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Introduction

Under the systematical study of Abelian differentials on open
Riemann surfaces Ahlfors introduced the notion of distinguished
differentials and obtained Abel's theorem ( [1 - 3 ] ) .  On the other
hand, by generalizing the normalized potentials (R. Nevanlinna
[10] ) Kusunoki [6] defined the (semiexact) canonical differentials
and developed the theory o f Abelian integrals on open Riemann
surfaces ([5-8]). Meanwhile, M. Mori [9 ] pointed out that these
two classes of differentials are essentially the same, more precisely,
a distinguished (real) harmonic differential is the real part of a
semiexact canonical differential and vice versa.

In the present paper we shall give further some characteristic
properties o f canonical differentials. First, in §2 we shall show
the following characterization : let g )  be a semiexact meromorphic
differential on open Riemann surface R , then i s  a semiexact
canonical differential if and only if (i) there is a compact set F
on R  such that du= Re g )  is  exact on R—F and Ildull R _F < co (ii)
for any regular compact region K (D F )  and any semiexact analytic
differential dU + i*dU  with a finite norm on R—K, we have

<du, dU > , K  = e d U

This definition of canonical differentials is superficially quite
different from the original one and that of distinguished differen-
tials, in the sense that last two definitions express rather con-
structively the form of their elements. Moreover this enables us



198 Y ukio Kusunoki

to  g ive a  new interpretation fo r canonical potentials which are
thought to have constant values on the ideal boundary. Actually
we shall prove in § 3 that every canonical potential on R  has a
constant value quasieverywhere on each connected component of
the Kuramochi boundary A of R (Theorem 2). Finally we shall
discuss about the converse of this theorem.

§ 1. Preliminaries

1. N orm alized solution of  Dirichlet problem . Let R  b e  an
open Riemann surface and G  be a non-compact subregion of R,
whose relative boundary F consists of a  finite number of Jordan
closed curves. For the simplicity we assume in the sequel that
F is analytic.

PROPOSITION 1. Let u be a function which is harmonic on G and
continuous on G U F .  Then the following statements are  equivalent :

1) u  can be expressed as

u(p) = u(q)cho(q, p), PEG

w here cla) is th e  harm onic m easure on  G  w ith  respect to  the arc
element of  F.

2) Let {R, }  be a regular exhaustion of  R  and u„ be harmonic
functions on R „nG such that u n =u  on r , ii„ -0  on 6R n n G, then we
have

u(P ) = lim u n ( p) , PEG

where the convergence is uniform  on every com pact set on G.
3 )  L et I I nG (=II „G be the solution of Dirichlet problem on

G by Perron-Brelot's method for the boundary  function w hich is =u
on r and  = 0  at  the ideal boundary o f R , then w e have

u (p )=  rn (p ) ,P E G

Such a  function u  is called a  normalized solution (of Dirichlet
problem) on G.

The proof is omitted.
Proposition 1 shows that the definitions of normalized solution

by R. Nevanlinna [10] (p. 320) and Constantinescu-Cornea [4 ]
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(p. 21) are identical. It is known ([1O]) that a normalized solution
u  on G  is bounded (< max u 1) on G  and has a  finite Dirichlet

norm on G:

Ild u a  <du, du>G  =  , r u*du

Let û  be a smooth (e.g. C's) function on R such that û =u  on G and
û vanishes near the ideal boundary of R  belonging to R— G, then
it is easily seen that û is a Dirichlet potential ([4]) on R.

2. Canonical potentials and canonical dif ferentials. Let B  be
a  regular canonical region (Ahlfors-Sario DI on R  and T B  the
set of harmonic functions u on R (which may have a finite number
of singularities and additive periods in B ) such that on each com-
ponent G. o f  R— B, the function u—c i with some constant ci  i s  a
normalized solution on Gi . Then the set T  U  TB is  a real vector

space and can be written as

T  = T o +  T „  w h ere  T o = { ueT  ;ueH D (R )}  .

The HD(R) is  a Hilbert space of single-valued harmonic functions
with finite Dirichlet norms on R, where two functions with constant
difference are identified. Let To be the completion of T o in HD(R),
and denote

T  i+ T .

W e ca ll u E T  a  canonical Potential on R .  A  meromorphic
differential .7) on R  is called a canonical dif ferential i f  R e  99 is  a
canonical potential on R  and the sum  o f residues o f .7) vanishes.
Note that the condition for residues is automatically satisfied if
9 ) is semiexact, i.e. 99 has no periods along every dividing cycle
on R.

