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Introduction

Under the systematical study of Abelian differentials on open
Riemann surfaces Ahlfors introduced the notion of distinguished
differentials and obtained Abel’s theorem ([1~37]). On the other
hand, by generalizing the normalized potentials (R. Nevanlinna
[10]) Kusunoki [6] defined the (semiexact) canonical differentials
and developed the theory of Abelian integrals on open Riemann
surfaces ([5~8]). Meanwhile, M. Mori [9] pointed out that these
two classes of differentials are essentially the same, more precisely,
a distinguished (real) harmonic differential is the real part of a
semiexact canonical differential and vice versa.

In the present paper we shall give further some characteristic
properties of canonical differentials. First, in §2 we shall show
the following characterization: let ¢ be a semiexact meromorphic
differential on open Riemann surface R, then ¢ is a semiexact
canonical differential if and only if (i) there is a compact set F
on R such that du=Re ¢ is exact on R—F and ||du|lp_r<oo (ii)
for any regular compact region K(DF') and any semiexact analytic
differential dU~+:*dU with a finite norm on R— K, we have

<du, dU>p_x — Saxu*dU

This definition of canonical differentials is superficially quite
different from the original one and that of distinguished differen-
tials, in the sense that last two definitions express rather con-
structively the form of their elements, Moreover this enables us
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to give a new interpretation for canonical potentials which are
thought to have constant values on the ideal boundary. Actually
we shall prove in §3 that every canonical potential on K has a
constant value quasieverywhere on each connected component of
the Kuramochi boundary A of R (Theorem 2). Finally we shall
discuss about the converse of this theorem.

§1. Preliminaries

1. Normalized solution of Dirichlet problem. Let R be an
open Riemann surface and G be a non-compact subregion of R,
whose relative boundary T consists of a finite number of Jordan
closed curves. For the simplicity we assume in the sequel that
T is analytic.

PrOPOSITION 1. Let u be a function which is harmonic on G and
continuous on GUT. Then the following statements are equivalent :
1) u can be expressed as

up) = | wadala, p),  peG

where dow is the harmonic measure on G with respect to the arc
element of T.

2) Let {R,} be a regular exhaustion of R and u, be harmonic
Sunctions on R,NG such that u,=u on T, u,=0 on 0R,NG, then we
have

u(p) =limu,(p), peG

where the convergence is uniform on every compact set on G.

3) Let HS (=HS=HY) be the solution of Dirichlet problem on
G by Perron-Brelot’s method for the boundary function which is =u
on T and =0 at the ideal boundary of R, then we have

w(p) = Hip), peC
Such a function # is called a normalized solution (of Dirichlet
problem) on G.
The proof is omitted.

Proposition 1 shows that the definitions of normalized solution
by R. Nevanlinna [10] (p. 320) and Constantinescu-Cornea [4]
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(p. 21) are identical. It is known ([10]) that a normalized solution
u on G is bounded (<max|#|) on G and has a finite Dirichlet
r

norm on G:

lldull? = <du, dude = gpu*du

Let # be a smooth (e.g. C*) function on R such that Z=u on G and
# vanishes near the ideal boundary of R belonging to K—G, then
it is easily seen that # is a Dirichlet potential ([4]) on R.

2. Canonical potentials and canonical differentials. Let B be
a regular canonical region (Ahlfors-Sario [3]) on R and T the
set of harmonic functions % on R (which may have a finite number
of singularities and additive periods in B) such that on each com-
ponent G; of R—B, the function u—c¢; with some constant ¢; is a
normalized solution on G;. Then the set T= IBJ T is a real vector

space and can be written as
T=T,+T,, where T,= {ucT;ucHD(R)}.

The HD(R) is a Hilbert space of single-valued harmonic functions
with finite Dirichlet norms on R, where two functions with constant
difference are identified. Let T, be the completion of T, in HD(R),
and denote

T="T+T,.

We call u T a canonical potential on K. A meromorphic
differential @ on R is called a canonical differential if ReS¢ is a

canonical potential on R and the sum of residues of ¢ vanishes.
Note that the condition for residues is automatically satisfied if
@ is semiexact, i.e. @ has no periods along every dividing cycle
on R.

