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1. Strongly hyperbolic systems are those which are invulnerable
to perturbations of lower order; they remain hyperbolic as long
as their principal part is unchanged. For constant-coefficient
systems (of linear partial differential equations), hyperbolicity
simply means that certain matrices @ have all their eigenvalues
in some half-plane Re px<XC. Strong hyperbolicity is then a fur-
ther condition on the principal parts of these matrices. In fact,
this property leads to a very neat problem in matrix analysis,
which was resolved by Kasahara and Yamaguti [1, 2]; we want
to discuss it further.

Let us state the problem more concretely for a first-order
system

d
(1) &% _ 14,9 \py.
¢ T ;
Here # is an unknown m-vector, A; and B are matrix coefficients,
and it is B which we are allowed to change. A Fourier trans-
formation, with dual variable denoted by £=(§,,---, &), yields

ou
ot

(2) = (i E;A;+B)d = Q@)d

It is on the symbol Q(¢) that one imposes the Petrowsky-Garding
condition for hyperbolicity, mentioned above :

1) This work was supported by the Sloan Foundation, the National Science
Foundation (NSF-GP-4364), and the Office of Naval Research.



398 Gilbert Strang
(3) sup Re p Q&))< oo.

Thus the problem is: under what conditions on the matrices A;
does (3) hold for every B?

We shall add two alternative conditions to the one found by
Kasahara and Yamaguti, and prove their equivalence. Then it is
quite pleasant to show that these new conditions are necessary
and sufficient for strong hyperbolicity ; this simplification is really
our chief contribution. The extension to arbitrary systems of
Kowalevsky type is made easy by borrowing two lemmas from
[2].

One of our new conditions admits a very useful interpre-
tation: a Kowalevsky system is strongly hyperbolic if and only if
it is well posed in the natural L, space. For the first-order
system (1), this space is just L,(R9).

As usual, there is a parallel question, and a parallel answer,
for partial difference equations. Here our results are new, and
they show that an example given by Kreiss [3] is completely
typical : stability which is present only in the weak (Forsythe-
Wasow [4]) sense can always be destroyed by lower-order terms,
when the eigenvalues of the principal part of the amplification
matrix all have unit modulus.

We devote the Appendix to the special case of fwo dependent
variables in the first-order system (1). It is easy to show, in any
number of variables, that each of the following implies the next:

a) For some T, the matrices TA,T™' are all Hermitian

b) The system (1) is strongly hyperbolic

c) Every real combination 3}&;A; is similar to a real diago-

nal matrix.

Lax [9] has provided a counterexample to b)=-a), and
Petrowsky’s counterexample [7] to c)= b) is reproduced in [2].
Both of these examples involve matrices of order three, and in
fact it is remarked without proof in [1, 2] that c)=b) for
matrices of order two. We show that actually c)=>a) in this
case; the ‘“general case” is not reached until there are three un-
knowns.
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Another result of the same sort concerns the hypotheses
a’) For some 7T, the matrices TA,T™' and TBT™' are all
upper triangular, and the A; have real eigenvalues
b) The system (1) is hyperbolic (in other words, (3) is
satisfied)
Again it is trivial to show that if either a) or a’) holds, so does
b’). For matrices of order two, we prove the converse: a hyper-
bolic system must satisfy a) or a’). Inevitably, there is a counter-
example of order three:

010 0 00
%:001)6—“+1 0 0|u.
X
00 0 0-1 0

For this system p/(Q(£))=0, but the coefficient matrices cannot
be made upper triangular by the same similarity [10], and the
first matrix cannot be made Hermitian.

Single equations of second order are equally special.

We shall use the /, norm for vectors and matrices:

o] = (23 1o 155 1Al = sup | Aol .

2. To begin, there is a familiar necessary condition :

(H): 1If (1) is strongly hyperbolic, then the eigenvalues \ (&)
of the principal part P(§)= > §;A; must be imaginary for every
(real) E.

For the proof we choose B=0, so @=P. Suppose the real
part of (&) were not zero. By homogeneity, that real part
becomes arbitrarily large when we replace £° by Gg°, with @ large
and of the right sign. Therefore (3) is violated unless (H) holds.

