 / 1 1  h -3 ( Y m + 2 P - 3  p )  is  an isomorphism
onto. Consider the exact sequence

P* S2
2.+1 F n + 1  P ) 7r2m 11- 0 2 m + 1  : 13 ) —> 7r 2m- F 3i-h(S 2 m  I  3  1 3 )

H 2  
2m + h (Q r 1 P )

This H") is trivial since 7r2„,+h(Qrn  : p )  is generated by Qm + I (Rp-i)
and p*Q -  1 (8 p _i )=x•Qm (a i l3p _i ) * 0  by Lemma 6.1, (ii). The group

7r2.+1+0 e n '  :  p) is generated by Qm($ p-i)  and H 2)p * O'n(gp _1) =0
by Theorem 5. 1, (i). Since 11(2 u3 (l, f3T)=x 1 •Qm ( 8 ) ,  x O (mod p),
generates a d irect summand o f  7r3,, 1 + h ( Q r  p ), we concludes
that u,(/, 1321) and S 2u 3(/, 16 )  generate direct summans isomorphic
to z p, and so does S2itt3 (1, 07) for o< i< p—  2. q . e . d .

We define subgroups Ui (m, k), U2 (m , k ) and U3(m , k ) of  71-
2 „,+1+ k

(5 2 m+1 : p )  as in the previous section. We define also U(m , k )
as a subgroup of 114 (m , k ) generated by 5 2 3u 4(/, 03). Then we have
the following

Theorem 1 2 .5 .  L et k > 2 p2 (p -1 ), then the grout 71.2 „,± i ± k (S 2 m+1 :

p )  is isom orphic to a direct sum

: P)+E =.-1U t (m , k )+ U(m , k )

if  the  p air (m , k ) satisf ies the following conditions:

(i) —1, —2, —3 (mod 2p2(p —  1)) ,
(ii) m>(s — p + 1)p + 1  i f  2 s p ( p - 1 ) - 4 <k < 2(s+ i)p(p-1) — 4,
(iii) m>(s — r)p+ 2 i f  k =2(sp+r)(p-1)—  2  an d  2  , r < p - 1 ,
(iv) m > (s— r)p+ 1 i f  k =2 ( s p +r) ( p - 1 ) - 3  an d  2 _ r< p - 1 ,
( y )  m >(s— r--1 )p - -1  i f  k =2(sp+r)(p—  1)--- 4 an d  2 r< p - 1 .

By Lemma 6.1, Theorem 10. 4, Theorem 10.7, Corollary 12.3
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and Lemma 12. 4, the subgroup E%.,U,(m, k ) o f 7r2.-Fi+fr(S 2 " 1 p )

i s  a direct summand under the above conditions. We have also
that the sub gro up  “m , Z  p  i s  a direct summand by use of
Theorem 10. 8 and Lemma 6. 1, (iii). Then the method to prove
the above theorem is similar to that of Corollary 6. 4 in Section
6, and the details are left to the readers.

We finish this paper with the following two remarks on the
above theorem. I f  we can prove the existence of (74(s—r — 1, /3 ),
as a generalization of Theorem 10. 8, then the conditions (iii), (iv)
and  (v ) can be rem oved replacing U (m , k ) b y  U4(rn, k). The
condition (ii) may be weakened until m>[(k + 4)/2(p — 1)] — p2+ 1
i f  113 (.3- p ,  )  and u , ( s - p ,  )  have no influence over the group
7r2.+1+k(S2 m + 1 : P).

Kyoto University
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