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1. Strongly hyperbolic systems are those which are invulnerable
to perturbations of lower order ;  they remain hyperbolic as long
a s  th e ir  principal part is unchanged. F o r constant-coefficient
systems (o f linear partia l differential equations), hyperbolicity
simply means that certain matrices Q  have a ll th e ir eigenvalues
in some half-plane Re C .  Strong hyperbolicity is then a  fur-
ther condition on the principal parts of these matrices. In fact,
this property leads to a  very neat problem in  matrix analysis,
which was resolved by Kasahara and Yamaguti [1, 2] ; we want
to discuss it further.

L et u s state th e  problem more concretely fo r a  first-order
system

( 1 ) au —  A.  au + B uat 1
' Bx;

Here u is an unknown m-vector, A ;  and  B  are matrix coefficients,
and i t  i s  B  which we are allowed to change. A Fourier trans-
formation, with dual variable denoted by

aû( 2 ) — ( Ei EA ;  + = Q (niiat

It is  on the symbol Q( ) th at one imposes the Petrowsky-Gfirding
condition for hyperbolicity, mentioned above :

= („•••, W, yields

1 )  Th is work was supported by the Sloan Foundation, the National Science
Foundation (NSF-GP 4364), and the Office of Naval Research.
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( 3  ) sup Re ,a 5 (Q ())<  0° •

t

Thus the problem is : under what conditions on the matrices A ;

does (3) hold for every B?
We shall add two alternative conditions to the one found by

Kasahara and Yamaguti, and prove their equivalence. Then it is
quite pleasant to show that these new conditions are necessary
and sufficient for strong hyperbolicity ; this simplification is really
our chief contribution. The extension to arbitrary systems of
Kowalevsky type is made easy by borrowing two lemmas from
[2].

One of our new conditions admits a  very useful interpre-
tation: a  Kowalevsky system is strongly hyperbolic if and only if
it is  w ell posed  in the natural L , space. For the first-order
system (1), this space is just L 2(R d ).

As usual, there is a parallel question, and a parallel answer,
for partial difference equations. Here our results are new, and
they show that an example given by Kreiss [3] is completely
typical : stability which is present only in the weak (Forsythe-
Wasow [4]) sense can always be destroyed by lower-order terms,
when the eigenvalues of the principal part of the amplification
matrix all have unit modulus.

We devote the Appendix to the special case of two dependent
variables in the first-order system (1). It is easy to show, in any
number of variables, that each of the following implies the next :

a) For some T, the matrices 7-1 are all Hermitian
b) The system (1) is strongly hyperbolic
c )  Every real combination E  5 ./15 is similar to a real diago-

nal matrix.
Lax [9 ] has provided  a  counterexam ple to b ) a ), and

Petrowsky's counterexample [7] to c) b ) is reproduced in [2].
Both o f these examples involve matrices of order three, and in
fact it is remarked without proof in  [1 , 2 ] that c) b )  for
matrices of order tw o. W e show that actually c) a )  in  this
case ; the "general case" is not reached until there are three un-
knowns.
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Another result of the same sort concerns the hypotheses
a') For some T ,  the matrices TA F T '  and T B T - '  are all

upper triangular, and the A ;  have real eigenvalues
b') The system (1) is hyperbolic (in  other words, (3) is

satisfied)
Again it is trivial to show that if either a) or a') holds, so does
b'). For matrices of order two, we prove the converse : a hyper-
bolic system must satisfy a) or a'). Inevitably, there is a counter-
example of order three :

/0 1 O\ 0 0 \
au1  au0 0  1 +  1  0  O u .at ax\ o  0 0/ 0 —1 0/

For this system ti,3(Q( )). -  0, but the coefficient matrices cannot
be made upper triangular by the same similarity [10], and the
first matrix cannot be made Hermitian.

Single equations of second order are equally special.
We shall use the /, norm for vectors and matrices :

I vl = I v3 2)" 2 ; I A 1 =  sup I Avl
Iv1=1

2. To begin, there is a familiar necessary condition :
(H) : If (1) is strongly hyperbolic, then the eigenvalues X,3 ( )

of the principal part P( )= E i 3 i4;  must be imaginary for every
(real)

For the proof we choose B = 0, so Q  P .  Suppose the real
part of Av ( r )  were not zero. By homogeneity, that real part
becomes arbitrarily large when we replace by Or, with 3 large
and of the right sign . Therefore (3) is violated unless (H ) holds.

To see that (H ) is insufficient for strong hyperbolicity, we
appeal to the universal counterexample

( 4 ) au( o  i ) au 
at 'o o  ax + Bu .

