J. Math. Kyoto Univ. 5-3 (1966) 209-250

On iterated suspensions II.

By

Hirosi TODA

(Received May 6, 1966)

Introduction.

The present paper is the continuation of the previous work [12] with the same title. The sections of this paper are numbered from Section 8 which follows from the last section of the previous work. The notations and the results of the psevious work will be referred such as **(1.** 7), Proposition 3. 6, etc.

In Section 8, we shall have *a periodicity* of the following type :

 $\chi_i(Q_{2k}^{2m-1}:p) \approx \pi_{i+2\nu p}(Q_{2k}^{2m+2\nu-1}:p), \qquad \nu$

for $i < 4mp-6$, $1 \le k \le m$ and $k \le p^2-2p$. It is an open question whether this periodicity holds for meta-stable cases or not. Our method of the proof is a mod *p* analogy of relative J-homomorphism in **[11]** and a stunted lens space will be used in place of a stunted real projective space.

Section 9 is a discussion on the homomorphism $\Delta : \pi_{i+4}(S^{2m+p+1}:p)$ $\rightarrow \pi_{i+2}(S^{2mp-1} : p)$ in the exact sequence (2.5). The results will be applied, in Section 11, to the computation of $\pi_i(Q_2^{2m-1}:p)$ for unstable cases. We shall see that many of unstable elements are cancelled by Δ .

In Section 10, the existence of unstable elements γ of the third type $(\gamma \notin \text{Im } S^2, S^{2p-4}\gamma \neq 0, S^{2p-2}\gamma = 0)$ and the fourth type $(\gamma \notin \text{Im } S^2, S^{2p}\gamma + 0, S^{2p+2}\gamma = 0)$ will be proved.

The homotopy groups $\pi_{2m+1+k}(S^{2m+1}:p)$ will be determined for $k < 2p^2(p-1)-3$ in Section 11. The result is stated briefly as follows :

210 *Hirosi T oda*

$$
\pi_{2m+1+k}(S^{2m+1}:p) = A(m, k) + B(m, k) + \sum_{t=1}^{4} U_t(m, k) \qquad \text{(direct sum)}
$$

where the subgroup $A(m, k) + B(m, k)$ is a maximal subgroup which is mapped under S^{∞} isomorphically into the stable group $(\pi^S_* : p)$, $U(m, k)$ are subgroups generated by unstable elements of the t -th types respectively.

The structure of the groups $\pi_{2m+1+k}(S^{2m+1}:p)$ of meta-stable cases will be discussed in Section 12. We shall have an existence theorem of unstable elements of the second type in the groups $\pi_{2m+1+2s} \rho(\rho-1)-2}(\mathbf{S}^{2m+1} : p)$ for $s \not\equiv 0 \pmod{p}$.

8. **Periodicity of** $\pi_i(Q_{2k}^{2m-1}:p)$ **.**

In Chapter XI of $\lceil 11 \rceil$ we have a map

$$
f_n^{n+k}: S^{n-1}(P^{n+k-1}/P^{n-1}) \to Q_k^n = \Omega(\Omega^k S^{n+k}, S^n)
$$

which induces C_2 -isomorphisms f_{n*}^{n+s} of homotopy groups π_i for $i<4n-3$ [11, Theorem 11.7], where *P^r* denotes the *r*-dimensional real projective space. Let $\xi \in \tilde{K}(P^{k-1})$ be the stable class of the canonical line bundle over P^{k-1} , then the order of $J(\xi)$ in $J(P^{k-1})$ is $\nu = 2^{\phi(k-1)}$ [1, Example (6.3)], where $\phi(k-1)$ is the number of integers *j* such that $0 < j \leq k-1$ and $j \equiv 0, 1, 2, 4 \pmod{8}$. By Proposition 2.6 of [3] P^{n+k-1}/P^{n-1} and P^{n+k+1} \rightarrow $1/P^{n+k-1}$ have the same stable homotopy type. Since $S^{n-1}(P^{n+k-1}/P^{n-1})$ is $(2n-2)$ –connected we have an isomorphism $\pi_i (S^{n-1}(P^{n+k-1}/P^{n-1})) \approx \pi_{i+n} (S^{n+\nu-1}(P^{n+\nu-1}/P^{n-\nu}))$ (P^{n+v-1})) for $i<4n-3$. Therefore we have obtained the following (probably well-known) periodicity of $\pi_i(Q_i^n : 2)$.

Theorem 8.0. Let $\nu = 2^{4(k-1)}$. If $i < 4n-3$, then the groups $\pi_i(Q_i^n)$ and $\pi_{i+2}(Q_i^{n+\nu})$ are C_2 -isomorphic.

In the following we shall try to prove a periodicity of $\pi_{\bm i} (Q_{2 \bm k}^{2 \bm m-1} : \bm{\mathit{p}})$ for odd prime $\bm{\mathit{p}}$ and to make some applications. The periodicity of the following type is obtained.

Theorem 8.1. *Let* $v = p^{k-1}$, *If* $i < 4mp-6$, $1 \le k \le m$ *and* $k\leq p^2-2p$ then $\pi_i(Q_{2k}^{2m-1})$ is \mathfrak{C}_p -isomorphic to $\pi_{i+2\nu p}(Q_{2k}^{2m+2\nu-1}),$ i.e.,

$$
\pi_i(Q_{2k}^{2m-1}:p)\approx \pi_{i+2\nu p}(Q_{2k}^{2m+2\nu-1}:p).
$$

PROBLEM. *Does the above periodicity hold for meta-stable cases* $(i < 2mp² - 5)$ *and for general k? This is true for k=1.*

Denote by $L_p^{2s+1} = S^{2s+1}/Z_p$ the usual $(2s+1)$ -dimensional lens space given as in [5]. L_n^r , $r \leq 2s+1$, will be the *r*-skeleton of L_p^{2s+1} with the usual cellular decomposition $L_p^{2s+1} = S^1 \cup e^2 \cup \cdots$ $Ue^{2s}Ue^{2s+1}$. In the notation of [5], $L_p^{2s} = L_0^s(p)$ and $L_p^{2s+1} = L^s(p)$. It is proved in Theorem 3 of [5]

 $(8, 1)$. Let $\nu = p^{\lfloor k/(p-1) \rfloor}$, then $L_p^{2m}/L_p^{2(m-k)}$ has the same stable homo*topy type of* $L_{p}^{2m+2\nu}/L_{p}^{2(m-k)+2\nu}$.

Lemma 8.2. *There exists a map* $(m \geq 1)$

$$
h = h_m : S^{2m+1} L_b^{(2m+1)(p-1)-2} \to S^{2m+1}
$$

such that in the mapping cone $K = S^{2m+1} \cup_{\mathfrak{h}} CS^{2m+1} L_{\mathfrak{p}}^{(2m+1)(p-1)-2}$ of h the Steenrod operations \mathfrak{G}^j : $H^{2m+1}(K;Z_p) \rightarrow H^{2m+2j(p-1)+1}(K;Z_p)$ and *hence* $\Delta \theta$ ^{*i*} are *isomorphisms for* $1 \le j \le m$.

Proof. Let $S_n = S^{2m+1} \times \cdots \times S^{2m+1}$ be the product of *p* copies of S^{2m+1} and let θ_p be the subspace of S_p which consists of the points having the base point $*$ as one of the *coordinates. As* the permutation of the factors, the symmetric group $S(p)$ of p letters acts on S_p and θ_p . Let $\psi: (E^{2m+1}, S^{2m}) \rightarrow (S^{2m+1}, *)$ be a characteristic map of the $(2m+1)$ –cell $S^{2m+1}-*$. From the p –product of ψ , we have a characterictic map ψ^p : $(E^{(2m+1)p}, S^{(2m+1)p-1}) \rightarrow (S_p, \theta_p)$ of the $(2m+1)p$ -cell $S_p - \theta_p$ such that $S(p)$ acts on $(E^{(2m+1)p},$ $S^{(2m+1)p-1}$), compatible with ψ^p and for each permutation $\zeta \in S(p)$ $\subset O(p)$ the action of ζ on $E^{(2m+1)p}$ is given by a matrix $\zeta \otimes E$ where *E* stands for the unit $(2m+1)$ -matrix. Let ζ be a cyclic permutation which generates a cyclic subgroup Z_p of $S(p)$. Then the characteristic equation of the matrix $\zeta \otimes E$ is $(x^p-1)^{2m+1} = 0$. Thus, by suitable orthogonal transformation of the coodinates in $E^{(2m+1)p}$ we may identify $E^{(2m+1)p}$ with a join $S^{(2m+1)(p-1)-1} * E^{2m+1}$; Z_p acts freely on $S^{(2m+1)(p-1)-1}$, trivially on E^{2m+1} and linearly with respect to the parameter of the join. It follows that the cyclic product S_p/Z_p of S^{2m+1} is obtained from θ_p/Z_p by attaching $(S^{(2m+1)(p-1)-1}/Z_p) * E^{2m+1}$ by a map $h_0:(S^{2m+1)(p-1)-1}/Z_p) * S^{2m} \to \theta_p/Z_p$ Up to homotopy equivalence we may change the joins $* S^{2m}$ and

212 *H irosi T o d a*

 $*E^{2m+1}$ by the $(2m+1)$ -suspension S^{2m+1} and its cone CS^{2m+1} , then we have

$$
S_p/Z_p = \theta_p/Z_p \cup_{h_0} C S^{2m+1} (S^{(2m+1)(p-1)-1}/Z_p).
$$

This lens space $S^{(2m+1)(p-1)-1}/Z_p$ is slightly different with the usual $L_p^{(2m+1)(p-1)-1}$. A representative: $S^1 \rightarrow S^{(2m+1)(p-1)-1}/Z_p$ of a generator of $\pi_1(S^{(2m+1)(p-1)-1}/Z_p)$ can be extended over a map $f: L_p^{(2m+1)(p-1)-1} \to \mathcal{S}^{(2m+1)(p-1)-1}/Z_p$. From the cohomological structure of the lens spaces it follows that *f* induces isomorphisms of mod *p* cohomology groups and so does $S^{2m+1}f$. The map $S^{2m+1}f$ defines a map from the mapping cone $\theta_p/Z_p \cup_{h_1} CS^{2m+1}L_p^{(2m+1)(p-1)-1}$ of $h_i = h_o \circ S^{2m+1} f$ into S_p/Z_p which induces isomorphisms of mod p cohomology groups.

It was proved in [6] that for a generator *u* of $H^{2m+1}(S_p/Z_p; Z_p)$, $P^j u$ and $\Delta P^j u$, $1 \le j \le m$, are non-zero elements which lie in the image of the injection homomorphism j^* : $H^*(S_p/Z_p, \theta_p/Z_p; Z_p) \rightarrow$ $H^*(S_p/Z_p; Z_p)$. By the naturality a similar assertion holds for the mapping cone of *h,.*

Let π : $\theta_p/Z_p \rightarrow \theta_p/S(p)$ be the natural projection. The space θ_p /*S(p)* coincides with the $(p-1)$ -symmetric product $S_{p-1}/S(p-1)$ of S^{2m+1} . It is known (see [7]) that the canonical inclusion $S^{2m+1} = S^{2m+1}/S(1) \rightarrow \theta_p/S(p) = S_{p-1}/S(p-1)$ induces an isomorphism $i^*: H^*(\theta_p/S(p); Z_p) \approx H^*(S^{2m+1}; Z_p)$. Remark that $\pi^*:$ $H^{2m+1}(\theta_p/S(p); Z_p) \rightarrow H^{2m+1}(\theta_p/Z_p; Z_p)$ is an isomorphism. Put $h_2 =$ $\pi \circ (h_1 | S^{2m+1} L_P^{(2m+1)(p-1)-2})$, then the above non-triviality of \mathcal{P}^j and $\Delta \theta^j$ holds for the mapping cone of h_z . Apply Theorem 1.1 to $S^{2m+1}L_{p}^{(2m+1)(p-1)-2}$ and then apply Theorem 1.2 to the maps h_{2} and *i*, then we have the existence of a map $h: S^{2m+1}L_{p}^{(2m+1)(p-1)-2} \to S^{2m+1}$ such that $i \circ h$ is homotopic to $h₂$. Consider the mapping cone K of *h* and compare with that of h_z , then the non-triviality of \mathcal{P}^j and $\Delta \theta^j$ in *K* is obtained and the lemma follows. q.e.d.

Theorem 8.3. Assume that $m \ge k \ge 1$. Let $K(m, k)$ and G : $K(m, k) \rightarrow Q_{2k}^{2m-1}$ *be a CW-complex and a map satisfying the assertion of Proposition* 3.6, *thus* G^* : $H^i(Q_{2k}^{2m-1}$; $Z_p) \approx H^i(K(m, k); Z_p)$ *for* $i <$ $4mp-5$ ^{*}). Then there exists a map

^{*)} In Proposition 3.6, (ii), $4mp-3$ should be read $4mp-5$.

$$
f: S^{2m-2}(L_p^{2(m+k-1)(p-1)}/L_p^{2m(p-1)-2}) \to K(m, k)
$$

such that the induced homomorphism $f^*: H^*(K(m, k); Z_p) \rightarrow$ $H^{*}(S^{2m-2}(L^{2(m+k-1)(p-1)}_{p}/L^{2m(p-1)-2}_{p}); Z_{p})$ is a monomorphism.

Proof. Put $n = m + k - 1$ and $L_{p} = L_{p}^{2n(p-1)}$. Let $h'' : S^{2n+1}L_{p} \rightarrow$ S^{2n+1} be the restriction of the map h_n of Lemma 8.2 and let $K = S^{2n+1} \cup CS^{2n+1}L_p$ be a mapping cone of $h^{\prime\prime}$. We use the notation of Section 3. Extend the canonical inclusion $S^{2n+1} \subset K_{2n+1}$ to a map $k: K \to K_{2n+1}$ and consider the induced map $\Omega k: \Omega(K, S^{2n+1}) \to X_{2n+1}$ $=\Omega(K_{2n+1}, S^{2n+1})$. The cone-construction of *K* defines naturally a map $h' : S^{2n+1}L_p \to \Omega(K, S^{2n+1})$. Then it is easily verified that

$$
(\Omega k \circ h')^*(\sigma \circ^* w) = 0 \quad \text{in} \quad H^{2np}(S^{2n+1}L_p; Z_p)
$$

for the fundamental class w of $H^{2n+1}(K_{2n+1}; Z_p) = H^{2n+1}(Z, 2n+1; Z_p)$. As in the proof of Lemma 3.5, we may identify $Q_{2t}^{2n-2t+1}$ with $X_{2n-2t+1}$ and we have also that $\sigma^4 \mathcal{O}^n w$ is defined and generates $H^{2np-3}(Q_2^{2n-1}; Z_p)$. Let $i:\Omega^3 X_{2n+1} \to Q_2^{2n-1}$ be the map equivalent to the inclusion, then by the naturality of σ we have

 $(\Omega^3(\Omega k \circ h'))^* i^* (\sigma^4 \Omega^n w) \neq 0$ in $H^{2np-3}(S^{2n-2}L_p; Z_p)$.

By Theorem 3.1 and by the assumption $1 \le m \le k$, we have an isomorphism $(\sigma^{2k-2})^{-1} \circ j^* : H^{2np-2k-1}(Q_{2k}^{2m-1} ; Z_p) \approx H^{2np-3}(Q_2^{2n-1} ; Z_p),$ $j: Q_2^{2n-1} \rightarrow Q_{2k}^{2m-1}$. From this we conclude

$$
f'^{*}(\sigma^{2k+2}\Theta^{m+k-1}w) \pm 0 \quad \text{in} \quad H^{2mp+2(k-1)(p-1)-3}(S^{2m-2}L_b^{2(m+k-1)(p-1)}; Z_p) ,
$$

where
$$
f' = i' \circ \Omega^{2k+1}(\Omega k \circ h') : S^{2m-2}L_p \to \Omega^{2k+1}X_{2n+1} \subset \Omega(\Omega^{2k}X_{2n+1}, X_{2m-1})
$$

$$
\equiv Q_{2k}^{2m-1}.
$$

If $m=1$, then $m=k=1$ and $K(1, 1)=Y_{p}^{2(p-1)}$ is homotopy equivalent to $L^{2(p-1)}_{p}/L^{2(p-1)-2}_{p}$. Thus the theorem is obvious if *m*=1. So, we may assume that $m \ge 2$. Then $S^{2m-2}L_b^{2(m+k-1)(p-1)}$ is homotopy equivalent to a complex as in Theorem 1.1. The map *G* induces isomorphisms of H^{i} (*; Z_p*) for $i < 2m+2(m+k-1)(p-1)$ \leq 4*mp* – 6 (1 \leq *k* \leq *m*). Applying Theorem 1.2 to the maps *G* and f' we have the existence of a map $f_0: S^{2m-2}L_p^{2(m+k-1)(p-1)} \to K(m, k)$ such that $G \circ f_0$ is homotoptic to f' . Since $K(m, k)$ is $(2mp-4)$ connected, we can choose $f_{\scriptscriptstyle{0}}$ such that $f_{\scriptscriptstyle{0}}{=}f{\scriptscriptstyle{0}}S^{2m-2}\pi$ for a map

$$
f: S^{2m-2}(L_p^{2(m+k-1)(p-1)}/L_p^{2m(p-1)-2}) \to K(m,k)
$$

214 *Hirosi T oda*

and for a map π of $L^{2(m+1-k)(p-1)}_{p}$ shrinking $L^{2m(p-1)-2}_{p}$.

We have seen that f'^* is an epimorphism of $H^{2mp-3+2(k-1)(p-1)}$ $($; Z_p), then so are $f_p[*]$ and $f[*]$. Thus the following statement $(8. 2)_{i,\varepsilon}$ is true for $(i, \varepsilon)=(1, 0)$.

$$
(8,2)_{i,\epsilon}, \quad f^*: H^i(K(m,k);Z_p) \approx H^i(S^{2m-2}(L^{2(m+k-1)(p-1)}_{p}/L^{2m(p-1)-2}_{p});Z_p)
$$

for $t = t(i, \varepsilon) = 2mp - 3 + 2(k - i)(p - 1) + \varepsilon$ $(i = 1, 2, \dots, k; \varepsilon = 0, 1)$.

We shall prove (8.2) by induction on *i*. For $t = t(i, 0)$ the Bockstein homomorphisms Δ are isomorphisms of the both sides of $(8. 2)$ _{i.0}. By the naturality of Δ , $(8. 2)$ _{i,0} and $(8. 2)$ _{i,1} are equivalent. By use of the relations in Theorem 3.1, we see that for each *i*, $1 \lt i \leq k$, there exists $\varepsilon = 0$ or $= 1$ such that θ ^{*'H'*}($K(m, k)$; Z_p) $\neq 0$ for $t = t(i, \varepsilon)$. If the same non-triviality of \mathbb{O}^1 holds in $S^{2m-2}(L_p^{2(m+k-1)(p-1})/L_p^{2m(p-1)-2})$, then $(8, 2)_{i, \epsilon}$ and $(8, 2)_{i-1, \epsilon}$ are equivalent, hence (8. 2) is proved by induction on *i.*

Let *u* be a generator of $H^1(L_p^{2(m+k-1)(p-1)}; Z_p)$ and choose generators a'_i of $H^{2mp-3+2i(p-1)}(S^{2m-2}L_p^{2(m+k-1)(p-1)};Z_p)$ such that $\sigma^{2m-2}(a_i') = u \cdot (\Delta u)^{(m+i)(p-1)-1}$. By use of $\theta^1 u = 0$, $\theta^1(\Delta u) = (\Delta u)^p$ and Cartan's formula, we have

$$
\mathcal{O}^{t}(u\cdot(\Delta u)^{s(p-1)-1})=\binom{s(p-1)-1}{t}u\cdot(\Delta u)^{(s+t)(p-1)-1}
$$

$$
\mathcal{O}^{t}((\Delta u)^{s(p-1)})=\binom{s(p-1)}{(\Delta u)^{(s+t)(p-1)}}.
$$

and

Since $\sigma^{2m-2}(\Delta a_i') = \Delta \sigma^{2m-2}(a_i') = \Delta(u \cdot (\Delta u)^{(m+i)(p-1)-1}) = (\Delta u)^{(m+i)(p-1)}$ we have

(8.3)
$$
\mathcal{O}^t a_i' = \binom{(m+i)(p-1)-1}{t} a_{i+t}' \quad \text{and}
$$

$$
\theta^t\Delta a_i'=\binom{(m\!+\!i)(p\!-\!1)}{t}\Delta a_{i+\iota}'\,.
$$

Here we may consider that a'_i is a generator of $H^{2mp-3+2i(\rho-1)}$ $(S^{2m-2}(L^{2(m+k-1)(p-1)}_{\rho}/L^{2m(p-1)-2}_{\rho});Z_{\rho}).$ In particular the relations

$$
\mathcal{P}^1a_i' = -(m+i+1)a_{i+1}' \quad \text{and} \quad \mathcal{P}^1\Delta a_i' = -(m+i)\Delta a_{i+1}'
$$

show the required non-triviality of \mathcal{P}^1 . (8. 2) has been proved and the theorem follows.

