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Introduction. We shall be concerned with equations which,
in the simplest case, have the form

0. 1)(   1+
2
V ( x ) ) g ( t ,  x )  =  —

a 
g(t, x ), --- 00<x <co  ,ax 2a t

and denote the operator —
1  

—
c/2

+ V by A .  Under weak conditions2 dx 2

on V there corresponds to  0.1) a strongly continuous semigroup
T ,  on a suitable space C  of continous functions such that the

function T ,f (x )—  f i(t, x , y )f (y )dy  for f e e  i s  a solution of 0.1)

and is uniquely determ ined by 7 ; and continuity in y. Our
primary concern is with the shape and the evolution with t  of the
kernels

The kernel fi(t, x, y) can be considered as the temperature at
time t  and point y resulting from a unit source of heat at x when
t  = 0 .  A more detailed interpretation is obtained, however, in
terms o f a  fam ily o f measure spaces (f2, 9 , tt x ) for w hich the
elements o f n are of the form (72, p, w), 0_<72<p. 0 0, w  = w(t),
0 <t<p ,  where w (t) is continuous and T,f(x)— Ejf(w(t)); 72 Gt < p)
Ex. denoting an integral with respect to  ! i x . The functions w(t)
represent the paths o f particles created at time 72 and destroyed
at time p . These space provide, however, only one possible me-
asure-theoretic approach to T , .  They are defined, for bounded,
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for bounded V," )  in  [3 ] but are not used in the present paper,
except by way of motivation.

The problem to be studied below is that of describing quali-
tatively the form of the kernels -fi in terms which apply to all V.
It is intuitively clear that the role o f  V is to modify, in  some
sense, the "geometry" of the solutions. We shall find that this
statement can be made precise in the following way : the role of
V is to substitute for the positive constants in the classical case
V=0 the positive differentiable solutions of A v h = 0 .  A  conse-
quence o f this study will be to prove that lirn )5(t, x, y)< co existst
and is
a) Do if  three is a non-trivial solution h  with 2 or more zeros,
b) 0 i f  there are two linearly independent positive solutions,

and

c )  h(x)h(y)(Ç11 2 c1x) 1 i f  there is only one positive solution with

h(0)=1.
These three cases are exhaustive. The result itself can be deduced,
rather indirectly, from the known eigen-differential expansion of
-fi in the case of V bounded above.( 2 ) B u t  even in this case such
a course seems artificial in  that the expansion takes no account
of the essential positivity features of the problem.

Section 1. The case of bounded V.
We assume th a t  V  <M , and that V is sectionally continuous.

In this case the existence of 7; on the space C, continuous func-
tions w ith lim it 0  a t  ± 00 is known. In fact, the semigroup
e- m tT „ with strong infinitesimal generator o f the form A v — M
and domain D consisting of the differentiable functions f  such that
(11,— M)f E C , ( i f  defined by continuity at the jumps o f V ) is a
special case of [6 ] and has a  kernel e-  x ,  y )  fo r  which the
expansion

-fi(t, x, y) = e—"e(ry, x)f(dy)e(7 , y)

  

1) T h e  m easure f o r  unbounded V  is easily defined by m onotone passages to
th e  lim it in  (V A N )V M .

2) For these expansions w e refer to [5 ]  and  [6 , p. 149].
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is known. The following facts are the only consequences of [6]
which we shall require :

1. 1) i. fi is continuous in (t, x, y ), t> 0 , and is symmetric in x
and .Y.

-  aFor t>0  and fixed x, fiE D  and A vP P.

iii. F o r  ea ch  fin ite  o p e n  interval I  containing x,

lim x, y)dy=1.,÷0

We shall also use without special mention the Sturm comparison
theorem [1, p. 208] and its immediate consequences.

