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The notion of complex Finsler spaces was first introduced by
P. Finsler himself. However, it is not until recently that a number
of papers in this field have been published. It seems, so fas
as we know, that one of the most interesting papers is that of
E. Heil [5]", to which we will refer in the last section of this
paper. On the other hand, many authors consider the theory of
Finsler spaces as a special geometry of tangent bundles.

Now the main purpose of the present paper is to study the
geometry of tangent bundles and of generalized almost complex
structures, based on non-linear connections in tangent bundles, and
thus to develope a theory of almost complex Finsler spaces.

We first introduce the notions of ¢@-connections and quasi
tensor fields, which enable us to define the lifts of tensor fields
on manifolds to their tangent bundles.

In section 2, almost complex structures are naturally intro-
duced in tangent bundles by ¢-connections.

In section 3, the affine connections of tangent bundles are
studied. Then we introduce a special class of connections, named
connections of Finsler type, which have close relations to several
connections of Finsler spaces.

Quasi almost complex structures are defined in section 4, and
we investigate the properties of f-structures and almost complex
structures in tangent bundles which are obtained as the lifts of
quasi almost complex structures.

1) Numbers in brackets refer to the references at the end of the paper.
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The last two sections are devoted to consideration on struc-
tures constructed by generalized metrics together with quasi almost
complex structures. Finsler metrics are considered as a special
case of generalized metrics.

The present author wishes to express his hearty thanks to
Prof. Dr. M. Matsumoto for his kind criticism and encouragement.

§1. ¢-connections and ¢-spaces

Let M be an n-dimensional differentiable C= manifold and
T(M) be its tangent bundle, the canonical projection being denoted
by 7: T(M)— M. All the zero vectors of M are left out from
T(M), that is to say, we consider T(M)—M, and denote it, from
now on, by the same notation T(M), and call it, for brevity, the
tangent bundle over M.

The tangent vector space of T(M) at a point z is denoted by T,.
It is well known that the vertical distribution ®* is correspondence
ze T(M)—®,", where ®," is the subspace of 7T, tangent to the
fibre over x=7(2).

Definition. The @-connection of T(M) is an assignment of a
horizontal C= distribution ®* such that, at each point of T(M),

T, = ®,"+d,* (direct sum).

The ¢- connection is called homogeneous when and only when, in
each point 2 of 7(M) and for any positive number A, the condition

(1.1) AN* ", = D', iy

is satisfied, where x=7(z) and ye M,, and d\* is the differential
of the mapping A\*: T(M)— T(M) ((x, y)—(x, 1p)).

The @-connection is nothing but a generalization of non-/inear
connections ([11], [29]). To see this, we refer to the canonical
coordinates (z4)=(x’, ") of z=(x, y)€ T(M), where x =(x) and
y=yi(0/0x"),. It is well known that the matrix of transformation
of canonical coordinates is

axi’
() =%
0z o’xi’ , oxi’
oxiox'”  ox'

0

1.2)
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We denote by the capital letter V a tangent vector field on
T(M), by p* and p” the projection operators corresponding to the

distributions ®* and ®" respectively. Since a vector field V has

the form V= u"i—kvi %, operators p" and p” are written as
yl

ox?

(1.3) p”:( E,, 0) p"z(O, 0)
—®, 0 ) ’ En ’

where E, is a unit z-matrix and ¢ is an #-matrix determined by
the ¢@-connection. It follows from (1.2) that the condition for
p" and p” to be tensors is written as

il ., J
(1.4) 08 i1 0%

)

which is the law of transformation of non-linear connections.

Conversely, if @=(¢’;) satisfies the law (1.4), the two pro-
jection tensor p* and p” are determined by (1.3), and then the
@-connection is assigned.

Moreover we have “A mnecessary and sufficient condition for
p-connection to be homogeneous is that components ¢ ; of @ in terms
of canonical coordinates are positively homogeneous of degree 1 with
respect to y'.” Indeed, in terms of a canonical coordinate system,
the condition (1.1) is expressed as

(1.5) P % Ay) =A@ (%, ). (A>0)

Now we introduce the horizontal lift and vertical lift of vector
field » on M to T(M) by means of the p-connection (Dombrowski
[4], Yano-Davies [28]), which are denoted by »* and v” respec-
Gl

tively. If v is vx:v"(x)<T
xl

) v" and »* are written in the forms
x)

. 9 : 0 ; 0
1.6 vz":v'x< ) vz"=v'x(—~,>—— i {x, Mv™(x —>
(1.6) @ 5). @50, 7w 25

We consider a tangent vector field V on T(M). Since compo-
nents of the projection drv-V depend upon both x and y, dv-Vis
not always a vector field on M. However, in the geometry of
Finsler spaces and non-linear connections, vector fields with line
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elements have been treated. Hence, if we denote by ¥(7(M)) the
set of tangent vector fields on T(M), we call elements of X(M)=
dr-X¥(T(M)) quasi vector fields on M. Hereafter the composite
concept of (M, T(M), =, @, ¥(M)) is called the @-space. In the
following, @-space are mainly treated.

Now the wvertical and horizontal lifts of a quasi vector field v

(vxzv"(x, y)(é—i—,)) are defined respectively by

v,” = vi(x, y)(——a—.>
ay' z)

(1.6') g ;
v, = vi(x, Y — ) —@i(x, »)o"(x, )|~
R R LA e )

Then we have
Proposition 1. 1. Any vector field V on T(M) is expressed as
V=uv"+v,

where v, and v, are quasi vector fields on M, uniquely determined
by V.

Proof. The vector field V is written as V=p"V+p'V. If we
put v,=dr-p"V, then v,€X(M) and v,*=p*V. On the other hand

P’V has a form wv,i(x, y)(aiyil’ and v,i(x, y)(%)x form a quasi
vector field », on M. The p’V coincides with v,".

Next, let us consider tensor fields on T(M). If K is, for
example, a tensor field of type (1, 2), then K is a bilinear mapping
X T(M))x ¥(T(M))— X(T(M)), i.e., for any vector fields U and V,
K(U, V) is another vector field on T(M) and is bilinear with respect
to Uand V. Now we shall treat a bilinear mapping X(M)x i(M )—
i(M) and call it a quasi tensor field of type (1,2). Quasi tensor
fields of several types are similarly defined. Of course, tensor
fields on M and tensor fields on Finsler spaces are also kinds of
quasi tensor fields. Since the vector fields U and V on T(M) are
decomposed uniquely, by means of Prop. 1.1, as U=u/+u,” and
V=v’+v,, it follows that, for a tensor field K of type (1,2) on
(M),
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K(U, V) = i(K(ul, v,)+h(Ku, v,")+ H(Kw,", v"))+h(Kx®,', v,")
+o(K(u, v.2) + v(K(u/?, v,°) +0(K(w,’, v,")+v(K(w,", v,") ,

where %(V) and v(V) denote the horizontal and vertical components
of the vector V respectively. Now we are concerned with the
first term of the right-hand side % (K(«.*, v,*)) which is a vector
field on T(M). Then, by virtue of Prop. 1.1, there exists a quasi
vector w, whose horizontal lift coincides with A(K(u”, v}*)). We
then observe that the tensor field K induces a quasi tensor field
a of type (1,2), satisfying a(u,, v,)=w,. Thus we can define a
tensor field /=_(a) on T(M)

[Z(a)U, V) = WKhU), (V) = (a(u,, )Y .

The other seven components of K(U, V) also induce respectively
quasi tensor fields b,c¢,d,e, f, g and k. Then K is expressed
uniquely by

1.7) K = 1= (a)+1=,(e)+17_(c)+17.(g)
+I1E_ (D) + 1L ()i (d)+ 11 (h),

where the sign — implies a horizontal component and + a vertical
one. These eight operators /’s are called lift operators of tensor.
If £ is a quasi tensor field of type (1, 2), then, for example,
K=1*,(k) is a tensor field on T(M) which is expressed as

KU, V) =12,(kXU, V) = (Ku,, v,))",
where we put U=u/+u," and V=u/"+v,".