Corollary 8.4. *Under the assumption of Theorem 8.3, the following relations hold f or suitable generators aⁱ o f Theorem* 3. 1.

$$
\mathcal{Q}^t a_i = (-1)^t \binom{(m+i)(p-1)-1}{t} a_{i+t} \quad \text{and}
$$

$$
\mathcal{Q}^t \Delta a_i = (-1)^t \binom{(m+i)(p-1)}{t} \Delta a_{i+t},
$$

 $0 \le i \le i + t < k$.

Next we shall discuss on some homotopical properties of a sort of complexes containing $K(m, k)$ and stunted lens spaces. First we have

(8. 4). Let *k* and *b be* integers such that $k \equiv -b \pmod{p-1}$, $0 \leq b$ $\langle b-1, \text{ Then we have}$

- (i) $\pi_{2k-1}^S(Y_p; Y_p) = 0$ *if* $k < b(p^2)$
- $\pi_{2k}^S(Y_p; Y_p) = 0 \quad \text{ if } k < (b-1)(p^2-p-1)+p-2.$

This follows from (6.1) and (4.1) , or more precisely from the list of $\pi_i^S(Y_p; Y_p)$ in [13].

Lemma 8. 5. *L e t L be a CW-complex hav ing a sequence of* $subcomplexes$ $* = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_r = L$ such that L_i is a mapping *cone* $L_{i-1} \cup f_i C Y_p^{2n_i-1}$ *of a map* $f_i: Y_p^{2n_i-1} \to L_{i-1}$, where $n_1 < n_2 < \cdots$ $\langle n, \text{ and } n, \langle 2n, -1, \text{ Then, up to homotopy equivalence, }$ *L* satisfies *the following condition. For each <i>i*, $1 \leq i \leq r$, *let* $J(i)$ *be the set of* $int{p^2 - p - 1}$ *i* $f(n_i - n_j \equiv -b \pmod{p-1}$ *and* $0 \le b < p-1$. Then the union $M(n_i) = * + \cup_{j \in J(i)} CY_{p}^{2n_j-1}$ is a *subcomplex of K.*

Proof. Remark that the assumption $n_r < 2n_1 - 1$ means that K is in a stable range. The lemma is proved by changing inductively the attaching map f_i in its homotopy class. Assuming that L_{i-1} has been already modified to satisfy the condition, it is sufficient to prove the injection homomorphism

$$
i_* : \pi(Y_P^{2n_i-1} ; M_0(n_i)) \to \pi(Y_P^{2n_i-1} ; L_{i-1})
$$

is an epimorphism, where $M_0(n_i) = M(n_i) - CY_P^{2n_i-1}$ and it is a subcomplex of L_{i-1} since $M_0(n_i)$ is the union of the subcomplexes 216 *Hirosi T oda*

M(n_i) of L_{i-1} for $j < i$ and $j \in J(i)$. L_{i-1} is obtained from $M_0(n_i)$ by attaching some $CY_{p}^{2n} k^{-1}$, $k \notin J(i)$. If $X = X' \cup_{f} CY_{p}^{2n} k^{-1}$ and X' is $(2n_1 - 2)$ -connected, we have an exact sequence

$$
\pi(Y_p^{2n_{i-1}};X') \xrightarrow{i'_{*}} \pi(Y_p^{2n_{i-1}};X) \xrightarrow{\pi'_{*}} \pi(Y_p^{2n_{i-1}};Y_p^{2n_k}).
$$

The last group vanishes by (8.4) , (i) . Thus i'_{*} is an epimorphism. Using this fact we have easily that i_* is an epimorphism. q.e.d.

For example, if $L = S^{2m}(L_p^{2n+2k}/L_p^{2n-2})$, $m+k < n-1$ and $k <$ p^2-p-1 , then up to homotopy equivalence *L* is one point union of $p-1$ subcomplexes $M(m+n+k-i), i=0, 1, \dots, p-2.$

Lemma 8.6. Let $K = Y_p^{2m_1} \cup CY_p^{2m_2-1} \cup \cdots \cup CY_p^{2m_s-1}$ and $M_1 =$ $Y_{p}^{2n_1} \cup CY_{p}^{2n_2-1} \cup \cdots \cup CY_{p}^{2n_r-1}$ be CW-complexes satisfying the condition of Lemma 8.5; $m_1 < m_2 < \cdots < m_s$, $n_1 < n_2 < \cdots < n_s$. Assume that $m_1 \equiv m_2 \equiv \cdots \equiv m_s \pmod{p-1}, \quad n_r \equiv m_1+1 \pmod{p-1}, \quad n_r < m_1+1$ $(p-3)(p^2-p-1)+p-2$ and that $n_i \leq n_r - b(p^2-p-1)$ if $n_r - n_i \equiv$ $-b$ (mod $p-1$), $0 \le b < p-1$. Then we have $\pi^{S}(M_1; K) = 0$.

Proof. Let $n_j - m_j \equiv -b \pmod{p-1}$. By the assumption, $n_r - n_i \equiv m_1 + 1 - n_i \equiv b + 1 \equiv -(p - 2 - b), \quad 0 \le p - 2 - b < p - 1$ and $n_j - m_j \leq n_r - (p-2-b)(p^2-p-1) - m_i \leq (b-1)(p^2-p-1) + p-2$. It follows from (ii) of $(8.4) \pi^S(Y_p^{2n_j}; Y_p^{2m_i}) = 0$ for $1 \le i \le s$ and $1 \le j \le r$. By use of homotopy exact sequences we have easily $\pi^{S}(M_{1}; K) = 0$.

Proof of Theorem 8.1. Since $G: K(m, k) \rightarrow Q_{2k}^{2m-1}$ induces an isomorphism of $H^{i}(\; ; Z_{p})$ for $i < 4mp-5$, $G_{*}: \pi_{i}(K(m, k)) \rightarrow \pi_{i}(Q_{2k}^{2m-1})$ is a C_p -isomorphism for $i < 4mp-6$. Similarly $\pi_{i+2\nu}$ ($Q_{2k}^{2m+2\nu-1}$) is C_p-isomorphic to $\pi_{i+2\nu}$ (K(m+v, k)) for $i < 4mp-6 < 4(m+\nu)p-6$ $-2\nu p$. Since $K(m, k)$ is $(2mp-4)$ -connected, $S^{2\nu p}: \pi_i(K(m, k)) \rightarrow$ $\mathcal{P}_p(S^{\nu p}K(m,\,k))$ is an isomorphism for $i{<}2(2mp{-}4){+}1{=}\,4mp{-}7.$ For $i=4pm-7$, $S^{2\nu}$ is an epimorphism and its kernel is at most of order 2, hence it is a C_p -isomorphism. So, it is sufficient to prove (8.5). If $\nu = p^{k-1}$, $1 \le k \le m$ and $k \le p^2 - p$, then $K(m + \nu, k)$ is *homotopy equivalent to* $S^{2\nu} K(m, k)$.

By Theorem 8. 3, there are maps

$$
f: S^{2m-2}(L_p^{2(m+k-1)(p-1)}/L_p^{2m(p-1)-2}) \to K(m, k)
$$

and
$$
F: S^{2(m+\nu)-2}(L_p^{2(m+\nu+k-1)(p-1)}/L_p^{2(m+\nu)(p-1)-2}) \to K(m+\nu, k)
$$

which induce monomorphisms of $H^*($; Z_p). Since $[(k-1)(p-1)]$ we have by (8.1) that $L_p^{2(m+k-1)(p-1)}/L_p^{2m(p-1)-1}$ and $L_p^{2(m+\nu+k-1)(p-1)}/L_p^{2(m+\nu)(p-1)-2}$ have the same stable homotopy type. For the simplicity we put

$$
L = S^{2(m+\nu)-2}(L_p^{2(m+\nu+k-1)(p-1)}/(L_p^{2(m+\nu)(p-1)-2}).
$$

L has a sufficiently large connectedness and is in a stable range. Thus L is homotopy equivalent to $S^{2m-2+2\nu\rho}(L_p^{2(m+k-1)(p-1)}/L_p^{2m(p-1)-2}).$ We have obtained

(8.6). *There are maps* $F: L \rightarrow K(m+v, k)$ and $F': L \rightarrow S^{2\nu p}K(m, k)$ *which induce monomorphisms of* $H^*($ *;* Z_{ρ} *).*

Now apply Lemma 8. 5 to this complex *L* and consider the the subcomplexes

and
$$
M = M((m+\nu)p + (k-1)(p-1)-1)
$$

and
$$
M_1 = M((m+\nu)p + (k-p-1)(p-1)).
$$

The complexes M_1 and $K = K(m+\nu, k)$ (or $S^{2\nu} K(m, k)$) satisfy the assumption of Lemma 8.6, where $n_r = (m + \nu)p + (k - p - 1)(p - 1)$, $m_1 = (m + \nu)\bar{p} - 1$ and the assumptions $k \leq \bar{p}^2 - 2\bar{p}$ of Theorem 8.1 implies $n_r < m_1 + (p-3)(p^2-p-1)+p-2$. It follows from Lemma 8.6 that the restrictions F/M_1 and F/M_1 are homotopic to zero. Thus there exist maps h and h' such that the following diagram is homotopy commutative :

From the definition of *M* and M, we see that the dimensions of the cells of $L-M$ and M_1-* differ from those of $K(m+v, k)$ and $S^{2\nu} K(m, k)$ and that the numbers of the cells of M/M_1 , $K(m+\nu, k)$ and $S^{2\nu p}K(m, k)$ are equal. Then it follows from (8.6) that h^* and h'^* are isomorphisms of $H^*($; Z_p) hence of $H^*($; Z). Thus *h* and *h'* are homotopy equivalences. (8. 5) has been proved and we conclude Theorem 8.1. $q.e.d.$

Observing (8. 5) and Proposition 3. 6, we have

Proposition 8. 7. *Under the assumption o f Theorem* 8. 1, *the periodic isomorphisms commute w ith the exact sequence* (3. 3), *i.e., we have the following commutative diagram.*

$$
\pi_{i}(Q_{2h}^{2m-1}:p) \xrightarrow{i_{*}} \pi_{i}(Q_{2h}^{2m-1}:p) \xrightarrow{\Omega^{-2h} \circ j_{*}} \\
\approx \downarrow \\
\pi_{i+2\nu p}(Q_{2h}^{2m+2\nu-1}:p) \xrightarrow{i_{*}} \pi_{i+2\nu p}(Q_{2h}^{2m+2\nu-1}:p) \rightarrow \\
\pi_{i+2h}(Q_{2h-2h}^{2m+2h-1}:p) \xrightarrow{d_{*}\circ\Omega^{2h+1}} \pi_{i-1}(Q_{2h}^{2m-1}:p) \\
\approx \downarrow \\
\pi_{i+2h+2\nu p}(Q_{2h-2h}^{2m+2h+2\nu-1}:p) \rightarrow \pi_{i+2\nu p-1}(Q_{2h}^{2m+2\nu-1}:p).
$$

As an application of the periodicity theorem, we have the following sequences of unstable elements of the second type.

Proposition 8.8. For each positive integer *h* such that $h \equiv p$ or $\equiv 2p \pmod{p^2}$, there exists a sequence $\{\gamma^{(t)} \colon t = 1, 2, \cdots\}$ $[(hp-p-2)/(p+1)]$ of elements $\gamma^{(t)} \in \pi_{2hp-2t-3}(S^{2h-2t-1}:p)$ satisfying *the following relations:*

$$
S^{2}\gamma^{(1)} = p_{*}I'(t_{2hp-1}),
$$

\n
$$
S^{2}\gamma^{(t)} = p \cdot \gamma^{(t-1)} \quad \text{for } t \geq 2
$$

\nand
\n
$$
H^{(2)}\gamma^{(t)} = x_{t} \cdot I'\alpha'_{t+1}(2(h-t-1)p-1) \pm 0
$$

\nfor some $x_{t} \pm 0 \pmod{p}$.

 If $t <$ Min([(hp-p-2)/(p+1)], p²) then $p \cdot \gamma$ ^(t) = S² γ ^(t+1) \neq 0 hence *the order of* $\gamma^{(t)}$ *is a multiple of* p^2 *, moreover the order of* $H^{(4)}\gamma^{(t)}$ *is* p^2 .

Proof. For $h = p$ and $h = 2p$, we have seen in Theorems 7.1 and 7.4 the existence of $\gamma^{(t)}$, in particular, of $\gamma^{(1)} \in \pi_{2hp-5}(S^{2n-3}: p)$ such that $S^2 \gamma^{(1)} = p_* I'(t_{2hp-1})$ and $H^{(2)} \gamma^{(1)} = x_1 \cdot I' \alpha'_2 (2(h-2)p-1)$ for some $x_1 \not\equiv 0 \pmod{p}$.

From the commutativity of the diagram

On Iterated Suspensions II. 219

$$
\pi_{2hp-3}(Q_2^{2h-1}:p) \xrightarrow{\hat{p}_*} \pi_{2hp-3}(S^{2h-1}:p) \xleftarrow{\hat{S}^2} \pi_{2hp-5}(S^{2h-3}:p) \n\approx \bigg|\,\Omega^5 \qquad \qquad \bigg| H^{(4)} \qquad \qquad \bigg| H^{(2)} \qquad \qquad \bigg| H^{(2)} \qquad \qquad \bigg| H^{(2)}, \n\pi_{2hp-8}(\Omega^5Q_2^{2h-1}:p) \xrightarrow{\hat{d}_*} \pi_{2hp-8}(Q_4^{2h-5}:p) \ ,
$$

we have

$$
H^{(4)}p_*I'(t_{2hp-1})=d_*\Omega^5I'(t_{2hp-1})=x_1\cdot i_*I'\alpha_2'(2(h-2)p-1), \quad h=p \text{ or } 2p.
$$

Apply Proposition 8. 7 to the lower sequence, then we see that this relation holds for each positive integer *h* such that $h \equiv p$, $2p \pmod{p^2}$.

Consider the following exact and commutative diagram :

$$
\pi_{2hp-5}(S^{2h-3}:p) \xrightarrow{S^2} \pi_{2hp-3}(S^{2h-1}:p) \xrightarrow{H^{(2)}} \pi_{2hp-6}(Q_2^{2h-3}:p) \n\downarrow H^{(2)} \qquad \qquad \downarrow H^{(4)} \qquad \approx \downarrow \Omega^2 \n\pi_{2hp-8}(Q_2^{2h-5}:p) \xrightarrow{i_*} \pi_{2hp-8}(Q_4^{2h-5}:p) \xrightarrow{j_*} \pi_{2hp-8}(\Omega^2Q_2^{2h-3}:p).
$$

 W e have $H^{(2)} p_* I'(t_{2hp-1}) = \Omega^{-2} j_* H^{(4)} p_* I'(t_{2hp-1}) = \Omega^{-2} j_* i_* I'(\alpha_2' (2/h))$ $(1-2)p-1$))=0, and this implies the existence of an element γ ⁽¹⁾ such that $S^2 \gamma^{(1)} = p_* I'(\iota_{2h p-1})$. The element $\gamma^{(1)}$ satisfies $i_* (H^{(2)} \gamma^{(1)} - x_1 \cdot$ $P(\alpha_2^{\prime}(2(h-2)p-1))=0$. Since $\pi_{2hp-7}(\Omega^2Q_2^{2h-3}:p)=\pi_{2hp-5}(Q_2^{2h-3}:p)=0$ by $(6, 4)$, i_* is a monomorphism by the exactness of $(3, 3)$, and the relation $H^{(2)}\gamma^{(1)} = x_1 \cdot I' \alpha_2' (2(h-2)p-1)$ follows.

Now, applying Theorem 5.4, (i) to the element $\gamma^{(1)}$, we have the existence of an element $\gamma^{(2)}$ satisfying $\hat{p} \cdot \gamma^{(1)} = S^2 \gamma^{(2)}$ and $H^{(2)}\gamma^{(2)}=x_2 \cdot I' \alpha'_3(2(h-3)p-1)$ for some integer $x_2 \not\equiv 0 \pmod{p}$ This process can be continued in meta-stable range, i.e., for $t \leq$ $(hp-p-2)/(p+1)$. If $t \le (hp-p-2)/(p+1)$ we have $p \cdot \pi_{2hp-2t-6}$ $(Q_2^{2h-2t-3}: p) = 0$ by Theorem 2. 2, $\alpha'_i(2(h-t)p-5)$ and $\alpha'_{i+1}(2(h-t-1))$ $p-3$) exist by Propoition 4.4, (iii) and Lemma 2.1. Then by Theorem 5.4, (i), there exists an elemen $\gamma^{(t)}$ satisfying $\hat{p} \cdot \gamma^{(t-1)} =$ $S^{2}\gamma^{(t)}$ and $H^{(2)}\gamma^{(t)} = x_t \cdot I'a'_{t+1}(2(h-t-1)p-1)$ for some ieteger $x_t \equiv 0$ $p(\text{mod } p)$ provided the existence and the similar relations for $\gamma^{(t-1)}$. Since $\pi^* i_* \alpha'_{t+1} = \pi^* i^* \alpha' \delta \alpha = \alpha' \delta \alpha \delta + 0$ by (4.5), we have that $i_{\ast}\alpha'_{t+1}$ \neq 0, α'_{t+1} is not divisible by *p* and that $I'\alpha'_{t+1}(2(h-t-1)p-1)$ $=Q^{n-r-1}(\alpha'$

Let $t <$ Min($\left[\frac{h p - p - 2}{p + 1}\right]$, p^2) and consider the following commutative and exact diagram :

220 *Hirosi T oda*

$$
\pi_{2hp-2t-5}(S^{2h-2t-3}:p) \xrightarrow{\mathcal{T}_{2hp-2t-5}} S^{2} \pi_{2hp-2t-3}(S^{2h-2t-1}:p)
$$
\n
$$
\downarrow H^{(2)} \qquad \qquad \downarrow H^{(4)} \qquad \qquad \downarrow H^{(4)} \qquad \qquad \downarrow H^{(4)} \qquad \qquad \downarrow H^{(5)} \qquad \qquad \downarrow H^{(5)} \qquad \qquad \downarrow H^{(6)} \qquad \qquad \downarrow H^{(7)} \qquad \qquad \downarrow H^{(8)} \qquad \qquad \downarrow H^{(8)} \qquad \qquad \downarrow H^{(9)} \qquad \qquad \downarrow H^{(9)} \qquad \qquad \downarrow H^{(10)} \qquad \qquad \downarrow H^{(11)} \qquad \qquad \downarrow H^{(21)} \qquad \qquad \downarrow H^{(3)} \qquad \qquad \downarrow H^{(4)} \qquad \qquad \downarrow H^{(5)} \qquad \qquad \downarrow H^{(6)} \qquad \qquad \downarrow H^{(7)} \qquad \qquad \downarrow H^{(8)} \qquad
$$

where $d_{*} \circ \Omega^{-3} = H^{(2)} \circ p_{*}$ by (5. 2). First we have

$$
p \cdot H^{(4)} \gamma^{(t)} = H^{(4)} S^2 \gamma^{(t+1)} = i_* H^{(2)} \gamma^{(t+1)}
$$

= $x_{t+1} \cdot i_* I' \alpha'_{t+1} (2(h-t-1)p-1)$
and
$$
I' \alpha'_{t+1} (2(h-t-1)p-1) = Q^{h-t-1} (\alpha'_{t+1}) \neq 0.
$$

We see also in (6.4) the group $\pi_{2hp-2t-5}(Q_2^{2h-2t-3}:p)$ is generated $\overline{Q}^{h-t-1}(\alpha_t)$ and additionally by $Q^{h-t-1}(\beta_1^{p-1})$ if $t+1=p^2-p-1$ and by $\bar{Q}^{h-t-1}(\alpha_1\beta_1^{p-1})$ if $t+1=p^2-p$. By $(6,5)$

$$
d_*\Omega^{-3}\bar{Q}^{h-t-1}(\alpha_t)=H^{(2)}p_*\bar{Q}^{h-t-1}(\alpha_t)=0\,.
$$

In the case $t+1=p^2-p-1$, we have $h-t-2 \equiv -(t+2) \equiv 0 \equiv -1$ (mod *p)* and

$$
d_*\Omega^{-3}Q^{h-t-1}(\beta_1^{p-1})=H^{(2)}p_*Q^{h-t-1}(\beta_1^{p-1})=x\boldsymbol{\cdot} Q^{h-t-2}(\alpha_1\beta_1^{p-1})
$$

for some $x \not\equiv 0 \pmod{p}$, by Lemma 6. 1, (ii). By (4. 6), the elements $Q^{h-t-2}(\alpha_1\beta_1^{p-1})$ and $Q^{h-t-2}(\alpha_{(p-1)p}')$ are independent generators. In the case $t+1=p^2-p$, we have $\overline{Q}^{h-t-1}(\alpha_1\beta_1^{p-1})=\overline{Q}^{-h-t-1}(\alpha_1)\circ\beta_1^{p-1}(2(h-t)p)$ -5) by use of $(1, 3)$, (ii) . Then

$$
d_*\Omega^{-3} \overline{Q}^{h-t-1}(\alpha_1 \beta_1^{n-1}) = H^{(2)} p_* \overline{Q}^{h-t-1}(\alpha_1) \circ \beta_1^{n-1}(2(h-t)p-8) = 0
$$

by (6.5). We have seen that in all case $I' \alpha'_{t+1}(2(h-t-2)p-1)$ is not in the image of $d_{*} \circ \Omega^{-3}$. Thus $p \cdot H^{(4)} \gamma^{(1)} = x_{t+1} \cdot i_{*}$ $(2(h-t-2)p-1) \neq 0$ and $p \cdot \gamma^{(t)} \neq 0$. By Theorem 2.2, $p^2 H^{(t)} \gamma^{(t)} =$ $i_*(p \cdot H^{(2)} \gamma^{(t+1)}) = 0$. Thus the order of $H^{(4)} \gamma^{(t)}$ is p^2 .