3. Let R be an open Riemann surface and R* the Kuramochi
compactification of R. We denote by A=R*—R the Kuramochi
boundary of R. For each ideal boundary point ¢ of the Kerékjarto-
Stoilow compactification of R we set

A= JUNR
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where U represent the neighborhoods of ¢ and the closure is taken
on R*. Then we know (cf. [4]) that A, are mutually disjoint
closed connected sets on R* and

A=A,

§ 2. Characterizatoins of canonical differentials

4. For the canonical differentials on an arbitrary open
Riemann surface R we have the following characterizations.

THEOREM 1. Let p=du-+i*du be a meromorphic differential on
R which may have a finite number of singularities, then the following
three statements are equivalent :

(I) @ is a semiexact canonical differential on R.

(II) du=Req is a distinguished (real) harmonic differential

(3] on R.

(III) 1°) @ is semiexact on R.

There exists a compact set F on R such that

2°)Y ues HD(R—F), i.e. du is (real) harmonic, exact on R—F
and ||du||g-p< oo.

3°) For any regular vegion G(DF) with analytic boundary T
and any function U HD(R—G) such that Sy*dU= 0 for every

dividing curve v on R—G, we have

(4.1) Cdu, dU>p_ s = S dun*dU = S w*dU .
R-G r
The property (4.1) is obviously equivalent with that

(4.2) lim Sa w*dU = 0
Ry

for any regular exhaustion {R,} of R.
We shall denote by £=R(R) the real vector space of semiexact
canonical differentials on K.

Proor. (I)e=(II): M. Mori [9] Theorem 1.

(I)=(III): For a canonical potential u= T on R (4.2) was
proved by Kusunoki [6] Lemma 4, The semiexactness of ¢ is
unnecessary,
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(Ill)=(I): The sum of residues of ¢ vanishes on account of
1°). Hence we can construct a semiexact canonical differential
0, €8(R) having on F the same singularities and real periods as
@, i.e. w, is given by a finite linear combination of semiexact
canonical differentials o¢%,, %, (of the first kind), ¢$%*, Jk
(second kind) and ¢¥%,, ¢ke (third kind) (cf. [6] Theorems 1 and
5). Let

(4.3) dv = Re(p— w,)

then dv+i*dv is semiexact and ve HD(R). While (4.1) holds for
du=Re ¢ and Re w,, hence for du=dv. It follows by (4.2) that

ldllz, = <dv, dvde, = | v*dv—0  (n—c0)

which implies dv=0, hence p=w,ER(R).

The definition of canonical differentials by (III) is superficially
quite different from the original one and that of distinguished
differentials, in the sense that last two definitions express rather
constructively the form of their elements. (cf. [117])

5. For particular classes of Riemann surfaces the definition
of semiexact canonical differentials becomes very simple. Namely,

(a) If ReOkp (Sario’s class), a meromorphic differential ¢
belongs to & if and only if the properties

(III) 1°) and 2°)

are fulfiled ([6] p. 251). Moreover then ipe® (', N T,k

if ReOkp. cf. ([9]) i.e. the space & is a complex vector space and

Okp is the largest class of Riemann surface where ® becomes so.
(b) If ReOyp, ¢ with vanishing sum of residues belongs to &

(cf. [5] Lemma 1) if and only if the condition (III) 2°) is satisfied.
(c) If ReOg;, =& if and only if a property

(III) 2°)
holds.

6. By & =8(R) we denote the space of exact canonical di-
fferentials on R. $,c&. Let f be a meromorphic function on R
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such that dfef, and ¢(< o) be the number of poles (counted

with multiplicities) of f, then it is known ([6]) that f is at most

g-valent on R if the genus of R is finite, moreover that if f is

regular everywhere on any R, then f reduces to a constant.
Here we note further the following property.

PROPOSITION 2. Let R be an any open Riemann surface and
dfef,. Let q be the number of poles (counted with multiplicities)
of fon R. If w=f is at most q-valent on R, then the projection
E on the w-plane of the boundary of covering surface S=f(R) has
area zero, and S is exactly of q-sheeted over the complement of E.

ProOF. From our assumption the set E is compact. Let
D(DE) be an open set with (piecewise) analytic boundaries. We
may assume that the boundary 8D does not contain any branch
points of S and has a positive finite distance from E. Let D; be a
connected component of S over D and G,=f"'(D,). G; is a domain
(non-compact or compact) on R and 8G; consists of analytic curves
which separate the poles of f from the ideal boundary of K
provided that G; is non-compact. Since df=du+idv belongs to
f,, we have by (4.1) for each ¢

S \f|*dxdy = ||du||g,.=g udvzs udv

Gi Llers ci

where c¢; is the boundary of D; over dD. The first term gives the
area of D; and the last line integral is equal to s;x(area of D),
s; being the maximum number of sheets of D;. This implies that
the area of E is zero. The remaing part of our claim is trivial.

