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The notion of complex Finsler spaces was first introduced by
P. Finsler himself. However, it is not until recently that a number
o f papers in  this field have been published. It seems, so fas
as we know, that one of the most interesting papers is that of
E. Heil [5]", to which we will refer in  the last section of this
paper. On the other hand, many authors consider the theory of
Finsler spaces as a special geometry of tangent bundles.

Now the main purpose of the present paper is to study the
geometry of tangent bundles and of generalized almost complex
structures, based on non-linear connections in tangent bundles, and
thus to develope a theory o f almost complex Finsler spaces.

We first introduce the notions of .p-connections and quasi
tensor fields, which enable us to define the lifts of tensor fields
on manifolds to their tangent bundles.

In section 2, almost complex structures are naturally intro-
duced in tangent bundles by g)-connections.

In section 3, the affine connections of tangent bundles are
studied. Then we introduce a special class of connections, named
connections of Finsler type, which have close relations to several
connections of Finsler spaces.

Quasi almost complex structures are defined in section 4, and
we investigate the properties of f  structures and almost complex
structures in tangent bundles which are obtained as the lifts of
quasi almost complex structures.

1 )  Numbers in brackets refer to the references at the end of the paper.
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The last two sections are devoted to consideration on struc-
tures constructed by generalized metrics together with quasi almost
complex structures. Finsle r  metrics are considered as a special
case of generalized metrics.

The present author wishes to express his hearty thanks to
Prof. Dr. M. Matsumoto for his kind criticism and encouragement.

§ 1 .  so-connections and 99-spaces

Let M  be an n-dim ensional differentiable C -  manifold and
T (M ) be its tangent bundle, the canonical projection being denoted
by T  T(M) — M . A ll the zero vectors o f M  are left out from
T(M ), that is to say, we consider T (M ) —M, and denote it, from
now on, by the same notation T(M ), and call it, for brevity, the
tangent bundle over M.

The tangent vector space of T(M) at a point z is denoted by T .
It is well known that the vertical distribution V  is correspondence
zE T(M)—>O z ", where (1 ) ; is  the subspace o f  T z tangent to the
fibre over x=r(z).

Definition. The 97-connection o f  T (M ) is an assignment of a
horizontal C-  distribution Oh such that, at each point of T(M),

T z  (1 3 . z."-P .43z h (direct sum) .

The 97- connection is called homogeneous when and only when, in
each point z  of T(M ) and for any positive number X, the condition

(1. 1) d x * c t o ( , , y )  O fi(x,xy)
is satisfied, where x= r(z ) and yE Mx ,  and d x *  is the differential
of the mapping X * :  T(M)— > T(M) ((x, (x, xy)).

The p-connection is nothing but a generalization of non-linear
connections ( [ 1 1 ] ,  [ 2 9 ] ) .  To see this, we refer to the canonical
coordinates (zA)—(xi, y 1)  o f z=(x, y) T (M ), where x =(x 1) and
y= y 1(0/8x 1),. It is well known that the matrix of transformation
o f canonical coordinates is

  

axe' 0
aXi

a2Xe '/  axe '

8 xi a x' Y  a x '

(1.2) (az A ')
azA
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We denote by the capital letter V a tangent vector field on
T (M ), by ph and p" the projection operators corresponding to the
distributions V ' and cif respectively. Since a vector field V  has

. .the form V— w  a  + v  at  , operators ph and p" are written as
ax' ay'

(1.3)p h  = (  E n , O p "  =  (0 , 0

En)— 99 , 0 )  ,

where En is  a unit n-matrix and g) is an n-matrix determined by
the .99-connection. It follows from (1. 2) that the condition for
ph and p" to be tensors is written as

ax'' ax/8 2 x ' '(1. 4) P '1  P i  ' .YPaX' ax' ax'axP

which is the law of transformation of non-linear connections.
Conversely, if q' = (99' ; )  satisfies the law (1. 4), the two pro-

jection tensor ph and p" are determined by (1. 3), and then the
99-connection is assigned.

Moreover we have "A  necessary and sufficient condition for
99-connection to be homogeneous is that components 99' of 99 in terms
o f  canonical coordinates are Positively homogeneous o f  degree 1 with
respect to y1." Indeed, in terms of a canonical coordinate system,
the condition (1. 1) is expressed as

(1. 5) q'1 1 (x, Xy) = X99' i (x, y) . (X>0)

Now we introduce the horizontal lif t and v ertical lif t o f vector
field y on M  to  T (M ) by means of the 99-connection (Dombrowski
[4], Yano-Davies [28]), which are denoted by vh and v" respec-

tive ly . If y  is vx  ---yi(x)
(  

 8  
v ' and are written in the forms

axi).)

a a(1.6) v  =  ( x ) ( v  —  v i(x )( g9i,,,(x, y)vm(x)(,
a

ax' = ax, = f o y i ) z  •

We consider a tangent vector field V on T (M ) .  Since compo-
nents of the projection d-r . V depend upon both x and y, d7- - V is
not always a  vector field on M .  However, in the geometry of
Finsler spaces and non-linear connections, vector fields with line
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elements have been treated. Hence, if  we denote by 1( T(M)) the
set of tangent vector fields on T(M ), we call elements o f i (M )=
dr•X (T(M )) quasi vector f ields on M  Hereafter the composite
concept of (M , T (M ), T ,  99, i(M ))  is called the 99-space. In the
following, 99-space are mainly treated.

Now the vertical and horizontal lif ts of  a quasi vector field v

(v x =vi(x, y)(  a )  are defined respectively byax'

(1. 6')

/  a{ v v i(x , y \---

\ a(  vz " =  vi (x, .Y)/  a . ) P i .(x, Y)v w (x, i')ax i  . ayi)z •

Then we have

Proposition 1. 1. A ny vector f ield V  on T(M ) is expressed as

V  = v i h+v,"

where v l an d  v , are  quasi vector f ields on M , uniquely  determined
by V .

Proof. T h e  vector field V  is written as V = p h  V + p "V . If we
put vi =dT•ph V, then y ,E i (M )  and y,h=ph V .  On the other hand

pvv has a  form v,i(x, y)( )a  a n d  v, i (x  Y)( af o r m  a quasi
ay' ax'

vector field y, on M . The pv V coincides with y2".
Next, let us consider tensor fields on T ( M ) . I f  K  is, for

example, a tensor field of type (1, 2), then K  is a bilinear mapping
T(M))x X (T(M)) ,  T ( M ) ) ,  i.e., for any vector fields U and V,

K (U, V) is another vector field on T(M) and is bilinear with respect
to U and V. Now we shall treat a bilinear mapping i(M ) x  i(M )
'i(M ) and call it a quasi tensor field of type (1, 2). Quasi tensor
fields of several types are similarly defined. Of course, tensor
fields on M  and tensor fields on Finsler spaces are also kinds of
quasi tensor fields. Since the vector fields U and V  on T (M ) are
decomposed uniquely, by means o f Prop. 1. 1, as U=u,h+u," and
V=v,h+v,v, it follows that, for a  tensor field K  of type (1,2) on
T(M),
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K (U, V ) = h(K(u,h , v ,h)) + h(K(u , v  + h(K (u," , v ,h))+ h(K (u 2 ", v2 "))
+ v(K(u,h , v ,h))+ v(K(u,h , v,v))+v(K(u,' , v ,h)) + v(K(u,' , v 2 v))

where h( V) and v( V) denote the horizontal and vertical components
of the vector V respectively. Now we are concerned with the
first term of the right-hand side h(K(u,h, v ,h)) which is a  vector
field on T ( M ) .  Then, by virtue of Prop. 1. 1, there exists a quasi
vector w, whose horizontal lift coincides with h(K (u ," , 19 ) .  We
then observe that the tensor field K  induces a quasi tensor field
a  of type (1, 2), satisfying a(u „ v ,)=w ,. Thus we can define a
tensor field l=_(a) on T(M )

l=_(a)(U, V ) = h(K (h(U), h(V )) = (a(u„ v ,))h .

The other seven components of K (U, V) also induce respectively
quasi tensor fields b, c, d, e , f , g  and h. Then K  is expressed
uniquely by

(1. 7)K  =  1 7  _ ( a ) + l=  , ( e ) +  _ ( c ) +  l7 4 (g)
+l -t (b )+1 1 4 (f )+P,L (d)+1.1 + (h),

where the sign — implies a horizontal component and + a vertical
one. These eight operators /'s are called lift operators of tensor.
I f  k  is  a quasi tensor field of type (1, 2), then, fo r  example,
K = ll,(k )  is a tensor field on T (M ) which is expressed as

K (U, V ) =l -14 (k)(U, V ) = (k (u„ v 2 ))v,

where we put U=u,"+u," and V=u,"+ v2".

Remark 1. In terms of canonical coordinates, components of
the tensor K  defined by (1. 7) are given by

K 1k1 =  ai k J -Pc' /p i  k+e i ki(Pl  i+ Im (P 1oP m

= c ' k 1 + k igo iK 1h1 = %/Pi k = g 1 k1 ,

K i k 1  = di 09 1 k—
+ fik i9 9 1

J — P ir g r im P lk 9 9 7 ;+ h i r n z P ik g p m ;

K 7k;  = ,
K 7

k 1 =
K 7

1,3  r= rg  k j +  k j  •

(1. 8)
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In these equations components of quasi tensor fields a,••• and
h are denoted by ai k i , ••• and hik ;  respectively, which are func-
tions of x  and y, and their transformation law is the one satisfied
by ordinary tensors. At the same time, it follows, from (1. 8),
that we have the components of the lift operators in canonical
coordinates, for example, we have the components of the tensor
l7_(a) as a case where b =c =d =e =f =g =h  = 0 in (1. 8).