The case in which there is a non-trivial solution of A v h=0
with 2 or more zeros does not lend itself conveniently to our
methods, except through the device o f  replacing V  b y  V—M
(which changes the whole aspect of the problem) and we shall be
content to show only

Theorem 1.1. In  th is case, Emil= 0 0 .
1-> 0 0

P ro o f .  Let a  and b be two consecutive zeros o f h. Then h
is  in the domain o f th e generator A v  o f th e  absorbing barrier
semigroup on (a, b), i.e. the semigroup determined by the classical
boundary conditions 0 a t a  and b. We can assume that h >0 in
(a, b); then h  is a positive invariant function for this semigroup.
It is clear that in  any larger interval, the generator A v —x, for
some X>0, has a positive invariant function, whence, by the sym-
metry of the kernel, in the larger interval the absorbing barrier
kernel fo r A v  tends to  00 like ext. Therefore the still larger
kernel fi satisfies the theorem.

Accordingly, we henceforth assume

Hypothesis 1.1. T here ex ists a strictly Positive differentiable solu-
tion o f  A v h<0.

Remark : Such  a solution always exists except in the situa-
tion o f theorem 1.1. For example, the solution with values 1 at
0 and 0 at b converges to such a solution as b—>00 (monotonically
in ( —N, 0) and in (0, N )  for b > N > 0 ).  See below.
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Proposition 1.1. Every  two-point boundary value problem f o r A v

w ith positive boundary values has a (unique, positive) solution.
Proo f. Let the given values be c, at x, and c, at x 2 , x , <x 2 .

Let h  be a positive solution of A h  =0 with h (x ,)= c„  and let k(x)
be the solution with k(x 1 ) =0 and k'(x 1 ) = 1 .  Since k(x)>0 for x > x „
a solution to our problem  is h(x)+k(x)(k(x 2 )) - 1 (c2 —h(x2 )). This
solution is positive in [x„ x 2] since it has at most one zero, and
it is unique since the difference of two solutions would have two
zeres.

Definition 1.1. A  function f>  0  in  [a, b], —  co <a <b< + oo , is
called V-concave if for a<x 1 < x 2 <b, x , and x2 finite, the solution
of A v h=0, h(x,)=Axi), h (x2)=f(x2), satisfies f —h> 0  in [xi, x2].
It is V-convex if the last inequality is reversed.

It will be shown that this concept replaces the usual one (to
which it reduces i f  V=0) when V*0.

Definition 1.2. The number of changes of sign o f a  function f
in [a, b ] is given by sup n: 3.x1 <x 2 < ••• <x + ,  in [a, b ] such that
either for all i, f(x 1 ) < 0 < f(x 1 „ )  or else the inequalities are all re-
versed, 1 < i <n.

Proposition 1.2. For fE C ,, the number N (t )  of  changes of  sign
o f  T i f  is non-increasing in  t.

Proo f. It is clearly enough to show that N(t)<N (0 ), and we
assume without loss of generality that N(0) < 00 . We need the

Lemma 1.1. L et fE C , be non-negative in  a  f inite interv al [a, b]
with f (a )> 0  and f(b )>O ,or in  ( -0 0 ,a ] with f(a )>O , or in [h, co)
with f (b )> 0 .  Then f o r all t sufficiently small, T f f (x )> 0  in [a, b],
o r in  ( -0 0 ,a ], o r in  [b, oo) respectively.

Proo f. For brevity we treat only the case of ( — 00, a ],  the
others being very sim ilar. By continuity in t, we have E a n d  >0
such that T 0f (a )> 6  for 0 < t< 8 . It follows that fo r t < 8 , T t f (x )
for x < a  is at least as large as the solution of 0.1) with initial
value f  in ( — CX) ,  a ]  and boundary value & at a. This solution
exceeds that of the case V=— M , which is given by

E (1 z
e -   r) ( 1  A Y ))(exp—( x i

t
Y  exp—

( x  — 2 a  +  y ) 2 ) d y )

v 27rt E 2t
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and is strictly positive in ( — 00, a ] for all t >O.
Remark : We shall require this lemma also for f=  g+ h, gECO3

A v h = 0 . N o w  fi(t, x, y)h(y)dy is well-defined, as one sees i f  h

is positive by considering the absorbing barrier approximation
a, — 00, b,  00. But if h(x0 ) = 0, then replacing V by —M, keep-
ing the value of h '(.;) fixed, we obtain an h  with larger absolute
value but exponentially bounded, and hence integrable for -13 by
the comparison e- mtp(t, x, y)<fi emtp(t, x, y ) where p  denotes the
(normal) density for the case V = 0 .  Thus in  each case, by first
introducing absorbing barriers at ± b  and letting b,  00, we can
write T t h = h , an d  then T t f  T t g + h .  T h e remainder of the
argument proceeds as before.

