On a Paper of M. Watanabe¹⁰

By

Burton RODIN

(Communicated by Prof. Y. Kusunoki, February 3, 1967)

In the papers [3, 5] M. Watanabe (née Mori) introduced the condition $\Gamma_{he} \cap \Gamma_{hse}^* \subset \Gamma_{he}^*$ which may hold for an open Riemann surface R. Several equivalent conditions were found in [3], some of them due to K. Oikawa. In [5] many interesting consequences were obtained under the additional hypothesis that R is of finite genus. These results suggested that such surfaces R may actually be of class O_{AD} , and we shall prove here that this conjecture is correct. The idea of the proof is to show that R uniquely determines the Riemann period matrix of a compact prolongation of R. By Torelli's theorem R therefore has a unique such prolongation, and an application of Oikawa's theorem [4] then shows that $R \in O_{AD}$.

THEOREM. If R is a Riemann surface of finite positive genus with the property $\Gamma_{he} \cap \Gamma^*_{hse} \subset \Gamma^*_{he}$ then $R \in O_{AD}$.

REMARKS. The restriction that R be nonplanar is clearly needed. For surfaces of finite genus it is known that $O_{AD} = O_{KD}$. The converse of the theorem obviously holds for arbitrary surfaces $R \in O_{KD}$.

PROOF. Suppose R satisfies the hypothesis of the theorem and suppose $R \subset S_1$, $R \subset S_2$ where S_1 , S_2 are closed Riemann surfaces of the same genus g as R. Let A_1 , B_1 ,..., A_g , B_g be cycles in R which form a cononical homology basis for S_1 and S_2 . For $\mu = 1, 2$

¹⁾ This work was supported in part by the National Science Foundation under grant GP4106 at the University of California, San Diego.

let $\sigma^{\mu}(A_i)$, $\sigma^{\mu}(B_j)$ denote the reproducing differentials on S_{μ} $(1 \le i, j \le g)$. Thus

$$egin{aligned} &\int_{A_{m{i}}}\omega\,=\,(\omega,\,*\sigma^{\mu}\!(A_{m{i}}))\ &\int_{B_{m{j}}}\omega\,=\,(\omega,\,*\sigma^{\mu}\!(B_{m{j}})) \end{aligned}$$

for all harmonic differentials ω on S_{μ} . Furthermore, the period of $\sigma^{\mu}(\gamma)$ along a cycle δ is the intersection number $\delta \times \gamma$.

The differentials $\sigma^2(A_i) - \sigma^1(A_i)$ are elements of $\Gamma_{he} \cap \Gamma_{hse}^*$. Hence they are coexact and we see that $*\sigma^2(A_i)$ and $*\sigma^1(A_i)$ have the same period vector. Similarly $*\sigma^2(B_j)$ and $*\sigma^1(B_j)$ have the same period vector. Define a $2g \times 2g$ matrix

$$M_{\mu} = \begin{bmatrix} (\sigma^{\mu}(A_1), \sigma^{\mu}(A_1)) \cdots (\sigma^{\mu}(A_1), \sigma^{\mu}(B_g)) \\ \vdots \\ \vdots \\ (\sigma^{\mu}(B_g), \sigma^{\mu}(A_1)) \cdots (\sigma^{\mu}(B_g), \sigma^{\mu}(B_g)) \end{bmatrix}.$$

Our results so far imply that $M_1 = M_2$. It follows that S_1 , S_2 have the same Riemann period matrix. Indeed, if Z_{μ} is the Riemann period matrix for S_{μ} with respect to the given homology basis then an easy calculation shows that

$$Z_{\mu} = A_{\mu}^{-1}(C_{\mu} + \sqrt{-1}I)$$

where I is the $g \times g$ identity matrix and the matrices A_{μ} , C_{μ} are defined by

$$egin{aligned} A_{\mu} &= ||(\sigma^{\mu}(A_i), \; \sigma^{\mu}(A_j))||_{1 \leq i_{\,,\,} j \leq g} \ C_{\mu} &= ||(\sigma^{\mu}(A_i), \; \sigma^{\mu}(B_j))||_{1 \leq i_{\,,\,} j \leq g} \,. \end{aligned}$$

By Torelli's theorem $S_1 = S_2$. In [4], Oikawa showed that a Riemann surface with a unique compact prolongation is of class O_{AD} (see also A. Mori [2]). Thus $R \in O_{AD}$ as desired.

REMARK. The full force of Torelli's theorem is not actually needed in the above proof. If we assume that $R \oplus O_{AD}$ then the proof of Oikawa's theorem [4] shows that there is a family \mathfrak{s} of closed Riemann surfaces of genus g, each of which is a prolongation of R, and such that the surfaces in \mathfrak{s} when suitably marked

394

form an open subset of the Teichmüller space T_g . If we use the fact that the Riemann period matrix gives a nonconstant holomorphic mapping of T_g into C^{g^2} (see Ahlfors [1]) then a contradiction is obtained, which proves the theorem.

University of California, San Diego

REFERENCES

- L. V. Ahlfors: The complex analytic structure of the space of closed Riemann surface. Analytic functions, pp. 45-66. Princeton Univ. Press, Princeton, N. J., 1960.
- [2] A. Mori: A remark on the prolongation of Riemann surfaces of finite genus.
 J. Math. Soc. Japan 4 (1952), 198-209.
- [3] M. Mori: Contributions to the theory of differentials on open Riemann surfaces.
 J. Math. Kyoto Univ. 4 (1964), 77-97.
- [4] K. Oikawa: On the uniqueness of the prolongation of an open Riemann surface of finite genus. Proc. Amer. Math. Soc. 11 (1960), 785-787.
- [5] M. Watanabe: A remark on the Weirstrass points on open Riemann surfaces.
 J. Math. Kyoto Univ. 5 (1966), 185-192.