9. The homomorphism $\Delta: \pi_{i+i}(S^{2mp+1}:p) \rightarrow \pi_{i+2}(S^{2mp-1}:p)$.

The homomorphism Δ in the exact sequence (2.5) is determined for the image of $S²$ by the formula

$$
\Delta S^2(\alpha) = p \cdot \alpha
$$

of (2.7). We shall consider the behaviour of Δ for elements not in the S^2 -image. According to Section 2, we understand the homomorphism Δ as follows.

(9.1). For the spaces ΩQ_m and Q'_m in Section 2, there are *maps* $h: \Omega Q_m \to \Omega^i S^{2mp+1}$, $h': Q'_m \to \Omega Y$ *and* $i: Q^2 S^{2mp-1} \to \Omega Y$ *which induce* C_{p} -*isomorphisms of the homotopy groups and the cohomology groups. By these isom orphism s o f th e p -p rim ary components:* $\pi_{i+4}(S^{2mp+1}:p) \approx \pi_i(\Omega Q_m:p), \pi_{i+2}(S^{2mp-1}:p) \approx \pi_i(Q'_m:p),$ the homomor*phism*

$$
\Delta: \pi_{i+4}(S^{2mp+1}:p) \to \pi_{i+2}(S^{2mp-1}:p)
$$

is equivalent to a homomorphism

$$
d_*: \pi_i(\Omega Q_m : p) \to \pi_i(Q'_m : p)
$$

 $induced\; by\; a\; map\; d: \Omega Q_{m} = \Omega(\Omega^3 S^{2m+1},\, \Omega^2 S^{2m}_{p-1}) \rightarrow Q'_{m} = \Omega(\Omega S^{2m}_{p-1},\,$

Let $\varepsilon \in \pi_{2mp-3}(\Omega Q_m)$ and $\varepsilon' \in \pi_{2mp-3}(Q'_m)$ be elements which correspond to generators of $\pi_{2mp+1}(S^{2mp+1})\approx \pi_{2mp-1}(S^{2mp-1})\approx Z$. Then, by $(2, 3)$, we have

$$
d_*\varepsilon = p \cdot \varepsilon'.
$$

By use of mapping-cylinder arguments, we may assume that ϵ and ϵ' are represented by inclusions of S^{2mp-3} into ΩQ_m and Q'_m respectively, and *d* maps S^{2mp-3} into S^{2mp-3} by degree *p*. Furthermore, we may assume that S^{2mp-3} is imbedded in $\Omega^i S^{2mp+1}$ and $\Omega^2 S^{2mp-1}$ canonnically and in ΩY such that *h*, *h'* and *i* are identical on S^{2mp-3} .

Consider the following commutative and exact diagram :

$$
\cdots \longrightarrow \pi_i(S^{2mp-3}:p) \xrightarrow{i_*} \pi_i(\Omega Q_m:p) \xrightarrow{j_*} \pi_i(\Omega Q_m, S^{2mp-3}:p) \xrightarrow{\partial} \cdots
$$

\n
$$
\downarrow d_* \qquad \qquad \downarrow d_* \qquad \qquad \downarrow d_*
$$

\n
$$
\cdots \longrightarrow \pi_i(S^{2mp-3}:p) \xrightarrow{i_*} \pi_i(Q'_m:p) \xrightarrow{j_*} \pi_i(Q'_m, S^{2mp-3}:p) \xrightarrow{\partial} \cdots
$$

The d_* of the left side satisfied $d_*(\alpha) = p \cdot \alpha$ by (1.10). The middle one is equivalent to Δ . The d_* of the right side is equivalent to a homomorphism

$$
\overline{\Delta} : \pi_{i-1}(Q^{2mp-3}_{4}:p) \to \pi_{i-1}(Q^{2mp-3}_{2}:p)
$$

by the following isomorphisms $(9, 2)$ obtained from $(9, 1)$:

$$
(9, 2) \quad \pi_i(\Omega Q_m, S^{2mp-3} : p) \approx \pi_i(\Omega^4 S^{2mp+1}, S^{2mp-3} : p) \approx \pi_{i-1}(Q_i^{2mp-3} : p),
$$

$$
\pi_i(Q'_m, S^{2mp-3} : p) \approx \pi_i(\Omega^2 S^{2mp-1}, S^{2mp-3} : p) \approx \pi_{i-1}(Q_i^{2mp-3} : p).
$$

Then we have the following commutative and exact diagram

$$
\cdots \xrightarrow{\hat{p}_{*}} \pi_{i}(S^{2mp-3}:p) \xrightarrow{S^{4}} \pi_{i+4}(S^{2mp+1}:p) \xrightarrow{H^{(4)}} \pi_{i-1}(Q_{i}^{2mp-3}:p) \xrightarrow{\hat{p}_{*}} \cdots
$$
\n
$$
\cdots \xrightarrow{\hat{p}_{*}} \pi_{i}(S^{2mp-3}:p) \xrightarrow{S^{2}} \pi_{i+2}(S^{2mp-1}:p) \xrightarrow{H^{(2)}} \pi_{i-1}(Q_{2}^{2mp-3}:p) \xrightarrow{\hat{p}_{*}} \cdots,
$$

where the four groups of the left side square are considered to be *Z* if $i=2mp-3$.

Lemma 9. 1. *A ccording to Proposition* 3 . 6 , *choose maps g:* $\rightarrow Q_2^{2mpp-3}$ and $G: K(mp-1, 2) = Y_p^{2(mp-1)p-2} \cup {}_h C Y_p^{2mp2-3}$ Q_i^{2mp-3} which induce isomorphisms of H^j : Z_p) for $j < 4(mp-1)p-5$. Let $\pi: K(mp-1, 2) \rightarrow Y_p^{2mp^{2-4}}$ be the shrinking map of $Y_p^{2(pmp-1)p-2}$. *Then there exists a map D*: $Y_p^{2mp2-4} \rightarrow Y_p^{2(mp-1)p-2}$ *such that the following diagram is commutative:*

$$
\pi_{i-1}(K(mp-1, 2): p) \xrightarrow{\pi_{*}} \pi_{i-1}(Y_{p}^{2mp^{2-i}}: p) \xrightarrow{\text{D}_{*}} \pi_{i-1}(Y_{p}^{2(mp-1)p-2}: p)
$$
\n
$$
\downarrow G_{*} \qquad \overline{\Delta} \qquad \qquad \downarrow g_{*}
$$
\n
$$
\pi_{i-1}(Q_{*}^{2mp-3}: p) \xrightarrow{\text{D}_{*}} \pi_{i-1}(Q_{2}^{2mp-3}: p).
$$

Proof. The isomorphisms of (9.2) are induced by the maps $\Omega h:\Omega(\Omega Q_m,\,S^{2mp-3})\!\rightarrow\Omega(\Omega^{\textstyle{*}} S^{2mp+1},\,S^{2mp-3})\!=\!Q_{\textstyle{*}}^{2mp-3},\,\Omega h^{\prime}:\Omega(Q_m^{\prime},\,S^{2mp-3})$ S^{2mp-3}) and Ωi : $Q_2^{2mp-3} = \Omega(\Omega^2 S^{2mp-1}, S^{2mp-3}) \rightarrow \Omega(\Omega Y, S^{2mp-3}).$ Since these maps induce \mathcal{C}_{p} -isomorphisms of the homotopy groups, they induce isomorphisms of $\pi(K(mp-1, 2))$; by Theorem 1.2. Thus there are maps G_1 , G_2 and G_3 such the following diagram is homotopy commutative :

$$
K(mp-1, 2) \stackrel{D'}{\longleftrightarrow} Y_p^{2(mp-1)p-2}
$$
\n
$$
Q_4^{2m p-3} \stackrel{\Omega h}{\longrightarrow} \Omega(\Omega Q_m, S^{2m p-3}) \stackrel{\Omega h' \circ \Omega d}{\longrightarrow} \Omega(\Omega Y, S^{2m p-3}) \stackrel{\Omega h^3}{\longrightarrow} Q_2^{2m p-3}.
$$

We have also that $g_* : \pi(K(mp-1, 2); Y_p^{2(mp-1)p-2}) \to \pi(K(mp-1, 2))$ Q_4^{2mp-3}) is an isomorphism onto by Theorem 1. 2. Thus there exists a map *D'* such that G_3 is homotopic to $g \circ D'$. Then by the definition of $\overline{\Delta}$ the following diagram is commutative:

On Iterated Suspensions II. 223

$$
\pi_{i-1}(K(mp-1, 2): p) \xrightarrow{D'_*} \pi_{i-1}(Y_p^{2(mp-1)p-2}: p)
$$

\n
$$
\downarrow G_*
$$
\n
$$
\pi_{i-1}(Q_i^{2mp-3}: p) \xrightarrow{\overline{\Delta}} \pi_{i-1}(Q_2^{2mp-3}: p).
$$

Consider the case $i=2(mp-1)p-2$. Then the above four groups are isomorphic to Z_{p} , and from (9.3) we have the following commutative and exact diagram :

$$
\pi_{2(mp-1)p+2}(S^{2m p+1}:p) \xrightarrow{H^{(4)}} Z_p \xrightarrow{p} \pi_{2(mp-1)p-3}(S^{2m p-3}:p)
$$
\n
$$
\downarrow \Delta \qquad \qquad \downarrow \pi_{2(mp-1)p}(S^{2m p-1}:p) \xrightarrow{H^{(2)}} \frac{1}{Z_p} \xrightarrow{p} \pi_{2(mp-1)p-3}(S^{2m p-3}:p).
$$

Here, $H^{(2)} = 0$ by the triviality of p Hopf homomorphism. Thus $p_*\overline{\Delta}(Z_p) = p \cdot p_*(Z_p) = 0$ implies $\overline{\Delta}(Z_p) = 0$. This shows that *D'* is homotopic to a map D'' such that $D''(S^{2(mp-1)p-3}) = *$. Since $\pi_{2(mp-1)p-2}(Y_p^{2(mp-1)p-2})=0, D''$ is homotopic to a map D_0 such that $D_0(Y_P^{2(mp-1)p-2}) = *$. Thus $D_0 = D \circ \pi$ for a map $D: Y_P^{2m p-2}$ q.e.d.

Lemma 9. 2. *The map D of Lemma* 9. 1 *represents a generator* $x \cdot \alpha(2(mp-1)p-2)$ of $\pi(Y_p^{2mp2-4}; Y_p^{2(mp-1)p-2}) \approx Z_p$ for some integer $x \not\equiv 0 \pmod{p}$.

Proof. The group $\pi(Y_p^{2mp-1}; Y_p^{2(mp-1)p-2})$ is stable, hence isomorphic to $\pi_{2p-2}^S(Y_p; Y_p) \approx Z_p$ and generated by $\alpha(2(mp-1)p-2)$. Thus *D* represents $x \cdot \alpha(2(mp-1)p-2)$ for some integer x. We assume $x \equiv 0 \pmod{p}$ and lead to a contradiction. To do this it is sufficient to give an element γ of $\pi_{i+4}(S^{2m}P^{i+1}:p)$ such that $H^{(4)}\gamma \in \text{Im } G_*$ and $\Delta \gamma \notin \text{Im } S^2$. Then $\overline{\Delta} H^{(4)}\gamma = H^{(2)}\Delta \gamma \neq 0$ but, since *D* is homotopic to zero by the assumption $x\text{=}0$, $\Delta H^{\text{\tiny $(4$)}}\gamma\!\in\!\text{\rm Im}\,(g_*\circ D_*\circ\pi_*)$ $= 0$ which is a contradiction.

First consider the case $m \neq 1 \pmod{p}$ and let $m = ap-b$, $a \geq 1$, $0 \leq b \leq p-1$. In Proposition 8.8, let $h = (a p+1)p$ and $t = (b+1)p$. Then there exists $\gamma^{(t-1)} \in \pi_{i+4}(S^{2m}p+1} : p)$ and $\gamma^{(t)} \in \pi_{i+2}(S^{2m}p-1} : p)$, $i=2hp-2t-5=2mp+2(ap+1)p(p-1)-5$, such that $S^2\gamma^{(t)}=p\cdot\gamma^{(t-1)}$ and the orders of $H^{(4)}\gamma^{(t-1)}$ and $H^{(4)}\gamma^{(t)}$ are p^2 . Consider the following commutative and exact diagram :

224*H i rosi T o d a*

S ²H (2) 7r1(S ² " - ³ :P) 2(S2m P-1 *p) mi_1(Q2:"P- 3:P) t ip) . t H ") p) ri-3(Q24"-5 :1³) (VmP-3 :1³).*

 $By (2, 7), p \cdot H^{(4)} \Delta \gamma^{(t-1)} = H^{(4)} \Delta S^2 \gamma^{(t)} = p \cdot H^{(4)} \gamma^{(t)}$. Thus the order of $H^{(4)} \Delta \gamma^{(t-1)}$ is p^2 . By Theorem 2. 2, $p \cdot \pi_{i-3}(Q_2^{2mp-5} : p) = 0$. It follows that $H^{(2)} \Delta \gamma^{(t-1)} \neq 0$ and $\Delta \gamma^{(t-1)} \notin \text{Im } S^2$. The fact that $H^{(4)} \gamma^{(t-1)} \in$ $\operatorname{Im} G_{*}$ is essentially proved in the proof of Theorem 5.4, (i) and the details are left to the readers.

For the case $m \equiv 1 \pmod{p}$ and $m > 1$, the proof is quite similar to the above. We use Proposition 8.8 for $h = (a\mathbf{p}+2)\mathbf{p}$ and $\mathbf{r} =$ $(p-1)p$ where $m = (a+1)p+1, a \ge 0$.

Finally consider the case $m=1$. Let $i=2(p+1)p-7$ and consider the groups $\pi_{i+4}(S^{2p+1} : p)$ and $\pi_{i+2}(S^{2p-1} : p)$. By Theorem 7.2 and Lemma 6.1, (iii), these groups are isomorphic to Z_p and generated by unstable elements of the first type: $p_*I'(c_{2(p+1)p-1})$ and $p_*\overline{Q}^p(\alpha_1)$ respectively. Put $\gamma = p_*I'(i_{2(p+1)p-1})$. By Lemma 6.1, (iii), $H^{(2)}p_*(Q^p(\alpha_1)) = x' \cdot Q^{p-1}(\alpha_2) \neq 0$, $x' \not\equiv 0 \pmod{p}$. By the exactness of (1.7), $S^2 p_* (\bar{Q}^p(\alpha_1)) = 0$. Then, by Lemma 2.6, $p_* (\bar{Q}^p(\alpha_1)) = z \cdot \Delta \gamma$ for some $z \not\equiv 0 \pmod{p}$. Thus we have $\Delta \gamma = (1/z) p_*(Q^p(\alpha_1)) \not\in \text{Im } S^2$. Since $G_* : \pi_{i-1}(K(p-1, 2)) \rightarrow \pi_{i-1}(Q_*^{2p-3})$ is a C_p -isomorphism onto if $i - 1 < 4(p - 1)p - 5$, we have $H^{(4)}\gamma \in \text{Im } G_*$.

Consequently, in all cases we have a contradiction from the assumption $x \equiv 0 \pmod{p}$. Thus $x \not\equiv 0 \pmod{p}$. q.e.d.

The following theorem is the main result of this sectin.

Theorem 9.3. Let $g: Y_p^{2mp^2-2} \to Q_2^{2mp-1}$ and $g': Y_p^{2(mp-1)p-2}$ Q_2^{2mb-3} be maps of Lemma 2.5. For an element α of $\pi_{i+4}(S^{2mp+1})$: assume that there exists an element β of $\pi_{i-2}(Y^{2mp2-5}_{p}:p)$ such that

 $H^{(2)}\alpha = g_*(S^3\beta)$ and $(\alpha\delta(2(mp-1)p-2))\circ\beta = 0$.

We assume further that $g'_{*}: \pi_{i-1}(Y_p^{2(mp-1)p-2}:p) \to \pi_{i-1}(Q_2^{2mp-3}:p)$ is *an epimorphism, which holds if* $i < 2(mp^2 - p - 1)p - 4$. Then the *following relation holds:*

$$
H^{(2)}(\Delta \alpha) = x \cdot g'_{*}(\alpha(2(mp-1)p-2) \circ S\beta)
$$

for some integer $x \not\equiv 0 \pmod{p}$.

Proof. Choose a map $G: K(mp-1, 2) \rightarrow Q^{2mp-3}$ of Proposition 3.6, which is an extension of g' . We have the following (homotopy) commutative diagram :

$$
Y_{p}^{2(mp-1)p-2} \xrightarrow{l} K(mp-1, 2) \xrightarrow{\pi} Y_{p}^{2mp2-4}
$$

$$
\downarrow g'
$$

$$
Q_{2}^{2m p-3} \xrightarrow{l} Q_{4}^{2m p-3} \xrightarrow{j} \Omega_{2}^{2m p-1}
$$

Compare g'' with the map $\Omega^2 g : Y_p^{2mp^2-4} \to \Omega^2 Q_2^{2mp-1}$ induced by g. Both maps satisfy the condition of Lemma 2. 5, hence they are equivalent up to a homotopy equivalence of Y_p^{2mp2-4} representing $y \cdot \iota_Y$ for some $y \neq 0$ (mod *p*). Thus we may assume that $\Omega^2 g = g''$ without loss of generality. By Proposition 4. 5, the attaching map h in $K(mp-1, 2) = Y_p^{2(mp-1)p-2} \cup_n CY_p^{2mp2-5}$ represents $-\alpha\delta(2(mp-1)p)$ $- 2$). By the assumption $\alpha \delta(2(mp-1)p-2) \circ \beta = 0$, there exists a $\mathcal{S} \in \pi_{i-1}(K(mp-1, 2):p)$ of β . Then $j_*G_*\beta = g''_*\pi_*\beta$ $=g''$ _{*} $(S\beta)$.