Returning now to proposition 1.2, let to  = inf t > 0 : N(t)>N(0),
and note that by continuity N(t N ( 0 )  if t 0 ( 00. In  this case
there are  x i  <yo< x2<Y2< ••• <xN(t o)<YN(td <xi,(e o), such that the
xi satisfy definition 1.2 fo r T e o f  and this function has no changes
of sign in  ( — 00, Yii, [Y,, Y2], •• • , EYNcto), ca). In  p articu lar, Tro f(Yi)
= 0  and the y , are uniquely determined unless T i o f  vanishes in
an entire interval. A contradiction will now be obtained from the
fact that there must be an  additional change of sign in  every
period [t o , to + E ).  From the lemma we see that in  every sub-
interval of [ye ,  Yi, such that T t o f  *0  at the endpoints there is
no change of sign when 6 is sufficiently small. This implies that
for some i, 1<i _<N(to), i f  [ a i ,  Oe] denotes the maximum interval
containing y ,  in  which T1f 0 = 0 , then for some sequence t .  to
8 > 0  at least 3  changes of sign of T i n f  in  (a1 -8 , pi  +3) for all n
sufficiently large. We can assume, by choosing a  smaller if
necessary, that T 1 0 f(a 1 -5 )* 0  and T10 .f(01+8)*0, whence the same
holds for T t f ,  < t — to <E  small. For t> to l e t  S(t)= {xE(a i — 8,
Oi +8) : T t f(x )=0 } , an d  introduce a(t)= min xE S (t) and  8(0=
man xE S (t). Then clearly lim a (t)=a , and lim '8 (0 = 0 , in  view

t.to: 0 0
of the lemma, and we define a (4 )=  ,  0 (0 =  R i.  On the other
hand, for large n  there must be at least one change of sign in

3 )  F o r  to _t i < t2 < to 1- e let r — sup { le i:I ' ,  t 2 j: e  (t') S c ( t 1) f o r  ti

Then r <t2 le ad s  to  a  contradiction.
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(a(t n ), ,e(t)) for T t n f .  N o w  let h be a positive solution of Ah =0
and let c+(t)=inf c: ch>T t f  in (a(t), )3(0). I f  we show that c±(t)
is non-increasing in [t o , to +6) then from c+(t0 ) = 0  w e have our
contradiction. First we observe that c±(t) continuous from the
right at t0 . It is then sufficient to prove that c'- (t ) is decreasing
to the right for t> t„  and that lim inf e (T )> e (t )  for to < t < to + 6,

for by an obvious reaso n in e  this implies that c' (t) is decreasing.

But from c' (t)h — T t  f in [a(t), [A t)] and >0 at the endpoints, the
lemma implies that it is > 0  in [a(t), IS M ] at times t'>  t when
t' — t < 6 , small. Moreover, it is easy to see that lim a(r)A cr(t)=t' ,t
a(t), and by continuity this and the preceding remark show that
c '(t ) is decreasing to the right for t. <t <4+6, as asserted. Com-
ing to the second property, one observes that it only needs to
b e  sh ow n  th a t if a+(t)=1imsup ce(T)>a(t), th en  T t f  = 0  in

, It
[a (t ),a + (t)]. I t  is no restriction to  assume that T t 0 f(a i --8)> 0,
and then clearly T t f(x )>0  for a, —5 < x < a + (t ).  Now if the asser-
tion were false, there would be a neighborhood N  of a (t) with
closure N such that T t f> 0  in KI and T t f>E '>0  at the endpoints.
But then for all 7-< t  with t — T  sufficiently small, one would have
TJ>6' 12 at the endpoints while, by definition of a ( t ) ,  there
would be arbitrarily small t —To for which TT o f>  0  everywhere in
N . (We choose, if necessary, the right endpoint of St strictly less
than a ( t ) ) .  But the argument of the lemma now clearly shows
that one would have TT f > 0  in  S t fo r  To <T< t ,  contrary to
T t f (a (t ) )= 0 . This completes the proof.