3. Let R be an open Riemann surface and R * the Kuramochi
compactification o f R .  W e d en o te  b y  =R* — R the Kuramochi
boundary of R .  For each ideal boundary point e of the KerékArt6-
Stoilow compactification of R  we set

A =
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where U represent the neighborhoods of e and the closure is taken
on R * .  Then we know (c f. [ 4 ] )  th at A , are mutually disjoint
closed connected sets on R * and

A =

2. Characterizatoins o f canonical differentials

4. F o r  th e  canonical differentials o n  a n  arb itrary  open
Riemann surface R we have the following characterizations.

THEOREM 1. Let p= du + i*du be a meromorphic differential on
R which may have a finite number o f  singularities, then the following
three statem ents are  equivalent :

( I ) g) is  a  semiexact canonical dif ferential on R.
(II) du=Re g) i s  a  distinguished (real) harmonic dif ferential

( [3 ])  on R.
(III) 1°) g) is  semiexact on R.
There ex ists a com pact set F  on R such that
2°) uEHD(R—F), i.e . d u  is  (real)  harmonic, ex act o n  R—F

and  liduil R _F < 00.
3 0 )  Fo r any  regular region G (D F ) with analy tic boundary  r

an d  any  f unc tion  UEHD(R—G) such  that S *dU =0 f o r  every
dividing curve 7 on R—G, w e have

(4.1)< d u ,  dU>R _G d u  A*dU u*dU
R—G

The property (4. 1) is obviously equivalent with that

(4. 2) lim u*dU = 0
a R n

for any regular exhaustion {R„} of R.
We shall denote by St = R(R) the real vector space of semiexact

canonical differentials on R.

PROOF. (I)<=>(II) :  M. Mori [ 9 ]  Theorem 1.
(I) (I I I )  :  For a  canonical potential te T on R  (4. 2) was

proved by K usunoki [6] Lemma 4, The semiexactness o f .7) is
unnecessary,

Y
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(III) = '(I): The sum o f residues of g) vanishes on account of
1 ' ) .  Hence we can construct a  semiexact canonical differential
co,Ea(R) having on F  the same singularities and real periods as
q ),  Le. co, is given by a  finite linear combination o f semiexact
canonical differentials 9 9 t ,  (AL (o f th e first kind), OP*, ÇGW) *
(second kind) and cg,Q ,  ii)t,2  (third kind) (cf. [ 6 ]  Theorems 1  and
5). Let

(4.3)d v Re(g.—(0,)

then dv+i*dv is semiexact and v E H D (R ). While (4. 1) holds for
du=Re g) and Re (0,, hence for du= d v . It follows by (4. 2) that

IdvH = <dv, dv>R „ v*dv-* 0
aRn

(n 00)

which implies dv= 0 , hence 99= c o 9 E St(R).
The definition of canonical differentials by (III) is superficially

quite different from the original one and that o f distinguished
differentials, in the sense that last two definitions express rather
constructively the form of their elements. (cf. [11])

5 .  For particular classes of Riemann surfaces the definition
of semiexact canonical differentials becomes very simple. Namely,

(a) I f  REOK ,  (S a r io 's  class), a meromorphic differential 99
belongs to SI if and only if the properties

(III) 1°) and 2°)

are fu lfiled  ([6] p. 2 5 1 ) . Moreover then ip E a n rh e . —  h s e
* cr

if R EO K D . cf. ([9 ]) i.e. the space a is a complex vector space and
OKD is the largest class of Riemann surface where a becomes so.

(b) I f R E 0 „ ,  g) with vanishing sum of residues belongs to a
(cf. [5 ] Lemma 1) if and only if the condition (III) 2°) is satisfied.

( c )  If REOG ,  p e a  if and only if a  property

(III) 2°)
holds.

6. By St0 = a 0(R ) we denote the space of exact canonical di-
fferentials on R .  Ro c a .  Let f  be a meromorphic function on R
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such that df  En o and  q(< 09) b e the number o f poles (counted
with multiplicities) of f ,  then it is known ([6 ]) that f  is at most
q-valent on R  if th e  genus o f R  is finite, moreover that if f  is
regular everywhere on any R , then f  reduces to a constant.

Here we note further the following property.