Now we have the following commutative and exact diagram :

$$
\pi_{i+2}(S^{2mp-1}) \xrightarrow{H^{(2)}} \pi_{i-1}(Q_2^{2mp-3}) \xrightarrow{\hat{p}_*} \pi_{i-1}(S^{2mp-3})
$$
\n
$$
\downarrow S^2 \qquad \qquad \downarrow i_* \qquad \qquad \parallel
$$
\n
$$
\pi_{i+4}(S^{2mp+1}) \xrightarrow{H^{(4)}} \pi_{i-1}(Q_i^{2mp-3}) \xrightarrow{\hat{p}_*'} \pi_{i-1}(S^{2mp-3})
$$
\n
$$
\downarrow H^{(2)} \qquad \qquad \downarrow j_*
$$
\n
$$
\pi_{i+1}(Q_2^{2mp-1}) \xrightarrow{\Omega^2} \pi_{i-1}(\Omega^2 Q^{mp-1}).
$$

By use of (1.3), we have $\Omega^2(g_*S^3\beta) = (\Omega^2 g)_*(S\beta) = g''_*(S\beta) = j_*G_*\beta$. By the first assumption,

$$
j_*G_*\tilde{\beta}=\Omega^2(g_*S^3\beta)=\Omega^2H^{(2)}\alpha=j_*H^{(4)}\alpha.
$$

By the exactness and by the last assumption of the theorem, there exists an element γ' of $\pi_{i-1}(Y_p^{2(mp-1)p-2} : p)$ such that $H^{(4)}\alpha = G_*\beta +$ $i_{*}g'_{*}\gamma'$. Put $\gamma = \tilde{\beta} + i_{*}\gamma'$, then $H^{(4)}\alpha = G_{*}\gamma$. Applying Lemma 9.1, Lemma 9.2 and (9.3) , we have

$$
H^{(2)}(\Delta \alpha) = \overline{\Delta} H^{(4)} \alpha = \overline{\Delta} G_{*} \gamma = g'_{*} D_{*} \pi_{*} (\hat{\beta} + i_{*} \gamma')
$$

= $g'_{*} D_{*} (S \beta) = x \cdot g'_{*} (\alpha (2(mp-1)p-2) \circ S \beta).$

Finally consider the homomorphism g'_{*} for $i < 2(mp^{2}-p-1)-4$.

226 *Hirosi Toda*

Let α be an arbitrary element of $\pi_{i-1}(Q_2^{2m} p^{-3} : p)$ and consider the exact sequence (2.5) . By (2.7) and (2.8) , $p \cdot I(\alpha) = 0$. By (2.8) , there exists an element β of $\pi_{i-2}(S^{2(mp-1)p-3}:p)$ such that $S^4\beta = I\alpha$ and $p \cdot \beta = 0$. Let $\tilde{\beta} \in \pi_{i-1}(Y_p^{2(mp-1)p-2} : p)$ be a coextension of β . By Lemma 2.5, $I\alpha = S^4\beta = S^3(\pi_*\hat{\beta}) = y' \cdot I g'_* \hat{\beta}$ for some $y' \pm 0$ (mod *p*). By the exactness of (2. 5), $\alpha = y'g'_{*}\beta + I'\gamma'$ for some $\gamma' \in \pi_{i+1}(S^{2(mp-1)p-1} : p)$. By (2.8) we can put $\gamma' = S^2 \gamma$. By use of Lemma 2.5, we have $\alpha = y' \cdot g'_{*}\beta + I'S^{2}\gamma = g'_{*}(y' \cdot \beta + x \cdot i_{*}\gamma)$. This shows that g'_* is an epimorphism if $i < 2(mp^2 - p - 1)p - 4$. q.e.d.

The following two corollaries are important in Section 11.

Corollary 9.4. *Assume* $i < 2(mp^2 - p - 1)p - 4$. *If*

$$
H^{\scriptscriptstyle{\mathrm{(2)}}}\alpha=I^\prime\!(\mathrm{S}^5\gamma)
$$

for $\alpha \in \pi_{i+1}(S^{2mp+1}:p)$ and $\gamma \in \pi_{i-2}(S^{2mp2-6}:p)$, then we have

 $H_p(\Delta \alpha) = IH^{(2)}(\Delta \alpha) = x \cdot \alpha_1(2(mp-1)p+1) \circ S^4 \gamma$

for some integer $x \not\equiv 0 \pmod{p}$.

Proof. By Lemma 2.5, $H^{(2)}\alpha = x' \cdot g_* S^3(i_*\gamma)$ for $x' \not\equiv 0 \pmod{p}$ and for the inclusion $i: S^{2mp^2-6} \rightarrow Y^{2mp^2-5}_p$. Put $\beta = x' \cdot i_x \gamma$. Then *H*⁽²⁾ $\alpha = g_*(S^3\beta)$. We have also $\alpha\delta(2(mp-1)p-2)\circ\beta = x'\cdot\alpha(2(mp-1))$ $p-2$ $\cdot i_{\ast}\pi_{\ast}i_{\ast}\gamma=0$. By use of Theorem 9.3 and Lemma 2.5 we have

$$
H_p(\Delta \alpha) = xx' \cdot I(g'_* \alpha (2(mp-1)p-2) \circ S(i_*\gamma)) \quad \text{for} \quad x \equiv 0 \pmod{p}
$$

= $xx'y \cdot S^3(\pi_* i^* \alpha (2(mp-1)p-2) \circ S\gamma)$ for $y \equiv 0 \pmod{p}$
= $xx'y \cdot \alpha_1 (2(mp-1)p+1) \circ S^*\gamma$. q.e.d.

Corollary 9.5. *Assume* $1 \leq k \leq mp^2 - p - 1$. *If*

$$
H^{(2)}\alpha = I'(\alpha'_k(2m p^2-1))
$$

for $\alpha \in \pi_{i+1}(S^{2mp+1}:p)$, $i = 2mp^2 - 5 + 2k(p-1)$, then $H^{(2)}(\Delta \alpha) = x \cdot I'(\alpha'_{k+1}(2(mp-1)p-1))$

for some integer $x \not\equiv 0 \pmod{p}$.

Proof. Remark that $\alpha'_{k}(t)$ exists if $t \geq 2k+1$ or if $k \neq 0 \pmod{p}$ and $t \ge 6$, and defined by the relation $i_* \alpha'_k(t) = i^* (\alpha^{k-1} \delta \alpha(t+1))$ in

Proposition 4.4. We have $\alpha(t+1)\cdot i_{\ast}\alpha_{\ast}'(t+2p-3) = \alpha(t+1)\cdot i^{\ast}(\alpha^{\ast-1}\delta\alpha)$ $(t+2p-1) = i^*(\alpha^*\delta\alpha(t+1)) = i_*\alpha'_{k+1}(t)$. Then the corollary is an easy consequence of Theorem 9.3. $q.e.d.$

Remark that unstable elements of the first type in Proposition 6.2 may be taken as the element α in one of the above two corollaries.

1 0 . Unstable elements of the third and the fourth types.

We start from the following remarks. By $(1, 3)$, the homomorphism $H^{(k)}$: $\pi_{i+k}(S^{n+k}) \to \pi_{i-1}(Q_k^n)$ in the exact sequence (1.7) satisfies

$$
(10.1). \quad H^{(k)}(\alpha \circ S^{k+1}\beta) = H^{(k)}\alpha \circ \beta \quad \text{for} \quad \alpha \in \pi_{i+k}(S^{n+k}), \ \beta \in \pi_{j-1}(S^{i-1}).
$$

It follows

(10. 2). If $S^{2r}\gamma = p_{*}\gamma'$ for $\gamma \in \pi_i(S^{2m-1}:p)$, $\gamma' \in \pi_{i+2r}(Q_2^{2m+2r-1}:p)$ $and \, p_*: \pi_{i+2r}(Q_i^{2m+2r-1}:p) \rightarrow \pi_{i+2r}(S^{2m+2r-1}:p)$, then we have $S^{2r}(\gamma \circ S^3\beta)$ $\mathcal{P} = p_{*}(\gamma' \circ S^{2r+3}\beta)$ for $\beta \in \pi_{j}(S^{i-3}:p)$. So, if $H^{(2)}(\gamma \circ S^{3}\beta) = H^{(2)}\gamma \circ \beta \neq 0$ and $S^{2r}(\gamma \circ S^3 \beta) = p_*(\gamma') \circ S^{2r+3} \beta \neq 0$ and $r = p-2$ (resp. $r = p$) then *ry.S³ 0 is an unstable element of the third (resp. the fourth) type.*

Next we prepare two lemmas.

Lemma 10.1. If $m \leq p$, then the complex $K(m, p)$ of Proposition 3.6 can be chosen such that the cells $e^{2m p - 3 + 2j(p-1)}$, $j = 0, 1, \cdots$ $p-1$, *together with the base point* * *form a subcomplex* $K_0(m, p) =$ $S^{2mp-3} \cup e^{2mp-3+2(p-1)} \cup \cdots \cup e^{2mp-3+2(p-1)^2}$ of $K(m, p)$.

Proof. We shall prove by induction on $j \leq p$ that $K_0(m, j) =$ $S^{2mp-3} \cup \cdots e^{2mp-3+2(j-1)(p-1)}$ is a subcomplex of $K(m, j)$ by changing *K(m, i)* in its homotopy type. The case $j=1$ is trivial. Assume *K(m, j-1)* has the subcomplex $K_0(m, j-1)$, $l < j \le p$. $K(m, j)$ is obtained by attaching a cone $CY_{p}^{2mp-3+2(j-1)(p-1)}$ by a map h: $Y_{p}^{2mp-3+2(j-1)(p-1)} \to K(m, j-1)$. Let $h_{0}: S^{2mp-4+2(j-1)(p-1)} \to K(m, j)$ be the restriction of *h*. h_0 represents an element of $\pi_{2mp-4+2(j-1)\setminus p}$ $(K(m, j-1): p)$. By (6.1), we have $\pi_{2mp-4+2(j-1)(p-1)}(K_0(m, j-1) \cup$ $K(m, i), K_{0}(m, j-1) \cup K(m, i-1): p) \approx \pi_{2mp-4+2(j-1)(p-1)}(S^{2mp-2+2j(p-1)}:p)$ $\approx (\pi_{2(i-i-1)(p-1)-2}^S : p)=0$ for $1 \leq i \leq j-1$. By use of homotopy exact sequences, it follows that $\pi_{2mp-4+2(j-1)(p-1)}(K(m,j-1), K_0(m,j):p)\!=\!0$

228 ulirosi *Toda*

and the injection homomorphism $\pi_{2mp-4+2(j-1)(p-1)}(K_0(m, j-1): p) \rightarrow$ $\pi_{2mp^{-4+2(j-1)(p-1)}}(K(m,j-1):p)$ is an epimorphism. Thus h_0 is homotopic to a map $h'_0: S^{2mp-4+2(j-1)(p-1)} \to K_0(m, j-1)$. Extending the homotopy, we have a map h' which is homotopic to h and is an extension of h'_0 . Change the attaching map *h* to *h'*, then $K(m, j)$ is changed in its homotopy type and $K_0(m, j) = K_0(m, j-1) \cup$ $e^{2m p - 3 + 2(j-1)(p-1)}$ is a subcomplex of $K(m, j)$. By induction on *j* the lemma is proved. q.ed.

Lemma 10.2. Assume that $\mathbb{O}^{p-1} \neq 0$ in a complex $K_0 = S^N \cup$ $e^{N+2(p-1)} \cup \cdots \cup e^{N+2(p-1)^2}$ and $N>2(p-1)^2-3$, for example $K_{o} = K_{o}(m,p)$ *for* $m \equiv 0 \pmod{p}$, $m \geq p$ *or* $K_0 = K(m, p)/K_0(m, p)$ *for* $m \equiv 1 \pmod{p}$, $m > p$. Let $h: S^{N+2(p-1)^2-1} \rightarrow N_0^{N+2(p-2)(p-1)}$ be the attaching map of the top cell $e^{N+2(p-1)^2}$ and let $i: S^N \rightarrow K_0^{N+2(p-2)(p-1)}$ be the inclusion. *Then we have*

$$
h_*(\alpha_1(N+2(p-1)^2-1)) = x \cdot i_*(\beta_1(N))
$$

for some integer $x \not\equiv 0 \pmod{p}$. (See [10: Lemma 4.10].)

Proof. By Corollary 8.4, for a generator a_{o} of $H^{2mp-3}(Q_{2p}^{2m-1}:\mathbb{Z}_{p})$ we have $O^{p-1}a_0 = a_{p-1} \neq 0$ if $m \equiv 0 \pmod{p}$ and $O^{p-1}\Delta a_0 = \Delta a_{p-1} \neq 0$ if $m \equiv 1 \pmod{p}$. By Proposition 3.6, the same is true for $H^*(K(m, p); Z_p)$. It follows that $\mathcal{P}^{p-1} \neq 0$ in $K_0(m, p)$ if $m \equiv 0 \pmod{p}$ and in $K(m, p)/K_0(m, p)$ if $m \equiv 1 \pmod{p}$. As in the proof of the previous lemma, we see $\pi_{N+2p(p-1)-2}(K_0^{N+2(p-2)(p-1)}, S^N : p) = 0$. Thus $h_*(\alpha_1(N+2(p-1)^2-1))$ belongs to $i_*\pi_{N+2p(p-1)-2}(S^N)$ generated by $i_{*}\beta_{1}(N)$. Put $h_{*}(\alpha_{1}(N+2(p-1)^{2}-1))=x\cdot i_{*}\beta_{1}(N)$ for some integer *x*. Assume $x \equiv 0 \pmod{p}$, then $h_*(\alpha_1(N+2(p-1)^2-1))=0$ and there exists an extension \bar{h} : $S^{N+2(p-1)^{2}-1} \cup_{\alpha_1} e^{N+2p(p-1)-1} \to K_0^{N+2(p-2)(p-1)}$ of h Consider the mapping-cone of \bar{h} , then it is easily seen that $\mathcal{O}^1 \mathcal{O}^{p-1} \neq 0$ in the mapping-cone. But this contradicts to Adem's relation $\mathcal{P}^1 \mathcal{P}^{p-1} = 0$. Thus $x \not\equiv 0 \pmod{p}$. q.e.d.

The following four theorems indicate the existence of unstable elements of the third type.

Theorem 10.3. Assume that $m \equiv 0 \pmod{p}$ and $m \geq p$. Then there exists an element γ of $\pi_{2mp-2+2p(p-1)}(S^{2m+1}:p)$ such that

 $H^{(2)}\gamma = x \cdot I'(\beta_1(2m\mathit{p}-1))$ *for some integer* $x \not\equiv 0 \pmod{p}$, $S^{2p-4}\gamma = p_*I'(\alpha_1(2(m+p-1)p-1))$ *and* $S^{2p-2}\gamma = 0$.

Thus for an arbitrary element β of $\pi_i(S^{2mp-5+2p(p-1)})$ we have $H^{(2)}$ $(\gamma \circ S^3 \beta) = x \cdot I' \beta_1 (2mp-1) \circ \beta$ *and* $S^{2p-4} (\gamma \circ S^3 \beta) = p_* I' (\alpha_1 (2(m+p-1)p))$ -1) \circ S^{2*P*-1} β).

Proof. Choose a complex $K(m, p)$ as in Lemma 10.1 and app ly Proposition 3. 6, then we have the following commutative diagram :

$$
\pi_{i}(Y_{p}^{2m p-3+2(p-1)}) \xrightarrow{h_{p-1*}} \pi_{i}(K(m, p-1)) \xleftarrow{i'_{*}} \pi_{i}(Y_{p}^{2m p-2})
$$
\n
$$
\downarrow g'_{*} \qquad \qquad \downarrow G_{p-1*} \qquad \qquad \downarrow g_{*}
$$
\n
$$
(10.3) \qquad \pi_{i}(\Omega^{2p-1}Q_{2}^{2m+2p-3}) \xrightarrow{d_{*}} \pi_{i}(Q_{2p-2}^{2m-1}) \qquad \qquad \downarrow i_{*} \qquad \qquad \downarrow g_{*}
$$
\n
$$
\approx \bigcap_{i=2}^{2p-1} \qquad \qquad \downarrow H^{(2p-2)} \qquad \qquad \downarrow H^{(2p-2)} \qquad \qquad (i=2mp-5+2p(p-1)).
$$

By Lemma 10.2 with $h=h_{p-1}|S^{2mp-4+2(p-1)^2}$, we have

$$
h_{p-1}*(i_{1}*\alpha_1(2mp-4+2(p-1)^2)) = x'\cdot i'_{*}(i_{2}*\beta_1(2mp-3))
$$

for some $x' \neq 0 \pmod{p}$, where $i_1: S^{2mp-4+2(p-1)^2} \to Y_p^{2mp-3+2(p-1)^2}$ and i_2 : $S^{2mp-3} \rightarrow Y_p^{2mp-2}$ are the inclusions. By Lemma 2.5, $(\Omega^{2p-1})^{-1}$ $g'_{*}i_{1*}\alpha_{1}(2mp-4+2(p-1)^{2}) = y \cdot I'\alpha_{1}(2(m+p-1)p-1)$ and $g_{*}i_{2*}\beta_{1}$ $(2mp-3) = y' \cdot I' \beta_1(2mp-1)$ for y, $y' \not\equiv 0 \pmod{p}$. From the commutativity of the above diagram it follows

$$
H^{(2p-2)}(p_*I'\alpha_1(2(m+p-1)p-1)) = x \cdot i_*I'\beta_1(2mp-1)
$$

for some integer $x \neq 0 \pmod{p}$. Next the following diagram is exact and commutative :

 (10.4)

$$
\begin{split} &\pi_{i+s}(Q_{2p-4}^{2m+1}) \xrightarrow{\hat{P}\ast} \pi_{i+s}(S^{2m+1}) \xrightarrow{S^{2\hat{P}-4}} \pi_{i+2\hat{P}-1}(S^{2m+2\hat{P}-3}) \xrightarrow{H^{(2\hat{P}-4)}} \pi_{i+2}(Q_{2p-4}^{2m+1}) \\ &\approx \big\downarrow \Omega^3 &\hspace*{1.5mm} \downarrow H^{(2)} \hspace*{1.5mm} \big\downarrow H^{(2\hat{P}-2)} \hspace*{1.5mm} \rightleftharpoons \pi_{i}(\Omega^3 Q_{2p-4}^{2m-1}) \xrightarrow{d'_{\star}} \pi_{i}(Q_{2}^{2m-1}) \xrightarrow{i_{\star}} \pi_{i}(Q_{2p-2}^{2m-1}) \xrightarrow{j_{\star}} \pi_{i}(\Omega^2 Q_{2p-4}^{2m+1}). \end{split}
$$

Since $H^{(2p-4)}(p_*I'\alpha_1(2(m+p-1)p-1)) = x \cdot \Omega^{-2}j_*i_*I'\beta_1(2mp-1) = 0$, there exists an element γ' of $\pi_{i+3}(S^{2m+1}:p)$ such that $S^{2p-4}\gamma' = p_*I'\alpha_1$ $(2(m+p-1)p-1)$. By the commutativity of the above diagram, 230*H i rosi Toda*

we have $i_*(H^{(2)}\gamma' - x \cdot I'\beta_1(2mp-1)) = 0$. Thus there exists an element γ'' such that $d''_{\star}\gamma'' = H^{(2)}\gamma' - x \cdot I' \beta_1(2mp-1)$. Put $\gamma = \gamma' - p_{\star}\gamma''$, then we obtain

 $H^{(2)}\gamma = x \cdot I' \beta_1 (2mp-1)$ and $S^{2p-4}\gamma = p_* I' \alpha_1 (2(m+p-1)p-1)$.

By the exactness of (1.7), $S^{2p-2}\gamma = 0$. The remaining part of the theorem is a direct consequence of (10.2) . $q.e.d.$

Theorem 10.4. Assume $m \equiv 0 \pmod{p}$ and $m \geq p$ and let γ \in π _{2mp-2+2p(p-1})(S^{2m+1}; p) be the element of Theorem 10.3.