Remark 1. In terms of canonical coordinates, components of
the tensor K defined by (1.7) are given by

Ki,; = aly;+ ¢ 0+ e e ;+ 8@ @™ ;
Kig; = Cikj+gikl¢lj ’ Ki/e} = eikj_"'gilj(plk’ Kig; = g4,

Kiy;= —@hay; + b ;— @it 0" 1+ 401 9" — 2718 1™ ;
(1.8) P i — P 8 1mP kP i P P

Kig; = —@iicly;+di;— o', 8 ! i+ e’

Ki; = — @'y, + [ u;— 95,8 1,0+ 119"

Kiz; = —¢£rgrkj+hilzj .
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In these equations components of quasi tensor fields «,--- and
h are denoted by ai,;,--- and #‘,; respectively, which are func-
tions of x and y, and their transformation law is the one satisfied
by ordinary tensors. At the same time, it follows, from (1. 8),
that we have the components of the lift operators in canonical
coordinates, for example, we have the components of the tensor
/=_(a) as a case where b=c=d=e=f=g=h=0 in (1.8).

Remark 2. Since tensors on 7(M) of type (1,2) are of the
form (1. 8), several kinds of lifts of a tensor field on M, i.e. the
extension (or the complete lift) and the horizontal lift e.t.c.--- are
given as special ones in our case. For example, the complete lift
of a tensor field of type (1,1) defined by Yano-Kobayashi [30]
(or the extension defined by Sasaki [22]) is given as follows. The
general form of a tensor field K of type (1,1) is K=IZ(a)+
12b)+15(c)+131(d). If we take d=a, ¢=0, and b= (b)) =
(0,8, —yp?,0,a';+p'a' ;—a' '), K is expressed by

ai,, 0
Ko, D)
( B) yr(ara‘k_¢ﬁrapa'k)’ a’k )

where we put 9,=0/0x", 3,=0/0y". If a is a tensar field on M, i.e.
a satisfies 9,a?,=0, then the above tensor K coincides with the
complete lift of a tensor a.

Proposition 1. 2. On putting

Lu", v*] = (Lu, v )"+ (Ro(u, v))",
[, "] = (= V.- 0)" +(V.F-0)',

for any quasi vector fields u and v, it follows that
I:uv’ vl’] = (vu#'v—vzl#'u)”,

and R, (u,v) and T, u,v)=VjF v—-Vr -u—[u, v} are quasi tensor
fields of type (1, 2).

Proof. 1t is enough to express each vector by the canonical
coordinates. By direct calculation we obtain
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o A D
[w’, v"] = (40" —vid;u )@,
[, 0] = (w00 — @™ d,0)—v/ @ — "B} L,
xl

Vu‘hv = (8,1)" - ¢mlamvi —}—ém(piﬂ) m)ula_6~ ’
xl

(L9 § ooy — igpr O
ox’

. |
R,(u,v) = R, u*vi— |
‘P( ) kj axi

Rikj = aj¢ik_ak¢ij_¢mj6m¢ik+(pmk6m<pij »
. . m 0
T‘P(“) u) = (6m¢,1-8l¢’m)ulv a" y .

which prove our assertion.

The quasi tensor field K, and 7, are called a curvature tensor
and forsion tensor with respect to the commection ¢ respectively.
Now we shall define the covariant differential V¥ and Vv*k of any
quasi tensor field k& of type (1, 7) or (0, ) with respect to a ¢-
connection. If %k is of type (1, 7), then we set

Vv*k.(ulv... ,u’) - Vuﬁ.k(ul,... ’ur)_ik(ul’... ,V"#.ul”... ,u') ,
(1.10) "
Vol (e ) = VA k(U 0 )— Sk V)
In the case of type (0,7) we set also

Vv#k.(ul,... ’u') = vh.k(u‘,... ,u’)_ik(ul’ ves ’Vu#.ui’ ves ,u") )
(1.10) 7
Vv#k.(ul, cee ,u") = y".k(u‘, ...,u’)_Zk(u”...’Vvﬁ.ui’... ,u”) .

In these definitions, if we put V k-(u', -+, u")=V*k-(u',---, ", v) and
V ik (ul, -, u") = Vik-(u', -, u”, v), V¢ and V*k are quasi tensor
fields of type (1,r+1) or (0,7+1). For later applications, we
calculate the components of these quasi tensors in the case where
k is of type (1,1):

Vk#kij = alekij-¢mk6mkij+6m(pikkmj—kim6j7)mk ’

(1.11) {Vk#kii = 04k,
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where we put
Vi (u, 0) = (Vi 0k O te(u, 0) = (V20 Jokur 2.
ox’ ox?
Now we shall give a simple example of a @-space. In a
connected manifold M, if the second countability axiom holds
good, then M always admits a positive definite non-Riemannian
Finsler metric. (Kashiwabara [10]) Hence we take the connction
of Cartan with respect to the Finsler metric, and denote it by v*/,..
By putting ¢f;=9*" 3!, ¢’; satisfies (1.4) and

. 1 . . .
(1.12) ;= Eéj('y*umy’y ) =Gy,

where G7;; is the connection introduced by Berwald. This ¢-con-
nection is called a q-connection derived from a Finsler metric. In
this case the covariant differential V¥ coincides with the one defined
by Berwald, and the following relations hold :

(1.13) Rikj = Rjkriyr ’ T,=0,
where R;,,’ is a curvature tensor expressed by
Rjkri = (aj'}'*ir/:—‘?tjét’y*irk)—(ak'Y*irj—‘Ptkat')’*"rj)
R AP AL L o SN
§2. Natural almost complex structure

We shall concern with almost complex structures in the tangent
bundle over a manifold M, which are more general ones than the
structures studied by Nagano [17], Dombrowski [ 2], Yano-Davies
[28], Akbar-Zadeh [1], and Matsumoto [14].

Theorem 2.1. In the tangent bundle T(M) over a ¢-space M
there exists an almost complex structure J defined by the following :

(2.1)
Jw") = pu"—au’,

where a and p are scalar fields on T(M) satisfying p+0 and u is
any quasi vector field.
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Proof. For any scalar fields a, B, p and ¢ on T(M), if we
put J=alZ(1)+ BlIi(1)+ pl7(1)+olt (1), then J is a tensor field
on T(M), where 1 means (8°;). The condition J?=—E® gives
the relations 8= —a and o= —(1+a?)/p. Thus al/-(1)—ali(1)—
l_';T—alei(l)+pl 7(1) is an almost complex structure of 7(M), which
complete the proof of the Theorem.

The above proof gives that J given by (2.1) is, in T(M), the
most general type of the almost complex structure in the ones
induced from 1 and @. In a case where a=0 and p=-1, J is

denoted hereafter by J*, and J* satisfies for any quasi vector
field u,

(2.2) J*W") = u", J*u") =—u",

which implies that J* is the natural almost complex structure
named by Matsumoto [14]. Especially, if the manifold M admits
an affine connection v?;,(x), then M admits a @-conection defined
by @';=v;%', and J* coincides with an almost complex structure
treated by Nagano [17] and Dombrowski [4].

As the structure J depends upon the choice of ¢, if necessary,
J is denoted by J.(p, &). In canonical coordinates, the components
of J.(p, &) are written in the form

aE,+pp , PE,
(23)  Jdp, @) = (—Zacp—pq)z—1+a2E,, , —P(p—aE,,).
On the other hand, if we put
(2.4) # =+ E.,

then ¢’ is also a g-connection. From these, it follows that
(2.5) TPy @) = Jop, 0) = pLZ (D)= -1 (1).