Remark 2. Since tensors on T (M ) of type (1, 2) are of the
form (1. 8), several kinds of lifts of a tensor field on M , i.e. the
extension (or the complete lift) and the horizontal lift a r e
given as special ones in our case. For example, the complete lift
of a tensor field of type (1, 1) defined by Yano-Kobayashi [30]
(or the extension defined by Sasaki [22]) is given as follows. The
general form o f a  tensor field K  of type (1, 1) is  K =li(a)+
/1- (b)+ ( c )  +  I f  w e take d = a , c = 0 , and b = (by  =
(yra r ai J — yrq,Pr 6 p ai i + q ) i  i — ai K  is expressed by

K  = (K A B )=(  
yr(araik — 99 P rapa i k), a i h),

where we put a r =a/ax', 6r  =NW. If a is a tensar field on M , i.e.
a satisfies 6 r ai k = 0 ,  then the above tensor K  coincides with the
complete lift of a tensor a.

Proposition 1. 2. On putting

Euh  v h i = (Eu, v i #)h  + (R ,p(u v))",
[ uh, v"] = ( — t„#- + ( v.'• v)",

fo r  any  quasi vector fields u  and v , it follow s that

[u", v "] = • v — • 7 • „$

and R ,(u, v ) and T„,(u, v)=' 2-v —V „# • u — [u, v ]# are quasi tensor
f ields of type (1, 2).

P ro o f . It is enough to express each vector by the canonical
coordinates. By direct calculation we obtain



Almost Complex S tructures of  T angent Bundles 425

[ U V, V v] =  (u 1 61yi— w6 1ui)  a  
ay'

[ U , = T r n i L V i ) — —  99m Am u' )1
ax'

v u #. v (a iv i  -  99- + 6 y o i  "z)ti'  a ,ax'
at u #•v ivita

R , ( u ,  v )  =  R i  ; 0 0  
ax'

R '  kJ i<pi a o p i  —pm ;LT' (pm 0 , „

T ,( u ,  u )  = —  ,cpi ,Ou'vm   a 
ax'

which prove our assertion.
The quasi tensor field 1?,,, and are called a curvature tensor

and torsion tensor w ith respect to the  connection 99 respectively.
Now we shall define the covariant differential Vok and Vrok of any
quasi tensor field k  of type (1, r )  or (0, r )  with respect to a q'-
connection. I f  k  is of type ( 1 ,  r) ,  then we set

V„4k •(u', • • • , u r )  =  C7„0 . k(te , • • • ,ur) — k(ui, • • • , v„# • u 1  , • • • , ur)
(1.10)

j= 1

v q • (u l  , • • , u r ) u" • k(te , • • • ,ur) — k(u' , • • • , t  v o • !V  , • , u r) .
j= 1

In the case of type (0 , r) we set' also

Vv ok • (u' , • • • , ur) = vh k (u' , • • • , ur) —  E  k(ul , • • • , V v o • ul , • • • , u r)
(1. 10')

j= 1

7,'1? • (ul , • • • ,U r) = v" • k (ui , • • • ,ur)—  E  kui, • • • , t # • u i ,  • • • , ur) .

In these definitions, if we put V„Itk•(ul, ••• , ur)= Vokqu', • •• , ur, y) and
t„Itk•(ul, • , =  t 4 k qui , • • • , u r , v ) , V k  and to k  are quasi tensor
fields of type (1, r +1) o r  (0, r + 1). For later applications, we
calculate the components o f these quasi tensors in the case where
k  is of type (1, 1) :

V k okz ;  =  a „ k i  - „6,„ki J +6„,99i kkm -  „,6 ; 95m

t =  k k i  ,

(1. 9)
axi
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where we put
. a vitk.(u, y) = ( v h # k y

a
ykui  , vitk•(u, y) —  ( v k i i )yk u i .axi ax'

Now we shall give a simple example o f a  ço-space. In a
connected manifold M , if the second countability axiom holds
good, then M  always admits a positive definite non-Riemannian
Finsle r metric. (K ashiw abara [10]) Hence we take the connction
of Cartan with respect to the Finsler metric, and denote it by 7* •

By putting pi i =7*i i 1 y ',  pi ;  satisfies (1. 4) and

1 
(1. 12) 99i; —  

2  
.;(7* 1 1,..YiYm ) = G131Y1

where Gi i i  is  the connection introduced by B erw ald . This 99-con-
nection is called a  99-connection derived from a Finsler m e tric . In
this case the covariant differential Vo coincides with the one defined
by Berwald, and the following relations hold :

(1. 13) R11,1= R i k r iyr ,T  =  0,

where R i k r i  is a  curvature tensor expressed by

R  jk r
i( a  j 7

* i
 rk

-  P t j6 tre i  rk )
-  (a k r e i  r j  P t  k6  tre i  r j )

7 r  k  7 * i  tk 7* t r; •

§ 2. Natural almost complex structure

We shall concern with almost complex structures in the tangent
bundle over a manifold M , which are more general ones than the
structures studied by Nagano [1 7 ], Dombrowski [2], Yano-Davies
[28], Akbar-Zadeh [1], and Matsumoto [14].

Theorem 2. 1. In the tangent bundle T (M ) ov er a 99-space M
there ex ists an almost complex structure J defined by the follow ing:

J(uh) = a u k  1 +  a 2  u"
(2.1)P

Au") =  puh — a u ' ,

w here a an d  p  are scalar f ie lds on T (M ) satisf y ing p*0 and u  is
any  quasi vector field.
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Pro o f . For any scalar fields a, 8 , p and 0- o n  T (M ), if  we
put J= a l = (1) + 13 11(1) + pl .7_ (1) + l t (1), then J  is  a  tensor field
o n  T (M ), where 1 means ( 8 ) .  The condition J 2 = — E 2 "  gives
the relations g = - a  and c = — (1 +ce2 )1p. Thus al i(1)— al :(1)—
1 + a 2

 p l , - , - ( 1 )  is an almost complex structure of T(M ), which

complete the proof of the Theorem.
The above proof gives that j  given by (2. 1) is, in  T (M ), the

most general type o f the almost complex structure in the ones
induced from 1 and T .  In  a  case  where a = 0 and p= — 1, J is
denoted hereafter by J*, and J *  satisfies for any quasi vector
field u,

(2. 2) J*(uh) =  ,  j* (V ) = —uh

which implies that J *  is  th e  natural alm ost com plex  structure
named by Matsumoto [14]. Especially, if the manifold M  admits
an affine connection Ti i k (x), then M  admits a  T-conection defined
by T i i = ry i  f l y ' ,  and J*  coincides with an almost complex structure
treated by Nagano [17] and Dombrowski [4].

As the structure J depends upon the choice of 99, if necessary,
J is denoted by J,(p, a ) .  In canonical coordinates, the components
of J,(p, a)  are written in the form

pEn

aE n ).

then yo' is also a  99-connection. From these, it follows that

(2.5). f i ( P ,  a) = 0) = P17(1)—  
1

— 1-(1)

I f  T (M ) admits a certain structure K of type (1, 1), then the
Nijenhuis tensor Nu n  o f  K  is defined by

N a ,,(U, V ) = — K T U, V ]+ V ]+ K [U, K V ]— [K U, K V ] ,

for any vector fields U and V in  T (M ). On the other hand, as K
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is of type (1, 1), K  is written as K—l -_- (a)+11- (b)+1.7(c)+1.;_(d),
where a, b, c and d  are quasi tensor fields of type (1, 1). Hence
N(K) should be expressed by a, b, c, d  and p. Thus

Proposition 2. 1. In  th e  tan g e n t bundle T (M ),  a structure
tensor given by K = l= (a )+ l -±.(b)+ _T(c)+ L.,' (d) o f  type (1,1) is inte-
grable if  an d  only  i f  any  quasi vector fields u and y on M  satisfy
the following:

a[au, +  a [u ,  ado —Eau, ado — aTu , — (ac + cd)14(u, y)
+ cR,(au, v)+ cR,(u, av)— Vta • (1), bu)+ Va • (u, by)
+ eVob • (v, u)— cVob • (u,v)+ cbT(u, v) = O,

dR,(au, v)+ dR,(u, av)—R,(au, av)— (be + d2 )R,(u, y)
+(ba+ db)T,(u, v)—bT,(au, v)—bT,(u, av)+Vob•(u, av)

—Vlb • (v, au)+ Vb • (u, bv)— V'ob • (v, bu) + b7roa • (v, u)
— bV°a • (u, v)+ d'Vrob • (v, u)— dVob • (u, y) = O,

cv)+Glc • (u, cv)—Voc • (v, cu)+ '7c. (u, dv)—toc.(v, du)
— atoc• (u, v)+ aVc • (v, u)+ eVel•(y, u)— cVd•(u, v) =  O,

Vd.(u, cv)— Vd• (v, cu)+ dtod • (v, u)— dtod • (u, v)+ tod • (u, dv)

—Vd• (v, du)+ btoc• (v, u)— bt°c • (u, v)—R,(cu, cv) =  O,
cv)— a T,(u, cv)— T,(au, cv)+Groa • (u, ev)+aVoc•(v, u)

+ cVod • (v, u)—atoa•(u, v)+ toa • (u, dv)— c'Ob • (u, y)
bu)— '(70 c • (v, au) = O,

dR,(u, cv)—R,(au, cy)+bVoc•(v, u)—V°d•(v, au)
+ dV°d•(v, u)+Vob• (u, cv)— btoa • (u, v)+ '7b. (u, dv)
—dtob • (u, v)— V'od • (v, bu) O.