(i). If $0 \le r$, $1 \le s$ *and* $r + s < p-1$, *then the composition* σ $\beta_1^r \beta_s (2mp-2+2p(p-1))$ *is an unstable element of the third type, i.e., by putting* $\gamma' = \gamma \circ \beta_1^r \beta_s (2mp-2+2p(p-1))$ *we have* $H^{(2)}\gamma' \neq 0$, $S^{2p-4}\gamma'$ \neq 0 and $S^{2p-2}\gamma'$ $=$ 0. The elements $S^{2j}\gamma'$, $0 \leq j \leq p-2$, generate *direct summands isomorphic to* Z_{ν} .

 (i) . The element γ *is an unstable element of the third type, i.e.*, $H^{(2)}\gamma + 0$, $S^{2p-4}\gamma + 0$ and $S^{2p-2}\gamma = 0$. Let the order of γ be p^t, *then* $1 \le t \le p-1$, $p^{j-1} \cdot S^{2p-2j-2} \gamma = x_j \cdot p_* I' \alpha_j (2(m+p-j)p-1)$ for $1 \le$ $j \leq p-1$ *and for some integer* $x_i \not\equiv 0 \pmod{p}$ *and the order of* $S^{2p-2j-2}\gamma$ is $p^{\text{Min}(t,j)}$. Thus $p_*I'\alpha_j(2(m+p-j)p-1) \neq 0$ for $1 \leq j \leq n$ *and* $= 0$ *for* $t < j \le p-1$.

Proof. (i). The element $\gamma' = \gamma \circ \beta_1^r \beta_s (2mp-2+2p(p-1))$ be- $\log s$ to $\pi_{2m+1+k}(S^{2m+1}:p)$ for $k=2(m+(r+s+1)p+s-1)(p-1)-1$ $2r-5$. Since $\beta_1^r\beta_s(2mp-2+2p(p-1))$ is a stable element of order *p*, we have $p \cdot \gamma' = 0$. By Theorem 10.3, $H^{(2)}\gamma' = x \cdot I' \beta_1^{r+1} \beta_s (2mp-1)$ for some $x \not\equiv 0 \pmod{p}$. Thus γ' is of order p and not divisible by *p* since the same is true for $H^{(2)}\gamma$, by Theorem 2.2, where we have $2m+1+k<2p^2m-5$ from the assumption $m\geq p$ and Theorem 2. 2 can be applied for our case. Now, it is sufficient to prove that $S^{2p-4}: \pi_{2m+1+k}(S^{2m+1}:p) \to \pi_{2m+2p-3+k}(S^{2m+2p-3}:p)$ is an isomorphism onto. By (6.4), $\pi_{2m+2j+1+k}(Q_2^{2m+2j+1}:p)=0$ for $0 \le j < p-2$ We have also, by (6.4), $\pi_{2m+2j+k}(Q_2^{2m+2j+1}:p)=0$ for $0 \le j < p-2$ if $(r, s) \neq (p-3, 1)$ and $\approx Z_p$ generated by $Q^{m+j+1}(\alpha_{(p-1)p-j-2})$ if (r, s) $= (p-3, 1)$. $Q^{m+j+1}(\alpha_{(p-1)p-j-2})$ is not in the $H^{(2)}$ -image since $p_*\bar{Q}^{m+j+1}(\alpha_{(p-1)p-j-2}) \neq 0$ by Lemma 6.1, (iii). Then, from the exactness of the sequence (1.7), it follows that S^{2p-4} is an isomorphism onto,

(ii). The fact $H^{(2)}\gamma \neq 0$ is proved as above. Since $S^{2p-4}(\gamma \circ \beta_1)$ $(2mp-2+2p(p-1)) \neq 0$ by (i), we have $S^{2p-4}\gamma \neq 0$. By Theorem 10. 3, $p_* I' \alpha_1 (2(m+p-1)p-1) = S^{2p-4} \gamma + 0$. Apply Theorem 5. 3, (ii) to $\epsilon = I' \alpha_1 (2(m+p-1)p-1)$, then there exists an element γ_1 such that $S^2\gamma_1 = p_*\epsilon = S^{2p-4}\gamma$ and $p \cdot \gamma_1 = x \cdot p_* I' \alpha_s (2(m+p-2)p-1)$ for some $x \not\equiv 0 \pmod{p}$. By the exactness of $(1, 7)$, we have $\gamma_1 = S^{2p-6}\gamma +$ $y \cdot p_* I' \alpha_2 (2(m+p-2)p-1)$ for some integer y. It follows $p \cdot S^{2p-6} \gamma =$ $x \cdot p_* I' \alpha_2 (2(m+p-2)p-1)$. Repeating this process (ii) is proved. q.e.d.

Before proving the next theorem, we need some remaks on the concept of the *coextension*. Let $f: Y \rightarrow X$ be a map and construct a mapping cone

$$
X^*=X\cup_{f} CY
$$

of *f*. Let \bar{f} : $(CY, Y) \rightarrow (X^*, X)$ be a characteristic map, i.e., $\bar{f} | Y = f$ and \vec{f} is a homoemorphism of $CY-Y$ onto $X^* - X$. A coextension

$$
\beta\in \pi(SZ\,;X)
$$

of $\beta \in \pi(Z; Y)$, with the relation $f_* \beta = 0$, is defined as follows. Let $g: Z \rightarrow Y$ be a representative of β . Represent each point of *SZ* and *CX* by pairs (z, t) , $z \in Z$, $t \in I$ and (y, s) , $y \in Y$, $z \in I$. Then β is represented by a map \tilde{g} : $SZ \rightarrow X$ given by $\tilde{g}(z, t) = (g(z), 2t)$ for $0 \le t \le 1/2$ and $\tilde{g}(z, t) \in X$ for $1/2 \le t \le 1$. We see that $\pi \circ \tilde{g}$ is homotopic to *Sg* for a map $\pi: X^* \rightarrow SY$ shrinking *X*. Consider the relativization

$$
j_*: \pi(SZ; X^*) = \pi(CZ, Z; X^*, *) \to \pi(CZ, Z; X^*, X).
$$

Then from the above definition we have

(10.5). An element γ of $\pi(SZ; X^*)$ is a coextension of $\beta \in \pi(Z; Y)$ *if and only if the following relation hold:*

$$
j_*(\gamma)=\bar{f}_*(\partial^{-1}\beta)\,,
$$

where \overline{f}_* : π (*CZ*, *Z*; *CY*, *Y*) \rightarrow π (*CZ*, *Z*; *X*^{*}, *X*) *is induced by f* and ∂ : π (CZ, Z; CY, Y) $\stackrel{\infty}{\rightarrow} \pi$ (Z; Y) is the boundary may (restriction).

The map \bar{f} defines canonically a map $\Omega \bar{f}$: $Y \rightarrow \Omega(X^*, X)$. Then we have

232 *Hirosi T oda*

(10. 5)'. $\gamma \in \pi(SZ; X^*)$ is a coextension of $\beta \in \pi(Z; Y)$ if and only if

$$
\Omega(j_*\gamma)=(\Omega\bar{f})_*\beta\,,
$$

where $\Omega: \pi(CZ, Z; X^*, X) \to \pi(Z; \Omega(X^*, X))$ *is one-to-one map of (1.1).*

These (10. 5) and (10. 5)' can be taken as the definition of the coextension.

Lemma 10.5. Assume that X is arcwise connected. Let f : $S^{r-1} \to X$ be a map, $X^* = X \cup_{f} e^{r}$ a mapping cone of f and $\pi : X^* \to S^*$ *be a map shrinking X*. *Then for arbitrary element* α *of* $\pi_i(X^*)$, *its suspension* $S\alpha \in \pi_{i+1}(SX^*)$ *is a coextension of* $(\pm i_*)\circ \pi_{*}\alpha \in \pi_{i}(S^*)$. *Thus, if* $\pi_{*}\alpha = 0$ *then Sa is in the image of the injection homomor* $phism(Si)_{*}: \pi_{i+1}(SX) \rightarrow \pi_{i+1}(SX^{*}).$

Proof. The canonical inclusion $\Omega j \circ i_0 : X^* \to \Omega S X^* \subset \Omega (S X^*, S X)$ can be extended over a map $i_i: X^* \cup CX \rightarrow \Omega(SX^*, SX)$ since $i_0X \subset$ $\Omega(SX, SX)$ and $\Omega(SX, SX)$ is contractible to a point. π defines a homotopy equivalence of $X^* \cup CX$ onto $S^r = SS^{r-1}$ (by shrinking *CX*). Let $h: S^r \rightarrow X^* \cup CX$ be a homotopy inverse. It is easily seen that $h_1 = i_1 \circ h : S^r \to \Omega(SX^*, SX)$ represents a generator of $\pi_r(\Omega(SX^*, SX)) \approx \pi_{r+1}(SX^*, SX) \approx Z$. The map $\Omega(S\bar{f}): S^r \to \Omega(SX^*)$ *SX*) induced by the characteristic map $S\bar{f}: CS^r \rightarrow SX^*$ of the $(r+1)$ -cell in SX^* represents also a generator of $\pi_r(\Omega(SX^*,SX))$. Thus $\Omega(S\bar{f})$ is homotopic to h_1 up to sign. For $\alpha \in \pi_i(X^*)$ we have

$$
\Omega((Sj)_{*}S\alpha) = (\Omega j)_{*}\Omega(S\alpha) = (\Omega j)_{*}i_{\alpha*}\alpha = h_{1*}\pi_{*}\alpha = (\pm \Omega S\bar{f})_{*}(\pi_{*}\alpha)
$$

by use of $(1, 2)$. This shows, by $(10.5)'$, that $S\alpha$ is a coextension of $(\pm \iota_r) \circ \pi_* \alpha$. If $\pi_* \alpha = 0$, then $(Sj)_* S \alpha = \Omega^{-1}((\pm \Omega S \overline{f})_* \pi_* \alpha) = 0$. By the exactness of the homotopy sequence of the pair (SX^*, SX) , we have that *Sa* is in the image of $(Si)_*$. *.* q.e.d.

Theorem 10.6. *Let* $m \equiv 1 \pmod{p}$ and $m \ge p+1$. Assume that $\pi_{i-2i}(S^{2m}p+2(j-1)(p-2)-1} : p) = 0$ *for* $1 \leq j < p-1$. Then for an arbitrary element β of $\pi_{i-2p+4}(S^{2mp-2+2(p-1)^2} : p)$, there exists elements $\gamma \in \pi_{i+2p+1}$ *p*) and $\gamma' \in \pi_{i+2p-1}(Q_2^{2m+2p-3}:p)$ such that

$$
H_p \gamma = IH^{(2)} \gamma = x \cdot \beta_1 (2mp+1) \circ S^{2p-1} \beta \text{ for some integer } x \equiv 0 \pmod{p},
$$

$$
S^{2p-4} \gamma = p_{*}\gamma', \quad I \gamma' = \alpha_1 (2(m+p-1)p+1) \circ S^{4p-2} \beta \text{ and } S^{2p-2} \gamma = 0.
$$

Proof. Choose a complex $K(m, p)$ as in Lemma 10.1 and let $h_{p-1}: Y_p^{2mp-3+2(p-1)^2} \to K(m, p-1)$ be the attaching map as in Proposition 3.6. Consider the subcomplex $K_0(m, p-1) \cup Y_p^{2mp-2}$ of $K(m, p-1)$ and let i_0 be the inclusion of this subcomplex. Since the complex $K_0(m, p-1) \cup Y_p^{2mp-2}$ is in a stable range, we may assume that it is a mapping cone

$$
K_{\scriptscriptstyle 0}(m,\,p\!-\!1) \cup Y_{\scriptscriptstyle P}^{_{2}{m}{\rho-2}} = S^{_{2}{m}{\rho-3}} \cup C(M \vee S^{_{2}{m}{\rho-3}})\,,
$$

where $M \vee S^{2mp-3}$ is a one point union of a complex $M = S^{2mp-4+2(p-1)}$ $\cup \cdots \cup e^{2m p-4+2(p-2)(p-1)}$ and $S^{2m p-3}$. Also we may assume that $M=$ $S^{2p-5}M_0$ for a complex $M_0 = S^{2mp-1} \cup \cdots \cup e^{2mp-1+2(p-3)(p-1)}$.

First we prove the following (10.6) for a coextension $i^*\alpha(2mp-3+2(p-1)^2)$ of $\alpha_1(2mp-4+2(p-1)^2)$ given in Section 4. (10. 6). $h_{p-1}*(i^*\alpha(2mp-3+2(p-1)^2)) = i_{0*}(\varepsilon')$

for a coextension $\varepsilon' \in \pi_{2mp-4+2p(p-1)}(K_0(m, p-1) \cup Y_p^{2mp-2}:p)$ of an *element* $\nu \oplus x \cdot \beta_1(2mp-3)$, $x \not\equiv 0 \pmod{p}$, where $\nu \in \pi_{2mp-5+2p(p-1)}(M)$ *and* \oplus *indicates the direct sum decomposition*: $\pi_t(M) \oplus \pi_t(S^{2mp-3}) \approx$ $\pi_r(M \vee S^{2m} p^{-3}), t = 2mp - 5 + 2p(p-1).$

Since $m \geq p+1$, the homotopy groups considered here are stable. In particular, $\pi_{t+1}(K(m, p-1), K_0(m, p-1) \cup Y_P^{2mp-2}) \approx \pi_{t+1}(K(m, p-1)/2)$ $(K_0(m, p-1) \cup Y_p^{2mp-2})$ and this has a trivial p-primary component by a similar reason as in the proof of Lemma 10.1 . We have also $\pi_{t+1}(K_0(m, p-1) \cup Y_p^{2mp-2}, S^{2mp-3}) \approx \pi_t(M \vee S^{2mp-3})$ and this shows that every element of $\pi_{t+1}(K_0(m, p-1), Y_p^{2m}p-2)$ is a coextension of an element of $\pi_t(M \vee S^{2m} \theta^{-3})$. It follows the relation of (10.6) for a coextension ε' of $\nu \oplus \beta', \ \beta' \in \pi_{t-1}(S^{2m}P^{-3}:p)$. To show $\beta' =$ $\mathbf{x} \cdot \beta_1(2m\mathbf{p}-3)$, we shrink the subcomplex $K_0(m, \mathbf{p}-1)$ of $K(m, \mathbf{p}-1)$, then Lemma 10.2 implies $\beta' = x \cdot \beta_1(2mp-3)$.

Next let i' : $Y_{p}^{2mp-2} \rightarrow K(m, p-1)$ be the inclusion. Then we have

(10.7).
$$
h_{p-1*}(i^*\alpha(2mp-3+2(p-1)^2)\circ S^{2p-4}\beta) = i'_*(\varepsilon)
$$
 for a coextension $\varepsilon \in \pi_i(Y_p^{2mp-2}:p)$ of $x \cdot \beta_1(2mp-3)\circ S^{2p-5}\beta$, $x \not\equiv 0 \pmod{p}$.

234 *Hirosi T oda*

To prove this it is sufficient to show $\nu \circ S^{2p-5}\beta = 0$. Since $m \geq p+1$, S^{2p-5} : $\pi_{2mp-2+2(p-1)^2}(M_0) \to \pi_{2mp-5+2p(p-1)}(M)$ is an isomor phism onto. Let $\nu = S^{2p-5}\nu'$ for some ν' . Consider a map $\pi' : M_0 \rightarrow$ $S^{2mp-1+2(p-3)(p-1)}$ which shrinks lower dimensional cells, then $\pi'_{*}(v' \circ \beta)$ belongs to $\pi_{i-2p+4}(S^{2mp-1+2(p-3)(p-1)}:p)$ which vanishes by the assumption of the theorem. By Lemma 10.5, $S(\nu \circ \beta) = i_{*}\nu''$ for some $p'' \in \pi_{i-2p+5}(SM_0^{2mp-1+2(p-4)(p-1)}:p)$, If $p=3$, $p \circ S^{2p-5}\beta = S(p' \circ \beta) = i_{*}p''$ $=0$. If $p > 3$, we consider *Sv''* and repeat the process, then the relation $\nu \circ S^{2p-5}\beta = 0$ is proved as the image of $\pi_{i-1}(* : p) = 0$.

Now considering the commutative diagram (10. 3), we have

$$
H^{(2p-2)}p_{*}(\Omega^{-(2p-1)}g'_{*}i^{*}\alpha(2mp-3+2(p-1)^{2})\circ S^{2p-4}\beta)=i_{*}g_{*}\varepsilon.
$$

 P utting $\gamma' = x' \cdot \Omega^{-(2p-1)} g'_* i^* \alpha (2mp-3+2(p-1)^2) \circ S^{2p-4} \beta$ for suitable $x' \not\equiv 0 \pmod{p}$, we have by Lemma 2.5

$$
I\gamma' = S^{2p+2}(\pi_* i^* \alpha (2mp-3+2(p-1)^2) \circ S^{2p-4} \beta)
$$

= $\alpha_1 (2(m+p-1)p+1) \circ S^{4p-2} \beta$.

Next considering the diagram (10. 4), we have

$$
H^{(2p-4)}(p_*\gamma') = \Omega^{-2} j_* H^{(2p-2)}(p_*\gamma') = \Omega^{-2} j_* i_* g_*(\varepsilon) = 0.
$$

Thus there exists an element γ_1 of $\pi_{i+3}(S^{2m+1} : p)$ such that $S^{2p-4}\gamma_1$ $= p_* \gamma'$. As in the proof of Theorem 10.3, modifying γ_1 by $\gamma =$ $\gamma_1 - p_* \gamma_2$ for some $\gamma_2 \in \pi_{i+3}(Q_{2p-1}^{2m+1}:p)$, we have

$$
H^{(2)}\gamma = g_*\varepsilon, \quad S^{2p-4}\gamma = p_*\gamma' \quad \text{and} \quad S^{2p-2}\gamma = 0.
$$

Since ε is a coextension of $x \cdot \beta_1(2mp-3) \circ S^{2p-5}\beta$ by (10.7), we have using Lemma 2. 5

$$
H_p \gamma = IH^{(2)} \gamma = Ig_* \mathcal{E} = y \cdot S^3 \pi * \mathcal{E} = xy \cdot \beta_1 (2mp+1) \circ S^{2p-1} \beta ,
$$

for some $y \neq 0$ (mod p). Changing xy to x, the theorem is proved. q.e.d.

The proof of the following theorem is similar to one of Theorem 10. 4, using Theorem 10. 6 in place of Theorem 10. 3.

Theorem 10.7. *Assume* $m \equiv 1 \pmod{p}$ *and* $m \geq p+1$ *. If* $0 \leq r$ *,* $1 \leq s$ *and* $r+s < p-1$ *, then there exist elements*

$$
\gamma \in \pi_{2mp+2\left(\left(r+s+1\right)p+s-1\right)\left(p-1\right)-2r-3}(\mathbf{S}^{2m+1}:\mathbf{p})
$$
\n
$$
\gamma' \in \pi_{2mp+2\left(\left(r+s+1\right)p+s\right)\left(p-1\right)-2r-5}(\mathbf{Q}_{2}^{2m+2p-3}:\mathbf{p})
$$

such that

 $H_p \gamma = I H^{(2)} \gamma = x \cdot \beta_1^{r+1} \beta_s (2mp+1) \pm 0$ for some integer $x \equiv 0 \pmod{p}$ $S^{2p-4}\gamma = p_*\gamma' + 0$, $I\gamma' = \alpha_1\beta_1^r\beta_s(2(m+p-1)p+1)$ and $S^{2p-2}\gamma = 0$.

Thus γ *is an unstable element of the third type. The elements* $S^{2j}\gamma$, $0 \leq j \leq p-2$, generate direct summands isomorphic to Z_{p}

The corresponding results for $m=1$ will be seen in the next section.