If T(M) admits a certain structure K of type (1, 1), then the
Nijenhuis tensor Nk, of K is defined by
N (U, VY= —K U, V]+K[KU, V]+K[U, KV]-[KU, KV],
for any vector fields U and V in T(M). On the other hand, as K



428 Yoshihiro Ichijyo

is of type (1,1), K is written as K=/Z(a)+/*(b)+/7(c)+1i(d),
where a, b, c and d are quasi tensor fields of type (1, 1). Hence
Nk, should be expressed by a, b, ¢, d and @. Thus

Proposition 2.1. In the tangent bundle T(M), a structure
tensor given by K=1-(a)+12(b)+17(c)+1+(d) of type (1,1) is inte-
grable if and only if any quasi vector fields u and v on M satisfy
the following:

alau, v +alu, av ¥ —[au, av ¥ —a’{u, v¥—(ac+cd)Ry(u, v)
+cRy(au, v)+ cRy,(u, av)— V*a- (v, bu)+ V*a-(u, bv)
+cVEb-(v, u) — V- (u0)+cb Ty(u, v) = 0,

dR(au, v)+ dR(u, av)— R,(au, av)— (bc+ d*)Ry(u, v)
+(ba+db)T (u, v)—bT(au, vV)—bTu, av)+ V- (u, av)
— V- (v, au)+ V- (u, bv)—Vvtb-(v, bu) +bVia-(v, u)
—bV¥a-(u, v)+dvH-(v, u)—dvib-(u, v) = 0,

T (cu, cv)+ Vic-(u, cv)—Vic- (v, cu)+ Vic-(u, dv)—V¥c- (v, du)
—avic-(u, v)+avic-(v, u)+cvid-(v, u)—cvid-(u, v) = 0,

Vid-(u, cv)—Vtd- (v, cu)+dvid-(v, u)—dvid-(u, v)+vtd-(u, dv)
—v¥d- (v, du)+bvic- (v, u)—bvic:(u, v)— Ry(cu, cv) = 0,

cR(u, cv)—a Ty (u, cv)— Tau, cv)+ Via-(u, cv)+aVic-(v, u)
+cVEd - (v, u)—avia-(u, v)+ Via-(u, dv)—cv¥b-(u, v)
—v¥c- (v, bu)—Véc-(v, au) = 0,

dR,(u, cv)— Ry(au, cv)—bT,(u, cv)+bVic-(v, u)— Vid-(v, au)
+dvid- (v, u)+ V- (u, cv)—bvia-(u, v)+ V- (u, dv)
—dv*b-(u, v)—Vid-(v, bu) = 0.

Proof. If U=u" and V=v* it follows from Prop. 1.1 that

B Ng(ut, v")) = —(&*+cb)[u, v#+alau, vl +alu, avlt—[au, av]?
—(ac+ cd)R,(u, v)+ cR(u, av)+ cR(au, u)
+avV, v —cV bu—av, fu+ oV o+, tau— v, av
= alau, v} +a[u, avl*—[au, av]*—a’[u, v]*
—(ac+cd)R,(u, v) + cRy(au, v)+ cRy(u, av)
—Via- (v, bu)+ V¥a-(u, bv)+cvb-(v, u)
— Vb (u, v)+cbTy(u, v).
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Thus N.,=0 gives us the first equation of Prop. 2. 1. Obviously
the other equations are led by the similar method.

Theorem 2.2. In the tangent bundle over ¢p-space M, the almost
complex structure J introduced in Theorem 2.1 is integrable if and
only if the following conditions are satisfied, by any quasi vector
fields u and v,

PTo(u, v)— (Ve + (Vi) = 0,
4 4

(2. 6) {
PRy (u, v)— (V.0 +(V to)u = 0,

where ¢’ =@+ ﬁE,, .
p

Proof. The integrability condition for J(p, 0) leads us to
pT¢(u, v)_(yu#P)v-*-(‘Yv*p)u = 0 ’
PRy(u, v)—(V.io)o+(V fo)u = 0,

by virtue of Prop, 2.1 and relations V*E,=0 and V*E,=0. These
results and the fact J,(p, a)=J,(p, 0) establish the Theorem.

Corollary. In T(M) over @-space, the natural almost com-
plex structure J* is integrable if and only if R,=0 and T,=0.
(Dombrowski [4], Matsumoto [4])

Proof. For the structure J*, we have J*¥*=J,(—1, 0). Hence
Theorem 2.2 gives us our result.

§3. Linear connections of Finsler type

Let P(T(M))=P(T(M), =, G) be the bundle of frames over
the T(M), where G is a structure group, and = is the projection
P—T(M) which maps a frame p at a point ze T(M) into z. It
is well known [18] that if a linear connection T" in P is assigned,
then we obtain a lift L of vectors on 7(M) to P. Since we are now
considering @-space, T, is written as 7T,=®_*+®,". Therefore
I',»=L(®.") and T",’=L(P,") construct distributions on P and the
relation T',=T,*+T,” holds good where T, is a distribution at p
defined by the linear connection I'. Hence we find

(3.1) P, = P,/+T,+T,
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where P,” is a vertical subspace of P,, and any vector X*&P, is
decomposed uniquely as
X* = o(X*)+ (X *)+h'(X*)

where o(X*)eP,’, W(X*)eT',” and h'(X*)eT',’. Now let Iy
be parameters of the connection I'" in terms of the canonical
coordinates and (p,) be a frame at a point 2, then p, is represented

as pA:pBA(a%)/ If we put

0
z* Q =N — ,
4 0p%e
0 0 . 0
3,2 i* = — ki_—— C 1_‘” i— LiFB _ ,
(3.2) X o P oy P(Tlci— o Ck)—apBQ
0 0
K* = _"Y __HC T~ ; ,
o P gy

these constitute basis of P?, T'* and I'’ respectively.

Proposition 3.1. In the frame bundle P over T(M), the distri-
bution P'+T7 is integrable. While the distribution P'+T"* is inte-
grable if and only if the horizontal distribution ® in T(M) is
integrable, i.e., R,=0.

Proof. For the distribution P"+7T7, it is sufficient to verify
[U*, V¥]eP?’+T? for any vector fields U*, V¥P*+T". So, if
U*, V¥ P?, it is clear [U¥*, V¥]eP’. If U*eP? V*<TI?, then
there exist functions f* such that V*=//Y*, from which it follows

[U*, V¥] = [ Uﬁga_;,z fi a%—ffpckrﬂc; - 0

pB

]EP”+F”.

R

Similar calculation shows us that if U* V*eT?, then [U¥*,V*]
eP’+T"

For the distribution P’+T% if U*, V¥ P? it is clear
[U*, V¥]eP’+T* If U*¥eP?’, V*TI*, then there exist functions
£ and U4, such that V*=FiXx, Ux=U4, JA

Q
follows

[U*, X*] = —U%((T2 4 — 9" T24)

, from which it

0 0
— XX (UA)——e P
apBQ i ( Q)GpAQ
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Hence we have [U*, V¥]=f[U* XX*]|+ U*(f)X*c P"+T"
Finally if U*, V¥*=T* then they have the form U*=fi X*, V*=
g' X;* and the relation

LU, V*] = figi[ XX X ¥+ XXg)X;*— g/ X *(f) X/*

holds good. Thus P*+T* is integrable if and only if [X;*X,*]
€Tr*+P®. On the other hand X;*=L(X;), so X;* and X; are
z-related. Hence the condition [ X*, X;*]=T*+ P” gives us
[X;, X;]led*, ie., R,=0. Q.E.D.

If there is assigned a linear connection T" in P, we can consider
in T(M) a covariant derivative V with respect to the T

Deflnition. A linear comnection of horizontal Finsler type, or
simply of h-f-type, is a linear connection satisfying »(Vyv*)=0
for any vector field U on T(M) and quasi vector field » on M.
A linear conmection of vertical Finsler type, or simply of v-f-type,
is the one satisfying % (Vy2")=0. Moreover a linear connection
of h-f- and at the same time v-f-type is called of quasi Finsler
type.

If T" is of h-f-type, then we may put

(3' 3) Vuh vh — (V“(h)v)h , Vu” vh — (V“(h)v)h .

Similary, if T" is of v-f-type, we may put
(3' 4) Vu"vv = (Vu(v)v)v ’ Vu"vu = (vu(u)v)v .