PROPOSITION 2. Let R  be an any  open Riemann surface and
df E R , .  Let q  be the number of poles (counted with multiplicities)
of f  on R .  I f  f  is at m ost q-v alent on R , then the projection
E  on the w -plane of the boundary o f covering surface S =f (R ) has
area zero, and S  is exactly o f q-sheeted over the complement o f E.

PROOF. From our assumption the set E  i s  compact. Let
D (D E) be an open set with (piecewise) analytic boundaries. We
may assume that the boundary aD does not contain any branch
points of S  and has a positive finite distance from E .  Let Di b e  a
connected component of S over D and G ,=f - 1 (D1). G .  i s  a domain
(non-compact or compact) on R and aGi consists of analytic curves
which separate the poles o f f  from the ideal boundary o f  R
provided that G. i s  non-compact. Since d f =d u +id v  belongs to
n o , w e have by (4. 1) for each i

1 I f 1 12 dxdy = u d v  =  u d v
aG i c iG i 

where ci i s  the boundary of Di over ap . The first term gives the
area of Di  and the last line integral is equal to  s i x (area of D),
s i  being the maximum number of sheets of Di . This implies that
the area of E  is  zero. The remaing part of our claim is trivial.

§ 3. Canonical potentials and Kuramochi boundary

In the sequel we are much indebted to Constantinescu-Cornea [4].

7. First we shall prove the following

THEOREM 2. Let u  be a canonical potential on R , then u has
a constant value quasi everywhere on each component A , o f  the
Kuramochi boundary A of  R .

This is a consequence from the following slightly general result.
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THEOREM 2'. Let uEHD(R— F ) ( F : compact set) such that for
any regular region G( F) w ith analytic boundary r and any function
UEHD(R— G) such  that *dU  = 0  f o r every  div iding curve y  on

Y
R— G, we have

(7.1) <du, u*dU

Then u has a quasicontinuous extension onto A  so that the extended
u  is  a constant quasi everywhere ("quasi iiberall") on each A,.

PROOF. We may assume that R  is hyperbolic, otherwise the
conclusion is triv ia l. Now we extend the function u  onto G  as a
C- -function on R  and denote the extended function by û . Since

is a Dirichlet function on R  it has a quasicontinuous extension
onto A ([4 ] p. 191). Suppose that u =û  is not a constant quasi
everywhere on Ae , then there exist two closed subsets E , and E2

of A, such that both are of positive capacity and

inf u > sup u.
E,

And there exist two measures 11,1(i 1, 2) on E i  with finite energy
and 1 (E1 ) =1. S in ce  bt = p ,,— ,u , becomes a  signed measure on A
with total measure zero, there exists a function v EHD (R ) which
has the (generalized) normal derivative on A, that is,

<dv, df> fdp,

for any Dirichlet function f  on R .  Hence if we take f  =û  we have

<dv, dû> udg udg,
A A

> inf u — sup u >0 .
E2 E l

While, we can prove contrary that

(7. 2) <dv, dû> = 0.

To see this we first show that

(7. 3) *dv  = 0  for every dividing curve y.

Since v EHD(R ) has the normal derivative on A with p,(A)= 0,
y can be written as
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(7.4)2 7 1 - ( v  —  e o )  = =  Ra c/A

with a closed disc K , on R ([4 ] p. 2 1 8 ) . (ga is an N-Green function
in  Kuramochi's terminology). We may assume K o n ch. Take
a compact region BD K,U 7 such that 8/3 consists o f analytic
curves and one component 7 '  of oB is homologous to the dividing
curve 7 .  Let R, be a non-compact region on R — B whose relative
boundary is 7', and R2 = R — (R,U 7'). Let h  be a  C- -function on
R such that h= 1  on R1 u 7 ' and h= 0  on K,U(R,— B). Then by
Green formula we have

(7. 5)f  *deco *deo h*dviço =  <dh, dvKo>e-K0
- K o ) 

v'
= <dh, deco> = 0 .

Moreover, since

*di a  C . 1  _ { , i f  7  separates K, from Ae

0, otherwise

we have

(7.6)= *dga)d,a = c .1 dIL = 0 .
A 7

The conclusion (7 . 6 ) can also be obtained immediately from
H ilfssa tz  17 . 12  [4 ]. Hence (7.3) holds by (7 . 4 -6 ) , i.e. dv+ i*dv
is sem iexact on R .  It follows by (7. 1) that

<du, dv >„_, = u * d v

While, by Green's formula

<dû, dv>G  = û*dv = u*dv .