P ro o f . I f  U—uh and V  vh , it follows from Prop. 1. 1 that

h(NK (uh ,  vh) ) —(a2 + cb)[u, + a[au , + a[u, av]° —Eau, ado
—(ac+cd)R,(u, v)+ cR,(u, av)+ cR„,(au, u)

+aN 'b u oy— cV A u - 0 ' b„4 u+ cV u °bY + 'Or b y'au— V'b u ttav
a[au, + aEu, ad° — [au, av]o — aTu ,
—(ac+cd)R,(u, y) +cl?,(au, v)+ ay)
—Va • (v, bu)+ 'Oa • (u, by)+ cVob • (y , u)
—eVob • (u, v)+ cbT,(u, y ).
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Thus N ( K)= 0 gives us the first equation of Prop. 2. 1. Obviously
the other equations are led by the similar method.

Theorem 2 . 2 .  In the tangent bundle over 9D-space M, the almost
complex structure J introduced in Theorem 2. 1 is integrable if and
only if the follow ing conditions are satisf ied, by  any  quasi vector
fields u  and v,

f  pT v)—(V p)v +(S 7 p)u = O,
(2.6)

1 p314 , (u, v)— ( p)v + (t tp)u = O,

w here qI=qj+ a En .

Pro o f . The integrability condition for J(p, 0) leads us to

pT „,(u , v) —(V*P)v + (V p)u = O,

p3.12,(u, v)— ( p)v  + (t p)u = O,

by virtue of Prop, 2. 1 and relations 0 and t#Ep = O. These
results and the fact J,(p, a)=Je(p, 0) establish the Theorem.

Corollary. I n  T (M ) over 9D-space, the natural almost conz-
plex  structure J*  is in tegrable  if  and only  i f  R ,=0  and T,-= O.
(Dombrowski [4 ], Matsumoto [4])

P ro o f . For the structure J*, we have J*=J,(— 1, 0). Hence
Theorem 2. 2 gives us our result.

§ 3. Linear connections of Finsler type

Let P(T(M ))=P(T(M ), 7r, G ) be the bundle o f  frames over
the T (M ), where G is a structure group, and n- is the projection
P—>T(M) which maps a  frame p  at a point z T (M ) into z. It
is well known [18] that if a linear connection r in P  is assigned,
then we obtain a lift L of vectors on T(M ) to P .  Since we are now
considering 99-space, Tz  is written as  Tz - o z h + O z ". Therefore
r p h=L(c1h) and r p "=L(O z ") construct distributions on P  and the
relation Inp =17 '+17  holds good where r p  is  a distribution at p
defined by the linear connection P. Hence we find

(3. 1) Pp = Pp"+Fi,"+rp"
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where Pp  is a vertical subspace of Pp , and any vector X Pp  is
decomposed uniquely as

X *  v(X *)d-hh(X *)+hv(X *)

where v (X *)ePp v , hk(x*) r p h and h v ( X * ) E r;.  Now let T A B ,

be parameters of the connection r  in  terms of the canonical
coordinates and (PA) be a frame at a point z , then PA is represented

(  a )as p A ---pBA .  If we put
azB

a p AQ

(3.2)X , *  —  a
 —99k, a  — P c Q(rEci — p 'irR ck )

a
 ,

axi ayk aPBQ
_   ah c_-1-,13 a  

a y i v -  c =  a p e

these constitute basis of P", r "  and r v  respectively.

Proposition 3. 1. In the frame bundle P over T (M ), the distri-
bution P " +r"  is integrable. W h ile  the distribution Pv +rh  is inte-
grable if  an d  only  if  the horizontal distribution i n  T (M ) is
integrable, i.e., 1 4 -0 .

Pro o f . For the distribution Pv--Fr', it is sufficient to verify
[U * , V lE P u + I"  for any vector fields U * ,  V* EPv  .  So, if
U*, V* EPv , it is clear [U * ,  V lE P "  .  I f  U *E Pv, V *E rv, then
there exist functions f i  such that V* ---- fi Y i *, from which it follows

[U*, V*] =  [uAQ 
 a 1 a

 — f iP c ierBC -
a l E P v  + r v .apAoa y ' t  a pBR

Similar calculation shows us that i f  U * ,V * 1 - " ,  then [U*, V*]

For the distribution Pv+ V ,  i f  U*, V*
 E  e v ,  it is clear

[U *,V *] P v  +rh .  I f  U * E P v , V *EP", then there exist functions

f i  and UAQ such that V* — fiX ,*, U* a=UAQ ,  from which it
a p AQ

follows

[U *, X ,']  =  — u A Q r B A i  P l i r n  o p a „ aQ  x ,* (u A Q ) E P ".apAo
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H e n c e  w e  h av e  EU* , I /1  = f 1 Cu*, +  U *(f 0X 1* E  Pv + rh.
Finally i f  U*, 17*Erh then they have the form  U*=fi X ,*,V *—
gi X ,* and the relation

[ U*, V *] = f i g l[X i *, X J *]+ fi X ,*(g0X 1*—  g i  X  ( f i )  X,

holds good. Thus P v+ rh  is integrable if and  only if  [X i *X ; *]
EV' + P v . O n the o ther hand  X i * =L (X ,), so  X i *  and  X , are
7r-related. H e n c e  the cond ition  X 1*, X .,*] E  rh + P v  g iv e s  us
[X,, X i ] E V , i.e ., R = O.Q . E . D .

If there is assigned a linear connection r in P, we can consider
in  T(M ) a covariant derivative V with respect to  the F.

D efinition. A  linear connection of  horizontal Finsler type, or
simply of  h-f -ty pe, i s  a  linear connection satisfying v (Vu vh)=
for any vector field U on T (M ) and quasi vector field v  on M.
A  linear connection of vertical Finsler type, or simply of  v -f -type,
is  the one satisfying h(V u v v )=0 . Moreover a  linear connection
of h - f -  and a t  the same time v-f-type is called of  quasi Finsler
type.

If I ' is  of h-f-type, then we may put

(3. 3) Vuhvh (V„(h) v ) " ,  Vvh = (V. ( h ) v)h  .

Similary, if  r  is  of v-f-type, we may put
(3. 4) V„hvy 07 ( "v r , V„, vv  =  ( ` " v ) °

Apparently, the quasi vector fields Vuch) v, Va (h) v, V v  and
Vu

(v) v, which a re  defined in  th is  way, are regarded as covariant
derivatives of quasi vector field 17 with respect to  u .  For quasi
tensor fields, e.g., a quasi tensor field f  of type (1, 1) and a linear
connection r  of h-f-type, we may define

(3 5)
V„(h)f.(v) = f • (v , u) = ,,(h) • f (v)— f  u (h)v). 
th )f . (v ) = t ( h ) f .(v , = tu ( h ) .f(v)— f(tuuov) .

If the F  is  of quasi Finsler type, then w e m ay put

(3. 6) Vuh V -= (V u
( h )  y1)4  ( V ir )  V2 ) V , V ie V =  ( t u

( " )  V i r  (tr ),
where we put V= v2". From  the definition itself, it follows
that a linear connection of quasi Finsler type is a linear connection
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with respect to which the distributions Oh and (1)" are respectively
parallel. It is well known that there exists a  linear connection F
admitting the above properties (e.g., see Walker [2 5 ]). However
we shall here decide the connection F  explicitly.

L e t P  b e  a  linear connection o f  T (M ) and denote by '&
covaciant differentiation with respect to  P . Now, for any vector
fields U  and  V , if U=uh and V= vh, we define K  b y  K (U ,V )=
—v(Pu hvh): otherwise we define K  by K (U, V )= 0 . Then K  is  a
(1, 2)-tensor field of type /1- __ on T ( M ) .  Indeed, it is clear from
the definition that K (U,V ) is  a  vector field on T (M ) and is linear
with respect to  U .  The linearity with respect to  V is shown as
follows ;

KW, pv 1h+o-V 2h) =  — 1 ) [p  u Vi
h ±cr uV2

h  U(p)v ,h+ U(Œ)v , ']
= pK(U, v,h)+ crK(U, v 2h).

Hence, by the definition, K  is  a  (1, 2)-tensor field of type /1_
Similarly we define H, k  and H  as follows :

i f  U=uv and V=vh, H(U,V )= — ve& u vvh): otherwise H (U ,V )=0 ,
i f  U=uh and V  = v", k (U, V) = — h(7 ;v "): otherwise k  (U, V) = 0 ,
i f  U=uv and V= v v , H (U ,V )= h (P  v " )  : otherwise H (U, V )= 0 .

Then H , k  and H  are (2, 1)-tensor fields of type 11_, 11.4_ and LT.,_
respectively.