The principal part has zero eigenvalues, so (H ) holds ; nevertheless

( 5  )  B  (  0  0 ) _  (  0  in ± .\/u
i 0 1 \— i 0 1
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Thus the hyperbolicity of the principal part is destroyed by B,
and (4) is not strongly hyperbolic.

N ow  w e list th e  three equivalent necessary and sufficient
conditions for strong hyperbolicity, of which the first appears in
[1, 2] :

I. (H )  holds, an d  P  is uniformly diagonalizable : there
exists S( ) such that S() P() S - 1 ( ) = D() is  diagonal and
SMI I S - 1 ( ) I constant.

II. et"( < constant, fo r  t 0 and real
III. R e  z I (z — P( ))- 1  I < constant, for Re z >0 and real

The equivalence of these three is a special case of Kreiss' important
matrix theorem [ 5 ] .  His theorem deals with matrices whose
eigenvalues are restricted only to the left half-plane, and there is
no easy proof. Here we know that P has imaginary eigenvalues,
and a quite simple proof is possible ;  we present it informally.

I II : e s "  S ' Sea S = S- s

The diagonal matrix etp(o is unitary, by (I I ) , so that

( 6 ) letP( 1) I < ,S -1 ()1  I S(01 constant .

II I I I .  Given that Re z> 0,

-
( 7  ) 1  (z — P) - 1  I = I e "P -z ) dt I <constant f e t 1 dt

Jo Jo

constant /Re z.

III I .  G i v e n it is clear from III that P( ) can have no
eigenvalues in the right half-plane Re x>0. The same is true of
P(— )= —P(). Therefore the eigenvalues are imaginary, and (H)
holds.

Next we assert that each P( ) is diagonalizable. If not, it is
easy to check from the Jordan form that (z—P(E)) - 1  has at least
a double pole at the offending eigenvalue X, contradicting III as
z— >X. Therefore each P admits a spectral decomposition

( 8  )  P ()  = E 7,
; (0E ; (0

where the eigenvalues x ;  a re  imaginary and the E  are mutually
orthogonal projections :
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( 9 ) E f E k  = 5ikEk, E E. =  I .

As suggested by [6], let

(10) H( ) = m  E E j * E  ; (0  ,

recalling that m  is the order of the m atrices. Applying (9),

(11) II() P() = —  P * ( )1 n )

Now we pre-multiply and post-multiply by the positive definite
matrix H  ' 12 (whose existence is proved in  (14) below) :

(12) WITH - 1 /2 = —  H - '12.1)* Hil2 = —  (WITH -1 1 2 )* .

This skew-Hermitian matrix can be diagonalized by a  unitary
transformation :

(13) U() H 1/2( )P()1-1 - '/2( ) U- 1 ( ) = D ( ) .

It remains to show that S( )= 11112(0 satisfies SiI 1S'1
constant. In fact, since U  is unitary, we have only to estimate
IP/2 and H " 2 . F o r  the latter,

(14) 1v1 2 = I EE,v1 2 <(E lE i vl )2 <mE E i vI 2 = 11-P 2v12 .

Therefore 1H - 1 1 2 1 < 1.
We claim that each E ( )  is bounded by the constant in III.

For this we set z = 6+ Xk ( ) and let 6---->0+  :

(15) constant Re z i(z—  P()) - 1 1 = El E (6+ xk- X; )- 1  E J !

This bound on each lEk 1 yields

( 1 6 ) 1 1 1 1 / 2 ( )v12 = mJ IE 1 ( )vI 2 < m2 constant2 v I 2

1H1/2 1< m  constant.

Thus I holds, with ISI1S - 1 1 11/1/2 1 I H- 1 / 2 1 bounded by the order
m  times the constant in III.

W e point out a slight variant of III which will be useful
la te r . It is apparently weaker, but actually equivalent.

III': R e  z1(z— P () ) - 1 1 constant for Re z> 0, I z1 2 1 M ) I •
II III' is still all right, so we prove III' I.
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Certainly P( ) can have no eigenvalue X in the semi-circle Re z > 0,
I zl<21P(01. Nor can an eigenvalue be elsewhere in the half-
plane Re z >0, since Ix cannot exceed the norm P() I. Replacing

by  —  (H ) must hold. The basic estimate (15) also persists,
since z  = E +  xk  lies  in  the semi-circle as E -0 .  T h e r e fo r e  the
proof o f I can go just as before.