To see that (H) is insufficient for strong hyperbolicity, we
appeal to the universal counterexample

ou 0 1\ ou
4y o _ U | By.
(4 % (0 o)axJr “

The principal part has zero eigenvalues, so (H) holds ; nevertheless

5) B=(_Y D)ma=( Y E)su-svE
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Thus the hyperbolicity of the principal part is destroyed by B,
and (4) is not strongly hyperbolic.

Now we list the three equivalent necessary and sufficient
conditions for strong hyperbolicity, of which the first appears in
[1, 2]:

I. (H) holds, and P is uniformly diagonalizable: there
exists S(£) such that S(¢)P(¢)S '(¢§)=D(¢) is diagonal and
[S(E)]1S7'(8)| <constant.

II. |e?®| <constant, for >0 and real &.

III. Re z|(z— P(§))'| <constant, for Rez>0 and real &.
The equivalence of these three is a special case of Kreiss’ important
matrix theorem [5]. His theorem deals with matrices whose
eigenvalues are restricted only to the left half-plane, and there is
no easy proof. Here we know that P has imaginary eigenvalues,
and a quite simple proof is possible; we present it informally.

I=1I1: e =8"8SeS'S = S 'e??S.
The diagonal matrix ¢?® is unitary, by (H), so that
(6) [e™®]<[ST(E)]|S(£)l <constant.

II=1III. Given that Re z>0,

(7)) 1(z=P)' = |Swe‘“"z’dt| < constant S:e‘”‘“dt
0
= constant/Re z.

IIl=1. Given g, it is clear from III that P(¥) can have no
eigenvalues in the right half-plane Re x>0. The same is true of
P(—§)=—P(¢). Therefore the eigenvalues are imaginary, and (H)
holds.

Next we assert that each P(¥) is diagonalizable. If not, it is
easy to check from the Jordan form that (z— P(£))™* has at least
a double pole at the offending eigenvalue A, contradicting III as
z—\. Therefore each P admits a spectral decomposition

(8) P(&) = 220 (EELE),

where the eigenvalues A; are imaginary and the E; are mutually
orthogonal projections :



On strong hyperbolicity 401

(9) EjEk - SjkEk! EEJ = I.
As suggested by [6], let

(10) H(E) = m T EX(E)ELE),
recalling that s is the order of the matrices. Applying (9),

(11) HE)PE) = —PXE)H(E).

Now we pre-multiply and post-multiply by the positive definite
matrix H~"* (whose existence is proved in (14) below):

(12) H1/2PH—1/2 — _H—1/2P*H1/2 — __(Hl/zPH—l/Z)* .

This skew-Hermitian matrix can be diagonalized by a unitary
transformation :

(13) UE)H"™E)P(E)H " (E)U'(§) = D).

It remains to show that S(¢)=U(¥)HY%(¥) satisfies |S||S7'<
constant. In fact, since U is unitary, we have only to estimate
H' and H'”, For the latter,

(14) |o]* = | ZEpI’](ZI|Ep| <m X |Ep|* = |[H"|*.

Therefore |H | <1.
We claim that each E (¥) is bounded by the constant in IIL
For this we set 2=&+ 2 ,(€) and let €0, :

(15) constant>Re z|(z—P(§))'| = €| 23 (E+re—2) ' E;]
— | Eg| .
This bound on each |E,| yields
(16) |HY(EWw|* = m 33 |E(Ew|*<m® constant’ |v|*
| H?| <m constant.
Thus I holds, with |S||S™!|=|H"?||H'*| bounded by the order
m times the constant in IIL

We point out a slight variant of III which will be useful
later. It is apparently weaker, but actually equivalent.

II": Rez|(z—P(§))'| < constant for Rez>0, |z|<2|P(®)] .
II = IIl" is still all right, so we prove III’=1.
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Certainly P(£) can have no eigenvalue ) in the semi-circle Re 2>0,
|z] <2|P(E)|]. Nor can an eigenvalue be elsewhere in the half-
plane Re 2>0, since |A| cannot exceed the norm |P(¥)|. Replacing
£ by —% (H) must hold. The basic estimate (15) also persists,
since z=&-+\, lies in the semi-circle as £&—0,. Therefore the
proof of I can go just as before.