Now let P  be a  linear connection o f T (M ) over 99-space M,
and K , H, k  and H  be tensor fields defined above with respect to
f'. I f  we put U=u 1h+u 2 " P=P+K+H-F k +r- i ,  and denote by
the Covariant derivative with respect to P, then we get

Vuvk = vh)+!&,,,Vh+H(u,v, vh)
= h ('& „,hvh ,4 vh)

V uv v =  „he' + k(u,h, v")+'& „e v "+ (u,", v ")
= v .

Hence P is  of the quasi Finsler typ e . T h e  above consideration
shows us that a linear connection F of T (M ) is of the quasi Finsler
type if and only if  P  is written in the form

(3.7) r H +R +H +/--:_(a)+/T _(c)+ 11, (f )+1,' 4(h),
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where a, c , f  and h  are arbitrary quary quasi tensor fields of type
(1, 1). Besides, it follows that P  is  of h-f-type if and only if F
is written, for any quasi tensor fields a, c, e, f , g and h, in the form

(3.8) F  =  P+K+H+/ -_- _ (a )+ / ;_ (c)+ / -_- + (e)-F/I + ( f )
+l-T-4(g)+1 --+(h),

and a t the same time it follows that P is  of v-f-type if and only
if P  is written, for an y  quasi tensor fields a, b, c, d, f  and h, in
the form

(3.9) r  P+R +H+Ii_(a)-1-1 -1_(b)+17_(c)+1 -4'_(d)
+lf 4 ( f )+1 -- (h).

Theorem 3. 1. In the tangent bundle T(M ) over a  99-space M,
there ex ists alw ays a  symmetric linear connection of  v -f -ty pe, and
there ex ists a  sym m etric linear connection of  h-f -type (or of  the
quasi Finsler ty pe) if  and only  i f  R„ =O.

Pro o f . A  symmetric linear connection r  i s  o f v-f-type if
and only if the distribution 43" is parallel w ith respect to  F .  A
necessary and sufficient condition that there exists a symmetric
linear connection with respect to which the g iven  distribution
is  p a ra lle l is  th a t the distribution is integrable (W alker [25],
Willmore [26]). Hence, as the distribution c1)" is integrable, there
exists always a symmetric linear connection of v-f-typ e . Similar
discussion gives us that the condition of the existence of a sym-
metric linear connection of h-f-type is that the horizontal distri-
bution V  is integrable, i.e., the equation R4,=0  holds good. A
symmetric linear connection of quasi Finsler type is  a symmetric
connection with respect to which the distribution Oh and V ' are
respectively parallel. The condition of the existence of such a
connection is that the distribution (13h, c13° and Oh+ V  are all
integrable. (Walker [25]) H en ce  o u r condition is also given by
R,= O.

Definition. A  connection of a quasi Finsler type satisfying

(3. 10) Vu(")v = V u ( " v  ,  t a ch) v  =  t i,(v) v ,
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for an y  quasi vector fields u  and y is  ca lled  a  connection of
Finsle r type.

The reason why the above connection is called the connection
of Fins le r type will be stated at the end of this section.

For the covariant differentiations with respect to the connec-
tion o f Fins l e r  type, there is no difference between (h) and (y),
therefore we shall denote them simply by the notation V  and
in this case.

Theorem 3. 2. With respect to the connection of Finsler type,
the covariant differentiations commute with the lift operators, i.e.,

(3. 11) /V. =  Vuh•/,

Proof. W e shall verify (3. 11), as an example, in the case
where f  is  a quasi tensor field of type (1 , 2 ) and 1 is  of type /1_̀_.
For any vector fields V= v i h--1- v :  and W = w ,h + w ," , we find

/ -_ -(V u f)• (1 7 ,  W ) =  (V uR v2, w i)) v

-V .h •( li_ f - (V ,W ))-1 44 _ f -(v .0 7 , W ))-1 -(V ,V hW )
— V ah•(1-1-f)•(V ,147 ) .

The other cases are also directly verified by similar method.
Now we are in a position to show the components of the linear

connections of the above mentioned several types in terms of
canonical coordinates. If f- is a linear connection of T (M ), for any
linear connection r, there exists a tensor K  satisfying r=r+K.
The components of K  in canonical coordinates are given by (1. 8).
In  order to determine the components o f U , we consider the
quantity ryi k ;  w hose transformation law  is  the one satisfied by
a ff in e  connections (the present y i k ;  is ,  however not always a
function of x  only, but may be a function o f x  and y). Then F
whose components are given by

0 . 0
{P i k/ Ti k J ,  F t hj 0 ,  r i k ,  = 0 ,  f ' l  kj o kj C(3. 12) _

r i  kj A a iry
1

k i — P P 1 6 0 k j ) , kj Ti k J )  r i  kj 

is a linear connection of T (M ) by virtue of (1. 2). Combining the
above with (1 . 7 ) and (1 . 8 ) we have components of the most



(3. 14)
+ f i k , n p m , + h i l m 9 9 1 k p m i  ,

r i k ;  — , Yi k i ± a i k i -+- c i n z iP m k 7 P ik ;  —
= O, F J =  O ,

r7 k ,  =-  a ,9 9 i i -9 9 im 7 m k i + T i k m P t n i  P i m a m ki P i mC m / iP i k
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general form of linear connections r = r + K  of T (M ) .

Now, the direct calculation shows us that the tensors K , H, k
and F/, which are defined above with respect to the P, are given
by the formulae K  =  _ ( b ) ,  H  =  _  (d), K  =1  (0) and r i  =  (0),
where

= — y la ry i 199"216mryik j ± a o p i ; k  m P i P i na m kj

± T i km(P m i + 7 i ,n/P m k

d i k j  = `Yiki •

Hence the formula (3. 8) gives u s that a  linear connection r  of
h-f-type is given by

P k ;  =  7 i ki - Fa i ki + c i ,..;99mk+ e i k. Pm i + g i imp i k p m; ,
r i kf  - c i k j +  g i  k m P m  P  P  k i e i k j± g i tn/P m k )  P k j k j ,

r7 k ,  =  3k Pi1— Pinz 7m k j + 7 i  km99 m  j — 97 i m a m ki — P i mC m i i9 9 1 k

(3. 13) f  f r .9 9 m  +  h i k Pm le1 km99 7 / - 99 1  rg r im99 1 0 9 m

= Ok Pj — P i /Cl ki ±  km(Pm  —  r g r k iP 1

N k J  =  T ik i+ f i k i+ h i , . . / 9 9 'n k — p i t e / k i— P irg r i i 991 fr
I- 1

k ;  =  k k i — p irg rk ;  ,

where a, c, e, f ,  g  and h  are arbitrary quasi tensor fields of type
(1, 2). Sim ilarly w e get the components of quasi Finsler type,
i.e ., fo r an y  quasi tensor fields a, c ,  f  and h  of type (1, 2) as
follows :

1- 7 k ;  — r ' k ;  —  k j +  f m j9 9 m k

—  wk.;  •

This is  a  general form of components o f a linear connection of
quasi Finsler type.

The covariant differentiations with respect to a connection of
h-f-type are given by



(3. 16)
pu(v)v = u k (6 kv i +h i kiv i ) : x i •

ai vu(v)v = uk(a k v i - 6 p v i p P k + (7 i  kJ+ f i ki)v ) ) 
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(3.15)
{ vuuov =  u k (a k v i-6 p v ,9 9 P k + ey ik i+ a ik i)v  

a
i)  ,

axi

t u , h )v  =  uk (k vi + cik ;v i) 
 a 

. .
ax ,

Similarly the covariant differentials with respect to a  connection
of v-f-type are also given by

These two formulae give u s  that a  connection r  is  of Finsler
type if and only if P is a connction of quasi Finsler type satisfying
f  = a  and h = c. Hence the components of an arbitrary connection
of Finsler type are written as

=  fyiki +aik i + c 'n o o m k , rik ;

=  0 ,  r i k ;  =  o ,

P k ;  =  a k P i i — P i . 7 m k i+ 7 i frm99 " ; — P i m a m ki — P i m e n r iP i k(3. 17)
+ai99m i+ci 1 .99 1 0 9 m ;

= oiok J C ik l ,  i f

17 1 kj == 

where a and c  are arbitrary quasi tensor fields on M.

Rem ark. Let there be given a  Finsler metric, g ) be the 99 -

connection derived from the given Finsler metric, and 7 *  be the
Cartan's connection. If a linear connection F  is of h-f-type and

1.satisfies 7 +a = 7 *  and ci k i =  2 e n 6 , n g k i ,  then the covariant differ-

ential V(h) coincides with the covariant differential defined by
Cartan [ 2 ] .  Moreover i f  r  is assumed to be o f Finsler type
satisfying the above conditions, then U is uniquely deterimined.
If r  is of h-f-type and satisfies 7 +a —699, the Vh) coincides with
Berwald's. The connections of Rund and others are also derived
from our connenctions of h-f-type, quasi Finsler type or Finsler
type.
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§ 4. Generalized almost complex structures

If a manifold admits an r-dimensional complex distribution fir
satisfying the relation fi r n Il r  = {0} at each point of the manifold
where f Ir  means a  complex conjugate distribution of H r, then the
manifold is called a m anif o ld  w ith a  IL -structure (Ichijyô [7]).
Hereafter we treat a manifold M  of p-space  whose dimension is
even ( —2m).