3. THEOREM I: E a c h  of the conditions I  to  I I I  is necessary and
sufficient for the f irst-order system  (1 ) to be strongly hyperbolic.

strong hyperbolicity : Suppose I holds, and p, is an eigen-
value o f Q ( ) = P ( ) + B .  Then p, is also an eigenvalue of S Q S '=
D + S B S ', say with eigenvector y :

(17) (Dv, y)±(SBS - iy, y) = ,u(y, y)

Taking real parts, and using I, the first term drops out to leave

(18) Re p, < I SBS - il < constant B .

This holds fo r  every B , so the system is strongly hyperbolic.
This is essentially Petrowsky's proof [7, p. 65] ; it m ight be
interesting to point out how one could also prove

strong hyperbolicity : In [8 ], we carried out the follow-
ing computation :

LEMMA 1. If 1.111"I<C for n>0, then  I(M+R)nl <CencIBI.

To use II, we need to derive the exponential analogue :

COROLLARY. I f  leiBI <C for t 0, then letcB+ 13)1 ‹CetC1B1

To prove the corollary, set M = and R= B)— M .  Then
M  satisfies the hypothesis of the lemma, so

(M+R)" I = C e ' f o r  n > 0 .

Fixing n e  t , nR-4B as n—).00, and the corollary follows.
Now we prove strong hyperbolicity. I f  p , is  an eigenvalue

of Q = P + B , then et"' is an eigenvalue of e"P' 1 3 ) an d  is therefore
dominated by the norm :

(19) e t '   =  I et'  <  e"+B )  I <Ce tc 1B 1
 .

For large t, this requires that the exponents satisfy
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(20) Re p,<CIB I •

Thus we have strong hyperbolicity, and in fact with the same
estimate for Re th as in  Petrowsky's argument.

In the more delicate half of the argument, the proof that the
three conditions are necessary, we look to condition III to play
its part.

Strong hyperbolicity III: S u p p o se  w e  h a v e  a  strongly
hyperbolic system (so that (H ) holds) for which III fails :

(21) Re z k l(z k — P( )) - ' —* co

for some sequence V , with Re z k > O. These norms cannot get
la rge  without at least one of the m2 entries, say th e  (i, j)th,
being responsible ; taking a  subsequence if  necessary,

det (z — P( ))

L e t B  be a  matrix whose only non-zero entry is
( - 1 ) i  e i .  Then

(24) R(z, = det (z  — Q()) = det (z  —  P())—  e'o M(z,  .

Our problem is to show that with a  proper choice of yb, the roots
t i,; (0  of R  have unbounded real p arts . Since this would contradict
the hypothesis of strong hyperbolicity, we may then conclude that
III cannot fail.

F i x  and consider the behavior of p,; (0 0  as $—.00. Supposing
for the moment that the eigenvalues X. ; ( ) are distinct, we expand
into partial fractions :

M(z, ai(M )a )(25) +  •  •  +  a (  
det (z — P(M)) z  — x ,(1 3 ) z —x„,(M)

M  is homogeneous in  z  and o f  degree m - 1 , the determinant
is of degree m , and the denominators z —A.;  of degree o n e . There-
fore the constants a  are homogeneous o f degree zero :  a ;W O=

(22) Re z k l(z k —P( )) - 1 i ,• I .

If M(z, is the ( j, i)th minor of z — P( ),  then

( — 1)' M(z, (23) (z —
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a -() . W e want to prove that w ith the p ,  correctly ordered,

(26) , )—x(f3) —> e a,(/3) = e a ( )  a s  13 09 .

If a.= O, this is easy ; X3( 8 )  must be a root of M, or the left
side of (25) would have a pole where the right side was regular.
Therefore X ;  is a lso  a  root of R ; X ; (00.--- -  p,; (80.

Assume a3*0  and take p>0 very sm all. W e shall show that
for large /3, R(z, M ) has exactly one root in the circle of radius
p  about X3(8 )+e 1 oa3(M) ;  th is proves (26). The argum ent is
based on Rouché's theorem . For large is,

S(z, 130  =  d et (z  P ([3 ))(1 . e i°a -'( M )

z ; (00

has exactly one root in the circle, at its center. So we have only
to check that on the circle, I R—S < I S I .  Dividing by the deter-
minant, this is the same as

E   e14' a(/3 )
le* i  — X k(13)

1 ei a ; (8 )  
z i (M )

The left side approaches zero, uniformly on the circle, as ie—>co.
The right side is

pei"
eio a 0 0 +  pei9

> P  —  constant.
—P

Therefore Rouché's theorem applies, and (26) holds.
The situation is not much changed when our fixed gives

some coincident eigenvalues xv , provided there are still only linear
factors in the partial fraction expansion of MI det (z—P). This
occurs when every p -  fold root X ;  of the denominator is at least
a p —1 fold root of M . Suppose th is is the case, and m—n linear
factors appear in the expansion. Then p, i =X 3 for n roots and (26)
holds, by Rouche's theorem, for the other m—n.