3. THEOREM 1: Each of the conditions I to III is necessary and
sufficient for the first-order system (1) to be strongly hyperbolic.

I = strong hyperbolicity : Suppose I holds, and p is an eigen-
value of Q(¢)=P(¢)+B. Then p is also an eigenvalue of SQS™'=
D+ SBS™', say with eigenvector v:

(A7) (Do, v)+(SBS™'v, v) = u(v, v)

Taking real parts, and using I, the first term drops out to leave
(18) Re u<|SBS™'| <constant |B]|.

This holds for every B, so the system is strongly hyperbolic.
This is essentially Petrowsky’s proof [7, p.65]; it might be
interesting to point out how one could also prove

II = strong hyperbolicity : In [8], we carried out the follow-
ing computation :

LEMMA 1. If |M*|<C for n=0, then |(M+ R)"| <Ce"C'®,
To use II, we need to derive the exponential analogue :
COROLLARY. If |e*”| <C for t=0, then |e"F+P| < Ce''?,

To prove the corollary, set M=¢*F and R=¢"""® _M. Then
M satisfies the hypothesis of the lemma, so

[((M+R)"| = |e™®* P <Ce™' "' for n>0.

Fixing né=¢, nR—tB as n—oo, and the corollary follows.

Now we prove strong hyperbolicity. If p is an eigenvalue
of Q=P-+B, then ¢* is an eigenvalue of ¢***#  and is therefore
dominated by the norm:

(19) etReF — |etM| < Iet(P+B)| <CetClB| .

For large ¢, this requires that the exponents satisfy
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(20) Re p<C|B].

Thus we have strong hyperbolicity, and in fact with the same
estimate for Re x as in Petrowsky’s argument.

In the more delicate half of the argument, the proof that the
three conditions are necessary, we look to condition III to play
its part.

Strong hyperbolicity = III: Suppose we have a strongly
hyperbolic system (so that (H) holds) for which III fails:

(21) Rezg|(z2,—P(E*)) | — o0

for some sequence £f, with Rez,>0. These norms cannot get
large without at least one of the m® entries, say the (i, j)th,
being responsible ; taking a subsequence if necessary,

(22) Re zkl(zk_P(‘gk))‘li,jl —>00.,
If M(z, ) is the (4, {)th minor of z— P(¥), then

_ (=1)""M(z, §)

(23) (z—PE)":; det (z—P(¢))

Let B be a matrix whose only non-zero entry is Bj =
(—=1)*iei*, Then

(24) R(z, &) = det (z—Q(8)) = det (z2—P(£))—e*M(z, £) .

Our problem is to show that with a proper choice of ¢, the roots
nA€) of R have unbounded real parts. Since this would contradict
the hypothesis of strong hyperbolicity, we may then conclude that
III cannot fail.

Fix £, and consider the behavior of n(B£) as 8—co. Supposing
for the moment that the eigenvalues A (&) are distinct, we expand
into partial fractions:

M(z, BE) _  a(BE) a,,(BE)
25 _ ey @nlBE)
&) et - PEE) ~ B8 i a8

M is homogeneous in z and B of degree m—1, the determinant
is of degree m, and the denominators z—2\; of degree one. There-
fore the constants a; are homogeneous of degree zero: a,(B£)=
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a/£). We want to prove that with the p; correctly ordered,
(26) uABE)—N,BE) —>e’a BE) = ea E) as B—oo.

If a,=0, this is easy; ) (B%) must be a root of M, or the left
side of (25) would have a pole where the right side was regular.
Therefore \; is also a root of R; \{BE)= u(BE).

Assume ;%0 and take p>0 very small. We shall show that
for large B, R(z, BE) has exactly one root in the circle of radius
p about X\ Bf)+e'?a BE); this proves (26). The argument is
based on Rouché’s theorem. For large 3,

Ya;(BE)
S(z, BE) = det (z— P(BE))| 1— -4\ )
(20 80 = det (s P12 22D )
has exactly one root in the circle, at its center. So we have only
to check that on the circle, |R—S|<|S|. Dividing by the deter-
minant, this is the same as

etay(BE) <|1_&af@ :
iF 2— N\ (BE) 2— N ABE)

The left side approaches zero, uniformly on the circle, as B— oo.
The right side is

pe'’
e a {BE)+ pe’’

Therefore Rouché’s theorem applies, and (26) holds.