For unstable elements of the fourth type, we have the following

Theorem 10.8. *Assume* $m \equiv 0 \pmod{p}$, $m \equiv (p-2)p \pmod{p^2}$ and $m \geq 2p$. Then there exist elements $\gamma \in \pi_{2mp+2(2p+1)(p-1)-2}(\mathbb{S}^{2m+1})$ *and* $\gamma' \in \pi_{2m} p + 2(2p+2)(p-1)}(Q_2^{2m+2p+1}:p)$ *such that*

$$
H^{(2)}\gamma = x \cdot I'\beta_2(2m p-1) \qquad \text{for some integer} \quad x \equiv 0 \pmod{p},
$$

$$
S^{2p}\gamma = p_{*}\gamma', \quad I\gamma' = \beta_1(2(m+p+1)p+1) \quad \text{and} \quad S^{2p+2}\gamma = 0.
$$

Proof. By Theorem 2.2, there exists an element γ' such that $I\gamma' = \beta_1(2(m+p+1)p+1)$. Let $t = 2mp+2(2p+1)(p-1)-2$ and consider the exact sequences

$$
\pi_{t+2j-2}(S^{2m+2j-1})\xrightarrow{S^2} \pi_{t+2j}(S^{2m+2j+1})\xrightarrow{H^{(2)}} \pi_{t+2j-3}(Q_2^{2m+2j-1})\xrightarrow{\hat{p}_*}\cdots
$$

for $j = 0, 1, 2, \dots, p$. By $(6, 4)$, $\pi_{t+2j-3}(Q_2^{2m+2j-1}: p) = 0$ if $1 \leq j < p$, \approx *Z*_p generated by $Q^m(\beta_2) = I'\beta_2(2mp-1)$ if $j=0$ and \approx *Z*_p generated by $\overline{Q}^{m+p}(\alpha_1\beta_1)$ if $j=p$. $\overline{Q}^{m+p}(\alpha_1\beta_1)$ is characterized by the relation $IQ^{m+p}(\alpha_1\beta_1) = \alpha_1\beta_1(2(m+p)p+1)$. Then, by use of Theorem 10.7, $p_*Q^{m+p}(\alpha_1\beta_1)$ \neq 0. From the exactness of the above sequences, the above S^2 are epimorphisms of the p-primary components for $1 \leq j \leq p$. Thus there exists an element $\gamma \in \pi_t(S^{2m+1}:p)$ such that $S^{2p}\gamma = p_*\gamma'.$ We can put $H^{(2)}\gamma = x \cdot I' \beta_2(2mp-1)$ for some integer x.

We assume $x \equiv 0 \pmod{p}$ and lead to a contradiction. From this assumption it follows $\gamma = S^2 \gamma_0$ for some γ_0 . Consider the following exact and commutative diagram :

$$
\pi_{t-3}(\Omega Q_{2p-1}^{2m-1})
$$
\n
$$
\pi_{t-2}(\Omega_{2p+3}^{2p+3})
$$
\n
$$
\pi_{t+2p}(Q_{2^{m+2p+1}}^{2p+2}) \xrightarrow{\Omega_{2p+3}} \pi_{t-3}(\Omega_{2p+3}^{2p+3}Q_{2^{m+2p+1}}^{2p+2})
$$
\n
$$
\pi_{t-2}(S_{2m-1}) \xrightarrow{S_{2p+2}} \pi_{t+2p}(S_{2m+2p+1}) \xrightarrow{H^{(2p+2)}} \pi_{t-3}(Q_{2p+2}^{2m-1})
$$

236*H i rosi T o d a*

 $We have d_*\Omega^{2p+3}\gamma' = H^{(2p+2)}p_*\gamma' = H^{(2p+2)}S^{2p+2}\gamma_0 = 0.$ Thus there exists $\varepsilon' \in \pi_{t-3}(\Omega Q_{2n+4}^{2m-1} : p)$ such that $(\Omega j)_* \varepsilon' = \Omega^{2p+3} \gamma'$. Consider $\varepsilon = \Omega^{-1} \varepsilon' \in \pi_{t-2}(Q_{2p+4}^{2m-1} : p)$, then $j_* \varepsilon = \Omega^{2p+2} \gamma'$ for $j_* : \pi_{t-2}(Q_{2p+4}^{2m-1})$ n_{t-2} (12 \mathbf{Q}_2).

Since $m \geq 2p$, by Proposition 3.6 and Lemma 2.5, we may replace Q_{2p+4}^{2m-1} and $\Omega^{2p+2}Q_2^{2m+2p+1}$ by $K(m, p+2)$ and $Y_p^{2(m+p)p-2p-1}$ respectively and we may consider that $\Omega^{2p+2} \gamma'$ is a coextension of $x' \cdot \beta_1(2(m+p)p-2p-2)$, $x' \not\equiv 0 \pmod{p}$. As a characterization of the element β_1 , we know [13] [10] that in a mapping cone $Y_{p}^{2(m+p)p-2p-1} \cup e^{t-1}$ of $\Omega^{2p+2}\gamma'$ we have $0^{p}H^{2(m+p)p-2p-2}$; Z_{p} $\neq 0$, hence the same is true in a mapping cone $K(m, p+2) \cup e^{t-1}$ of ε . By identifying $H^*(K(m, p+2); Z_p)$ with $H^*(Q_{2n+4}^{2m-1}; Z_p)$ in lower dimensions this is indicated by $O^p a_{p+1} \neq 0$ in $K(m, p+2) \cup e^{t-1}$. By Corollary 8.4, we have $\theta^{p+1}a_0 = \binom{m(p-1)-1}{p+1}a_{p+1} = ((m/p)+1)a_{p+1}$ $P(P^1a_0 = -P^p a_1 = -\binom{(m+1)(p-1)}{p}a_{p+1} = (m/p)a_{p+1}$. On the other hand, by Adem's relation, $\theta^p \theta^{p+1} = \theta^{2p+1} + \theta^{2p} \theta^1 = \theta^1 \theta^{2p} + \theta^2 \theta^2$ $((1/2)\mathcal{O}^p\mathcal{O}^p - \mathcal{O}^{2p-1}\mathcal{O}^1)\mathcal{O}^1$, i.e., $\mathcal{O}^p(2\mathcal{O}^{p+1} - \mathcal{O}^p\mathcal{O}^1) = \mathcal{O}^1(2\mathcal{O}^{2p} +$ $\mathcal{P}^{2p-2}\mathcal{P}^{1}\mathcal{P}^{1}$. We have $(2\mathcal{P}^{2p}+\mathcal{P}^{2p-2}\mathcal{P}^{1}\mathcal{P}^{1})a_{0}=0$ since there is no cell of the corresponding dimension. Thus $0 = \mathcal{P}^p(2\mathcal{P}^{p+1} - \mathcal{P}^p\mathcal{P}^1)a_0$ $= ((m/p) + 2) \theta^p a_{p+1}$. This contradicts to $\theta^p a_{p+1} \neq 0$ since $m \equiv -2p$ (mod p^2). We conclude $x \not\equiv 0 \pmod{p}$. q.e.d.

In the following section we shall see the above theorem holds for $m = p \geq 5$.

It is an open question whether the above theorem holds for β_s and β_{s+1} instead of β_1 and β_2 respectively.

11. **Unstable** groups-II.

The main theorem of this section is briefly stated as follows.

Theorem 11.1. For $m \ge 1$ and $k < 2p^2(p-1) - 3$, we have the *following direct sum decomposition:*

$$
\pi_{2m+1+k}(S^{2m+1}:p)=A(m,k)+B(m,k)+\sum_{i=1}^4 U_i(m,k),
$$

where the subgroups A (m, k) and B (m , k) are mapped isomorphically i *into the stable group* π_{k}^{S} *under* S^{∞} *and the subgroups* $U_{t}(m, k)$ *are*

generated by unstable elements of the t-th ty pe. (The precise definition of these subgroups will be given in the sequel.)

The fundamental tool of the proof is the following two exact sequences :

$$
(11. 1) = (1. 7) \quad \cdots \xrightarrow{H^{(2)}} \pi_{2m-1+k}(Q_2^{2m-1}: p) \xrightarrow{\hat{P}_{*}} \pi_{2m-1+k}(S^{2m-1}: p) \xrightarrow{S^2}
$$

$$
\pi_{2m+1+k}(S^{2m+1}: p) \xrightarrow{H^{(2)}} \pi_{2m-2+k}(Q_2^{2m-1}: p) \longrightarrow \cdots,
$$

$$
(11. 2) = (2. 5) \quad \cdots \xrightarrow{I} \pi_{2m+3+k}(S^{2m+1}: p) \xrightarrow{\Delta} \pi_{2m+1+k}(S^{2m+1}: p) \xrightarrow{I'}
$$

$$
\pi_{2m-1+k}(Q_2^{2m-1}: p) \xrightarrow{I} \pi_{2m+2+k}(S^{2m+1}: p) \longrightarrow \cdots.
$$

We shall use the notation $Q^m(\gamma)$ and $\overline{Q}^m(\gamma)$ of (6.3), i.e. $Q^m(\gamma)$ is an element of $\pi_i(Q_2^{2^{m-1}}: p)$ such that $Q^m(\gamma) = I'(\gamma')$ and $S^{\infty}\gamma' = \gamma$ for some γ' ; $\overline{Q}^m(\gamma)$ is an element of $\pi_i(Q_2^{2m-1}:p)$ such that $S^{\infty}I\overline{Q}^m(\gamma) = \gamma$.

In the following we always assume $m \geq 1$ and $k \leq 2p^2(p-1)-3$.

We start from the definition of $A(m, k)$. We have seen in Section 4 that there exists $\alpha_r(2m+1)=S^{2m-2}\alpha_r(3)$ for each $r\geq 1$ which is of order *p* and satisfies $S^{\infty} \alpha_r (2m+1) = \alpha_r$. Also we have seen in Lemma 7.3 that there exists $\alpha'_{s,p}(2m+1)=S^{2m-4}\alpha'_{s,p}$ (5) for $m \geq 2$ and $1 \leq s \leq p$ which is is order p^2 and $S^{\infty} \alpha'_{s,p}(2m+1) = \alpha'_{s,p}$. Remark that we can define $\alpha'_r(2m+1) = x \cdot \alpha_r(2m+1)$ for $r \not\equiv 0 \pmod{p}$ for some $x \not\equiv 0 \pmod{p}$. (See (6.2)). By use of these elements $A(m, k)$ is defined as follows.

(11.3).
$$
A(m, 2sp(p-1)-1) \approx Z_{p^2}
$$
 generated by $\alpha'_{sp}(2m+1)$
for $m \ge 2$ and $1 \le s < p$,

$$
A(m, 2r(p-1)-1) \approx Z_p
$$
 generated by $\alpha_r(2m+1)$
(or $\alpha'_r(2m+1)$) for $m=1$ and for $r \equiv 0 \pmod{p}$,
 $A(m, k) = 0$ for $k \equiv -1 \pmod{2p-2}$.

In order to define $B(m, k)$ we prove

Lemma 11.2. *There exists an element* $\beta_1(2p-1) \in \pi_{2p-1+2p(p-1)-2}$ $(S^{2p-1}: p)$ *which is of order* p^2 *and satisfies* $S^{\infty}\beta_1(2p-1) = \beta_1$ *and* $H^{(2)}\beta_1(2p-1) = x \cdot Q^{p-1}(\alpha_1)$, $x \not\equiv 0 \pmod{p}$. The order of $\beta_1(2m+1)$ $S^{2m-2p+2}\beta_1(2p-1)$ *is p for* $m \geq p$.

238 *Hirosi Toda*

For $2 \leq s \leq p$, there exists an element $\beta_s(2p+3) \in \pi_{2p+3+2(sp+s-1)}$ $\mathcal{L}_{\mathsf{x}(p-1)-2}(S^{2p+3}:p)$ of order p staisfying $S^{\infty}\beta_s(2p+3)=\beta_s$.

The order of $\alpha_1\beta_1(3) = \alpha_1(3)\circ S\beta_1(2p-1)$ is p. For $2 \leq s < p$, there exists an element $\alpha_1\beta_s(5) \in \pi_{z(s_{\bm{p}+s)(\bm{p}-1)+2}}(S^5:p)$ of order p such *that* $S^2(\alpha_1\beta_s(5)) = \alpha_1(7) \circ S\beta_s(2p+3)$.

Proof. The first two assertion were seen in the proof of Theorem 7.1. The third assertion for $\beta_s(2p+3)$ follows from Corollary 6. 4, (ii).

By use of $(1, 3)$, (iv) , we have $p(\alpha_i\beta_i(3)) = p \cdot \alpha_i(3) \circ S\beta_i(2p-1) = 0$. Since $S^{\infty}(\alpha_1\beta_1(3)) = \alpha_1\beta_1 \neq 0$, the order of $\alpha_1\beta_1(3)$ is *p*. According to $(1, 9)$, decempose $S\alpha_1(5) \circ \beta_s(2p+2)$ into a direct sum $S(\alpha_1 \beta_s(5))$ + $\left[\iota_{\epsilon}, \iota_{\epsilon} \right] \circ \gamma$. Since $p(S\alpha_1(5) \circ \beta_s(2p+3)) = S\alpha_1(5) \circ p \cdot \beta_s(2p+3) = 0$, we have $p \cdot \alpha_1 \beta_s(5) = 0$. As in (1.10), (ii), we have $S^2(\alpha_1 \beta_s(5)) = S(S\alpha_1(5))$ $\beta_s(2p+3)) = \alpha_1(7) \circ S\beta_s(2p+3).$ q.e.d.

We denote $\beta_s(2m+1) = S^{2m-2p-2}\beta_s(2p+3)$ for $m \geq p+1$. As compositions of β_1 and β_2 , we define $\beta_1^r \beta_2^r (2m+1)$ for $m \geq p-1$ if $r>1$ or $s=1$ as is seen in the proof of Lemma 6.1. We also define $\alpha_1\beta_1^r\beta_s(2m+1)$ for $m\geq 1$ if $r\geq 1$ or $s=1$ and for $m\geq 2$ if $r=0$, $s\geq 2$ by $\alpha_1\beta_1^r\beta_2(2m+1)=\alpha_1(2m+1)\circ\beta_1^r\beta_2(2m+2p-2)$ and by the element $\alpha_1 \beta_s(5)$ of Lemma 11.2. We define $B(m, k)$ as follows. (11.4) . $B(m, 2((r+s)p+s-1)(p-1)-2(r+1)) \approx Z_p$ generated by $\beta_1^r \beta_s(2m+1)$ *for* $m \geq p-1$ *if* $r \geq 1$ *and* $s \geq 1$ *for* $m > b$ *if* $r = 0$ *and* $s = 1$ *, for* $m \geq p+1$ *if* $r=0$ *and* $s \geq 2$. $B(m, 2((r+s)p+s)(p-1)-2(r+1)-1) \approx Z_p$ generated by $a_1 \beta_1^r \beta_2 (2m+1)$ *for* $m \ge 1$ *if* $r \ge 1$ *or* $s=1$, *for* $m>2$ *if* $r=0$ *and* $s>2$.

For the other cases we put $B(m, k) = 0$.

Lemma 11.3. The subgroups $A(m, k) + B(m, k)$ are direct factors of the groups $\pi_{2m+1+k}(S^{2m+1}:p)$ for $m\geq 2$ and $k<2p^2(p-1)-3$.

This follows easily from (6. 1) and the above definitions.

The homomorphism S^2 maps $A(mp-1, k)+B(mp-1, k)$ isomorphically onto $A(mp, k)+B(mp, k)$ except the case $m=1, k=$ $2p(p-1)-2$. Then the homomorphism Δ in the sequence (11.2)

is determined by the formula (2.7) : $\Delta S^2 \alpha = p \cdot \alpha$. From the cxactness of (11.2) , we have

(11.5).
$$
Q^m(i)
$$
, $Q^m(\alpha'_r)$ and $\overline{Q}^m(\alpha_r)$ exist for $r \ge 1$. $\overline{Q}^m(\beta'_1\beta_s)$ and $Q^m(\beta'_1\beta_s)$ exist for $m \ge 2$ and for $m = 1$ if $r \ge 1$. $Q^1(\beta_1)$ exists. $\overline{Q}^m(\alpha_1\beta'_1\beta_s)$ and $Q^m(\alpha_1\beta'_1\beta_s)$ exist for $m \ge 1$.

Remark that $\overline{Q}^1(\beta_1)$ does not exist since $\Delta \beta_1(2p+1) \neq 0$ as is seen in the proof of Theorem 7.2. We shall see also that $\overline{Q}^1(\beta_s)$ and $Q^1(\beta_s)$ do not exist for $s \geq 2$.

Note that in meta-stable cases the above elements of (11.5) are independent generators of order p as is seen in (6.4), but for smaller values of *m* the non-triviality of these elements has to be checked in the inductive proof of Theorem 11. 1.

The definition of $U_t(m, k)$ starts from the case $t=4$.

(11.6).
$$
U_4(lp+j, 2((s+l)p+s-1)(p-1)-3) \approx Z_p
$$

generated by an element $S^{2j}u_4(l, \beta_s)$ for $l \ge 1$, $s \ge 2$, $s+l < p$
and $j = 0, 1, 2, \cdots, p$.

For the other cases we put $U_4(m, k) = 0$. The element $u_4(l, \beta_s)$ is *required to satisfy*

$$
H^{(2)}(u_{4}(l, \beta_{s})) = x \cdot Q^{1}(\beta_{s}), \quad x \not\equiv 0 \pmod{p},
$$

$$
S^{2}(\mu_{4}(l, \beta_{s})) = p_{*}\overline{Q}^{1}(\beta_{s-1}) \quad and \quad S^{2}(\mu_{4}(l, \beta_{s})) = 0.
$$

Note that we know the existence of such $u_4(l, \beta_s)$ only for the case $l \geq 2$ and $s = 2$ in Theorem 10.8.

(11.7).
$$
U_s(lp+j, 2((r+s+l)p+s-1)(p-1)-2(r+1)-1) \approx Z_p
$$
\n*generated by an element* $S^2 u_s(l, \beta_1^r \beta_s)$ *for* $r \ge 0$, $s \ge 1$, $l \ge 1$, *and* $j = 0, 1, \dots, p-2$ *except the case* $r = 0$, $s \ge 2$. $U_s(lp+1+j, 2((r+s+l)p+s)(p-1)-2(r+1)) \approx Z_p$ \n*generated by an element* $S^2 i\bar{u}_s(l, \beta_1^r \beta_s)$ *for* $r \ge 1$, $s \ge 1$, $l \ge 0$, *and* $j = 0, 1, \dots, p-2$.

For the other cases we put $U_3(m, k) = 0$. The above generators are *required to satisfy, for some* $x, x' \not\equiv 0 \pmod{p}$,

$$
H^{(2)}u_{3}(l, \beta_{1}^{r}\beta_{s})=x\cdot Q^{I\cdot p}(\beta_{1}^{r}\beta_{s}), H^{(2)}\bar{u}_{3}(l, \beta_{1}^{r}\beta_{s})=x'\cdot \bar{Q}^{I\cdot p+1}(\beta_{1}^{r}\beta_{s}),
$$

240 *Hirosi Toda*

 $S^{2p-4}u_3(l, \beta_1^r\beta_s) = p_*Q^{(p+p-1)}(\alpha_1\beta_1^{r-1}\beta_s)$ $(= p_*Q^{(p+p-1)}(\alpha_1)$ if $r=0, s=1)$, $S^{2p-4}\bar{u}_3(l, \beta_1^r\beta_s) = p_*\bar{Q}^{1p+p}(\alpha_1\beta_1^{r-1}\beta_s).$

Note that except $\bar{u}_3(0, \beta_1^r \beta_s)$, the existence of the elements $u_3(l, \beta_1^r \beta_2)$ and $\bar{u}_3(l, \beta_1^r \beta_2)$ has been obtained in Theorem 10.4 and Theorem 10. 7 respectively.

(11.8).
$$
U_2(m, 2sp(p-1)-2) \approx Z_{p^2}
$$
 generated by $\gamma_s(2m+1)$ for $2 \leq m$, $\langle sp-1 \rangle$ and for $m = p-1$, $s = 1(\gamma_1(2p-1) = \beta_1(2p-1))$. $U_2(1, 2sp(p-1)-2) \approx Z_p$ generated by $\gamma_s(3)$. $U_2(sp-1, 2sp(p-1)-2) \approx Z_p$ generated by $S^2\gamma_s(2sp-3)$, $s \geq 2$.

For the other cases we put $U_2(m, k) = 0$. *These elements* $\gamma_s(2m+1)$ *are required to satisfy*

$$
S^2\gamma_s(2m+1) = p \cdot \gamma_s(2m+3) \quad \text{for } 1 \le m \le sp-2 \text{ and for } m = p-1, s = 1,
$$
\n
$$
H^{(2)}\gamma_s(2m+1) = x_m \cdot Q^m(\alpha'_{s_p-m}) \quad \text{for some } x_m \equiv 0 \pmod{p},
$$
\n
$$
H^{(2)}\gamma_1(2p-1) = x \cdot Q^{p-1}(\alpha_1) \quad \text{for some } x \equiv 0 \pmod{p}.
$$

Note that the above fact is known for *s=* 1, 2 by Proposition 8. 8 and the results of Section 7.