W e show now how (26), i f  it ho lds for every l e a d s  im -
m ediately to  our theorem . Then w e return to  deal w ith  the
remaining possibility that some higher power ( z _ X5( )), g>1 ,
appears in a partial fraction expansion.

T he num bers a5(V )1 are  not bounded by any constant C,
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since i f  they were, we would have

zk  M(z k  , <  E   C R e z k  

det (zk - P ( ) 1 z k-  XA k )1

contradicting (2 2 -2 3 ) . Therefore we may choose ç ‘ so  that the
numbers Re (e 1 a 5(0 ) )  are unbounded above. According to (26),

Re (pv (fiV)) Re (e ioa,(V )) a s  /3-..0 .

Thus the roots o f R have unbounded real parts, as we intended
to show.

Suppose finally that for some V, one of the partial frac-
tions looks like

(27) a,(z, g > 1.
(z - X563 n g ' 

In this case as ; i s  a homogeneous polynomial of degree g -1, and
we may assume that (27) is irreducible : a 5 (X1 ( ), ) = c * O .  Appeal-
ing one last time to Rouché's theorem, g  of the A; (130 approach,
as 0-.00, the roots of

(z - x i (M))g = .

It is not hard to show that these roots are

X./(0+ w k iag - l i g (ce i l m + 0 (0 0 , g - 1

where the cok are the g th  roots of unity. Take cok  =1 and choose
cp  so  that ceio--- c .  T h e n  the corresponding Re ( ,u ( ,8 ) )  grows
lik e  [3g- l/gl c co. T h u s  hyperbo lic ity  fa ils  a g a in , and the
theorem is proved in  th is case without looking beyond the ray
M ; this can happen only if P( ) is no t diagonalizable, as in the
example ( 4 - 5 ) .  The earlier argument, with linear factors, covers
the case when the P( ) are all diagonalizable, but not uniformly so.

4. In  th is section w e extend the discussion to  a  Kowalevsky
system of arbitrary order, with unknowns u i(x, t):

(28) ( a r i a , - A7k( r" ( a r...(  a
  ru ,, i< j< m .

\ at / k=i \ at / \ a x , / \axdi
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The inner sum extends over derivatives o f order
d

= a j< n k , with a o <n k . The derivatives (alat)"u i , 0 <n <n i ,

are prescribed at t =O.
A Fourier transformation yields

(29) ( ) n i u — E E A7k(
m 2 \
E   )fik  •k=i at

The derivatives o f  order a  = n k comprise the principal part ;
accordingly we split

— B'jk

where Psk (alat,)  is  a  homogeneous polynomial in alat,,,•-•,(1
of degree nk , and B'i k  is of lower degree. Corresponding to the left
side o f (29), we introduce the diagonal matrix E (z )  which has
E i i = z n i .  Then the Petrowsky-Garding condition, generalizing (3),
reads :

The system (28) is hyperbolic if Re /1.,( ) < constant, where the
I L ,  are the roots o f det (E(z)—Q'(z,

Strong hyperbolicity means, of course, hyperbolicity for every
choice o f B '.  The choice B' =0 again yields

(H ) :  I f  (28) is strongly hyperbolic, then the roots x ; ( ) o f
det (E(z)-1=A z, 0), which is a homogeneous polynomial of degree
N = E ni , are all imaginary.

Naturally we want to study (29) by reducing it to a  first-
order system. It turns out that a  reduction to a  differential
system (1 ) is less useful than turning to a  pseudo-differential
system ; in other words, we shall arrive at a non-polynomial symbol
Q ( ) .  Corresponding to the unknown it ;  we introduce n;  new
unknowns

(30) r(t, = n i - l - r ( a
 )  ( t "  o < r < n i — l .at 

Then we may rewrite (28) as
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(31) a= E A7kM,ri...(ied)"'d I e I "0- " - "kbk .at k=1

Notice that derivatives of order I al =n k — g yield terms which are
homogeneous in o f  degree 1 — g. There are also the usual auxi-
liary equations

(32)
0

=- r - I - 1 )  1<i<M, 0<r<n 1 — 2 .
at j ' r

Suppose we combine the components ,  into an unknown vector
o f order N =E n i . Then (31-32) can be written as a pseudo-

differential system

(33)
 at)

=  Q(Ob = (M ) +B ( ) ) / 9 .at

The N x  N  matrix P, corresponding to the principal part of (31)
and to  the equations (32), is homogeneous o f degree one. We
must distinguish between its m main rows, which arise from (31),
and the N— m aux iliary  row s, which have a single non-zero entry
I . The lower-order term B ()  is bounded as I V  0 0 , but will
be unbounded as I V --).0 i f  there are any derivatives o f order
I al <n k — 1.