The situation is not much changed when our fixed £ gives
some coincident eigenvalues ) ;, provided there are still only linear
factors in the partial fraction expansion of M/det (z—P). This
occurs when every p- fold root n; of the denominator is at least
a p—1 fold root of M. Suppose this is the case, and m—# linear
factors appear in the expansion. Then u;=x; for n roots and (26)
holds, by Rouché’s theorem, for the other m—n.

We show now how (26), if it holds for every &%, leads im-
mediately to our theorem. Then we return to deal with the
remaining possibility that some higher power (z— ), (E*)), g>1,
appears in a partial fraction expansion.

The numbers |a (£*)| are not bounded by any constant C,

P

= = constant.
lajl—p
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since if they were, we would have

RezklM(zIn Ek)|<2 CRezk
|det (z,— P(£¥)]

<mC,
Izk—y\‘j(gk)l
contradicting (22-23). Therefore we may choose ¢ so that the
numbers Re (¢‘%a (£*)) are unbounded above. According to (26),

Re (n{BE*)) > Re (¢?a;(E¥)) as B—eco.

Thus the roots of R have unbounded real parts, as we intended
to show.

Suppose finally that for some £=¢¥% one of the partial frac-
tions looks like

27 a;(z, BE)
(27) (2—nABE))

In this case @; is a homogeneous polynomial of degree g—1, and
we may assume that (27) is irreducible : a;(A (&), £)=c=+0. Appeal-
ing one last time to Rouché’s theorem, g of the u;(B%) approach,
as B— oo, the roots of

, &>1.

(2—=n[(BE) = e*ayz, BE).

It is not hard to show that these roots are
BME)+ B (e O, 7 <2

where the o, are the gth roots of unity. Take w,=1 and choose
¢ so that ce’?=|c|. Then the corresponding Re (uj{B£)) grows
like B%7"¢|c|’8—oo, Thus hyperbolicity fails again, and the
theorem is proved in this case without looking beyond the ray
B&; this can happen only if P(¥) is not diagonalizable, as in the
example (4-5). The earlier argument, with linear factors, covers
the case when the P(¥) are all diagonalizable, but not uniformly so.

4. In this section we extend the discussion to a Kowalevsky
system of arbitrary order, with unknowns u,(x, t), -, #,,(x, t):

_?_>"j =S ”(i m"( g w‘...(,i o <<
@) (5)0-Eray) ax,> axd) o SIS
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The inner sum extends over derivatives of order
d
|| = ;ajgnk, with a,<#n,. The derivatives (8/08t)*u,;, 0<n<n;,

are prescribed at ¢=0.
A Fourier transformation yields

@) (-2)74, - sz an( ) ey e,

The derivatives of order |a|=mn, comprise the principal part;
accordingly we split

ng = P_ljl;"_B;ky

where Pj{,(0/0¢, £) is a homogeneous polynomial in 0/0¢, &, ,---, €4
of degree #n,, and B/, is of lower degree. Corresponding to the left
side of (29), we introduce the diagonal matrix E(z) which has
E;;=z"i. Then the Petrowsky-Garding condition, generalizing (3),
reads :

The system (28) is hyperbolic if Re p(£)<constant, where the
p; are the roots of det (E(z)—@Q’(z, £)).

Strong hyperbolicity means, of course, hyperbolicity for every
choice of B’. The choice B’=0 again yields

(H): If (28) is strongly hyperbolic, then the roots A, (£) of
det (E(z)— P’(z, £)), which is a homogeneous polynomial of degree
N= >n;, are all imaginary.

Naturally we want to study (29) by reducing it to a first-
order system. It turns out that a reduction to a differential
system (1) is less useful than turning to a pseudo-differential
system ; in other words, we shall arrive at a non-polynomial symbol
Q(£). Corresponding to the unknown #; we introduce #; new
unknowns

@) 4,68 = g1 (2 Y i 0, 0<r<n,-1.