§3. Canonical potentials and Kuramochi boundary
In the sequel we are much indebted to Constantinescu-Cornea [4].
7. First we shall prove the following

THEOREM 2. Let u be a canonical potential on R, then u has
a constant value quasi everywhere on each component A, of the
Kuramochi boundary A of R.

This is a consequence from the following slightly general result.
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THEOREM 2. Let uc HD(R—F) (F: compact set) such that for
any regular region G(DF) with analytic boundary T and any function
Ue HD(R—G) such that gy*d U=0 for every dividing curve v on
R—G, we have

(7.1) <du, dU>p_ s — Lu*dU.

Then u has a quasicontinuous extension onto A so that the extended
u is a constant quasi everywhere (“quasi iiberall”) on each A,.

Proor. We may assume that R is hyperbolic, otherwise the
conclusion is trivial. Now we extend the function # onto G as a
C~-function on R and denote the extended function by #. Since
# is a Dirichlet function on R it has a quasicontinuous extension
onto A ([4] p. 191). Suppose that u=i# is not a constant quasi
everywhere on A,, then there exist two closed subsets E, and E,
of A, such that both are of positive capacity and

infu >supu.

Ay By
And there exist two measures p;(i=1, 2) on E; with finite energy
and u,;(E;)=1. Since p=u,—pu, becomes a signed measure on A
with total measure zero, there exists a function v HD(R) which
has the (generalized) normal derivative p on A, that is,

<dv, df> = | fdp

for any Dirichlet function f on R. Hence if we take f=# we have

<dv, dit> — S udy, = S udﬂz—g wdp,

A A A
> inf u—sup u>0.
Ay n,

While, we can prove contrary that
(7.2) Ldv, diy = 0.
To see this we first show that

(7.3) Sy*du = 0 for every dividing curve v .

Since v HD(R) has the normal derivative p on A with p(A)=0,
v can be written as
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(7. 4) 2n(0— %) = B = | 2.dn

with a closed disc K, on R ([4] p. 218). (g, is an N-Green function
in Kuramochi’s terminology). We may assume K,Ny=¢. Take
a compact region BD K,Uvy such that 8B consists of analytic
curves and one component v’ of 0B is homologous to the dividing
curve v. Let R, be a non-compact region on K — B whose relative
boundary is v/, and R,=R—(R,U%’). Let & be a C~-function on
R such that =1 on R,Uy’ and 2=0 on K,U(R,—B). Then by
Green formula we have

(7.5) Sy*dv" — Syl*dv’( - S I¥dv*o = {dh, dv*s>g i,

aCB = Ky)
= <{dh, dv¥%> = 0.

Moreover, since

S *dg, = ¢, = { 27, if v se.parates K, from A,

¥ 0, otherwise
we have
(7.6) S *dpr — S (S *a’g‘a>dp - c.,S dy = 0.

Y A Y A

The conclusion (7.6) can also be obtained immediately from
Hilfssatz 17. 12 [4]. Hence (7.3) holds by (7.4~6), i.e. dv+i*dv
is semiexact on R. It follows by (7.1) that

<du, dU>R_G = S u*dv
r
While, by Green’s formula
(di, dvde = —S W*dy — -S wd .
r
It follows that
{dv, duy = {du, dvys+<du, dvy,_c =0

which completes the proof.

8. Here we note on the boundary values on A of special ca-
nonical potentials. Let v be a dividing curve which divides R into
R, and R,. Let Ai=ANR;(i=1, 2) where the closure is taken on
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R*, then the generalized harmonic measure w, associated with ¢ is a
canonical potential ([6], [10]). Suppose w,* const. and i}l’zlf wy="0.

Let &, be a C*-function on R such that &,=w, on R, and &, \;anishes
near the ideal boundary A% Then &, is a Dirichlet potential (sec. 2)
on R, hence &,=w,=0 on A’, q.e. (=quasi everywhere). By con-
sidering 1—w, we know analogously that o,=1 q.e. on A%

9. Finally in this section we shall study on the converse of
Theorem 2.

PROPOSITION 3. Let @=du+i*du be a semiexact meromorphic
differential on R such that (o) uc HD(R—F) with a compact set F
on R (B) u has a constant value quasieverywhere on each component
A, of the Kuramochi boundary A of R, then ¢ can be written as

o =o0+t¢: 0eR, Pp€
where € = {du; uc KD(R) and u has a property (3) on A}
KD = KD(R) = {us HD(R); *du is semiexact on R}

This is a direct consequence of Theorem 2 if we take w=uw,
(cf. (4. 3)).