If the tangent bundle T (M ) over a  p-space M 'm  admits a
horizontal IL-structure (a  IL-structure whose distribution Ilm is
horizontal), then T (M ) admits an 1,n -structure F, satisfying

(4.1) F , 3 +F, = O, rank of (F,) = 2 m , F 1 =  l i ( f ) ,  f 2 = — 1.

Because, the com plexifica tion  (01  of the horizontal distribution
V  is written in the form (clphr, rrn, +11'n z  for any point z T(M)
w here II' is  the given horizontal complex distribution. Hence

T) c z —11,m+ I I z nz+ (c13')% where Tc and (cI)v)c are complexifications
of T (M ) and V' respectively. Now, if we denote by kIf the pro-
jection operator of II', then kIf is the projection operator of Ern
and the relations

T 2 =  T j2 j  T T  = 0

hold good. Here on putting

(4.2) F ,  =  —  — 1 0 1 1 . —11f)

it follows that F ,  is  a  real tensor field of type (1, 1) on T(M)
and satisfies F, 3 +F 1 = 0  and the rank of (F,)=2 m . A t the same
time (4.2) gives us F, / _-_( f  )  and (F + F ,)uh = (( f + f )u)h for any
quasi vector field u , from which we have 1. 2 = —1.

Moreover, since — — 1  is  the eigen value of F „ the distri-
bution, which is constructed by eigen vector space corresponding
to —  — 1 at each  point, coincides with I r  by virtue of (4. 2).
Hence, thus defined f m -s tru c tu re  F ,  is called a n  f m -structure
associated with horizontal IL -structure, and conversely, the distri-
bution nm  is called a  complex distribution associated w ith F,. We
call also hereafter the .99-space M  which admits a quasi tensor
field f  satsfying 1- 2 = — 1 a generalized alm ost com plex  space (or
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simply g.a.c.s.) and call f  a q u asi alm ost com plex  structure (or
simply g.a.c.str.).

Conversely, if  M  admits a quasi tensor field f  of type (1, 1)
satisfying f 2 = — 1, then F i = l i ( f )  forms an f m -structure of T(M)
and the complex distribution associated with F, forms apparently
a horizontal 11,n -structure. Thus the above argument leads us to

Proposition 4. 1. In  order that a  99-space M '  adm its g.a.c.
s t r.  f ,  it is necessary  and suf f icient that the tangent bundle T(M)
over M  adm its a horizontal 11„,-structure.

Proposition 4. 2. In  order that a  99-space M 'm  adm its g.a.c.
s tr.  it is necessary  and sufficient that the tangent bundle T(M ) over
M 2 nz adm its a v ertical IL -structure.

Pro o f . In g.a.c.s., 7 ( f ) = F ,  gives a horizontal nn, structure.
If we put

(4. 3) F2 =

where J *  is the natural almost complex structure, then we have

rank of (F2 )  = 2 m , F23 + F2 = O, F 2(uv) = (fu )v , F 2 (uh) = O,

from which we have F 2 = l 1 ( f ) .  Hence the same argument as
Prop. 4. 1 gives our result.

In the tangent bundle over g.a.c.s., let the horizontal complex
distribution IT" associated with F ,  be parallel with respect to a
linear connection U, then fo r any vector fie ld  U  the equation

u F 1 •F 1 =0  holds good, where V  means the covariant derivative
with respect to the F. Because, a necessary and sufficient condition
for the complex distribution associated with an f-structure F, to be
parallel with respect to a given connection r is that the equation

u F 1 •F 1 =0  holds good for any vector field U. (Ichijyo [7 ] )  T h e
converse is also true.

T heorem  4 .  1 .  In the tangent bundle over g.a.c.s., a  necessary
and sufficient condition f or the horizontal distribution f lr  associated
w ith F , to be parallel w ith respect to the given connection F  is that
the connection r is of  h f -ty Pe and satisf ies V(" ) f  =0  and f  =O.
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P ro o f . Since the connection I` is real and 0" = Re Err +111,
if the distribution II ' is  p ara lle l w ith  respect to the r, so are
lam and 0 " .  Hence F is of h-f-type. Now, we have

V u hF ,• (& ) = V u h•F 1 (vh)—F,(V „hv")

- (V . ( h ) .(f v ) — f  (v „ch v))h

- (v„(h )f.(y ))"

Similarly we have '7 F1. (et) = (t a (hy .  ) These results lead us
to V u hF,•(F,v")=--- u c h ) f  f (v))h , V,, F,• (F ,v") = ( :h) f. (fv))h . Hence,
from the preceding consideration, we have V(h)f • f = 0 and tc")f .f  =O.
Since the rank o f ( f )=2 m , we obtain V f  0  and '7 " f  =O. T h e
converse also follows from above consideration.

The present author proved in his paper [8] that in a manifold
with a 11m - structure a necessary and sufficient condition that there
exists a  symmetric linear connection r  with respect to which
the distribution rrn is  p ara lle l is  th at the distributions F r  and
Ole [1- 1"z + fr] are both integrable. Hence, in the tangent bundle
over g.a.c.s., there exists a  symmetric linear connection r  with
respect to which the horizontal complex distribution IV associated
with F , is parallel if and only if the distribution 1- 1'n is integrable
and the equation R = O  holds good.

Now applying the Ishihara-Yano's well known results [9] with
respect to integrable f-structures to F , and F ,, we establish the

Theorem 4. 2. The f - s tru c tu re  F , w hich is def ined by  (4. 1)
on the tangent bundle T (M ) over g.a.c.s. is integrable if and only
if the quasi almost complex structure f  is  a complex structure and
the equation 14=0 holds good.

Pro o f . The structures F , is  in teg rab le  if an d  only if the
Nijenhuis tensor o f F ,  vanishes identically. Since F , = l :( f ) ,  it
is enough to verify the Prop. 2. 1. in the case where a = f  and
b= c= d = O . The fifth equation of Prop. 2. 1 means ' f =  O, which
implies that f  i s  an almost complex structure of M .  The first
equation leads us to  f  [fu, v]o + f[u, fv] — [ f u , fv]o + [u , v]it = 0,
which means that f  is  a complex structure of M  by virtue of the
fact that f  i s  an almost complex structure of M .  The second
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equation is, therefore, equivalent to / 4 = 0 .  The rest of equations
of Prop. 2. 1 hold identically in the present case.

Theorem 4. 3. T he f -structure F2 which is defined by (4. 3)
on the tangent bundle T(M ) over g.a.c.s. is integrable if  an d  only
if  the quasi almost complex structure f  constructs a complex struc-
ture in each fibre and the quasi tensors 14 and 'V  f  vanish identically.

P ro o f. Since F2 =1 -,' (f ), it is enough to verify the prop. 2 .1
in the case where d = f  and a=b=c = O . The first, third and fifth
equtions hold identically in this case. The second equation means
/ 4 = 0  and sixth equation means Vof =  0 .  The fourth equation
leads us to

f f .  (v , u)—  f  f  .(u, v ) + f  • (u, fv )— t# f .(v , fu) = 0 .
Q.E.D.

The preceding discussion is concerned with f -s tru c tu re s  in
the tangent bundle over g.a.c.s.. W e are now in a position to
consider the almost complex structures in the tangent bundle over
g.a.c.s..

Theorem 4. 4. In the tangent bundle T (M ) over g.a.c.s., there
exist three kinds o f  almost complex struc tures F, F' and  F", i.e.,

F 1 =(f )+11 (f ) ,
F ' = (f)+ A ll(1)+71A+ (1) ,
F"= al:(f )+ 01:,(1)+pl _7( 1)+0-17(f ) — a11( 1)— 811(f )

p(a 2 — 82 +1)+ 2a 0- 1 , ( 1 )  ±  (a 2 — 82 +1 )-2a  P ( f
p 2 c r 2 p2 c r 2

where a ,  13, p, 0-, ict an d  T  are  scalar fields o n  T (M ) satisfying
p 2 c r 2 *

P ro o f. By direct calculation we can easily verify

F 2 =  F / 2 =  F " 2 = — E 2 n  .

Now the almost complex structures F, F ' and F " , which are
defined in th is way, are the most general ones in the almost
complex structures which are generated by 1 and f  on T(M) over
p - s p a c e . Because, if we put



A lmost Complex S tructures of  T angent Bundles 441

H  = al=(1 )+Pl.t(1 )+p l;(1 )+0 4 -1 ( 1 ) +7 1 :( f ) +8 M f )

+ -7 (f )+7 )1 1 (f )  •

then the relation 112 = — E 2 "  holds good if and only if  H is equal
to any one of F ,  F ' and F".

The structure F ' depends upon the choice o f yo, thereby, if
necessary, w e denote it by F '„ .  T hen it is easily  seen  that
9.1=  g) + i f  is also a  99-connection and the relation = F',,
holds good, where we put = l 7 ( f ) — l ( f ) .  T h at is  to  say, if

= T =  0 , the structure F '  coincides with P .  I f  o- = /3 =  0 , the
structure F "  coincides with J. In the case where o- = 1  and a=
8 =p =0 ,  w e denote F "  by F* , i.e., F * = l7 ( f ) + l -1 ( f ) .  Then we
have

(4. 4)
F (u") = (f u)"
P (0 ) = (fu )"  ,
F * (0 )  = (fu )v ,

F (u") = (fu)"
P (u") = —(fu)"
F* (d )  = (f u)".