Then we may rewrite (28) as
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(31) _%0f.nj-l P> AGE (1) |E| "0+ "y

k=1 Iw]<nk
Notice that derivatives of order |a|=mn,— g yield terms which are
homogeneous in £ of degree 1—g. There are also the usual auxi-
liary equations

—2.

7

(82) D4, = 1€18;,,0, 1<i<m, 0<r<n

Suppose we combine the components 9; , into an unknown vector
® of order N=3,;. Then (31-32) can be written as a pseudo-
differential system

(33) = Q&)D = (PE)+BE)D .

00
ot

The Nx N matrix P, corresponding to the principal part of (31)
and to the equations (32), is homogeneous of degree one. We
must distinguish between its m main rows, which arise from (31),
and the N—m auxiliary rows, which have a single non-zero entry
|£|. The lower-order term B(¥) is bounded as |£|—oo, but will
be unbounded as |£|—0 if there are any derivatives of order
la| <n,—1.

To complete the book-keeping, we establish the relationship
between @’ and the new coefficients . Let us introduce the
Nx N matrix

Ve ) = (=90 9.

IN—m

LEMMA 2. a) There exist matvices L and R, with entries which
are polynomials in z,E, and |E|7', such that LYR=z—Q(¢) and
det LR=1.

(b) det (E(2)—Q'(2, £))=det Y =det (z—Q(E)), with roots n/ E), and
det (E(2)— P'(2, £))=det (2— P(£)), with roots N (). (c) Every minor
(of order N—1) of 2—P is a linear combination—with coefficients
which are polynomials in z, &, and |E| ™', and homogeneous of degree
zero in 2 and E—of the main minors of z—P, i.e., of those minors
formed by omitting a main row and an arbitrary column.
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We shall be very brief about the proof, since this result was
drawn from Lemma 1-2 in [2]. Every factor |£| in the entries
of @ is replaced by 1 after the proper similarity transformation
T, namely the one which changes the unknowns to

i d
%, = [E|7 b, , = (;’_t) 4.

(T is a diagonal matrix constructed from powers of |£|.) Then
the matrices 7(z—Q) 7T and Y are equivalent under elementary
row and column operations. Using the off-diagonal —1’s in the
auxiliary rows as pivots, we obtain all the zero entries of Y;
these operations involve polynomials in 2z and &, and have unit
determinant. With appropriate permutations and a change of sign,
the —1’s become I,_,. Together with the similarity, all these
operations make up L and R.

The first equality in b) is obvious from a), and the second
follows by comparing the terms of highest order. A useful dia-
gram for step a), and the proof of c), appear in [2].

5. THEOREM II. Each of the conditions I to III (as well as III")
is mecessary and sufficient for the Kowalevsky system (28) to be
strongly hyperbolic.

Proof. 1=>strong hyperbolicity. For any choice of lower-
order terms, |B(£)|<constant for |£|<1. We can therefore
apply, in this range, the same argument as in Theorem I. On
the other hand, det (E(z)—Q'(z, £)) is a monic polynomial with
coefficients bounded in the range |£|<1. Therefore Re p,(£)<
constant also for [£|<1.

Strong hyperbolicity = III’. Again we know that strong hyper-
bolicity = (H). If III’ fails, then as before there must be an index
(1, ]) such that

Re zkl(zk—P(Ek))—ll,ﬂ —>0o0,

where Rez,>0 and |z,|<2|P(¢%)|]. In other words, the cor-
responding minor satisfies

Re z,| M;/(2,, E9)|
34 s M) oo
G = et o, PEW|
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We claim that this holds for at least one of the main minors. A
polynomial in z which is also homogeneous of order zero in z and
£ together is uniformly bounded in the range |z|<2|P(§)|; in
fact a typical term in our polynomials can be estimated by

constant z"g7r

|g e

According to Lemma III c), M, is either a main minor or a com-

~£a’ | < constant (2 sup |P(E)|)".
1E1=1

bination of the main minors with such polynomials as coefficients.
Since the coefficients are bounded, (34) cannot hold for M;, without
holding also for a main minor M.