One can now establish the

Theorem  1. 2." )  T h e re  e x is t  f u n c tio n s  — oc _<.x,(t)G0Gx2 (t) 00,
t >0, such that 13(t, 0,y) i s  V-concave in  [x,(t), x 2( t ) ]  an d  V-convex
in  (— o c ,  xi ( t ) ]  and  in  Ex2(t),00). The same holds f or A t, x, y), for
each x, with x1(t )< x < x 2 (t).

P r o o f .  I t  is enough to find x i ( t )  such that A v (t, 0, y )  is

4 )  It w ould be advantageous to know  that the x i ( t )  a re  unique and finite, but
we could not prove it.
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0  in Exi(t), x 2 (

omplement
t ) ]

,  w h e r e  A,, operates o n  y .  Indeed by1> 0 in the c 
subtracting the invariant solution equal to at x , and a t -X2,

X 1( t ) < X 1 < X 2 X2 ( i ) ,  we are reduced to showing that i f  A v g< 0  in
[ x„ x2], ex1)=g(x2)=0, then g_>.0 in  [x„ x 2]. In the opposite
case, by first reducing the interval i f  necessary, we can assume

that g<0  in (x„ x 2 ). But we then have [ 1  d 2  +  V— A v gilg -= 02  dx2

A v g .-  >0 in (x„ x 2), whence by the Sturm comparison theorem g

does not exceed the solution o f A v h = 0  in  [x„ x 2]  with h(x,)=
g(x,)= 0 and h'(x,)=g'(x i ) < 0 .  But then this solution would have
2 zeros in [x„ x 2]  contrary to hypothesis 1.1.

We remark next that, as is immediately clear from the eigen-
function expansion of the absorbing barrier kernel in  a  finite
interval (a , b) and the approximation a  —  , b  +  00  , we have
A v (t, 0, 0) 0 and hence can assume x i (t)G 0 G x 2 ( t ) .

Our problem thus is reduced to showing that A v fi(t, 0, y) can
have at most 2 changes of sign. Now let f„, n=1,2, be func-
tions with the following properties :

i) f (x )> 0 , f„ (x )=  0  f o r  lx1>-l
n  , f„(x)dx=1.

ii) A v f„  has exactly 2 changes of sign, being negative for x = 0
and positive for both a positive and a negative value of x.

The existence of such f„  is easily recognized. For example, one

can begin with cos N/c„x fo r  lx 1G  7  C - 1 1 2  C n  >2M and then piece4  9 1  

on two "steep" solutions of A v h=0, c„ being large and the first
derivative being made continuous, which define the function until
it is less than a small 8>0, and then piece on two more sections
with large 2nd derivative to reach 0  fo r  Ix  > 1 / n . One then

multiplies by a positive constant to obtain f „dx =1. A rigorous

derivation is also easy, and will be left to the reader.
By proposition 1.2 we know that A v T f „ has at most 2 changes

5 )  The eigen-differential expansion shows that, indeed, Ar p (t , 0 , 0 )< 0 . We were
unable to account for these facts by our m ethods, and consider them surprising.
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af sign. But we also have

it.
A v  1 f ( y )  = Avfi(t, x, y)f„(x)dx

-1/n

= A vAt, xn(Y ), Y)

fo r  s o m e  x (y ) I /n, frtm which we obtain lirn A vTtf .(Y )=
A vA t, 0, y) pointwise. This clearly implies that Av (t, 0, y) can
have at most 2 changes of sign. As before, this number is non-
increasing in t.

We turn now to the proof 'of the result mentioned in the
introduction, under hypothesis 1.1. The proof, it may be sug-
gested, is o f primary interest rather than the result itself.