F o r th e  integrability conditions of these almost complex
structures, we have first

Theorem 4. 5. A  necessary  an d  suff icient condition for the
almost complex structure F  to be integrable on the tangent bundle
over g.a.c.s. is that, by  any  quasi vector fields u  and v , the follow-
ing equations are satisfied:

f V 4f .(u,v )— V of .(u, f v ) = O,
f  'Of .(u, v )— tof .(u, f v ) = O,
R ,(u, v )+ f  R ,(fu, v )+ fR ,(u, f v )— R ,(fu, f v ) = O,
T ,(u, v )+ fT ,(fu, v )+ fT ,(u, f v )—  To( f u , f v ) = O.

P ro o f . It is enough to verify the Prop. 2. 1 in the case where
a= f , d = f  and b = c - 0 .  In the case under consideration, the third
equation of Prop. 2. 1 holds identically, and the second equation
coincides with the third equation o f  (4. 5). The fifth equation
of Prop. 2. 1 also leads us to  the second equation of (4. 5). The
fourth of Prop. 2. 1 implies that

f  'Of • (v , u)—  f  f  • (u, v )+\17ilf .(u, fv )— t #f  • (v , fu) = 0

(4. 5)
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which holds identically by virtue of the second of (4. 5). Finally
the first of Prop. 2. 1 leads us to

f U u , +f E u , f v T — E f u , f d o  + [u, v]# = O,

which implies the fourth equation (4. 5) by v irtue of the first
equation o f (4. 5) and Prop. 1. 2. The converse also follows at
once.

As for the structure F* and F1, similar discussion leads us to

Theorem 4. 6. A  necessary an d  suff icient condition for the
almost complex structure F *  on T(M ) over g .a .c .s . to be integrable
is  th at the follow ing relations hold good f or any quasi vector fields
u  and V :

(4 6) f  f R ,( fu , fv )+ (v, u)—t#f • (u, v) =  O,. 
fT,(u, v)+Vof.(v, u)— Vof.(u, v) —  O.

The integrability  condition for the almost complex structure I'
is  also given by

(  fV f.(u ,v )— V f.(u , fv )  =  O,
1 7 V -(u ,  v ) -7 4f - ( v ,  u) = O,

(4. 7)R ,(u, v )—  fR ,(fu, v )—  fR ,(u, f v )— R ,(fu, f v ) =  O,
T,(u, v)+  fT ,(fu , v)+  f Tw(u, fv)—  T ,(fu , fv)

— 2f Vof(v, u)— 2 fV f( u ,  y) — O.

If the quasi almost complex structure f  is an almost complex
structure on M  and the connection 99 is  g iven  b y  99i;  7 i  i k yk
where i s  a linear connection o f M , then the almost complex
structure F  on T (M ) is  a well known one (Tanno [24]). More-
over the integrability condition of the structure F  in th is case
becomes simple, i.e.

(4. 5')

where
on M.

f : integrable
R(u, v)+  fR (fu, v)+  fR (u, fv)— R(fu, fu) =  O,
fV f.(u ,v )— V of.(u , fv ) =  O,

R  is  a curvature tensor of 7, u  and y are any vector fields
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§ 5. Generalized metric spaces

Let M  b e , in  this section, a homogeneous p-space and let
there be given a quasi almost complex structure f  and positive
definite generalized metrics g  and h  (Moen- [16]). Of course g
and h are assumed to be positively homogeneous of degree 0 with
respect to y .  Now we put

(5. 1) G  = _ _ (g ) , H  = l„(h ) , G *  = G +H  .

Then we see, for any vector fields U =le!' +u,v and V= v! i+

(5.2)G * ( U ,  V ) = g(u„ v i )+h(u„ y 2 ).

Hence let us adopt (5. 2) as the definition of an inner product of
vectors U and V , then T (M ) is a  Riemannian space with respect
to G * . We call this metric G * a canonical metric with respect to
g  and h.

If the manifold M  is a  Finsler space whose Finsler metric is
g , and it is assumed that h= g , then the canonical metric G* is
the so-called lif ted m etric (Matsumoto [14]). If the metric g  is,
.moreover, a Riemannian metric, and it is assumed that (pl .,—  yk
where {; k }  is  the Christoffel's symbol, then the lifted metric is
the one introduced by Sasaki [22]. In this paper the canonical
metric G* satisfying h= g is called simply a  lif ted metric.

The canonical metric G* constructs an almost hermitian struc-
ture together with the natural almost complex structure J* if and
only if the metric G* is a  lifted o n e . Because, the condition to
be verified is G*(U, V )=G*(J*U, J*V ), where U and V are any
vector fields. T h is  is reduced to

g(u„ v 1 )+h(u 2 , v 2 ) = g(u 2 , v 2 ) +h(u„ y 1 ) ,

where U= u,h + lc; and V= v,h + v2y. Since this condition must be
satisfied by any quasi vector fields u„ u 2 , v, and v2 , our demanding
condition becomes h—  g. Then we obtain

Theorem 5. 1. T h e  lif ted  m etric  G *  constructs a n  almost
Kahler structure together with the natural alm ost com plex  structure
J* if and only if the followings hold identically for any quasi vector
f ields u„ u, and u2:
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' g  is a  Finsle r metric,
(5. 3) S1,2,3 [ g ( R I P ( U i t i3 ) ]  - =  ,

V g.(u1,u„u2) — V 4g.(u2,u3,u1)— g(Tv(u,,u2),u3) = 0 .

Pro o f . It is w ell know n that th e  lifted m etric G * i s  an
almost K âhler structure together with the structure J*  if and
only if  th e  2-form co(U, V )=G*(J*U,V )= —  g(u 2 ,v i )+ g(u„ v 2 )  is
closed. Thereby, taking account of do), we obtain

d())(ui " , u21' , =  ,

do)(u,h, u2h, u3h) =  s1,2,3Eg(R0(ui, u2), JO ]
dc,)(u,h, u,h, u3 1' )  =  vog.(u 2 , u 3 , u , )— V g - (u „  u „  u2)+ g( 7;(u„ u2), u,),
do) ( u,h, u,v , un = V g• (u„ u„ u 3 ) — g •  (u,  u , u2) •

The right-hand side of the last equation vanishes identically when
and on ly w hen  k g 1 .; =6 ; g1 k ho lds in  terms o f canonical coordi-
nates. Since g  is positively homogeneous of degree 0 with respect
to y, the last condition reduces to y ik g i i =0 , that is to  say, g  is
a  F in sle r metric (M o ô r  [1 6 ] ) . The converse follows from the
properties o f a Finsler metric. Q . E . D .

A manifold M "n is  sa id  to  admit a  generalized almost her-
m itian structure or simply g.a.h.str. (f , g )  when and only when
the manifold M 2 'n admits a generalized metric g and a quasi almost
complex structure f  which a re  both positively homogeneous of
degree 0  with respect to y and satisfy g(u,v)=-g(fu, fv ).

Theorem 5. 2. In  order that a manifold M ' admits g.a.h.str.
(f , g), it is necessary and sufficient that the tangent bundle T(M 2 m)
over M 2 m adm its a  complex m-dimensional distribution I r  which
is horizontal and null w ith respect to a  canonical metric G*.

Pro o f . Let us assume M 2 "  admits g.a.h.str. (f , g), then we
shall consider quasi eigen vector space z'n(x, y) corresponding to
the eigen value — ,\/ _1 of f .  Thus we have a complex distribu-
tion u m  which is constructed, in  any point z = (x, y ) o f T (M "),
by the horizontally lifted vectors A( 0 0 = X ( „) h, where x.( „,)  are basic
quasi vector fields belonging to 7rm(x, y) (a =1, 2, • • • , m). Then II"
is  horizontal and satisfies
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G*(A ( a ,) , A ( 3 ) ) g(X ( c„) , X( 0)) = g(N/ —1 f x(ao — 1 f x(o)

— — (o) , x ( )) •

Consequently
 f l f l

 is null with respect to G*.
Conversely, if  11m is a horizontal null distribution with respect

to G* in  T (M "), then T ( M ')  admits a horizontal 11m -structure
(Ich ijyô  [7 ]). Thus Prop. 4. 1 shows us that M ' admits a quasi
almost complex structure f ,  which is positively homogeneous of
degree 0  with respect to y  by virtue o f th e  fact that 11m is
horizontal and ço is positively homogeneous of degree O. The f -
structure F ,= l:( f )  satisfies N/ —1 F,A( a ) = A( ) from (4. 2). If we
put A ( c „) =(a ( ) +-\ / —11)(„))b where a( ) and k e, )  are real quasi vector
fields, then we have au o = — f  bo o  a n d  bw = f aw . Hence, from
these results and the relation G*(A( „) , A (13)) = g(X (c„) , X,( 3)) =  0 , we
have g(a ( 0 ) , a( 0 ) )= g(bw , b( ))  and g(1)( 0 0 , a(1 3 ) ) = —g(a ( 0 ) , b( ) ). Thus
we obtain g(f a (a,) , f a ( p) )= g(aw , a ( )) , g (f a ( ) , f b( ) )= g(a (o3) , k g))
and g( f b( ) , f b( 0 ) ) = g(1),„) , b( )). Consequently we obtain g(fu, fv )
= g(u, v ). Q.E.D.