Apparently, the quasi vector fields Vv, *v, v,%v, V,’v and
V.”v, which are defined in this way, are regarded as covariant
derivatives of quasi vector field » with respect to #. For quasi

tensor fields, e.g., a quasi tensor field f of type (1, 1) and a linear
connection T' of k-f-type, we may define

VPF@) = VRF@, ) = VP f @)~ F(V,P0),
VPS@) = VRS-0, 1) = 0PSO F(T.P0).

If the T" is of quasi Finsler type, then we may put
(3.6)  VuV =(V.0)+(V, 0), VoV = (V,0,)r+(V.0,)",

(3.5) {

where we put V=v/+v,’. From the definition itself, it follows
that a linear connection of quasi Finsler type is a linear connection
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with respect to which the distributions ®* and ®* are respectively
parallel. It is well known that there exists a linear connection T
admitting the above properties (e.g., see Walker [25]). However
we shall here decide the connection I' explicitly.

Let ' be a linear connection of T(M) and denote by v
covaciant differentiation with respect to 1. Now, for any vector
fields U and V, if U=u* and V=" we define K by K(U,V)=
—o(V,v") : otherwise we define K by K(U,V)=0. Then K is a
(1, 2)-tensor field of type /*_ on T(M). Indeed, it is clear from
the definition that K(U, V) is a vector field on T(M) and is linear
with respect to U. The linearity with respect to V is shown as
follows ;

KU, pv/+ov,t) = —v[pi"7vvl"+a%l,vz"+ Up)v+ U(s)v,]
= pK(U, v")+aK(U, v,).

Hence, by the definition, K is a (1, 2)-tensor field of type /7_.
Similarly we define H, K and H as follows :

if U=4® and V=v* H(U,V)=—uv(V,0"): otherwise H(U,V)=0,
if U=u" and V=0, R(U,V)=—h(V,0"): otherwise K(U,V)=0,
if U=u® and V=0v’, HU,V)=—I(V,0"): otherwise H(U,V)=0.
Then H, K and H are (2, 1)-tensor fields of type /1_, /=, and /5,
respectively.

Now let I" be a linear connection of T(M) over g-space M,
and K, H, K and H be tensor fields defined above with respect to
I If we put U=u/+u, I'=1"+ K+ H+ K+ H, and denote by V
the covariant derivative with respect to I', then we get

Vo' = V, 00"+ K, v")+ V. 0"+ Hu,', v")
=h (%ull' vk + %ugl’vh) )
Vv’ = %m"v”—‘— K(usr, v")+ %uz”v”_‘_ ﬁ(ulv’ v")
= 0(V, 0"+ V0" .
Hence I' is of the quasi Finsler type. The above consideration

shows us that a linear connection T" of T(M) is of the quasi Finsler
type if and only if T" is written in the form

B.7) T =01+K+H+R+H+I1=_(@)+17_()+11,(f)+11,(h),
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where a, ¢, f and & are arbitrary quary quasi tensor fields of type
(1, 1). Besides, it follows that T is of s-f-type if and only if T
is written, for any quasi tensor fields a, c, ¢, f, g and %, in the form

(3.8) T =T+ K+H+I-_(a)+15_(c)+1=,(e)+1*.(F)
+13.(g)+1i.(h),

and at the same time it follows that I" is of v-f-type if and only
if T is written, for any quasi tensor fields a, b, ¢, d, f and %, in
the form

(3.9) I =1'+RB+H+I=_(@)+1*_(b)+I7_(c)+1*_(d)
+12 () +15.(h).

Theorem 3.1. In the tangent bundle T(M) over a p-space M,
there exists always a symmetric linear connection of v-f-type, and
there exists a symmetric linear commection of h-f-type (or of the
quasi Finsler type) if and only if R,=0.

Proof. A symmetric linear connection T'" is of v-f-type if
and only if the distribution ®” is parallel with respect to I'. A
necessary and sufficient condition that there exists a symmetric
linear connection with respect to which the given distribution
is parallel is that the distribution is integrable (Walker [25],
Willmore [26]). Hence, as the distribution ®” is integrable, there
exists always a symmetric linear connection of v-f-type. Similar
discussion gives us that the condition of the existence of a sym-
metric linear connection of s-f-type is that the horizontal distri-
bution ®* is integrable, i.e., the equation R,=0 holds good. A
symmetric linear connection of quasi Finsler type is a symmetric
connection with respect to which the distribution ®* and &’ are
respectively parallel. The condition of the existence of such a
connection is that the distribution ®*, &’ and ®*+ P’ are all

integrable. (Walker [25]) Hence our condition is also given by
R,=0.

Definition. A connection of a quasi Finsler type satisfying

(3. 10) vV."v =v,”v, v,Pv=v,"v,



434 Yoshihiro Ichijyé

for any quasi vector fields # and v is called a connection of
Finsler type.

The reason why the above connection is called the connection
of Finsler type will be stated at the end of this section.

For the covariant differentiations with respect to the connec-
tion of Finsler type, there is no difference between (k) and (v),
therefore we shall denote them simply by the notation V and v
in this case.

Theorem 3.2. With respect to the comnection of Finsler type,
the covariant differentiations commute with the lift operators, i.e.,

(3.11) IN,=Vul, IV, = Vu-l.

Proof. We shall verify (3.11), as an example, in the case
where f is a quasi tensor field of type (1, 2) and / is of type /i_.
For any vector fields V=v/+v,” and W=w/+w,’, we find

LV ) (V, W) = (V. f-(v,, w))
= (Vo f (0, w)—f(V 0., w)—f(0,, Vw,))"
=Vl f-(V, W)L (Vo V, W) =15_f-(V, VW)
= V- (Li_f)(V, W).

The other cases are also directly verified by similar method.
Now we are in a position to show the components of the linear
connections of the above mentioned several types in terms of
canonical coordinates. If I" is a linear connection of T(M), for any
linear connection T, there exists a tensor K satisfying r=01+K.
The components of K in canonical coordinates are given by (1. 8).
In order to determine the components of T", we consider the
quantity «?,; whose transformation law is the one satisfied by
affine connections (the present 77,; is, however not always a
function of x only, but may be a function of x and y). Then T

whose components are given by

0. . 0. 0. 0. 0

F'kj - ')’lkj, F’k; - 0, f"}g_i = 0, F’,—zj - O, Ftkf = 0,
0. . . 0 - ; 0. R,
iy, = ¥ 0 e;— P07 5,), Tie; = v'ejr Dig; = vis;,

(3.12) {

is a linear connection of T(M) by virtue of (1.2). Combining the
above I" with (1.7) and (1.8) we have components of the most
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general form of linear connections T'=1"+ K of T(M).

Now, the direct calculation shows us that the tensors K, H, K
and H, which are defined above with respect to the f‘, are given
by the formulae K=/*_(b), H=1%_(d), K=12,(0) and H=1/7,(0),
where

brj = =307 1;+ Y P" 00 1;+ 08P j— P"100P j— P ¥ ™e;
+')’ikm¢’mj+'}’imj¢mk ’
diy; = kP ;= Y'hj-
Hence the formula (3.8) gives us that a linear connection I' of
h—f-type is given by

Ty = %kt @i+ C i@ e+ € n®P™ i+ & 1P e P™ 5 s

Dig; = Crjt &8 em®™ s Ty = €4;+ 802" es Ty = 84
T = kP ;=P Y "k F YV kP ;= P o™ 15— P ™ 1,9
(3.13) +fikm¢mj+hilm<plk(pmj_¢ilelkm¢mj_¢irgrlm¢lk¢mj’
Dok = 0k j— P iCl i+ W 4™ i — 97,8 i

Pig = 9oyt t Wo; @ e — P 1€ ;— 9, 8719

ki— P8 ks s

where a, ¢, ¢, f, g and h are arbitrary quasi tensor fields of type
(1, 2). Similarly we get the components of quasi Finsler type,
i.e.,, for any quasi tensor fields a, ¢, f and % of type (1, 2) as
follows :

Dl = Ykt @+ @"r, Tig; = ¢y,
T; =0, T =0,
Iy, = 0,P ;=P Y ki Y P — P @ — P " P
A P i T R 1 PP 5
T = ék¢ij—¢)ilclkj+hikl(plj) i = Vit Sk 0™,
Ty = I, .