It follows that

<dv, dû> = <dû, dv >,+ <du, dv >,_,, = 0

which completes the proof.

8 .  Here we note on the boundary values on A  of special ca-
nonical potentials. Let 7 be a dividing curve which divides R into
1?, and R2 . Let Ai =A n Ri (i= 1, 2) where the closure is taken on
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R*, then the generalized harmonic measure (.0,, associated with 7 is a
canonical potential ([6], [10]). Suppose col s const. and inf col = 0.

Let 6,, be a C"-function on R such that — 6 ), on R, and 6,, vanishes
near the ideal boundary A 2

• Then  6,, is a Dirichlet potential (sec. 2)
on R, hence 6.), 0 ) 1 = 0 on Al, q.e. (= quasi everywhere). By con-
sidering 1— co.,, we know analogously that co,,— 1 q.e. on A 2 .

9. Finally in this section we shall study on the converse of
Theorem 2.

PROPOSITION 3. L et (7)= du +i*du be a  semiexact meromorphic
differential on R such that (a) ueHD(R—F) with a com pact set F
on R  (f3) u has a constant value quasieverywhere on each component
A , of the Kuramochi boundary A  o f  R, then .7) can be written as

.73 =  co-Fsb : coESe, OEE
where E  {du; ueKD(R) and u has a property (R) on A}

KD = KD(R) = {uEHD(R); *du is semiexact on R}

This is a direct consequence of Theorem 2 i f  we take co=w,
(cf. (4. 3)).

Thus together with Theorem 2 we know that the properties
( a )  and (13) characterize the semiexact canonical differentials
provided that E is empty. E vanishes, of course if REO K D , but
I don't know whether it is true for the general case. In the
following we shall give a sufficient condition for vanishing o f E.
Let

= {du ; ueH D (R ) and u has a normal derivative on A} .

The class I is known to be a dense subset o f d  HD ([4 ] p. 220).

PROPOSITION 4. The class E vanishes if  and only if  0=W n dKD
is dense in d K D . More precisely, we have an orthogonal decomposi-
tion

d K D  =  [0 ]e

,  [0 ]  being the closure o f  0  in  dKD.

PROOF. That any element belonging to the orthogonal comple-
ment 0 -`  in d KD o f 0  possesses a property (13) can be seen from
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the proof of Theorem 2 .  Hence 0 - ` = P 3 T - c E .  So it suffices to
show that any dvE E  is identically zero. Let dv o be any
element of ,8 and be the normal derivative of v, on A.

(9. 1) <dv, dv o> =

We claim that the integral on the right hand side vanishes. Let
v =  — v -  on A  (v ' , > 0  q . e . ) .  Then it suffices to prove that

(9.2)v m d p , „  = 0

for vm= min(v , M), M ) (M : positive constant). Note that
vm=const., say a(e), on each A, quasi everywhere. 0 <a ( e ) <M .
Let

En  = { A e c  ; 114 6 , e) I
1 In = 1 , 2, •••)

Each E n is  a finite set and

ito(Ae) = 0 for any A,E A — U E.

Let E n = A„ U Ae 2 U • • • U ,  then there exists a canonical region R.
on R  such that aRn =7, U 7 2 U • • • U 7 p  separates A  • • •  ,  A  mutually
on R * .  Suppose aRn divide A so that

A = A lU A 2 U•••UAk (p>v )

and each Ai contains A e , C i =1 , ••• y ) . B y a linear combination
of co , ••• , (0 .4  we can construct a canonical potential w„E T , (cf.
see. 8) that

a(ei) q.e. on Ai ( j= 1 ,  ••• ,v)
con  =

0 q.e. on Ak (k= 7)+1, •-• p)

Then 0 < w„ < M  and (on -3.v" (n--. co ) on A except a set of
measure zero. Since vo EK D (R ) and con e T o ,

0 = dvo> = con d,tto .

For n--).oo w e  have (9. 2) b y  Lebesgue's bounded convergence
theorem. Thus <dv, dv o> =O.

Now since dvEIM ,  there exists a sequence Idynd  such that
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Ildv„, — dvil 0, dv,„EO.

By what already proved we have <dv,„ dv> =O. Hence

<dv, dv> = lim<dvm , dv> = 0

i.e. dv - - 0, which completes the proof.
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