Theorem 1.3. For each (x, y)

lim  -fi(t, x, y) = h(x)h(y)( 11 2 dx)

where h  is (any) Positive dif ferentiable solution ofA v h = O.
Proof. It is easy to show that unless h is unique up to linear

dependence one h a s  leclx= 00, and that the above limit is O. For
let k  be a positive solution distinct from h  with h(0)—k(0)= 1.
The Wronskian W =hk'— kh' is constant, and we can assume that

it is negative. Then from 
d  

 (kh - 1 ) = W h ' we get k(x)=h(x)(1+ W
dx

h 'd y ) .  Thus h 'd y — W- 1  ° < 3  and in view o f A v h= 0 we
0 0

have lim h(x )= CXD . By analogy it follows also that lim k(x)= 00.
X

Now the Green function G(x, y)= (t,x , y )dt is finite since, as
0

can be seen from the absorbing barrier approximation, it can be
defined from h  and k in the usual w ay . Thus, since fi(t, x, x) is
decreasing one has lim "fi(t, x, x)= O. F rom  the same approximation,

i+0.0
and the eighfunction expansion, one sees that fi(t, x, y)<A t, x , x)
+fi(t, y, y). The theorem is thus proved in  this case, and we
henceforth assume that h  is uniquely determined by h(0)=1.

The burden of the proof now rests in applying theorem 1.2
to study in some detail the evolution of with t. We continue
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to assume that the second argument of fi is 0, but write A t, 0, x)
in  p lace o f fi(t, 0, y), and then y=fi(t, 0, x ) .  The approach to
equilibrium of will be measured by 4 parameters, 01(t) and y i (t),
i = 1 or 2. Note first that by property 1.1) iii. one has I x(t) I < D o

at least for all t  sufficiently small. We adopt the convention that
xi(t)I 0 0  whenever possible, i.e. whenever A v h <0  on the whole

corresponding half line.

Definition 1.3. Let hi (t, x) denote the solutions of A h  =0 which
are tangent to fi at x i (t), i =1 or 2, when x i (t) < 0 "c (this defines
h,(t, x) uniquely even if the x i (t) are not unique, as we shall see
that no vertical tangents can occur). Let 6., be determined by
c i h i (t , 0)=1 and denote by 01(t) the positive angle from the negative
y-axis to the tangent line at x =0  of the curve c,h i (t, x). Finally,
let y 1(t) denote the y-intercept of k i (t, x), i =  1  or 2 (Fig. 1).

Figure 1

For example, i f  V =0 the 1/2(t, x ) are straight lines with slopes
(27r errio tangent to fi at x2 (t)=t 112. In  this case y2(t)— 

(

2
m e t

and 02(t)=arctan 2N/7.

Lemma 1 .2 .  Let T i = sup t : x i (r)< c o , 0 <t'<. T h e n  O P)  is
non-decreasing and y 1(t) is non-increasing in (0, T i ). I f  T i  is f inite,
then x 1(t)I =00 f o r  T

Proo f. The lemma, because of symmetry, need only be proved
fo r  i = 2 .  L e t 82(t, x ) correspond to  the tangent solution h  at
(x, fi(t, 0, x)) as 02(0  corresponds at x =x 2(t). It will be shown that

6 )  It seems doubtful that T , can be finite (see footnote (4)).
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2(t, x ) decreases in  [0, x 2(t)] and increases in  Ex2(t), co). Indeed,
for 0< xo < x, <x 2(t) the tangent ho a t  x, exceeds fi for 0<x
b y  V-concavity, and therefore for some c<1, cho(x ,)=fi(t, 0, x 1).
Then cho <f i for x „<x <x , and thus is also less than the tangent
h , at x , .  Since ch0(x 1 )=121(x 1)  we have 02(t, x0 )>O2 (t, x,) as assert-
ed, and the argument for x2(t)<x 0 <x, is analogous.