Thus together with Theorem 2 we know that the properties
(a) and (B) characterize the semiexact canonical differentials
provided that € is empty. € vanishes, of course if ROk, but
I don't know whether it is true for the general case. In the
following we shall give a sufficient condition for vanishing of €.
Let

N = {du; ue HD(R) and u has a normal derivative on A}.
The class 2 is known to be a dense subset of d HD ([4] p. 220).
PROPOSITION 4. The class € vanishes if and only if B=UNdIKD
is dense in dKD. More precisely, we have an orthogonal decomposi-
tion
dKD = [B8] 6 €
, [B] being the closure of B in d KD.

Proor. That any element belonging to the orthogonal comple-
ment B+ in d KD of B possesses a property (B) can be seen from



206 Yukio Kusunoki

the proof of Theorem 2. Hence B*=[B] €. So it suffices to
show that any dve[B]NE is identically zero. Let dv, be any
element of B and p, be the normal derivative of v, on A.

©9.1) Cdv, dvy> = S vdy, .

We claim that the integral on the right hand side vanishes. Let
v=vt—v" on A (v", v >0 q.e.). Then it suffices to prove that

©9.2) g oMdy, = 0
A

for vM=min(v", M), min(v-, M) (M : positive constant). Note that
vM=const., say a(e), on each A, quasi everywhere. 0<a(e)<M.
Let

B, =[Ot A2 E)  in=1,2,)
Each E, is a finite set and
plA,) =0 for any A,€A— |JE,

Let E,=A, UA,,U---UA,,, then there exists a canonical region R,
on R such that oR,=,Uy,U - Uv, separates A, , -+, A, mutually
on R*. Suppose 9R, divide A so that

A= AUAU---UA?  (p>v)

and each A/ contains A, (j=1,-+,»). By a linear combination
of w,,,w,, we can construct a canonical potential w,& T, (cf.
see. 8) that

B {a(ej) ge. on A (=1, -, )
"1l 0 qe on A¥ (k=v+1,-,p)

Then 0<w,<M and w,—v™(n— ) on A except a set of pu,~
measure zero. Since v,€KD(R) and o, T,,

0 = <dw,, dv> — S w0, dp, .
A

For n— o we have (9.2) by Lebesgue’s bounded convergence
theorem. Thus <{dv, dv,>=0.
Now since dve[®B], there exists a sequence {dv,,} such that
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lldv,,—dv|| = 0, dv,, 3B .

By what already proved we have <{dv,, dv>=0. Hence

{dv, dv> = lim{dv,,, dv> = 0

i.e. dv=0, which completes the proof.

L1]
Lz21

L3]
L4]

Ls]
[61
L7]
[8]
L9]

[10]
[11]

KyoTo UNIVERSITY

REFERENCES

Ahlfors, L. V. Abel’s theorem for open Riemann surfaces. Sem. on Analytic
Functions. Princeton (1958).
— The method of orthogonal decomposition for differentials on open

Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A. 1. Math. 249/7 (1958).
Ahlfors, L. V. and Sario, L. Riemann surfaces. Princeton (1960).
Constantinescu, C. und Cornea, A. Ideale Rinder Riemannscher Flichen.
Berlin (1963).
Kusunoki, Y. Contributions to Riemann-Roch’s theorem. Mem. Col. Sci. Univ.
of Kyoto Ser. A. Math. 31 (1958) 161-180.

Theory of Abelian integrals and its applications to conformal
mappings. Ibid. 32 (1959) 235-258.
————— Supplements and corrections to my former papers. Ibid. 33 (1961)
429-433.

Square integrable normal differentials on Riemann surfaces. ]J.
Math. Kyoto Univ. 3 (1963) 59-69.
Mori, M. Contributions to the theory of differentials on open Riemann surfaces.
Ibid. 4 (1964) 77-97.
Nevanlinna, R. Uniformisierung. Berlin (1953).
Royden, H. L. The Riemann-Roch theorem. Comm. Math. Helv. 34 (1960) 37-51.