Now we introduce an appropriate lower-order term into our
system, namely one which will produce a single non-zero entry
B(£);;=0b(¢). This we can do precisely because the jth row is a
main row ; the auxiliary rows correspond to the fixed equations
(32) and cannot be altered. Suppose the column index i cor-
responds to terms in (31) multiplying 9, ,. Then we want our
particular lower-order term to have |a| =#,—1, a,=7, and constant
coefficient (—1)i*7¢’*; this will produce

by — (1 e (iE )
|E|%1-ee ||
We emphasize that although B is homogeneous of degree zero, it
is not a constant matrix (unless #n,=1, as was always the case in
Theorem I). This difficulty is overcome by taking a subsequence,
if necessary, so that the vectors £#/|£%| converge to a unit vector
g£°. Then copying the argument in Theorem I (assuming linear
factors in the partial fractions) we have

(35) Re p(BE*)—> Re (l(EF)aE*) as B— oo;
n; are the eigenvalues of @=P+B, and the a£*) are unbounded.
Choose ¢ so that for some subsequence »* of the £*, and for
appropriate j=j(k), we have
(U(E)a(n*)| — oo, |arg (WE™)a(n*)| <= /4.

Multiplying by &(%*)/b(£~), which approaches 1, neither the modulus
nor the argument is much changed. Therefore
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(36) Re (d(n*)a(n*)) = .

Comparing this with (35), Re x(B¢*) cannot be bounded above,
and the lower-order term which produced B has destroyed hyper-
bolicity.

When there is a non-linear factor (27), for some £=¢g*, one
chooses ¢ so that cb(£*)>0. Then Re p(BE¥)—>oco as B—oo, as
before, and hyperbolicity is destroyed here too.

We conclude that IIT', and therefore, I, II, and III, cannot
fail.

o0
ot

6. The reduced Kowalevsky system =Q(£)9 has the obvious

solution
UE, t) = e *PP(E, 0).

Unfortunately, ¢*9=¢*F*# may be unbounded as |#|—0, since we
cannot guarantee that B is bounded. In other words, while ¢ was
an appropriate choice for the analysis of strong hyperbolicity, it
may not depend continuously on the data at ¢=0. Since the
difficulty arises when £ is small, we introduce instead the
unknowns

@7) by (6,8 = P+ (L a6, 0<r<n, 1.

This leads to a corresponding system of order N:

38 & = Gy = Ple)+ B
The part B arising from derivatives of order |a|<n, in (28) is
bounded : |B(¢)| < constant.

P is no longer homogeneous; it can be formed from our
previous P by replacing every factor |£| by (|&|*+1)". We
need two inequalities to check that this change leaves |P(g)—
P(¢)| <constant. On the auxiliary rows,

[P+~ |E[<1.

On the main rows, the numerator of a typical term is a poly-
nomial in £, say of degree k£+1, and then
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| Pes(8) (1] 7*—(1E1*+1)"%)| <constant.

Thus Q—P=B+(P—P) is bounded uniformly in &.

Now we apply the corollary to Lemma I. If the Kowalevsky
system (28) is strongly hyperbolic, then II holds, for some con-
stant C. Therefore

let?;;(g)l _ |etp+t[<3—1>]| <Ce™.
The constants C and p=Csup |Q@—P| are independent of £.
¢

Conversely, suppose |e'@®|<C’e”* for some C’ and p’. Then
|e*@*'D| <C’ and the corollary gives |e|<C’e”*. But P is
homogeneous, so for any ¢ and &,

|etP®| = [P LCe”" >, as €—0.
Thus II holds, and the system is strongly hyperbolic. We have

proved

THEOREM III. The Kowalevsky system is strongly hyperbolic if and
only if, for the new variables w; , defined by (37), there are con-
stants C and p such that t=0 and all E,

[, (&, t)| = 9P, (£, 0)|<Ce™|d;, (£, 0)]

COROLLARY. To the Kowalevsky system (28) we associate the

(BT A2

|Dmu HL2

T<nj

2

o =5 = dx

F=1 1Ay

R

§

Then the system is Strongly hyperbolic if and omly if there are
constants C' and p’ such that for any initial data and any t>0,

)< C’ e juO)]] -

Proof: The theorem gives this result immediately in the norm

OIS AR

=2 fagrrnrl (LYo e

By Parseval’s Theorem
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og

fogr+nia@ia = {( oo

+|g[2)dx.

og |?
il - 1 + ...+
6x1'

After n;—1—r applications, we find positive constants b,, and c,
such that

lu@I§ = 25 >3 ba D" ,(IIZ,
hr 7
=23 2 oD ML,

i 1@I<n;

! B
~ =

In short, the norms || ||, and || || are equivalent. Therefore the
system is well-posed also in the latter norm.