(3. 14)

This is a general form of components of a linear connection of
quasi Finsler type.

The covariant differentiations with respect to a connection of
h-f-type are given by
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V.20 = u*(0,0° — 0,0  @?p+ (v, + @'y ;)07)

9
oxt’
(3. 15) B
VP = ukB0 + )
xi

Similarly the covariant differentials with respect to a connection
of v—f-type are also given by

VvV, My = uk(akvi_apvi¢pk+ (Vi + Fie,)0?) aa; ’
(3. 16) i

I

V. v u"(ékv‘"+lz"k,~vf)—a—,.

ox’
These two formulae give us that a connection I'" is of Finsler
type if and only if T is a connction of quasi Finsler type satisfying
f=a and h=c. Hence the components of an arbitrary connection
of Finsler type are written as

Fikj = 'yikj+aikj+cimj¢mk , Fikj = cikj ,

Fik} = 0, Fip] =0,

Dl = 0eP =@ Y kit Vo k@™ 5= P @k j— P € 1P
+ @ P i+ C PP

Dig; = 0,9% ,—plicty;+ e’

iy = 'Yikj+aikj+ci1j¢”k , Tig =i,

(3.17)

where ¢ and ¢ are arbitrary quasi tensor fields on M.

Remark. Let there be given a Finsler metric, ¢ be the ¢-
connection derived from the given Finsler metric, and * be the
Cartan’s connection. If a linear connection I' is of h-f-type and
satisfies y+a=«* and ¢’ k].:% g:™0,,8:;, then the covariant differ-
ential V®* coincides with the covariant differential defined by
Cartan [2]. Moreover if T is assumed to be of Finsler type
satisfying the above conditions, then I" is uniquely deterimined.
If T is of A—f-type and satisfies v +a=0p, the V* coincides with
Berwald’s. The connections of Rund and others are also derived
from our connenctions of i-f-type, quasi Finsler type or Finsler
type.
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§4. Generalized almost complex structures

If a manifold admits an r-dimensional complex distribution IT”
satisfying the relation I1"NI1"= {0} at each point of the manifold
where [1” means a complex conjugate distribution of I1”, then the
manifold is called @ manifold with a Tl,-structure (Ichijyo [7]).
Hereafter we treat a manifold M of g-space whose dimension is
even (=2m).

If the tangent bundle T(M) over a ¢@-space M*” admits a
horizontal II,,-structure (a II,,-structure whose distribution I1” is
horizontal), then T(M) admits an f,-structure F, satisfying

(4.1)  F?+F, =0, rank of (F,) =2m, F,=12(f), f*= —1.

Because, the complexification (®*)° of the horizontal distribution
®* is written in the form (®*)",=11",+ 1", for any point z& T(M)
where I1™ is the given horizontal complex distribution. Hence
(T),=11,""+11,"+(®")°, where T° and (®")° are complexifications
of T(M) and @’ respectively. Now, if we denote by ¥ the pro-
jection operator of IT™, then ¥ is the projection operatbr of I1”
and the relations

VP=v, YU =0, V=T, yv=0
hold good. Here on putting
(4.2) Fi=—v-1(¥Y-V¥)

it follows that F, is a real tensor field of type (1, 1) on T(M)
and satisfies F,°+F,=0 and the rank of (F,))=2m. At the same
time (4.2) gives us F,=I=(f) and (F?+F)u*=((f*+f)u)* for any
quasi vector field », from which we have f’=—1.

Moreover, since —+/ —1 is the eigen value of F,, the distri-
bution, which is constructed by eigen vector space corresponding
to —y/ —1 at each point, coincides with I1” by virtue of (4.2).
Hence, thus defined f,-structure F, is called an f,-structure
associated with horizontal 11,,~structure, and conversely, the distri-
bution I1™ is called a complex distribution associated with F,. We
call also hereafter the @-space M which admits a quasi tensor
field f satsfying f*=—1 a generalized almost complex space (or
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simply g.a.c.s.) and call f a quasi almost complex structure (or
simply g.a.c.str.).

Conversely, if M admits a quasi tensor field f of type (1,1)
satisfying f*=—1, then F,=/=(f) forms an f,,-structure of T(M)
and the complex distribution associated with F, forms apparently
a horizontal II,,-structure. Thus the above argument leads us to

Proposition 4.1. [In order that a ep-space M*” admits g.a.c.
str. f, it is necessary and sufficient that the tangent bundle T(M)
over M admits a horizontal 11,,-structure.

Proposition 4.2. [In order that a ¢p-space M*” admits g.a.c.
str. it is necessary and sufficient that the tangent bundle T(M) over
M?®" admits a vertical 11,,-structure.

Proof. 1In gua.cs., IZ(f)=F, gives a horizontal I1,,structure.
If we put

4.3) F, = —J*F,J*,
where J* is the natural almost complex structure, then we have
rank of (F,) = 2m, F}+F,=0, Fu’) = (fu), F(u")=0,

from which we have F,=/}(f). Hence the same argument as
Prop. 4.1 gives our result.

In the tangent bundle over g.a.c.s., let the horizontal complex
distribution I1” associated with F, be parallel with respect to a
linear connection T, then for any vector field U the equation
VuF,-F,=0 holds good, where V means the covariant derivative
with respect to the I'. Because, a necessary and sufficient condition
for the complex distribution associated with an f-structure F, to be
parallel with respect to a given connection I" is that the equation
VuF,-F,=0 holds good for any vector field U. (Ichijyo [7]) The
converse is also true.

Theorem 4.1. In the tangent bundle over g.a.c.s., a necessary
and sufficient condition for the horizontal distribution T1™ associated
with F, to be parallel with respect to the given connection T' is that
the connection T is of h-f-type and satisfies V¥ f=0 and v*»f=0.



Almost Complex Structures of Tangent Bundles 439

Proof. Since the connection T is real and ®*=Re[I1”+ I1™],
if the distribution IT™ is parallel with respect to the T, so are
11” and ®*. Hence T" is of h-f-type. Now, we have

Vi Fy (") = Vi F,(0") — F, (Vi 0")
— (Vu(h) . (fv) —f(V,,(")v))"
= (V.2 f-(@).

Similarly we have V. F,-(v*)=(V,*f+(v))*. These results lead us
to VuF,«(F,o")=(V, P f-f @), Vol (F,0")=(V,* f-(fv))". Hence,
from the preceding consideration, we have V®f.f=0 and v*f.f=0.
Since the rank of (f)=2m, we obtain V¥ f=0 and v#»f=0. The
converse also follows from above consideration.

The present author proved in his paper [8] that in a manifold
with a II,,-structure a necessary and sufficient condition that there
exists a symmetric linear connection I' with respect to which
the distribution I1” is parallel is that the distributions I1” and
Re[II™+11™] are both integrable. Hence, in the tangent bundle
over g.a.c.s., there exists a symmetric linear connection T' with
respect to which the horizontal complex distribution IT” associated
with F, is parallel if and only if the distribution I1” is integrable
and the equation R,=0 holds good.

Now applying the Ishihara-Yano’s well known results [9] with
respect to integrable f-structures to F, and F,, we establish the

Theorem 4.2. The f-structure F, which is defined by (4.1)
on the tangent bundle T(M) over g.a.c.s. is integrable if and only
if the quasi almost complex structure f is a complex structure and
the equation R,=0 holds good.