To complete the book-keeping, we establish the relationship
between Q ' and the new coefficients Q .  Let us introduce the
Nx N  matrix

r z , )  ( E ( z )O —Q' 0 .)

LEMMA 2. a )  T here ex ist matrices L  and R , with entries which
are polynomials in z ,  ,  and such that LY R— z — Q()  and
det L R -1.
(b) det (E(z)— Q'(z ,))=det Y =det (z  — Q( )), w ith roots p, ; (0 ,  and
det (E(z)—  P'(z, ))= det (z —  P()), with roots x  ( c )  E v e ry  m in o r
(o f  o rd e r N -1 )  o f z — P is a linear combination— with coefficients
which are polynomials in z ,  ,  and 1 ,  and homogeneous of degree
zero in z  and - -o f  the main minors o f z— P, i.e., of  those m inors
form ed by  om itting a main row and an arbitrary column.
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We shall be very brief about the proof, since this result was
drawn from Lemma 1-2 in  En  E v e r y  factor 11 in  the entries
of Q is replaced by 1 after the proper similarity transformation
T, namely the one which changes the unknowns to

a  V iz^=
 r  

(  

 at I
( T  is  a diagonal matrix constructed from powers of I . )  T h en
the matrices T(z— Q) T - 1  and Y  are equivalent under elementary
row and column operations. Using the off-diagonal — l's in the
auxiliary rows as pivots, we obtain all the zero entries of Y ;
these operations involve polynomials in  z and a n d  h a v e  u n it
determinant. With appropriate permutations and a change of sign,
the — become /N _„.,. Together with the similarity, all these
operations make up L and R.

The first equality in  b ) is obvious from a), and the second
follows by comparing the terms of highest order. A  useful dia-
gram for step a), and the proof of c), appear in  En

5. THEOREM H. Each of  the conditions I to  I I I  (as  well as  III')
is necessary  an d  sufficient f o r th e  Kowalevsky system  (28) to be
strongly hyperbolic.

P ro o f . I s tro n g  h yp erb o lic ity . For any choice o f lower-
order terms, 1 B( ) I <con stan t fo r  1 1  < 1 . W e can therefore
apply, in  th is range, the same argum ent as in Theorem I. On
th e  other hand, det (E(z)—Q'(z, )) i s  a monic polynomial with
coefficients bounded in  th e  ran ge  11  < 1 . Therefore Re p,i (0 <
constant also for 11 < 1.

Strong hyperbolicity III'. Again we know that strong hyper-
bolicity (H). 11 111' fails, then as before there must be an index
(I, J) such that

Re zk l(z k — P(V )) - 1  J  (X ) f

where Re zk  >0 a n d  1zk  <  21P(V )1. In  other words, th e  cor-
responding minor satisfies

(34 ) Re zh I MJAzh 
det (z h — P(V)1 - - > c x )
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We claim that this holds for at least one of the main m inors. A
polynomial in z  which is also homogeneous of order zero in z  and

together is uniformly bounded in  the range lz <21P( )  ;  in
fact a  typical term in  our polynomials can be estimated by

constant znri•••rc'eg
n + la 3 1

<constant (2 sup P ( ) l)
n

 •

  

According to Lemma III c), M."  is either a main minor or a com-
bination of the main minors with such polynomials as coefficients.
Since the coefficients are bounded, (34) cannot hold for M1 1  without
holding also for a main minor My i .

Now we introduce an appropriate lower-order term into our
system, namely one which will produce a single non-zero entry
B( )1 i =b( ). This we can do precisely because the j t h  row  is a
main row ;  the auxiliary rows correspond to  the fixed equations
(32) and  cannot be altered . Suppose the column index i  cor-
responds to terms in  (31) multiplying 6 r  • Then we want our
particular lower-order term to have a  = n , - 1 ,  a 0 = r, and constant
coefficient ( —1)1+1 e0  ;  this will produce

b ( )  —  

We emphasize that although B is homogeneous of degree zero, it
is not a constant matrix (unless n = 1 ,  as was always the case in
Theorem I). T h is  difficulty is overcome by taking a subsequence,
if  necessary, so that the vectors e/lEk I converge to a un it vector
r .  Then copying the argument in Theorem I (assuming linear
factors in the partial fractions) we have

(3 5 ) Re IL i( W )  Re (b(V)ai (V ) )  a s  /3 00;

Ai  are  the eigenvalues of Q =P+B , and the a i (V ) are unbounded.
Choose 95 so that for some subsequence n* of the ,  and for

appropriate j=j(k ) , we have

lb(r)a;( 72k )1 0 0 , l a rg ( b ( r) a 1(771 )1 <n/ 4 .