If a manifold M ' admits g.a.h.str. (f , g), then, in the tangent
bundle T ( M ')  over M ',  the metric G* = l__(g)+ l ± (h) together
with F i =  l :( f )  constructs a  so-callec (F— G )-structure. Indeed,
F , and G * become an  (F— G)-structure if  an d  only i f  F , is an
f-structure and G* is a  Riemannian metric satisfying

(5.4) G *(F,X , F,Y )+G *(X , M Y ) = G*(X , Y ) , (M =1+ F, 2 )

for any vector fields X  an d  Y  (Y an o  [27 ], Ich ijyô  [7 ]). Now,
from the relations M(uh)= 0  and M(uu)=. uv, the g.a.h.str. (f , g)
guarantees that (5. 4) holds identically. Besides, the Prop. 4. 1.
and (5. 4) show us directly that the converse of the above state-
ment holds good.

Now we shall be concerned with the almost complex structures
F, T1 and F*  defined by (4. 4).

The structure F and the canonical metric G* become an almost
hermitian structure if g , h  and f  satisfy

(5. 5) g(fu, f v ) = g(u, y ), h (f u , f v ) = h (u , y ),

for any quasi vector fields u  and v. Because, the relations (5. 2)
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and (4. 4), show us that the condition G*(FX , FY )=G*(X , Y ) is
equivalent to (5. 5). Hence the converse is also t ru e . We establish
moreover

Theorem 5. 3. In  order that the alm ost com plex  structure F
and the canonical metric G* construct an alm ost K ahler structure,
it is necessary and sufficient that the equation (5.5) and the follow-
ing relations hold good f o r any  quasi vector fields u „ u , and 243 :

(5.6)
' (fu„ u„ u,) + g(Grof .(u„ u,), u,)+ g( f u,), u,)] = O,

(f u„ u ,, u ,)+ g(V f .(u„ u ,), u 2 ) — h(f l?,(u„ u,), u,) = 0
'Oh •( fu, , u 2 , u,)+ h(V of .(u„ u,), u,) = O,
S , , ,P M • ( fu „  u „ + h(7 4f -(u „ u 2 ), u,)] = O.

Pro o f . For the same reason as in  Theorem 5. 1, it is enough
to show that the condition for the 2-form co(X, Y)=G*(FX, Y ) to
be closed is given by (5 .6). To see this, taking account of g(f u ,v )

g(u , f v ), o(u", v ")= g(f u , v ), co(u", v ")=0, co(u" , v ")=0 and
co(u", v v )=h(fu, v ), we obtain by direct calculation

clo)(u i ", u2", = ,  112, 10+ g(Vf .(u3, u2), u1)
+ g (f T v (u„ u,), u,)]

daqu i " , u2h, — V tg-(f u„ u,, u ,)+ u3), u2)
— h(f14,(u1, u2), ,

dw(u,", u;) — h • (fu ,, u„  u ,)+ h(V f -(u2 , JO, u3 ) ,

d co(u i v, u2v, un S 1 ,2 ,,[ 7 h - ( fu „  u2, 110 + h(V f-(u3, u2), u1)] •

Therefore, it follows from (5. 5) that the proof is complete.
Let us consider the similar consideration on the almost com-

plex structure F *  and "i" in the tangent bundle of g.a.c.s..
If the structure F* and the canonical metric G* construct an

almost hermitian structure in T(M 2 m), then it follows that

G*(uv , vv) = G*((fu)", (fv)") = g(fu, fv) ,

Hence we obtain, for any quasi vector fields u , and u2 ,

(5.7)h  ( u ,  ,  u , ) g( fu, , fu,) .
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Conversely, if  (5. 7) holds, then G*(F*uv , F*v")=G*(uv , it). More-
over it is easily seen that

G*(F*uh, F*vh) = h(fu, fv) = g(ru, Pv) = G*(uh, vh) ,
G*(F*uh, F*vv) = G*(uh, vh) .

Thus F*  and G* construct an almost hermitian structure.

Theorem 5. 4. In  order that the almost complex structure F*
and the canonical metric G* construct an  alm ost K ahler structure,
it is necessary and sufficient that the equation (5. 7) and the follow-
ing relation hold good f o r any  quasi v ector f ields u„ u, and u 3 :

S ,,,,,[g(fR ,(u„ u,), u 3 )] = O,
V g . ( f u „  u„ u2)— V g-(fu„112,u1)—  g(V f 03, u1), u2)

(5.8)+ g ( V V .  ( u „  u2), u1) — g( Tp(ui, u2), fu , )  = O,
V g -(f u j , u„ 110 (u„ f u„ u 3 ) — g(ui, u3))

+ g(u„ 7of •(u 3 , u 2 )) = O.

P ro o f . I t  is enough to show that the condition for the 2-form
co(X , Y )=G*(F*X , Y ) to be closed is given by (5. 8). To do this,
taking account o f  co(uh, vh ) = 0, co(uv, v")= O, (o(uh, vv )=h(fu, v )=
—  g(u, f v ) an d  co(uv , vh)=g(fu, v ), we obtain that cico(uiv, ti n
vanishes identically and dW (Ui h , U2 h , U 3

h ) =- 0 , d 0 ) ( U 1h , 142h , U 3
1' ) =  0  and

cho(u i h, u2 v, u3 ")= 0  coincide with (5. 8)„ (5. 8) 2 a n d  (5. 8)3 respec-
tively. Q.E.D.

As for the almost complex structure the similar theorems
will be obtained by slight modification.

§ 6. Finsler spaces and Minkowski spaces

Let M  be a manifold with a  Finsler metric g, G * be its lifted
metric and 99 be the 99-connection derived from the Finsler metric g.

First we shall show, from  our stand point, the following
theorem obtained by Yano-Davies [28] and Matsumoto [14] :

"In the tangent bundle T (M ) over a Finsler space M, the natural
alm ost com plex  structure J* f o rm s a n  alm ost K ahler structure
together w ith the lif ted metric G*."

T o  do this, it is sufficient to verify the relations (5. 3)
2
 and
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(5.3)3 in  Theorem 5. 1. In  terms o f th e  canonical coordinates,
from (1. 13), the left-hand side of (5. 3), is reduced to

g h m Rm g i m R m i k +  g n i Rmk ;  Y m ( R i i , k k + R ik yk i)

which vanishes identically by virtue of the well known relation
Ri p n k ym= — k i k „,y" and the Bianchi's identity in Finsler geometry.
It follows further, in the present case, that T , = 0 and

(6.1) V .i° g• ik  = 2C*  j i k l l y '  ( —= —2C*J i k l o ) ,

where the sym bol m eans the covariant derivative of Cartan and
1 1we put C*. 6 .g .k =  6 6.6 k L

'

 from which (5.3) holds identi-
cally.

This theorem implies directly that the tangent bundle T(M)
over a  Finsler space M  i s  a  Kâhler space with respect to  the
lifted metric and the natural almost complex structure J*  if and
only if the horizontal distribution CD'h is  in tegrab le , i.e ., R,= O.
Hence the tangent bundle T (M ) over a Minkowski space M  is  a
KJhler space with respect to the lifted metric G* and the natural
almost complex structure P .

Now let M 2  be a 2m-dimensional Finsler space and admit a
quasi almost complex structure f  which constructs g.a.h.str. to-
gether with the Finsler metric g.

In the case where the quasi tensor field f  is independent of
y, i.e., f  is  an almost complex structure of M , E. Heil obtained
the following theorem in his paper [5 ] :  l f  a Finsler space M "
adm its a  complex structure f  which constructs g.a.h.str. together
w ith the given Finsler metric g, then the m etric g is a Riemannian
and the m anifold M '  is an Herm itian manifold. We prove this
algebraically.

Indeed, from the assumption, it follows that 6k f i f = 0  and
g i i =g p q fP i f q i ,  which lead us to C * i i k = C *  p q k f P i fa J . On the other
hand, f  is integrable, so there exists a canonical coordinate system
with respect to which the components of f  are written in the
form

0 —86
0 \

( f i i )  =
,
, 0 ) .



A lmost Complex Structures o f  Tangent Bundles 449

Hence we have C*o k  =C * pqkf P o f  = — C
*

d ok and C*,,,f3k  =C * p o f  P o
= C* v i k . These relations lead us to

C
*

(0
,
7 — C

*
0y0 C *

a .y13 = C*),13 C * y  = C%Ffy — C*013.7 •

Therefore we obtain C *
C* a f f y  =O. Similarly we obtain also

C*a g y  = O. Consequently it follows that C
*

i ik = 0 , i.e., g  is a
Riemannian metric and M  is an Hermitian manifold.

In the tangent bundle over M , we shall obtain the

T heorem  6. 1. Let M 2'n be a Finsler space and admit an almost
complex structure f  w hich constructs g.a.h .str. together w ith the
given Finsler metric g. I f  the tan get bundle T(M 2m) over the M 2'n
is almost Keihlerian with respect to F— l=( f )+1 1 ( f )  and the lif ted
metric G*, then the m etric g  is  a f lat Riemannian metric.