Proof. The structures F, is integrable if and only if the
Nijenhuis tensor of F, vanishes identically. Since F,=!Z(f), it
is enough to verify the Prop. 2. 1. in the case where ¢=f and
b=c=d=0. The fifth equation of Prop. 2. 1 means V*f=0, which
implies that f is an almost complex structure of M. The first
equation leads us to f[ fu, v+ fLu, fol¥—[ fu, fol+[u, v} =0,
which means that f is a complex structure of M by virtue of the
fact that f is an almost complex structure of M. The second
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equation is, therefore, equivalent to R,=0. The rest of equations
of Prop. 2.1 hold identically in the present case.

Theorem 4.3. The f-structure F, which is defined by (4.3)
on the tangent bundle T(M) over g.a.c.s. is integrable if and only
if the quasi almost complex structure f constructs a complex stvuc-
ture in each fibre and the quasi tensors R, and V*f vanish identically.

Proof. Since F,=11(f), it is enough to verify the prop. 2.1
in the case where d=f and a=b=c=0. The first, third and fifth
equtions hold identically in this case. The second equation means
R,=0 and sixth equation means V#f=0. The fourth equation
leads us to

IV, w)—fVEf(u, 0)+ VA (u, f0)— V] (v, fu) = 0.
Q.E.D.
The preceding discussion is concerned with f-structures in
the tangent bundle over g.a.c.s. We are now in a position to
consider the almost complex structures in the tangent bundle over
g.a.c.s..

Theorem 4.4. In the tangent bundle T(M) over g.a.c.s., there
exist three kinds of almost complex structures F, F’' and F”, i.e.,

F =12(N)+1:(f),
F' =1=(f)=13(NH)+plt)+13Q1),
F'=al=(f)+BIzW)+pls V) +al7(f)—ali(1)—BI1(f)

_p(az—Bz+1)+2a6’0-1+(1)+o(az—;82+1)—2a,8pl+(f)
P2+O_2 - P2+O’2 - ’

where a, B, p, o, u and v ave scalar fields on T(M) satisfying
P +a°=*0.
Proof. By direct calculation we can easily verify
Fz — F/Z — F//2 — —EZ".

Now the almost complex structures F, F’ and F’”, which are
defined in this way, are the most general ones in the almost
complex structures which are generated by 1 and f on 7(M) over
@-space. Because, if we put
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H = alz(1)+ Rl (1) +pl7 (1) + ol (1) + I Z(f)+ 813 (f)
+pli(F)+vIL(f),

then the relation H?= — E** holds good if and only if H is equal
to any one of F, F’ and F”.

The structure F’ depends upon the choice of ¢, thereby, if
necessary, we denote it by F’,. Then it is easily seen that
¢>’=<p+—g— f —% f is also a @-connection and the relation F,=F’,
holds good, where we put F=I/-(f)—I(f). That is to say, if
p=7=0, the structure F’ coincides with F. If ¢=8=0, the
structure F’ coincides with J. In the case where ¢=1 and a=
B=p=0, we denote F” by F* i.. F¥=[;(f)+{*(f). Then we
have

F (") = (fu)y, F (&)= (fu),
(4. 4) F @)= (fuy, F @)= —(fu),
F¥w") = (fu)’, F*") = (fu)'.

For the integrability conditions of these almost complex
structures, we have first

Theorem 4.5. A mnecessary and sufficient condition for the
almost complex structure F to be integrable on the tangent bundle
over g.a.c.s.is that, by any quasi vector fields u and v, the follow-
ing equations are satisfied:

FVf+(u, v) =V (u, fv) = 0,
IV« (u, ©)—= V¥« (u, f) = 0,
Ry(u, )+ Ro(fu, v)+FRy(u, f0)—Ry(fu, fv) = 0,
To(u, v)+f To(Sfu, V) +fTo(u, f0)— To(fu, fv) = 0.

Proof. 1t is enough to verify the Prop. 2.1 in the case where
a=f,d=f and b=c=0. In the case under consideration, the third
equation of Prop. 2.1 holds identically, and the second equation
coincides with the third equation of (4.5). The fifth equation
of Prop. 2.1 also leads us to the second equation of (4.5). The
fourth of Prop. 2.1 implies that

FVf (0, u)— V- (u, 0)+ Vo (u, f0)— V- (0, fu) = O

(4.5)
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which holds identically by virtue of the second of (4.5). Finally
the first of Prop. 2.1 leads us to

f[fur v]#+f[uyfv]#_[fu’ fv]#+[u’ U]# = O 3

which implies the fourth equation (4.5) by virtue of the first
equation of (4.5) and Prop. 1.2. The converse also follows at
once.

As for the structure F* and F, similar discussion leads us to

Theorem 4.6. A necessary and sufficient condition for the
almost complex structure F* on T(M) over g.a.c.s. to be integrable
is that the following relations hold good for any quasi vector fields
u and v:

(4.6) { FRA{Su, o)+ ~(0, 0)— 4+ (u, v) = O,

STo(u, v)+ V- (v, u)—V*-(u,v) = 0.

The integrability condition for the almost complex structure F
is also given by

( fVH-(u, )—V-(u, fv) =0,
Vi« (u, v)—VH-(v,u) =0,
4.7) Ry(u, v)— fR,(fu, v)—fRSu, fv)— R, fu, fv) =0,
To(u, v)+fTo(fu, v)+FTu, f0)— To(fu, fv)
—2f Vi (v, u)—2fV¥(u, v) = 0.

If the quasi almost complex structure f is an almost complex
structure on M and the connection @ is given by @’ =i, y*
where v, is a linear connection of M, then the almost complex
structure F on T(M) is a well known one (Tanno [24]). More-
over the integrability condition of the structure F in this case
becomes simple, i.e.

f: integrable
(4.5 R(u, v)+fR(fu, v)+fR(u, fv)—R(fu, fu) =0,
fV*f-(u, v)_vﬁf°(u) fv) =0 ’

where R is a curvature tensor of v, # and » are any vector fields
on M.



Almost Complex Structures of Tangent Bundles 443

§5. Generalized metric spaces

Let M be, in this section, a homogeneous @-space and let
there be given a quasi almost complex structure f and positive
definite generalized metrics g and # (Moor [16]). Of course g
and % are assumed to be positively homogeneous of degree 0 with
respect to y. Now we put

(5.1) G=1_(g), H=1,.(h), G¥=G+H.
Then we see, for any vector fields U=u/+u," and V=v/+v,?,
(5.2) G*U, V) = g(u,, v.)+h(u,, v,) .

Hence let us adopt (5.2) as the definition of an inner product of
vectors U and V, then 7(M) is a Riemannian space with respect
to G*. We call this metric G* a canonical metric with respect to
g and h.

If the manifold M is a Finsler space whose Finsler metric is
g, and it is assumed that k=g, then the canonical metric G¥* is
the so-called lifted metric (Matsumoto [14]). If the metric g is,
‘moreover, a Riemannian metric, and it is assumed that @;= {§;} *
where {j,} is the Christoffel's symbol, then the lifted metric is
the one introduced by Sasaki [22]. In this paper the canonical
metric G* satisfying A=g is called simply a lifted metric.

The canonical metric G* constructs an almost hermitian struc-
ture together with the natural almost complex structure J/* if and
only if the metric G* is a lifted one. Because, the condition to
be verified is G¥(U, V)=G*(J*U, J*V), where U and V are any
vector fields. This is reduced to

g(uu vl)’l'h(uz) 1)2) = g(uz» vz)+h(u1> vl) ’

where U=u"+u,” and V=v/*+v,”. Since this condition must be
satisfied by any quasi vector fields «,, «,, v, and v,, our demanding
condition becomes Z=g. Then we obtain

Theorem 5.1. The lifted metric G* constructs an almost
Kadhler structure together with the natural almost complex structure
J* if and only if the followings hold identically for any quasi vector
fields u,, u, and u,:
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g is a Finsler metric,
(5 3) Sl,z,s [g(Rw(un uz), ua)] =0 ’
V#g' (ul » Us,s uz) -V#g' (uzy U, ul) '_g( T¢(u1 ’ uz), ua) =0.