Multiplying by b(e)/b(r), which approaches 1, neither the modulus
nor the argument is much changed. Therefore
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(36) Re (b(7710a;( 72k )) . - -> c° •

Comparing this with (35), Re izi ( g 0 )  cannot be bounded above,
and the lower-order term which produced B  has destroyed hyper-
bolicity.

W hen there is a  non-linear factor (27), for so m e  =V ', one
chooses 4) so  that c b ( e ) > 0 .  Then Re p,1(,3V)—>00 a s  8—›00, as
before, and hyperbolicity is destroyed here too.

We conclude that III', and therefore, I, II, and III, cannot
fail.

6. The reduced Kowalevsky system =Q ()1 ) has the obviousat
solution

19( , t) et0 (1)19(E, 0) .

Unfortunately, et° =
e t C P +  B )  may be unbounded a s  1 V since we

cannot guarantee that B is bounded. In other words, while 1) was
an appropriate choice for the analysis of strong hyperbolicity, it
may not depend continuously on  the data a t  t = 0 . S in ce  the
difficulty a r is e s  when is  s m a ll ,  w e  in t ro d u c e  in s te a d  the
unknowns

(37) tiii,r(t, (1 12+1)(ni-1-"/2( 0< r<n —1 .

This leads to a  corresponding system of order N :

(3 8 ) a t b 0 ( ) 1 4 )  = ( 13()+ B-( )*  •Ot

The part B arising from derivatives of order !al <n k  in  (28) is
bounded : 1B ( ) 1 < constant.

P  i s  no longer homogeneous ;  it can be formed from our
previous P  by rep lacing every factor 1 1 b y  (1 12 +1) 1/2. We
need two inequalities to check that th is change leaves 1P( ) —
P( ) I <constant. On the auxiliary rows,

1(IV 2 + 1 )1/2 - 1V 1 < 1 .

On the main rows, the numerator o f a typical term  is a  poly-
nomial in say of degree k+.1, and then
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P k - ,( )  (I I ( 1 2 + 1) - k / 2 ) I <constant.

T h u s  — P=13- + (P—P) is bounded uniformly in
Now we apply the corollary to Lemma I. If the Kowalevsky

system (28) is strongly hyperbolic, then II  holds, for some con-
stant C .  Therefore

I e6 5 ( t ) I =  I e ' t [ 5 - 1 1

The constants C and p=C sup 10 — P I  are independent of

Conversely, suppose I et-2 -(°1 < C ' e '' fo r some C ' and p'. Then
et P I )  < C ' an d  th e  corollary gives 1 etP 1 <C' ePu  . B u t P  is

homogeneous, so for any t  and

ew " ) I = 10 4 / 2 ) 1 < C'eP"E C ',  a s  E  - ›  O.

Thus II  holds, and the system is strongly hyperbolic. We have
proved

THEOREM III. The Kowalevsky system is strongly hyperbolic if  and
only  if , f o r the  new variables t  ,  defined by (37), there are  con-
stants C  and p  su ch  that t>0  and all E,

I lb., ,-( ) 0 1 = 1 ett thj, 0) 1 < C e t I t h j 0 ) 1

COROLLARY. T o th e  Kowalevsky system (28) we associate the
norm

Hu(t)H2 = ( aat ) c»°
(  aax ,) —.(aaxd r u ij 1 R t

= E E
i'ti <n j

T hen the  system  is strongly  hyperbolic i f  an d  only  i f  there are
constants C' an d  p ' su ch  th at f o r any  initial data and any  t

lu(t)11 <C' e p'llu( 0 )11
Pro o f  : The theorem gives this result immediately in the norm

111(t)11g = 0124 .

( 1 1 2 + r )r

By Parseval's Theorem

2

dx

2 d .
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(Z 2 +1) (012 4 ag
ax,

2

+ ... +IaaXgd12+ 
1g12)clx

 

After n i  —1— r applications, we find positive constants ba r  and  co,
such that

Ilu(t)11(1= E E ba,riliru i (t)1112

CGo= r

IIYUM)112L2 •

In short, the norms H Ho and 1  H a re  equivalent. Therefore the
system is well-posed also in the latter norm.