Next, assuming t  <T „ we show that 02 (t) is non-decreasing
to the right, and afterwards that if  t n  f t  with O2( t )  non-decreas-
ing then lim 02(t„)<0 2(t). These two facts show as before that

02 (t) is non-decreasing in  (0, T2 ). Accordingly, consider the one
parameter family of curves ch ,(t, x ), 0<c. Since 02 (t, x ) has its
minimum at x2(t) one sees that each of these curves intersects
- (t, 0, x) at most once or in a single interval where A v fi= 0, and
conversely, for every x  in some neighborhood of x 2(t) containing
abscissas of both strict V-concavity and V-convexity points of fi,
(x ,nfi(t , 0, x)) is such an intersection point. By proposition 1.2 and
the remark following it, ( t ' ,  0, x ) for ti > t  continues to have at
most one intersection point (or interval) with each ch,(t, x). If,
on the other hand, 02(e)<0 2(t) for some 0<e— t  arbitrarily small,
then it is clear that one could obtain a  curve ch, such that
ch,(t, x 2(0 ) =.( t ',  0, x2(0 ) and ch, would then have 3 disjoint closed
intervals (or points) of intersection w ith  (t' , 0, x). IIence 02(e).>_
02 ( t )  and 0 2 (t) is non-decreasing to the right. To establish the
second fact, one has only to remark that since each 02 (t„) is  a
minimum of 02( t ,  x), if  lim 02(t„)<0 2(t) we could obtain a  contra-

diction by choosing a small secant at x 2(t) and using the continuity
of

The proof that y 2(t) is non-increasing is somewhat more de-
licate because 02 (t) might remain constant. It is to be noted that
i f  x2(t) also is or can be chosen constant, then y2 (t ) m ust be

d  -constant, in the same time interval. This follows since l l p(t,0,x,(t))

 0, implying that h,(t, x) does not depend on t.dt
If, on the other hand, x 2(t) varies, there is no difficulty pro-

vided that the motion is toward O. Indeed, i f  0< x '< x 2(t) and
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t' =inf T > t  x,(T)<x', then clearly we can select x 2 (e )  such that
x2 (t 1 ) ,x'. But for t T <t', A T , 0, x ,(0 )  is decreasing in r ,  and
02 ( T )  is non-decreasing we see that y 2(P)<y 2 (t).

The situation is more interesting when the distance of x 2 (t)
from 0 increases. We state the result as the auxiliary

Lemma 1.3. I f  x 2 (t)<x " and 7-
2 >r=inf  T >t : x,(T)>x", then lett-

in g  h  denote th e  2-point so lu tio n  o f  A v h = 0  which satisf ies
(t, O, x")=h(x"), (t, O , x)<h(x) f or x x " ,  and (t, O, x ')= h(x') f or

some x ' <x ", we have 02 ( r)>0  and y 2(t')<Y  where Û and Y  are the
corresponding quantities f o r h.

Rem ark. Clearly, unless h  and coincide in  (x 2(t), x"), we
have x '<x 2(t), 9>0 2(t), and Y <y 2(t), with equality otherwise.

P ro o f .  The proof is complicated by the possibility that h
and fi may coincide in (x2(t), x") ; let us assume at first that x 2(t)
is unique for all t , and show afterwards how this hypothesis may
be removed. The graphs of h and A t , 0, x) then intersect in such
a  way that h< -f i  fo r  x "<x , h  is negative for large x, and by
lemma 1.2 h  and -P(r, 0, x) for all T >t have exactly one intersec-
tion point or interval (i.e. the tangent at x ' disappears fo r T>t,
and h>_- -p  persists for large —x, as can be seen from the uni-
queness o f h). Now the crucial point is that, since A T, O, .X" )  is
increasing for 7  <te, this intersection point or interval remains to
the left o f x " .  Accordingly, it must coincide with x 2 ( 7 )  at some
T < t '.  Let this value be denoted 7-0 , then since K r o , O, x )>h(x ) for
X > X2(T 0 ) ,  we see that 0(T0 )>0  and y(-r,)<Y . Since 0(t) is non-
decreasing, this proves our statement fo r  it .  A s  fo r  y (t), we
proceed by induction. Let To —7-0 . , < T 0 ,2<-.. be chosen by successive
repetition o f th e  above argument ;  thus T0 1 is based on the
solution h„ such that h„(x")=fi(T o . „, 0, x") and !in  i s  tangent to
II(Ton) 0, x) from above at some smaller x .  If To ,n =  at any stage,
w e are finished. Otherwise, by hypothesis, x,'„ < x 2 ( 7 - 0 , „ ) < x "  and
the induction continues. Let Y =Y 1 >Y 2 >• • •  denote the correspon-
ing h  intercepts ;  w e have y2(T0 ,„) < y „ fo r  a ll n. To  ju stify  a
passage to T  r  we need only show that y,(lim To,„)<lim y,(To ,„).
But this is obvious from the continuity of the fact that 02(t)
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is non-decreasing, and the condition t' <T 2 .
We consider now the case that and h coincide in (x2(t), x") ;