(11. 9).
$$
U_1(m, 2(p^2 - p + m)(p - 1) - 2) \approx Z_p + Z_p
$$
 generated by
\n $p_*\overline{Q}^{m+1}(\alpha_{p^2-p-1})$ and $p_*Q^{m+1}(\beta_1^{n-1})$ for $1 \leq m < p-1$.
\n $U_1(m, 2r(p-1)-2) \approx Z_p$ generated by $p_*\overline{Q}^{m+1}(\alpha_{r-m-1})$
\n(by $p_*Q^{m+1}(i)$ if $m = r-1$) for $1 \leq m < r, r \neq 0 \pmod{p}$)
\nand $r - m \neq p^2 - p$.
\n $U_1(m, 2((r+s)p+s+m)(p-1)-2(r+2)) \approx Z_p$ generated by
\n $p_*Q^{m+1}(\beta_1^r\beta_s)$ for $m \neq -1 \pmod{p}$, $r \geq 0$, $s \geq 1$ except
\nthe case $(r, s) = (p-2, 1)$ and the case $m = 1$, $r = 0$,
\n $s \geq 2$.
\n $U_1(m, 2((r+s)p+s+m)(p-1)-2(r+1)-1) \approx Z_p$ generated
\nby $p_*\overline{Q}^{m+1}(\beta_1^r\beta_s)$ for $m \neq 0 \pmod{p}$, $r \geq 0$, $s \geq 1$ except
\nthe case $m = 1$, $r = 0$, $s \geq 2$.
\n $U_1(m, 2(tp+t)(p-1)-4) \approx Z_p$ for $2 \leq m < t$.

For the other cases we put $U_1(m, k) = 0$.

Lemma 11.4. Assume that Theorem 11. 1 *is true for* π_{2m+1+i} $(S^{2m+1}: p)$, $i < k$. Then for $j < k + 2p - 4$, the groups $\pi_{2m-1+j}(Q_2^{2m-1}: p)$ *are generated by the elements in* (11. 5) *and the following elements of the corresponding dimensions:*

$$
I'(p_*Q^{m\ell}(\iota)), \quad 1 < m < p,
$$
\n
$$
Q^{m}(u_4(\beta_s)) = I'(S^{2p-2}u_4(m-1, \beta_s)), \quad m \ge 2, \quad s \ge 2, \quad m + s < p
$$

and $\bar{Q}^m(u_*(\beta_s))$ satisfying $I(\bar{Q}^mu_*(\beta_s)) = S^{2p}u_*(m-1, \beta_s)$, $m \geq 2, s \geq 2$ *m + s < p . These elements are independent in the following sense: if t is the num ber of th e above elements contained in th e group* π_{2m-1} ; $(Q_2^{2m-1} : p)$ *then the order of the group is pt.*

Proof. Since S^2 : $U_4(mp-1, i) \rightarrow U_4(mp, i)$ is an isomorphism by the definition (11.6), we have the existence of $Q^m(u_1(\beta_s))$ and $\overline{Q}^m(u_4(\beta_s))$ by use of (2.7). For the case $1 \lt m \lt p$, $p_*Q^{m}v(t)$ is a generator of $\pi_{2mp^2-3}(S^{2mp-1} : p) \approx Z_p$ and $\pi_{2mp^2-1}(S^{2mp+1} : p) = 0$. Thus *f* $f'(p_{*}Q^{m}p(\iota))$ exists. Remark that for the case $m=1$, $p_{*}Q^{p}(\iota)=0$ $p \cdot \beta_1(2p-1)$ is cancelled with $\beta_1(2p+1)$ and gives none.

Since the exact sequence (11. 2) indicates the independence of the elements in the lemma, it is sufficient to prove that the generators of $\sum_{i=1}^{3} U_i$ *(mp, i)* and $\sum_{i=1}^{3} U_i$ *(mp-1, i)* are cancelled by Δ , excepting the generators $\beta_1(2p+1)$, $\beta_1(2p-1) = \gamma_1(2p-1)$ and $p_*Q^{mp}(t)$. By checking the generators, we see that the following pairs are the candidates which are cancelled by Δ :

- (i) $(p_*Q^{mp+1}(i), p_*\overline{Q}^{mp}(a_i)),$
- (ii) $(p_*\bar{Q}^{m}p+1}(\alpha_{r-1}), p_*\bar{Q}^{m}p(\alpha_r))$ for $r \not\equiv 0 \pmod{p}, r \geq 2$,
- *(iii)* $(\gamma_s(2mp+1), \gamma_s(2mp-1))$ for $1 \leq m < s$,
- (iv) $(u_3(m, \beta'_1/\beta'_s), p_*Q^{m}P(\beta'_1)$ for $r \geq 1$ or $s=1$,
- (v) $(u_4(m, \beta_s), p_*\overline{Q}^{mp}(\beta_s))$ for $s \geq 2$,

(vi)
$$
(p_*Q^{m+1}(\beta_1^r\beta^s), S^{2p-4}\bar{u}_3(m-1, \beta_1^{r-1}\beta_s))
$$
 for $r \ge 0, s \ge 1, m \ge 2$,

By Lemma 6.1., (iii) we have $H^{(2)}p_*Q^{mp+1}(\alpha_{r-1}) = x' \cdot Q^{mp}(\alpha_r')$ and $H^{(2)}p_*\bar{Q}^{mp}(\alpha_r) = x'' \cdot Q^{mp-1}(\alpha_{r+1}')$ for some $x', x'' \not\equiv 0 \pmod{p}$. Then it follows from Corollary 9.5 that $H^{(2)} \Delta (p_* Q^{m p+1}(\alpha_{r-1})) =$ $xx' \cdot Q^{m p - 1}(\alpha'_{r+1}) = (xx'/x'') \cdot H^{(2)} p_* \overline{Q}^{m p}(\alpha_r)$. By the exactness of the sequence (11. 1) we have

$$
\Delta(p_*\bar{Q}^{m\,p+1}(\alpha_{r-1})) \equiv y \cdot p_*\bar{Q}^{m\,p}(\alpha_r) \quad \text{mod } Im \, S^2
$$

242 *Hirosi T oda*

for some $y \neq 0 \pmod{p}$. This shows that the pair (i) is cancelled by Δ . The proof for the pairs (ii), (iii), (iv) and (v) is similar to the above, by use of Corollaries 9. 5, 9. 4, Lemma 6. 1 and the relations in $(11.6)-(11.8)$. Consider the pair (vi) . By (11.7) , $S^{2p-4}\bar{u}_3(m-1, \beta_1^{r+1}\beta_s) = p_*\bar{Q}^{mp}(\alpha_1\beta_1^r\beta_s)$. Compare $\bar{Q}^{mp}(\alpha_1\beta_1^r\beta_s)$ and the composition $\bar{Q}^{mp}(\beta_1^r\beta_s) \circ \alpha_1(t)$ for some suitable *t*. The *I*-images of these two elements coincide, hence the difference is in the *I'*-image which vanishes in our case. Thus $S^{2p-4} \bar{u}_3(m-1, \beta_1^{r+1} \beta_s)$ $= p_*Q^{mp}(\beta_1^r\beta_s) \circ \alpha_1(t)$. Similarly, $p_*Q^{mp+1}(\beta_1^r\beta_s)$ coincides with $u_{3}(m, \beta_{1}^{r}\beta_{s})\circ\alpha_{1}(t-3)$ or $u_{4}(m, \beta_{s})\circ\alpha_{1}(t-3)$ up to non-zero contant. By the commutativity of Δ with the composition, the case (vi) follows from the cases (iv) and (v) . $q.e.d.$

Lemma 11. 5. *u p to som e non-z ero constants, w e have the following relations:*

$$
H^{(2)}\alpha_{1}(3) = Q^{1}(t), H^{(2)}\alpha_{r}(3) = \overline{Q}^{1}(\alpha_{r-1}) \quad \text{for} \quad 2 \leq r < p^{2},
$$
\n
$$
H^{(2)}\alpha'_{s,p}(5) = \overline{Q}^{2}(\alpha_{s,p-2}) \quad \text{for} \quad 1 \leq s < p,
$$
\n
$$
H^{(2)}(\beta_{1}^{r}\beta_{s}(2p-1)) = Q^{p-1}(\alpha_{1}\beta_{1}^{r-1}\beta_{s}) \quad \text{for} \quad r \geq 1 \text{ or } s = 1
$$
\n
$$
\text{and} \quad H^{(2)}(\alpha_{1}\beta_{1}^{r}\beta_{s}(3)) = Q^{1}(\beta_{1}^{r}\beta_{s}) \quad \text{for} \quad r \geq 1 \text{ or } s = 1.
$$

Proof. First remark

(11. 10). *In Lemma* 11.4 *of the case* $m=1$, the groups $\pi_{1+1}(Q_2^1 : p)$ are *isomorphic to* 0, Z_p *or* $Z_p + Z_p$ *.* $\pi_{1+j}(Q_2^1 : p) \approx Z_p + Z_p$ *only for the cases* $j = 2(p^2-p)(p-1), 2(p^2-p+1)(p-1)-1, 2(p^2-p+1)(p-1),$ $2p^{2}(p-1)-2$ *and* $=2p^{2}(p-1)-1$.

The first half of (11.10) is obtained just by checking the numbers of generators. Consider the last half. For the second and third cases of j , we see that the group are isomorphic to $Z_p + Z_p$ by I' and I respectively. For the first case of *j*, the group $\pi_{1+j}(Q_2^1 : p) \approx \pi_{4+j}(S^3 : p)$ contains $Z_p + Z_p \approx A(1, j-1) + B(1, j-1)$. For the remaining two cases the groups are generated by $\bar{Q}^1(\alpha_1\beta_{p-1})$, $Q^1(\beta_1^n)$ and $\overline{Q^1(\beta_1^n)}$, $Q^1(\alpha_{p^2-1})$ respectively. The elements $Q^1(\beta_1^n)$ and $Q^{\scriptscriptstyle 1\!}(\alpha_{{\bm p}^{\scriptscriptstyle 2}-1})$ are of order p . Also the other two elements are of order *p* since they are represented by some suitable composition. Thus (11. 10) is proved. Then the relations for $\alpha_r(3)$ is obvious. (The

relation for $\alpha_r(3)$ is true for general *r* which can be proved by use of Lemma 2.7 easily.) (11.10) also shows that $\alpha'_{s0}(5)$ is not contained in S²-image since it is of order p^2 . Thus $H^{(2)}\alpha'_{s\phi}(5) \neq 0$. From Lemma 11. 4 we can check that the only possibility is $H^{(2)}\alpha_{s}$ _{*p*}(5)= $x \cdot Q^2(\alpha_{s}$ _{*p*-2}), $x \not\equiv 0 \pmod{p}$. The relation for $\beta_1^r\beta_s$ follows from the relation $H^{(2)}\beta_1(2p-1) = x \cdot Q^{p-1}(\alpha_1), x \not\equiv 0 \pmod{p}$, of (11.8). The last relation follows from $(2. 13)$. q.e.d.

Now we consider the structure of the groups $\pi_{2m-1+j}(Q_2^{2m-1}:p)$ of Lemma 11.4. It is directly checked that the orders of the groups are at most p^2 . Consider the cases that the orders are p^2 . For metastable cases the groups are isomorphic to $Z_p + Z_p$ as is seen in (6.4). The possibility to be isomorphic to Z_{p^2} occurs for the cases of the first five ones of (6. 4) of lower *m* and the cases that the generators listed in Lemma 11. 4 overlapping to some other ones. Let $m \geq 2$. Then the first case of (6.4) is meta-stable. By a similar reason to the proof of (11. 10), the group splits for the fourth and the fifth cases of (6.4) . The same is true for the third case of (6.4) since the generator $\overline{Q}^m(\alpha_{(p-1)p-1})$ can be obtained as an image of $i^*\alpha^{(p-1)p-1}(2mp-2)$ which is of order p. Together with (11. 10), we obtain

(11. 11). *The group* $\pi_{2m-1+j}(Q_2^{2m-1}:p)$ *in Lemma* 11.4 *is isomorphic to* 0, Z_p *or* $Z_p + Z_p$ *except the cases that the groups are generated by the followings :*

$$
\begin{aligned}\n\{\mathcal{Q}^m(\alpha_{s_{p+s-1}}), \ \bar{\mathcal{Q}}^m(\beta_s)\} & \text{for} \quad 2 \leq m \leq s, \\
\{\bar{\mathcal{Q}}^2(\beta_1\beta_s), \ \mathcal{Q}^2(u_4(\beta_s))\} & \text{for} \quad s \geq 2.\n\end{aligned}
$$

We prove Theorem 11. 1.

Proof of Theorem 11.1. We define a subgroup $\pi'(m, k)$ of $\pi_{2m+1+k}(S^{2m+1}:p)$ by

$$
\pi'(m, k) = A(m, k) + B'(m, k) + U'_1(m, k) + U'_3(m, k) ,
$$

where $B'(m, k)$ is obtained from $B(m, k)$ by omitting the generators $\beta_s(2m+1), s \geq 1$, and $\alpha_1\beta_s(2m+1), s \geq 2$; $U'_1(m, k)$ is obtained from *U*₁(*m, k)* by putting $U'_1(m, 2(tp+t)(p-1)-4)=0$ and $U'_3(m, k)$ is obtained from $U_3(m, k)$ by omitting the generators $S^{2j}u_3(l, \beta_1)$ and 244 *H irosi Toda*

 $S^{2}i\bar{u}_{1}(0, \beta_{1}^{r}\beta_{s})$. The generators of $\pi'(m, k)$ satisfy the required conditions and the group $\pi'(m, k)$ is a direct factor of $\pi_{2m+1+k}(S^{2m+1}: p)$. This is shown by use of Lemma 6.1, (11.11), Lemma 11.2, Lemma 11.3, Lemma 11.5, Theorem 10,4 and Theorem 10.7. Put $\bar{\pi}(m, k)$ $=\pi_{2m+1+k}(S^{2m+1}:p)/\pi'(m,k),$ then

$$
\pi_{2m+1+k}(S^{2m+1}:p)\approx \pi'(m,k)+\overline{\pi}(m,k).
$$

We shall determine the group $\bar{\pi}(m, k)$. Denote by $Q'(m, k)$ a subgroup of $\pi_{2m-1+k} (Q_2^{2m-1} : p)$ generated by $H^{(2)} \pi'(m, k+1)$ and a maximal subgroup $Q_0(m, k)$ which is mapped monomorphically into $\pi'(m-1,k)$ under p_* . The subgroup $Q_0(m, k)$ is generated by corresponding elements of (11. 5) which appear in (11. 9) and in the last two relations of (11. 7). Then we have an exact sequence

$$
\cdots \to Q'(m, k) \xrightarrow{\hat{p}_*} \pi'(m-1, k) \xrightarrow{S^2} \pi'(m, k) \xrightarrow{H^{(2)}} Q'(m, k-1) \to \cdots.
$$

we put $P(m, k) = \pi_{2m-1+k}(Q_2^{2m-1}: p)/Q'(m, k)$, then we obtain an exact sequence

(11.12)

$$
\cdots \to P(m,k) \xrightarrow{\hat{p}_*} \overline{\pi}(m-1,k) \xrightarrow{S^2} \overline{\pi}(m,k) \xrightarrow{H^{(2)}} P(m,k-1) \to \cdots
$$

from (11.1). The group $P(m, k)$ is generated by the corresponding one of the following elements :

- (i) $Q^m(\alpha'_{n-m})$ for $1 \leq m \leq p-1$; $\overline{Q}^m(\alpha_{n-m})$ for $3 \leq m \leq p-1$ and $Q^p(\iota)$, *(ii)* $Q^m(\alpha'_{s_n-m})$ for $1 \leq m \leq sp-2$, $\overline{Q}^m(\alpha_{s_n-m})$ $3 \leq m \leq sp-1$ and $Q^{s}P(t)$, where $s > 2$. (iii) $Q^{sp-1}(\alpha_1)$ and $Q^{sp-p}(\beta_1)$ for $s \geq 2$ (iv) $Q'(\beta_1^r\beta_s)$ and $Q'(\alpha_1\beta_1^{r-1}\beta_s)$ for $r\geq 1$, $s\geq 1$
- (v) $Q^{l p 1}(\beta_s)$ and $Q^{l p + p + 1}(\beta_{s-1})$ for $l \ge 1$, $s \ge 2$
- (vi) the elements listed in Lemma 11. 4,
- *(vii)* $\overline{Q}^{p+1}(\beta_s)$ for $s \geq 1$,

First consider the case $k = 2sp(p-1)-1$, $s \ge 1$. In this case, we see that $P(m, k)=0$ for all *m*. Thus $\overline{\pi}(m, k)$ is mapped isomorphically into $\pi(m+1, k)$. In the stable range we see that $\bar{\pi}(m, k) = 0$. It follows that $\bar{\pi}(m, 2s\rho(p-1)-1)=0$ for all *m*. Next consider the case $k = 2s p(p-1)-2$, $s \ge 1$. For the case $s = 1$ we quote Theorem 7.1. Let $s \geq 2$. By the result just obtained we have exact sequences

$$
0 \to P(m, k) \to \overline{\pi}(m-1, k) \to \overline{\pi}(m, k) \to P(m, k-1) \to \overline{\pi}(m-1, k-1)
$$

for $m=1, 2, \cdots (\overline{\pi}(0, k)=\overline{\pi}(0, k-1)=0)$. We see $\overline{\pi}(m, k)=0$ for sufficiently large *m*. The elements of (ii) and the first element of (iii) are in the exact sequence. By Theorem 10.4, (ii) $p_*Q^{s}P^{-1}(\alpha_1)$ \neq 0. Thus we can omit $Q^{s,p-1}(\alpha_1)$ in computing $\overline{\pi}(m, k)$. By counting the number of the generators of (ii), we have that the order of $\pi(m, k)$ is p^2 if $2 \le m \le sp-2$ and is p if $m=1$ or $m=sp-1$. The cyclicity of the groups $\bar{\pi}(m, k)$ for $2 \le m \le s$ *b*-2 is obtained by use of Theorem 5. 4, (i), as in the proof of Theorem 7.1. Then we have that $\bar{\pi}(m, k)$ is isomorphic to $U_2(m, k)$ and generated by the element $\gamma_s(2m+1)$ of (11.8).

The remaining cases are computed rather simply. We mention that the elements of (iv) and (v) produce the elements $\bar{u}_3(0, \beta_1^r \beta_s)$ of (11. 7) and $u_s(l, \beta_s)$ of (11. 6) respectively, the elements of (vi) produce the groups $U_i(m, 2(tp+t)(p-1)-4)$ in (11.9) and the elements $\alpha_1 \beta_{t+1} (2m+1)$, and the element $\overline{Q}^{p+1}(\beta_s)$ produces β_{s+1} . The details are left to the readers.

Finally we remark that above discussion has been done by the induction on $k < 2p^2(p-1) - 3$, starting from the assumption of Lemma 11.4 . $q.e.d.$

In the above proof we have

(11. 12). *up to some non-zero constants the following relations hold:*

 $H^{(2)}\beta_s(2p+3) = Q^{p+1}(\beta_{s-1})$ *for* $2 \le s < p$ $H^{(2)}\alpha_1\beta_2(5) = I'(\hat{p}_*\hat{Q}^{2\hat{p}}(\iota))$ *and* $H^{(2)}\alpha,\beta,(5) = I(\bar{Q}^2u_1(\beta))$ *for* $3 \le s \le p$.