7. Our only problem in  extending these results to partial differ-
ence equations is to get all the analogies right. We shall consider
systems of the form

(39) u(x , t+k , k ) = E c i (k)u(x+ih, t, k) ,

where u  is an  unknown m-vector, prescribed at t= 0 , and the
matrix coefficients ci  are polynomials in k. As usual x=(x„ •••, x d )
and j=( j„••• ,j d ). We are interested in  th e  behavior of u  a s  k
and h=h(k ) approach zero . Taking Fourier transforms, and put-
ting 0,

(40) z,"€( , t +k , k )  = (E c i (k)eii 4 4 )ii(, t, k )
= (E  c (k )e '° )û  Q (0 ,  k )û.

We call the systen reversible (in  tim e) when all the eigenvalues
1 (0, k) of the amplification matrix Q  satisfy

(41) 1 — Ck< I p(0,k)I <1+ Ck ,

for some fixed C .  (This is to be compared with the condition (3)
fo r hyperbolicity, which involved only a  one-sided inequality
Re it< C .  T he homogeneity o f P  then implies th e  other side
Re p,,>- - C ' ; here we have no such weapon.)

The system is strongly reversible if fo r every term bounded
b y  B(0, k)1 =0(k), the system whose amplification matrix is Q+B
remains reversible. The principal part of Q is made up of the
terms which are independent of k :
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P(0) = E c J(0) e' .

Obviously there is the necessary condition
(H '): 11 (39) is strongly reversible, then all the eigenvalues

X; (61)  of P  must have x i  =1.
The theorem which follows is completely analogous to Theorem

I, so perhaps we may omit its proof.

THEOREM :  Each of  the following conditions I' to III' is neces-
sary  and sufficient f o r th e  system (39) to be strongly reversible:

I'. (H ')  holds, and the m atrices P(0) are uniformly diago-
nalizable.

1P"(0)1<constant, f o r n >0  an d  real O.
III'. (1z1 — 1)I(z —  P(0)) - 1 1< constant ,

f o r Iz I>1  an d  real O.

In proving that strong reversibility fails whenever III' does,
w e can  ensure that it is the second inequality in (41) which is
vio lated. This means, as we mentioned in the introduction, that
weak stability is always vulnerable to 0(k) perturbations.

To complete the discussion, we observe that II' is equivalent
to stability in the Lax-Richtmyer sense ; according to Lemma 1,
P(0) 1 (C  if and only if

1Qg = + 0(k))" <C enc"k) ( constant for n k (  T .

Thus, for reversible systems, Lax-Richtmyer stability is equivalent
to strong reversibility.

Appendix

As we remarked in the introduction, each of the following
hypotheses implies the next :

a) For some T , the matrices TA J T - '  are all Hermitian
b) The system (1) is strongly hyperbolic
c )  Every real combination E &i .A. ; is similar to a real diago-

nal matrix.
The implications become obvious i f  w e  replace strong hyper-
bolicity by the equivalent condition I of our first Theorem. For
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systems in  two unknowns, these three hypotheses are actually
equivalent ;  the proof is depressingly straightforward.

T H E O R E M  V . Given 2x  2 matrices such that every real combination
AX i + •••+ A d Ed  is  s im ilar to  a  real diagonal m atrix . T hen for
some T , the matrices T A T - 1  a re  all Hermitian.

Proo f . First we diagonalize A 1 ; A,' =S A iS -1=(a1 
0 ) ,

 w h e r e
0  a 2

a, and a, are real. We assume a 1 * a 2 ,  since otherwise A , is  a
real multiple of the identity and can be ignored.

Suppose A,' =SA 2 S - ' =( b 1  b 3 ). I f either b, or b , is zero, so
b, b ,

is the other, since otherwise some combination of A ,' and A2 '  is
not similar to a real diagonal matrix. I f both b, and b, vanish,
then A2 can be ignored, since whatever diagonalizes A , also diago-
nalizes A 2 . Now we show that b, and b, are real, and that b3b4 =0
implies b3b4 > 0 .  The characteristic equation of A 1

1 +,4 1
172 is

— a  —b,72)(X — (IX — bo)— b,b4722 = 0

and this has real roots if and only if its discriminant satisfies

a2) + (b, —  b2)72]2 + 4b ,b > 0  .

This quadratic form is non-negative for real 72 if and only if
(i ) the coefficients are real ;  in particular, the coefficient

(a1 —a2 )(b1 —b2 )  of m u s t  be real. Thus b1 — b, is real
and since the trace bl + b, is real (the sum of the eigen-
values of A ,), we conclude that bl and b, are real.