Pro o f . The condition for the given structures F  and G * to
be almost K âhlerian  is written, from Theorem 5. 3, as

{ V g -( f u 1 ,u 2 ,u 3) + g(V 'of .(u,,uo, u 2 ) —  g(fR,(u„ u 2 ), u 3 )  = 0
(6.2)V g - ( f u „  u 2 ,u 3 ) + g(VV-(u1,u3),110 —  O,

S1,2,3Eg(fR1(u1, u,), 213 ) ]  =  O.

Since `'of  =  0  and  R ,(u„ u2) = — 14(u2, u1), (6 . 2 ), gives u s  'W .
(f u i, u2, JO =  — V g-(f u„ u„ u 3 ). On the other hand Vg(u, , u2, u3)
=2C*(u„ u" u3)=V g(u1, u3, u,), then it follows that

g(f R ,(u„ u 3 ), u 1) = "r°g.(fu2, u„ u 3) = — V g-(fu„ 112, u3)
—  —  g(fR(u„ u2), u3) .

Thus (6. 2) 3 gives us that tog= 0  and / 4  = 0 ,  which show us, by
virtue of (1. 13), g  is a flat Riemannian metric.

T heorem  6. 2 . Let a  m anifold  M "  admit g .a.h .str. ( f , g )
where g  i s  a Minkowski metric. The tangent bundle T ( M ')  is
almost K iihlerian with respect to the lif ted m etric G* and F = l -_- ( f )
+ l,- ( f )  i f  and only  i f  there ex ists a canonical coordinate system
(x, y) in  term s o f which the components of f  are independent of x,
and the components o f g f  are constant.

Pro o f . In a Minkowski space, the relations
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(6. 3) R  =  0 ,  'V C *  = 0 ,  V g  =  0 ,

hold good and there exists a coordinate system in terms of which
the components of g  are independent of x .  Therefore, in terms
o f this coordinate system, we have ' y ' = 0  and pi i = 0 .  Now,
(6. 2)2 g ives us

(6.4) ' 7 # f  = 0 ,

which implies that f t ;  are independent of x .  Next, (6. 2), leads
us to

(6.5) t # ( g f )  =  0  ,

which implies that g a l . ';  are independent of y, i.e., the components
o f g f  are constant. The sufficiency follows at once from the
above calculation.

Theorem 6. 3. If  the  alm ost K ahler structure in  Theorem 6.2
is integrable, then an f -structure ( f )  is also integrable and
each f ibre is  K ahlerian.

Pro o f . Under our assumption, the relation (6. 3), (6. 4) and
(6.5) hold good. The Theorem 4. 5 shows that the following holds
good :

(6.6) f V V . ( u i , u2) - t " f . ( u i ,  f u 2 ) -  0 .

From the Theorem 4. 3  and the relations (6. 3), (6. 4) and (6. 6),
it follows that F , is integrable. M oreover (6. 5) and (6. 6) show
us that in each fibre l ( f )  and l + + (g ) form a K dhler structure.

Finally let us calculate, in the tangent bundle of a Finsler
Aspace, the Christoffel's symbol {B c }  corresponding to the lifted

metric G* of a given Finsler metric g.
As is shown in section 3 , I B

A
c }  is written as f '  + K .  A s to

we adopt the one given by (3. 12) where we take y*i i ,  (Cartan)
as 7i ik  and 7 *1 J k y k  as pi J . After some complicated calculations
we have the components of a, b, c •• • and h  which compose a tensor
K  under consideration as follows :



A lmost Complex S tructures of  T angent Bundles 451

ai k J  =  0  ,  g i k j, —  C * i  kflo , h i  k j —  C * i  k i , di k i  —  f i  k i  =  0
1 .&kJ  = ei k J  = C*i k •+— gil g Rmi „2

(6. 7) k j  =  P i m 7 *m
k j

—  Y l ai re i k i + Y I P P I p 7 * i  hj C * '  k j

1 1
—

2
(ak 99 i ; ± a; 99 ' k )  + —

2
(7* i kg —  C * i  kqlo)99 q

1 W i j p  C * i jp10)99 P h •2

T h e o re m  6. 4. In  the tangent bundle over a  m anifold w ith a

Finsler metric g, the Riemann connection IB
A

c }  corresponding to the
lif ted m etric G *  o f  g  i s  o f  h-f -ty pe i f  an d  only  i f  g  is  a f lat
Riemann metric.

Pro o f . Comparing (3. 13) with (6. 7), we obtain that

(6.8) I *, 1 ( 991 -4-  CI '  q lo c e  k ) °  •I ? ' kJ +  C  k j + C  k q l° - 1

In Finsler geometry it is well known that the first equation of
(6. 8) is equivalent to C*ik i l o = O. T h u s  w e  have R ik ;  = 2 C*ik i .

Since {A  }  gives a  symmetric connection, Theorem 3. 1 gives usBC
Ri k ;  0 .  Therefore we obtain C*ik i = 0, i.e., g is a Riemann metric.
Moreover from (1. 13), R i k ;  0  shows us that g  is flat. T h e  con-
verse is evident.
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REFERENCES

2 2

Akbar-Zadeh et E. Bonan : Structure presque Kahlerienne naturelle sur la fibrè
tangent à  une variété finslerienne, C. R. Acad., 258 (1964) 5581-5582.
Cartan, E . :  Sur les espace de Finsler, C. R. Acad., 196 (1933) 582-586.

 .  Les espace de Finsler, Actualités 79, Paris (1934).
Dombrowski, P . : O n  the geometry of the tangent bundle, J .  reine angew.
Math., 210 (1962) 73-88.
Heil, E . : A relation between Finslcr and Hermitian metrics, Tensor (N. S.),
16 (1965) 1-3.
Ichijy6, Y .  :  On almost contact metric manifolds admitting parallel fields of
null planes, TOhoku Math. J., 16 (1964) 123-129.



Y oshihiro Ichijyô

Ichijyô, Y. : Analytic manifolds admitting parallel fields of complex planes,
J. Math. Kyoto Univ., 4 (1965), 369-380.
 :  Differentiable manifolds admitting complex distributions, J. Math.
Kyoto Univ., 5 (1966) 67-85.
Ishihara, S. and K . Yano : O n the integrabilty conditions of a structure f
satisfying f 3 + f  = 0 ,  Quart. J. Math., 15 (1964) 217-222.
Kashiwabara, S. : On Euclidean connections in  a  Finsler m anifo ld , Tôhoku
M ath. J., 10 (1958) 69-80.
Kawaguchi, A. : On the theory of non-linear connections I, II, Tensor (N. S.),
2 (1952) 123-142, Ibid. 6 (1956) 165-199.

[12] Matsumoto, M. : Affine transformations of Finsler spaces, J. Math. Kyoto
Univ., 3 (1963) 1-35.

[13]  :  Linear transformations of Finsler connections, Ibid., 3 (1964)
145-167.

[14]  : Connections, metrics an d  almost complex structures of tan-
gent bundles, Ibid., 5 (1966) 251-278.

[15] Matsumoto, M . an d  T . Okada : Connection i n  Finslet spaces, Seminor in
differential geometry, 4 (1965) Kyoto Univ. (Japanese).

[1 6 ]  Moth-, A. : Entwicklung einer Geometric d er allgomeinen metrischen Linien-
elementratime, Acta Scie. Math., 17 (1956) 85-120.

[ 1I ]  Nagano, T. : Isometrics  on  complex product spaces, Tensor (N . S.) 9 (1959)
47-61.

[18] Nomizu, K. : L ie  groups and differential geometry, Publ. Math. Soc. Japan,
2 (1956).

[19] Okada, T. : Theory of pair connections, Sci. eng. review o f Doshisha Univ.,
5 (1964) 35-54.

[20] Rizza, G. B. : Structure di Finsler sulle varieta quasi complesse, Rendioconti
Accad. Naz. Lincei, 33 (1962) 271-275.

[21] Rund, H .  :  The differential geometry of Finsler spaces, Springer (1959).
[22] Sasaki, S. : O n the differential geometry of tangent bundles of Riemannian

m anifo lds I, II, Taioku Math. J., 10 (1958) 338-354. Ibid. 14 (1962) 146-155.
[23] Tachibana, S. and M . Okumura : On the almost complex structure of tangent

bundles of Riemannian spaces, Tôhoku M ath. J., 14 (1962) 156-161.
[24] Tanno, S. : Almost complex structures in  bundle spaces over almost contact

m anifolds, J. Math. Soc. Japan, 17 (1965) 167-186.
[25] Walker, A . G . : Connections for parallel distributions in the large, Q uart. J.

Math. Oxford (2), 6 (1955) 310-308.
[26] Willmore, T . J . : P a ra lle l distributions on m anifolds, Proc. London Math.

Soc. (3), 6 (1956) 191-204.
[27] Yano, K. : On the structure defined by a tensor field f  of type (1 ,1 ) satisfying

f 3 + f  =0 ,  Tensor (N . S.), 14 (1963) 99-109.
[28] Yano, K. and E. T . Davies : O n the tangent bundle of Finsler and Rieman-

nian manifolds, Rend. Circ. Mate. Palermo, (2), 12 (1963) 211-228.
[29] Yano, K. and T. Okubo : Fibred spaces and  non-linear connections, Annali

di Mate., 55 (1961) 203-244.
[30 ] Yano, K. and S. Kobayashi : Prolongations of tensor fields and connections

to  tangent bundles I, II, J. Math. Soc. Japan, 18 (1966) 194-210, Ibid. 236-
246.