12. Meta-stable groups-II.

In the results of the previous section, we have seen the existence of an element $\gamma_s(2s p-3) \in \pi_{2s p^2 - 5}(S^{2s p-3}: p)$ for $1 \leq s < p$ such $x + 1$ $H^{(2)}\gamma_s(2s p - 3) = x \cdot Q^{s p - 2}(\alpha_2')$ for some $x \not\equiv 0 \pmod{p}$, $S^2\gamma_s(2s p - 3)$ \dot{x} and $S^4\gamma_s(2s p-3)=0$. The kernel of the homomorphism S^2 : $\pi_{2s} p^2_{-3} (S^{2s} p^{-1} : p) \to \pi_{2s} p^2_{-1} (S^{2s} p^{+1} : p)$ is generated by the element

246 *Hirosi Toda*

 $p_*Q^{s,p}(t) = p_*f'(t_{2s}p^2-1).$ It follows that $p_*f'(t_{2s}p^2-1) = S^{s}(x' \cdot \gamma_s(2s p-3))$ of some integer x' . In the proof of Proposition 8.8, we see that the existence of such an element $\gamma^{(1)} = x' \cdot \gamma_s(2s p - 3)$ implies the assertion of Proposition 8.8 for $h \equiv s p \pmod{p^2}$. Thus we have the following

Theorem 12.1. For each positive integer *s* with $s \neq 0 \pmod{p}$, *there exists a sequence* $\{ \gamma^{(t)} \in \pi_{2s} \}_{2=t-3}^{s}(\mathbf{S}^{2s} \mathbf{P}^{-2t-1} : p) \; ; \; t=1, 2, \cdots,$ $[(s p² - p - 2)/(p + 1)]$ *satisfying the following relations.*

$$
S^{2}\gamma^{(1)} = p_{*}I'(t_{2s}p^{2}-1) = p_{*}Q^{s}P(t),
$$

\n
$$
S^{2}\gamma^{(t)} = p \cdot \gamma^{(t-1)} \qquad \text{for} \quad t \ge 2,
$$

\nand
$$
H^{(2)}\gamma^{(t)} = x_{t} \cdot I'\alpha'_{t+1}(2(sp-t-1)p-1) = x_{t} \cdot Q^{s}P^{-t-1}(\alpha'_{t+1}) \ne 0
$$

for some $x_i \not\equiv 0 \pmod{p}$. If $t <$ Min([(sp²-p-2)/(p+1)], p²), we *have that the order of* $H^{(4)}\gamma^{(t)}$ *is* p^2 *.*

Next we prove the following

Theorem 12.2. For each positive integer *s* with $s \not\equiv 0 \pmod{p}$, there exists a sequence $\{\gamma_s(2m+1) \in \pi_{2m+2s p(p-1)-1}(S^{2m+1}: p)$; Max $(1, sp-p^2) \le m \le sp-2$ *satisfying the following relations:*

 $S^{2}\gamma_{s}(2s\rho-3) = p_{+}Q^{s\rho}(t) + 0$, $S^2\gamma_s(2m+1) = p \cdot \gamma_s(2m+3) = y_m \cdot p_*Q^{m+2}(\alpha_{s,p-m-2}) \neq 0$ *for* $m < sp-2$ *and* $H^{(2)}\gamma_s(2m+1) = x_m \cdot Q^m(\alpha'_{s p-m}) + 0 \pmod{Q^m(\alpha_1 \beta_1^{p-1})}$ if $s p - m = p^2 - p$, *where* x_m , $y_m \neq 0$ (mod *p*). The order of $\gamma_s(2m+1)$ is p^2 if Max $(1, s p - p^2) < m \leq s p - 2.$

Proof. Apply Theorem 5.3, (i) for $m = k = sp$ and $2 \le m \le sp - 1$, then we have elements $\varepsilon_m \in \pi_{2m+2s}$ $_{p(p-1)-1}$ $(Q_2^{2m+1}:p)$, $\varepsilon_m' \in \pi_{2m+2s}$ $_{p(p-1)-3}$ $(Q_2^{2m-1}: p)$ and $\gamma_m \in \pi_{2m+2s} p(p-1)-3}(S^{2m-1}: p)$ satisfying

 $p_* \varepsilon_m = S^2 \gamma_m$, $p_* \varepsilon_m' = p \cdot \gamma_m$, $I(\varepsilon_m') = x_m' \cdot \alpha_{s}$, $I(m) = m(2m+1)$, $I(m \neq 0 \pmod{p}$, $\varepsilon_{s} = Q^{s}P(t)$ and $I(\varepsilon_m) = \alpha_{s} = p - n-1}(2(m+1)p + 1), \quad m < s p - 1$.

By the exactness of $(11.2) = (2.5)$, $I(x'_m \cdot \varepsilon_{m-1} - \varepsilon'_m) = 0$ implies $\varepsilon'_m \equiv$ $x'_m \cdot \varepsilon_{m-1} \mod \Gamma' \pi_{2m+2s} (p-1)-1}$ (S^{2*mp*-1}: *p*). Thus

$$
p \cdot \gamma_m \equiv x'_m \cdot S^2 \gamma_{m-1} \mod p_* I'(\pi_{2m+2s p(p-1)-1}(S^{2m p-1}:p)).
$$

If $sp-m < p^2$ and $sp-m+p^2-p-1$, the group $I'(\pi_{2m+2s,p(p-1)-1})$ $(S^{2m}P^{-1}:p)$ vanishes by (6.1) and Lemma 11.4. If $sp-m=p^2$ $p-1$, this group is generated by $I'\beta_1^{p-1}(2mp-1)=Q^m(\beta_1^{p-1})$, and then $p \cdot \gamma_m = x'_m \cdot S^2 \gamma_{m-1} + z \cdot p_* Q^m(\beta_1^{p-1})$ for some integer *z*. Apply the homomorphism $H^{(2)}$ to the both sides of the last relation, then $p \cdot H^{(2)} \gamma_m = z \cdot H^{(2)} p_* Q^m(\beta_1^{n-1}) = zz' \cdot Q^{m-1}(\alpha_1 \beta_1^{n-1})$ for some $z' \not\equiv 0$ $(mod p)$, by the exactness of (11.1) and by Lemma 6.1, (ii) . We have $p\boldsymbol{\cdot} H^{(2)}\gamma_m\!=\!0$ and $Q^{m-1}(\alpha_1\beta_1^{p-1})\!=\!0$ by Theorem 2.2 and Lemma 11.4. It follows that $z \equiv 0 \pmod{p}$ and $p \cdot \gamma_m = x'_m \cdot S^2 \gamma_{m-1}$ for $s p$ $m < p^2$. By putting $\gamma_s(2sp-3) = \gamma_{sp-1}$ and $\gamma_s(2m+1) = (\prod_{j=m+2}^{sp-2} x'_j)\gamma_{m+1}$ for $1 \leq m < s$ *b* -2 , we have

 $(12.1).$ *There exists a sequence* $\{\gamma_s(2m+1) \in \pi_{2m+2s p(p-1)-1}(S^{2m+1}:p)\}$ $m=1,2,\cdots,sp-2$ *satisfying*

 $S^2\gamma_s(2s-3) = p_*Q^{sp}(t)$ $S^2\gamma_s(2m+1) = \gamma_m \cdot p_k \overline{Q}^{m+2}(\alpha_{s,n-m-2}), \quad for \quad 1 \leq m < s\ p-2$ *and* $S^2\gamma_s(2m+1) = p \cdot \gamma_s(2m+3)$ *for* $\text{Max}(1, sp-p^2-1) \leq m < sp-2$, *where* $y_m \not\equiv 0 \pmod{p}$.

Now, we compare the element $S^2\gamma_s(2m+1)$ with the element $S^2\gamma^{(s p-m-1)}$ of Theorem 12.1. For $m = sp-2$, we have $S^2\gamma_s(2sp-3)$ $p^*Q^{s,p}(t) = S^2\gamma^{(1)}$. By the exactness of the sequence (12.1), $S^2\gamma_s(2m+1) = S^2\gamma^{s(p-m-1)}$ implies $\gamma_s(2m+1) \equiv \gamma^{s(p-m-1)} \mod p_{*}\pi_{2m+2sp}$ $\mathbb{R}_{\times (p-1)-1}(Q_2^{2m+1}:p)$ and $S^2\gamma_s(2m-1)=p\boldsymbol{\cdot} \gamma_s(2m+1)\equiv p\boldsymbol{\cdot} \gamma^{(s\,p-m-1)}=p\boldsymbol{\cdot} \gamma^{(s\,p-1)}$ $S^2\gamma^{(s\,p-m-2)}\mod p_*(p\cdot \pi_{2m+2s\,p(p-1)-1}(Q_2^{2m+1}:p)).$ If $s\lt p, p\cdot \pi_{2m+2s\,p(p-1)-1}$ $(Q_2^{2m+1}: p) = 0$ by (11.11). If $s > p$, then $m \leq sp - p^2$ implies $2m+2s p(p-1)-1<2(m+1)p^2-5$, hence $p \cdot \pi_{2m+2s p(p-1)-1}(Q_2^{2m+1}:p)=0$ by Theorem 2. 2. By induction on decreasing *m we* have

 $(12.2).$ $S^2\gamma_s(2m+1) = S^2\gamma^{(s p-m-1)}$ and $\gamma_s(2m+1) \equiv \gamma^{(s p-m-1)} \mod 1$ $p_{*} \pi_{2m+2s p(p-1)-1}(Q_{2}^{2m+1}: p)$ *for* $\text{Max}(1, sp-p^2-1) \leq m \leq sp-2$.

By Theorem 12. 1, we have then

$$
H^{(2)}\gamma_s(2m+1) \equiv H^{(2)}\gamma^{(s\,p-m-1)} = x_m \cdot Q^m(\alpha'_{sp-m}) \neq 0
$$

 $\text{mod } H^{(2)}p_{*}\pi_{2m+2s}p(p-1)-1}(Q_{2}^{2m+1}:p). \text{ For } m \geq sp-p^{2}, \text{ by } (6,1) \text{ and }$ Lemma 11.4, the group $\pi_{2m+2s}(p(p-1)-1)}(Q_2^{2m+1}:p)$ is generated by

248 *Hirosi Toda*

 $Q^{m+1}(\alpha_{s} - m-1}), Q^{m+1}(\beta_1^{m-1})$ and $Q^{m+1}(\alpha_1 \beta_1^{m-1})$. Then, as is seen in the proof of Proposition 8. 8, we have

$$
H^{(2)}\gamma_s(2m+1) = x_m \cdot Q^m(\alpha'_{s_n-m}) \quad \text{for} \quad m + sp - p^2 - p \text{ and}
$$

Max (1, $sp - p^2$) $\leq m \leq sp - 2$

and

 $H^{(2)}\gamma_s(2m+1) \equiv x_m\cdot Q^m(\alpha'_{s_p-m}) \mod Q^m(\alpha_1\beta_1^{p-1}) \quad \text{if} \quad m = sp - p^2 - p \geq 1.$

We see also that $p_{\textstyle *} \pi_{\textstyle 2m+2s} p_{\textstyle (\textstyle p-1)-1}(Q_2^{2m+1}\colon p)$ does not contain $\gamma_s(2m+1).$ Thus $S^2\gamma_s(2m+1) = p \cdot \gamma_s(2m+3) \neq 0$. Obviously $p^2 \cdot \gamma_s(2m+1) =$ $p \cdot S^2 \gamma_s (2m-1) = p y_{m-1} \bar{Q}^{m+2} (\alpha_{s \, p-m-1}) = 0$. Thus the order of $\gamma_s (2m+1)$ is p^2 for Max $(1, s p - p^2) < m \leq s p - 2$. g.e

By use of the exact sequence (3.3) we can see that for $\text{Max (1, } sp\!-\!p^2\!-\!1) \!<\! m \!\leq\! sp\!-\!2 \text{ the element } H^{\scriptscriptstyle{(4)}}\gamma_s(2m\!+\!1) \text{ generates }$ a direct summand isomorphic to Z_{ρ^2} . The following corollary follows.

Corollary 12.3. The elements $\gamma_s(2m+1)$ of Theorem 12.2 gene*rates a direct summand* $U_2(2m+1, 2sp(p-1)-2)$ *of* π_{2m+2s} ₆ ϵ_{p-1} ₁-1 $(S^{2m+1}: p)$ *isomorphic* to Z_{p^2} *if* $Max(1, sp-p^2-1) < m < sp-2$. *If* $s=1$, $S^2\gamma_s(2s p-3)$ generates a direct summand isomorphic to Z_p .

The above last assertion follows from the fact that S^2 : $\pi_{2s} p^2 - 5$ $(S^{2s} p^{-3} : p) \to \pi_{2s} p^2_{-3}(S^{2s} p^{-1} : p)$ is an epimorphism for $s > 1$ which is a consequence of the result $p_* I' \alpha_1 (2(sp-1)p-1) = S^{2s p-4} \gamma \neq 0$ in Theorem 10. 4, (ii).

Lemma 1 2 . 4 . *The following elements in* (11. 7) *generate direct summands isomorphic to Z ^p :*

$$
S^{2j}u_{3}(l, \beta_{1}) \quad for \quad l \equiv -1 \pmod{p}, \ \ 0 \leq j \leq p-2 ,
$$

$$
S^{2j}u_{3}(l, \beta_{1}^{n}) \quad for \quad 0 \leq j \leq p-2 .
$$

Proof. $u_3(l, \beta_1)$ is the element γ of Theorem 10.4 for $m = lp$ and belongs to $\pi_{2m+1+k}(S^{2m+1}: p)$ for $k=2(m+p)(p-1)-3$. By Theorem 12.2, for $1 < j \leq p-1$ the elements $I' \alpha_j (2(m+p-j)p-1)$ $=Q^{m+p-j}(\alpha_i)$ are in the *H*⁽²⁾-images. Thus $p_* I'(\alpha_i)(2(m+p-j)p-1)$ $= 0$. By (6.1) and by the exactness of (12.1) , this result implies that $S^{2p-4}: \pi_{2m+1+k}(S^{2m+1}:p) \to \pi_{2m+2p+k-3}(S^{2m+2p-3}:p)$ is an isomorphism onto. We have also, by (ii) of Theorem 10.4, that the

orders of $S^{2j}u_3(l, \beta_1)$ are p. These elements $S^{2j}u_3(l, \beta_1)$ generate direct summands isomorphic to Z_p since $H^{(2)}$ maps $u_3(l, \beta_1)$ to a generator of $\pi_{2m+4+k}(Q_2^{2m-1})$:

We may assert that $u_3(l, \beta_1^p) = u_3(l, \beta_1) \circ \beta_1^{p-1}(2m+1+k) \in \pi_{2m+1+h}$ $(S^{2m+1}: p)$, $h = 2(m+1+p)(p-1)-3$. By a similar reason, but using Lemma 6. 1, (iii) in place of Theorem 12. 2, we have that S^{2p-6} : $\pi_{2m+3+h}(S^{2m+3}:p) \to \pi_{2m+2p+h-3}(S^{2m+2p-3}:p)$ is an isomorphism onto. Consider the exact sequence

$$
\pi_{2m+1+h}(Q_2^{2m+1}:p) \xrightarrow{\hat{p}_*} \pi_{2m+1+h}(S^{2m+1}:p) \xrightarrow{S^2} \pi_{2m+3+h}(S^{2m+3}:p)
$$

$$
\xrightarrow{H^{(2)}} \pi_{2m+h}(Q_2^{2m+1}:p).
$$

This $H^{(2)}$ is trivial since $\pi_{2m+h}(Q_2^{2m+1}:p)$ is generated by $Q^{m+1}(\beta_{p-1})$ and $p_*Q^{m+1}(\beta_{p-1})=x \cdot Q^m(\alpha_1 \beta_{p-1})+0$ by Lemma 6.1, (ii). The group $\pi_{2m+1+h}(Q_2^{2m+1}:p)$ is generated by $\bar{Q}^m(\beta_{p-1})$ and $H^{(2)}p_*\bar{Q}^m(\beta_{p-1})=0$ by Theorem 5. 1, (i). Since $H^{(2)}u_3(l, \beta_1^n) = x \cdot Q^m(\beta_1^n), x \not\equiv 0 \pmod{p}$. generates a direct summand of $\pi_{2m+1+h}(Q_2^{2m-1}:p)$, we concludes that $u_3(l, \beta_1^n)$ and $S^2u_3(l, \beta_1^n)$ generate direct summans isomorphic to Z_p , and so does $S^{2j}u_s(l, \beta_1^n)$ for $0 \le j \le p-2$. q.e.

We define subgroups $U_1(m, k)$, $U_2(m, k)$ and $U_3(m, k)$ of π_{2m+1+1} $(S^{2m+1} : p)$ as in the previous section. We define also $U'_4(m, k)$ as a subgroup of $U_4(m, k)$ generated by $S^{2j}u_4(l, \beta_2)$. Then we have the following

Theorem 12.5. Let $k{\geq}2p^2(p-1)$, then the group $\pi_{2m+1+k}(S^{2m+1})$: *p) is isomorphic to a direct sum*

$$
(\pi_k^S: p) + \sum_{t=1}^3 U_t(m, k) + U'_4(m, k)
$$

if the p air (m , k) satisfies the following conditions:

 (i) $k \equiv -1, -2, -3 \pmod{2p^2(p-1)}$ (ii) $m \ge (s - p + 1)p + 1$ *if* $2sb(p-1) - 4 \le k < 2(s+1)p(p-1) - 4$, *(iii)* $m \ge (s-r)p+2$ *if* $k=2(sp+r)(p-1)-2$ *and* $2 \le r < p-1$ (iv) $m \ge (s-r)p+1$ if $k=2(sp+r)(p-1)-3$ and $2 \le r < p-1$ (v) *m* $\geq (s-r-1)p-1$ *if* $k=2(sp+r)(p-1)-4$ *and* $2 \leq r < p-1$ *.*

By Lemma 6.1, Theorem 10. 4, Theorem 10.7, Corollary 12.3

250 *H irosi Toda*

and Lemma 12.4, the subgroup $\sum_{i=1}^{3} U_i(m, k)$ of $\pi_{2m+1+k}(S^{2m+1}: p)$ is a direct summand under the above conditions. We have also that the subgroup $U'_4(m, k) \approx Z_p$ is a direct summand by use of Theorem 10. 8 and Lemma 6. 1, (iii). Then the method to prove the above theorem is similar to that of Corollary 6. 4 in Section 6, and the details are left to the readers.

We finish this paper with the following two remarks on the above theorem. If we can prove the existence of $U_i(s-r-1, \beta_{r+1})$, as a generalization of Theorem 10. 8, then the conditions (iii), (iv) and (v) can be removed replacing $U_4(m, k)$ by $U_4(m, k)$. The condition (ii) may be weakened until $m \geq [(k+4)/2(p-1)] - p^2 + 1$ if $u_3(s-p)$, and $\bar{u}_3(s-p)$, have no influence over the group $\pi_{2m+1+k}(S^{2m+1}:p).$

Kyoto University

BIBLIOGRAPHY

- $\lceil 1 \rceil$ J. F. Adams, *On the group* $J(X)$ -*II*, Topology, 3-2 (1965), 137-171.
- **J.** A dem , *T he relations on S teenrod pow ers o f cohomology c lasse s,* Algebraic geometry and topology, Princeton 1957.
- M . F. Atiyah, Thom com plexes, *Proc. L ondon M arth. S oc.,* (3) 11 (1961), 291-310.
- A. L. Blakers and W. S. M assey, *T he homotopy groups o f a tria d II,* Ann. of Math., 55 (1952), 192-201.
- T. Kambe, H. Matsunaga and H . Toda, *A n o te o n stunted lens space,* **J.** of Math. Kyoto Univ., 5 (1966), 143-149.
- S. D. L ia o , *Ou the topology o f cy clic product o f sp h e re s,* Trans. Amer. Math. Soc., 77 (1954), 520-551.
- M. Nakaoka, *Cohomology ^m od p ^o ^f sym ^m etric product ^o ^f sphe re s,* **J.** of Inst. Poly. Osaka City Univ., 9 (1957), 1-18.
- **J.** P. Serre, *Groups d'homotopie et classes des groupes abéliens,* Ann. of Math., 58 (1953), 258-294.
- H . Toda, *On double suspension E² ,* J. of Inst. Poly. Osaka City Univ., 7 (1956), 103-145.
- H . Toda, *p- primary components o f homotopy groups I V ,* Mem. Coll. Sci. Univi. of Kyoto, 32 (1959), 297-332.
- H . Toda, *Composition methods i n hornotopy groups o f sp h e re s,* Ann. of Math. Studies, 49, 1962 Princeton.
- H . Toda, *On iterated suspensions I,* **J.** of Math. Kyoto Univ., 5 (1965), 87-142.
- N. Yamamoto, *A lgebra of stable hornotopy of M oore sp ac e ,* **J.** of Math. Osaka City Univ., 14 (1963), 45-67.