(ii) the determinant of the associated matrix is _>-0, i.e.,

(ai—a2)2[(bi—bY  +4144]—(ai—a2 )2 (bi—b2)2 >0

which gives b,b,> 0.

Now with D— (
0
1  0

), d = b 3 (b3 b4 ) -112 ,  we set T=DS,
 d

A f =T A 5 T - 1 ,  and find

A  „  _  ( a ,  0 A „ ( b ,  b )  A „ ( c ,  c „ )
IV ) a,) ' 2 \bb 2 ) ' c4 c 2 ) .
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The entries of A ," and A ," are real, and we have already made
al * a, and b=(b 3 b4 )'/2 * 0  to rule out trivial cases.

W e w an t to  show th a t A ,"  (and sim ilarly every A / ')  is
Hermitian. Applying the second paragraph of the proof to A,"
instead o f A ,', we know that c, and c, are real, and that either
c, and c4 both vanish (in which case A ," is Hermitian) or c3c4 >0.

Now every real combination A ,1+,4 2 "17+ y  has only
real eigenvalues. For each 72, p, we can choose y  to cancel the
diagonal elements ;  thus

( 0 bn+c,A)
\b37-Fc4 /1 0 1

has real eigenvalues for every 72, A .  Since the trace is  zero, the
determinant is not positive, i.e.,

+c,A)(bn +c4/1)..,>- 0

The coefficient of the cross-product term is real, so c3 + c, is real.
Also the determinant of the associated matrix is non-negative, so

b2c3c4 ,>-( 1 3 ( c 3 - 1 - 9 2

2
b2(c3 —c4 )2 < 0

and c,—c, is  pure im aginary. Thus c ,- -c„ completing the proof.
It is natural to  enquire w hether hyperbolicity, as w ell as

strong hyperbolicity, has a simple description for matrices .115  and
B  o f  order tw o. C ertain ly hyperbolicity is im plied either by
strong hyperbolicity or by the alternative hypothesis

a ') F o r  some T , the matrices TA J T - 1  and T B  T - ' a re  all
upper triangular, and the A .  have real eigenvalues.

The proof of the converse is again perfectly direct.

THEOREM VI. A  f irst-order system  in  two unknowns is hyperbolic
i f  and only  i f  either a) o r a')  is satisfied.

P ro o f . Suppose the system is hyperbolic, but a) is not satis-
fied. According to Theorem V, some combination C =  AA ;  is
not sim ilar to a  r e a l diagonal matrix. Since it is well-known
that the principal part of a hyperbolic system is hyperbolic (in
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other words, (H )  is necessary for the hyperbolicity of (1)) the
eigenvalues X of C are real, and it must be the diagonalizability
which fails. Suppose T  puts C into Jordan form :

C' =  TCT - ' = (
x  1

)  and A/ = T A J T -1  ( a l c 3 ) ,  say.
0  X d i  bi

The problem is to show that each d i  vanishes. By the hyper-
bolicity of the principal part, every real combination i l l+ a C ' has
real eigenvalues. Since X is real, this means that

(a ;  c i +a )

d i b
has only real eigenvalues.

\ i

The (quadratic) characteristic equation has real roots only if its
discriminant satisfies

(a 3 — b3 )2 + 4d 3 (c3 + a) O .

This is possible for all real a  only if d .=  O.
The hyperbolicity of (1) also requires the real parts of the

eigenvalues o f  iaC +B  to be bounded for — C.° <a< 0 0  .  But
these are the eigenvalues of iaC' +T B T - ',  and it is easy to check
that TBT -1 is forced to be upper triangular. Thus a') is satis-
fied, completing the argument.

We summarize very briefly the corresponding situation for a
single second-order equation of Kowalevsky type. It is strongly
hyperbolic if  a n d  only i f  a  suitable transformation of the
independent variables (t, x„•••,x d )  produces the wave equation
(with lower order terms) in d space variables. An equation which
is hyperbolic, but not strongly hyperbolic, yields the wave equa-
tion in fewer variables.

Friedrichs has pointed out an alternative reduction, to a first-
order symmetric hyperbolic system. We mention that the des-
cription in Courant-Hilbert II (p. 594) is not quite correct as it
stands ; the strongly hyperbolic equation u„=u t x  would there
become

( I 0
) v  =  (

1  0 )
vo/ o o x
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and the coefficient of vt  i s  singular. The description given is
valid once the terms in u .  been removed, for example by
a change of the time variable.

Massachusetts Institute of Technology.
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