7. Our only problem in extending these results to partial differ-
ence equations is to get all the analogies right. We shall consider
systems of the form

(39) wu(x,t+k k)= ckR)ul(x+jh,t, k),

where # is an unknown m-vector, prescribed at #=0, and the
matrix coefficients c¢; are polynomials in k. As usual x=(x,, -, x,)
and j=(j,,,js). We are interested in the behavior of # as k
and ~Z=h(k) approach zero. Taking Fourier transforms, and put-
ting hE=4,

(40) 4, t+k k) = (D ci(k)e' M) aE, t, k)
= X ck)e? ) = Q6, k)i .

We call the systen reversible (in time) when all the eigenvalues
p A0, k) of the amplification matrix @ satisfy

(41) 1-Ck<|p0,k)| <1+Ck,

for some fixed C. (This is to be compared with the condition (3)
for hyperbolicity, which involved only a one-sided inequality
Re p<C. The homogeneity of P then implies the other side
Re p> —C’; here we have no such weapon.)

The system is strongly reversible if for every term bounded
by |B(0, k)| =0(k), the system whose amplification matrix is @ +B
remains reversible. The principal part of @ is made up of the
terms which are independent of k:
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P(8) = 3 c,(0)e'* .

Obviously there is the necessary condition
_ (H): If (39) is strongly reversible, then all the eigenvalues
1;(0) of P must have |n;|=1.

The theorem which follows is completely analogous to Theorem
I, so perhaps we may omit its proof.

THEOREM IV : Each of the following conditions I’ to III' is neces-
sary and sufficient for the system (39) to be strongly reversible:
I'. (H’) holds, and the matrices P(0) are uniformly diago-
nalizable.
Ir. |P*0)| <constant, for n=0 and real 6.
I1r. (|z| =1 |(z—P@))'| <constant,
for |z| >1 and real 6.

In proving that strong reversibility fails whenever III’ does,
we can ensure that it is the second inequality in (41) which is
violated. This means, as we mentioned in the introduction, that
weak stability is always vulnerable to O(k) perturbations.

To complete the discussion, we observe that II’ is equivalent
to stability in the Lax-Richtmyer sense; according to Lemma 1,
|P"8)| <C if and only if

[Q" = |(P+0(k))"| <Ce"™"®< constant for nk< T.

Thus, for reversible systems, Lax-Richtmyer stability is equivalent
to strong reversibility.

Appendix

As we remarked in the introduction, each of the following
hypotheses implies the next:

a) For some 7, the matrices TA,T " are all Hermitian

b) The system (1) is strongly hyperbolic

c) Every real combination 3} £;A; is similar to a real diago-

nal matrix.

The implications become obvious if we replace strong hyper-
bolicity by the equivalent condition I of our first Theorem. For
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systems in two unknowns, these three hypotheses are actually
equivalent ; the proof is depressingly straightforward.

THEOREM V. Given 2X 2 matrices such that every real combination
AE A+ -+ Ak, is similar to a real diagonal matrix. Then for
some T, the matrices TA;T™" are all Hermitian.
Proof. First we diagonalize A,; A/=SAS'= g‘ 0
a,
a, and a, are real. We assume «,%+a,, since otherwise A, is a
real multiple of the identity and can be ignored.
Suppose A,’=SAS'= (bl b,
b, b,
is the other, since otherwise some combination of A, and A, is
not similar to a real diagonal matrix. If both b, and b, vanish,
then A, can be ignored, since whatever diagonalizes A, also diago-
nalizes A,. Now we show that b, and b, are real, and that 6,,5+0
implies bb,>0. The characteristic equation of A/E+ A/ is

), where

). If either &, or b, is zero, so

(7\‘ —af— b177)(7\ —a.f— b277) - b3b4772 =0
and this has real roots if and only if its discriminant satisfies
[(@,—a)E+(b,—b)nT +4bbn*>0.