Proof. 1t is well known that the lifted metric G* is an
almost Kéahler structure together with the structure J* if and
only if the 2-form (U, V)=G*(J*U, V)= —g(u,, v)+gu,, v,) is
closed. Thereby, taking account of dw, we obtain

do(u’, u’, u’) =0,

do(ul, ut, u) = S, ,.[g(R(u,, u,), u,)],

do(u’, ul, u) = Vige(uy, uy, u,)—Vig-(u,, u,, u,) + g(T(u,, u,), u,) ,
do(ul, u), u") = Vig-(u,, u,, u,)—vig-(u,,u,, u,) .

The right-hand side of the last equation vanishes identically when
and only when 9,g;,=0,g;, holds in terms of canonical coordi-
nates. Since g is positively homogeneous of degree 0 with respect
to y, the last condition reduces to 379,g;,=0, that is to say, g is
a Finsler metric (Moor [16]). The converse follows from the
properties of a Finsler metric. Q.E.D.

A manifold M*” is said to admit a generalized almost her-
mitian structure or simply g.a.h.str. (f, g¢) when and only when
the manifold M*” admits a generalized metric g and a quasi almost
complex structure f which are both positively homogeneous of
degree 0 with respect to y and satisfy g(u, v)=g(fu, fv).

Theorem 5.2. In order that a manifold M*™ admits g.a.h.str.
(f, 8), it is necessary and sufficient that the tangent bundle T(M>™)
over M*" admits a complex m-dimensional distribution II™ which
is horizontal and null with respect to a canonical metric G*.

Proof. Let us assume M*” admits ga.h.str. (f, g), then we
shall consider quasi eigen vector space z™(x, y) corresponding to
the eigen value —+/ —1 of f. Thus we have a complex distribu-
tion II” which is constructed, in any point z=(x, y) of T(M?*™),
by the horizontally lifted vectors Ac,»=»MN", Where A\, are basic
quasi vector fields belonging to z"(x, ») (¢=1,2, ---, m). Then I1”
is horizontal and satisfies
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G*(Aws Aw) = 8> M) = 8N =1 hwrr V=1 Ne)
= — g\ Ap>) -

Consequently IT™ is null with respect to G*.

Conversely, if II™ is a horizontal null distribution with respect
to G* in T(M*"), then T(M*”) admits a horizontal II,-structure
(Ichijyo [7]). Thus Prop. 4.1 shows us that M*” admits a quasi
almost complex structure f, which is positively homogeneous of
degree 0 with respect to y by virtue of the fact that II™ is
horizontal and ¢ is positively homogeneous of degree 0. The f-
structure F,=/-(f) satisfies v/ —1F, A=A from (4.2). If we
put A =(@w+\ —1bw»)" where a., and b, are real quasi vector
fields, then we have a.,= —fb, and b, ,=fa.,. Hence, from
these results and the relation G*(Au», Aw)=gN\cwr» M) =0, we
have g(@.w», ap)=8(cw, bep) and g(bcw, acpy) = — g(@ca>» bepy). Thus
we obtain g(faw,, fap)=g(0w, ap), &(faw, fbm)=8(aw, b))
and g(f b, fbp)=g(bw, bpy). Consequently we obtain g(fu«, fv)
=g(u, v). Q.E.D.

If a manifold M*” admits g.a.k.str. (f, g), then, in the tangent
bundle T(M*”) over M*™, the metric G¥*=/__(g)+/..(h) together
with F,=/Z(f) constructs a so-callec (F—G)-structure. Indeed,
F, and G* become an (F—G)-structure if and only if F, is an
f-structure and G* is a Riemannian metric satisfying

(5.4) GXF.X, F.Y)+G*X, MY) = GXX, Y), (M=1+F?)

for any vector fields X and Y (Yano [27], Ichijyo [7]). Now,
from the relations M(«*)=0 and M(u")=u", the ga.h.str. (f, g)
guarantees that (5.4) holds identically. Besides, the Prop. 4.1.
and (5.4) show us directly that the converse of the above state-
ment holds good.

Now we shall be concerned with the almost complex structures
F, F and F* defined by (4. 4).

The structure F and the canonical metric G* become an almost
hermitian structure if g, 2 and f satisfy

(5.5) g(fu, fv) = g(u, v), h(fu, fv) = h(u,v),

for any quasi vector fields # and ». Because, the relations (5. 2)
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and (4. 4), show us that the condition G¥*(FX, FY)=G*X,Y) is
equivalent to (5.5). Hence the converse is also true. We establish
moreover

Theorem 5.3. In order that the almost complex structure F
and the canonical metric G¥* construct an almost Kihler structure,
it is necessary and sufficient that the equation (5.5) and the follow-
ing velations hold good for any quasi vector fields u,, u, and u,:

(5.6)
S, 2LV (fur, s, ws) + G(VAf (w5, ), )+ 8(f Tow,, ), u,)] = 0,
Vig-(fu,, Uy, )+ g(VH+ (uy, o), us) —h(fRy(u,, u,), u,) = 0,
Véhe(fu,, u,, u,)+h(Vif(u,, u,), u,) = 0,
S, ViR (fu,, u,, w,) +h(VH ~(uy, u,), u)] = 0.

Proof. For the same reason as in Theorem 5.1, it is enough
to show that the condition for the 2-form w(X, Y)=G*(FX,Y) to
be closed is given by (5.6). To see this, taking account of g(fu,v)
=—g(u, fv), o, v")=g(fu, v), o@* v")=0, o', v")=0 and
w(u’, v)=h(fu, v), we obtain by direct calculation

do(u’, wl, ul) = 8, ,,[Vig-(fu,, u,, u)+ g(V¥-(u;, u,), u,)
+&(fTo(uy, us), u)] ,
do(ul, w), u) = Vig-(fu,, u,, u;)+g(V¥f-(u,, uy), u,)
—h(fRy(u,, u,), u,) ,
do(m?, ul, u’) = VEh-(fu,, uy, u)+h(VH-(u,, u,), u,),
do(u’, u,’, u) = 8, [Vh(fu,, ty, us)+h (Vi +(uy, u,), u,)] .

Therefore, it follows from (5.5) that the proof is complete.

Let us consider the similar consideration on the almost com-
plex structure F* and F in the tangent bundle of g.a.c.s..

If the structure F* and the canonical metric G* construct an
almost hermitian structure in 7(M*"), then it follows that

G*’, v") = G*((fu), (fv)") = g(fu, fv),
Hence we obtain, for any quasi vector fields #, and u,,

6.7 by, u)) = g(fu,, fu,) .
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Conversely, if (5.7) holds, then G¥*(F*u’, F*v')=G*(u’, v’). More-
over it is easily seen that

G*(F*u*, F*v") = h(fu, fv) = g(f*u, fv) = G*(u*, v"),
GH(F*u", F*¥0") = GXu", v").

Thus F* and G* construct an almost hermitian structure.

Theorem 5.4. In order that the almost complex structure F*
and the canonical metric G* construct an almost Kihler structure,
it is necessary and sufficient that the equation (5.7) and the follow-
ing relation hold good for amy quasi vector fields u,, u, and u,:

S1,2,3[g(fR¢(ul) u), )] =0,
Vig-(fues, w,, u,)—Vig(fuy, uy, u,)— gV +(us, u,), u,)
(5.8) +g (V¥ (uy, ,), u,)—g(To(u,, u,), fu,) =0,
Vige(fuy, wy, ) —Vig-(u,, futy, us)—g(u,, Vi (4, %))
+g(u,, Vi (s, u,)) = 0.

Proof. 1t is enough to show that the condition for the 2-form
o(X, Y)=G*(F*X, Y) to be closed is given by (5.8). To do this,
taking account of w(u*, v")=0, w(u’, v")=0, o(u*, v*)=h(fu, v)=
—g(u, fv) and w(u’, v*)=g(fu, v), we obtain that dw(u, u,’, u,")
vanishes identically and de(%”, ", u,*)=0, dw(u?, u’, u,”)=0 and
do(u, u,’, u,")=0 coincide with (5.8),, (5.8), and (5. 8), respec-
tively. Q.E.D.