This quadratic form is non-negative for real £, » if and only if
(i) the coefficients are real; in particular, the coefficient
(a,—a,)b,—b,) of &n must be real. Thus b,—b, is real
and since the trace b,+ b, is real (the sum of the eigen-
values of A,), we conclude that b, and b, are real.
(ii) the determinant of the associated matrix is >0, i.e.,

((l, - az)z[(bl - b2)2 + 4b3b4] - (al - az)2 (bl - b2)2 = O

which gives b,0,>0.

Now with D:((l) 2), d=b(bb) ", we set T=DS,

A;/”=TA,;T, and find

ar= (o) ar=G ) -G
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The entries of A,” and A,” are real, and we have already made
a,+a, and b=(bb,)/*+0 to rule out trivial cases.

We want to show that A,” (and similarly every A;”) is
Hermitian. Applying the second paragraph of the proof to A,”
instead of A,’, we know that ¢, and ¢, are real, and that either
¢, and ¢, both vanish (in which case A,” is Hermitian) or c,c,>0.

Now every real combination A"+ A,7+ A, u+1 v has only
real eigenvalues. For each », n we can choose &, v to cancel the
diagonal elements ; thus

<b’7 4(-)64,11, " _‘(_)cau>

has real eigenvalues for every 7», u. Since the trace is zero, the
determinant is not positive, i.e.,

(bn +c;u)(bn +c,p) >0

The coefficient of the cross-product term is real, so ¢,+c, is real
Also the determinant of the associated matrix is non-negative, so

2 b(ca f 04) :
bc.c > s/

s ( 2 >
bz(ca 04)2<0

and ¢,—c, is pure imaginary. Thus ¢,=c,, completing the proof.
It is natural to enquire whether hyperbolicity, as well as
strong hyperbolicity, has a simple description for matrices A; and
B of order two. Certainly hyperbolicity is implied either by
strong hyperbolicity or by the alternative hypothesis
a’) For some 7T, the matrices TA;T™' and TBT™' are all
upper triangular, and the A; have real eigenvalues.
The proof of the converse is again perfectly direct.

THEOREM VI. A first-order system in two unknowns is hyperbolic
if and only if either a) or a’) is satisfied.

Proof. Suppose the system is hyperbolic, but a) is not satis-
fied. According to Theorem V, some combination C= > A%, is
not similar to a real diagonal matrix. Since it is well-known
that the principal part of a hyperbolic system is hyperbolic (in
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other words, (H) is necessary for the hyperbolicity of (1)) the
eigenvalues A of C are real, and it must be the diagonalizability
which fails. Suppose T puts C into Jordan form :

r_ a_ (1 ; e _ (@ ¢

¢ =717 = (} x) and A/ = TA,T (d; bj> say.
The problem is to show that each d; vanishes. By the hyper-
bolicity of the principal part, every real combination A;+aC’ has

real eigenvalues. Since \ is real, this means that

(Zj' cf;“) has only real eigenvalues.

J 7

The (quadratic) characteristic equation has real roots only if its
discriminant satisfies

(a;—b,Y+4d(c;+a)>0.

This is possible for all real « only if d,=0.

The hyperbolicity of (1) also requires the real parts of the
eigenvalues of iaC+B to be bounded for —oco<a<co. But
these are the eigenvalues of iaC’+ TBT ™!, and it is easy to check
that TBT ' is forced to be upper triangular. Thus a’) is satis-
fied, completing the argument.

We summarize very briefly the corresponding situation for a
single second-order equation of Kowalevsky type. It is strongly
hyperbolic if and only if a suitable transformation of the
independent variables (¢, x,,---, ;) produces the wave equation
(with lower order terms) in d space variables. An equation which
is hyperbolic, but not strongly hyperbolic, yields the wave equa-
tion in fewer variables.

Friedrichs has pointed out an alternative reduction, to a first-
order symmetric hyperbolic system. We mention that the des-
cription in Courant-Hilbert II (p. 594) is not quite correct as it
stands; the strongly hyperbolic equation u,,=u,, would there
become

(0 0 =(5 o)
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and the coefficient of », is singular. The description given is
valid once the terms in #,,, have been removed, for example by
a change of the time variable.

Massachusetts Institute of Technology.
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