As for the almost complex structure ¥, the similar theorems
will be obtained by slight modification.

§ 6. Finsler spaces and Minkowski spaces

Let M be a manifold with a Finsler metric g, G* be its lifted
metric and @ be the @-connection derived from the Finsler metric g.

First we shall show, from our stand point, the following
theorem obtained by Yano-Davies [287] and Matsumoto [14]:

“In the tangent bundle T(M) over a Finsler space M, the natural
almost complex structure J* forms an almost Kihler structure
together with the lifted metric G*.”

To do this, it is sufficient to verify the relations (5.3), and
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(5.3), in Theorem 5.1. In terms of the canonical coordinates,
from (1.13), the left-hand side of (5. 3), is reduced to

GimR" ;i &im R+ 8m R = Y™ (Rijmr+ Riinj + Rigmi) »

which vanishes identically by virtue of the well known relation
R; ;e Y™ = —R; t,,y™ and the Bianchi’s identity in Finsler geometry.
It follows further, in the present case, that 7T,=0 and

(6.1) Vj#gik = _ZC*jikIIyl (= —Zc*jiklo) )

where the symbol | means the covariant derivative of Cartan and
we put C*ijkz%éigjkzééiéjékL, from which (5. 3) holds identi-
cally.

This theorem implies directly that the tangent bundle T(M)
over a Finsler space M is a Kihler space with respect to the
lifted metric and the natural almost complex structure J* if and
only if the horizontal distribution &* is integrable, ie., R,=0.
Hence the tangent bundle 7(M) over a Minkowski space M is a
Kihler space with respect to the lifted metric G* and the natural
almost complex structure J*.

Now let M*” be a 2m-dimensional Finsler space and admit a
quasi almost complex structure f which constructs g.a.h.str. to-
gether with the Finsler metric g.

In the case where the quasi tensor field f is independent of
¥, i.e., f is an almost complex structure of M, E. Heil obtained
the following theorem in his paper [5]: If a Finsler space M*™
admits a complex structure f which constructs g.a.h.str. together
with the given Finsler metric g, then the metric g is a Riemannian
and the manifold M*” is an Hermitian manifold. We prove this
algebraically.

Indeed, from the assumption, it follows that 9,f7,=0 and
8:i=8paf?:f?;, which lead us to C¥;;,=C*,,.f? f?;. On the other
hand, f is integrable, so there exists a canonical coordinate system
with respect to which the components of f are written in the

form
. O) _—BMB
0= (5 0,
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Hence we have C* 5, =C* 0. /24 f 5= — C*zpp and C¥ o, = C* 0 f 2 f 25
=C*_5,. These relations lead us to

C*me = C*aﬁ'ﬁ = _C*mﬁ = _C*vﬁE = _C*VB& = —C*EBY = _C*mlﬁ .

Therefore we obtain C¥,z;=C*,3;=0. Similarly we obtain also
C*upy=C*,5y=0. Consequently it follows that C*;;,=0, i.e., g is a
Riemannian metric and M is an Hermitian manifold.

In the tangent bundle over M, we shall obtain the

Theorem 6.1. Let M*™ be a Finsler space and admit an almost
complex structure f which constructs g.a.h.str. together with the
given Finsler metric g. If the tanget bundle T(M*™) over the M*™
is almost Kahlerian with respect to F=I1-(f)+11(f) and the lifted
metric G*, then the metrvic g is a flat Riemannian metric.

Proof. The condition for the given structures F and G* to
be almost Kihlerian is written, from Theorem 5. 3, as

v#g'(fuu U, u3)+g(v#f'(u1’ ua)r uz)—‘g(fR(o(uu uz), us) =0 s
(6.2) { Vig-(fu,, uy, )+ (V¥ +(u,, us),u,) = 0,

Sl,z,a [g(fR‘P(ul ’ uz)’ ua)] =0.
Since V* =0 and R,(u,, u,) = —Ry(u,,u,), (6.2), gives us V¥#f.

(fu,, u,, u)= —vtg-(fu,, u,, u,). On the other hand V¥g(u,, u,, u,)
=2C*¥(u,, u,, u,)=v*g(u,, u,, u,), then it follows that

&(fRy(u,, u,), u)) = Vige(fu,, u,, u) = —Vig-(fu,, u,, u,)
= _g(wa(un uz)) us) .

Thus (6. 2), gives us that v¥g=0 and R,=0, which show us, by
virtue of (1.13), g is a flat Riemannian metric.

Theorem 6.2. Let a manifold M*™ admit ga.h.str. (f, g)
where g is a Minkowski metric. The tangent bundle T(M*™) is
almost Kihlerian with respect to the lifted metric G* and F=I1-(f)
+13(f) if and only if there exists a canonical coordinate system
(x, y) in terms of which the components of f are independent of x,
and the components of gf are constant.

Proof. In a Minkowski space, the relations
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(6. 3) R, =0, ViC*=0, Vig=0,

hold good and there exists a coordinate system in terms of which
the components of g are independent of x. Therefore, in terms
of this coordinate system, we have ¥* ;=0 and ¢’;=0. Now,
(6. 2), gives us

(6.4) vif =0,

which implies that f7; are independent of x. Next, (6.2), leads
us to

(6.5) Vigf) =0,

which implies that g;,f’; are independent of y, i.e., the components
of gf are constant. The sufficiency follows at once from the
above calculation.

Theorem 6.3. If the almost Kdihler structure in Theorem 6.2
is integrable, then an f-structure F,=1}(f) is also integrable and
each fibrve is Kdhlerian.

Proof. Under our assumption, the relation (6.3), (6.4) and
(6.5) hold good. The Theorem 4.5 shows that the following holds
good :

(66) fv#f'(un uz)_vxf'(unfuz) =0.

From the Theorem 4.3 and the relations (6. 3), (6.4) and (6. 6),
it follows that F, is integrable. Moreover (6.5) and (6.6) show
us that in each fibre /3 (f) and /,,.(g) form a Kdihler structure.

Finally let us calculate, in the tangent bundle of a Finsler
space, the Christoffel’s symbol {gc} corresponding to the lifted
metric G* of a given Finsler metric g.

As is shown in section 3, {glc} is written as I'+K. As to
1", we adopt the one given by (3.12) where we take y* ;& (Cartan)
as v;, and o*,,y* as @';. After some complicated calculations
we have the components of «, b, ¢ --- and £ which compose a tensor
K under consideration as follows :
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aikj - 0’ gikj = C*ikjlo' hiki = C*ikj ’ dikj = fikj = 0:
i i ; 1

Cri =Cri = C*'k;‘-‘_?g”gkamﬂ )

(6. 7) bikj = —¢imry*mkj—ylal")’*ikj—l—yl(pﬂl pfy*ikj_c*,fkj

1 ) ; 1 . )
—7(61&?","" 0;9's) +§('Y*lkq— C* a10) P

1 . .
"“2—(’7*','1,— C*¥ ) PP .

Theorem 6.4. [n the tangent bundle over a manifold with a
Finsler metric g, the Riemann connection {§C} corresponding to the

lifted metric G* of g is of h-f-type if and only if g is a flat
Riemann metric.

Proof. Comparing (3.13) with (6.7), we obtain that

3_;‘/’[!.:_')'*{/;,‘ =0,
(6’ 8) 1 i i 1 ki q *i q
—ER kT C 'kj“‘g(c kalo®@” ;% g0p%) = 0.

In Finsler geometry it is well known that the first equation of
(6.8) is equivalent to C*i,;,=0. Thus we have R?,;=2C%;.
Since {§C} gives a symmetric connection, Theorem 3.1 gives us

Ri,;=0. Therefore we obtain C*/,;=0, i.e., g is a Riemann metric.
Moreover from (1.13), Ri,;=0 shows us that g is flat. The con-
verse is evident.
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