of course one could then choose x2(t) = x" and t = t', but it may
be of some interest to avoid such a restriction. To carry out the
argument we must then let h(x")= (t, 0, x")+ 6 for a small E, with
x ' determined as before. Then Y <y(t) still holds, as does the
existence of a unique intersection of h  and A T , 0, x) for T> t. To
complete the argument one has only to choose E  so small that
-fi(T, 0, x " )> (t ,  0, x")+ 6  for some T <  .  Indeed, if such an 8> 0
does not exist, then fi(P, 0, x " )< (t ,  0, x ") and our result is auto-
matic.

Returning to the completion of lemma 1.2, let us dispose of
the last sentence concerning T,< o o .  Indeed, i f  x2(t)= 00 then
A v fi <0 for all x>0 . This situation must then persist for all t' > t
since 7'1 2 A v fi(t 1 , 0, x)=Avfi(ti +t„ 0, x) and we know that A v (t, 0, 0)
< 0  for all t. Thus 4 0 =  co for all t> T„

The remainder of lemma 1.2 is now also easily dispatched.
Choosing t1 <t 2 < T 2 , we have seen that i f  x2(t) is constant then
- (t, 0, x2(t)) is constant and y 2 ( t )  is non-decreasing. In the opposite
case, we choose t l <T,<T,<••• <t 2 such that each T „ ,  is of the
form Tn + ,=inf T  > r n  X 2 (T )< X I <X2(T n )  or else = inf T > T : X 2(7")
> x "> x 2(-rn ). Applying the preceding results, we have y , ( T i )

3 , 2(r2)> • • • , and as noted before, 
. Y 2 ( l i m  r n ) <lim y2( T ) .  This makes

possible a passage to t= t, which then completes the proof. It
can now be noted that, as was tacitly assumed, no 01(t ) can be 0.
Indeed, x2(t ) is clearly small for small t (by 1.1) iii) and therefore
must increase, whence lemma 1.3 shows that 02(t) increases strictly.

Before finishing the proof of theorem 1.3, we present defini-
tion which provides useful orientation.

Definition 1 . 4 .  The effective maximum of A t, 0, x), t  fixed, is
given by CM=inf C: 0 ,  x)<ch(x) for all x. Let Dnt (t), m2(t)]
be the point or interval of values of x  at which this maximum
is assumed. It is easily checked (using lim (t, 0 , x )= 0) that

CM< 00 and m2(t)< x 2( t )  for t< T 2 , w ith  a  similar remark for
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As for the theorem, since O(t, x ) is bounded away from 0 for
all x and t > e > 0 ,  is uniformly equicontinuous in  finite intervals
of x for such t. If lirn x i (t) exist, then because is non-decreas-

ing in  Exi (t), x 2( t ) ]  and non-increasing in the complement, while
the effective maximum C(t) is non-increasing (a s  in  lemma 1. 1),
we can conclude that lim  also exists. Let us suppose, on the
other hand, that x2 = liminf x2 (t)<x 1 <x 2 G limsup x 2(t)— X2 . Nowt,-
lemma 1.2 has the immediate consequence that the tangent solu-
tions h2(t, x) converge uniformly in  finite intervals as t --o0  to  a
continuous limit function L 2 (x). Thu s f o r  E >0, o n e  has
I (t , 0, x 2(0)— 1,2(x 2(t))1 <E for all t sufficiently large and such that
x, Gx2(t) < x2 . Moreover, for x,<x <x 2 , fi(t, 0, x ) varies monotoni-
cally during the periods when x2(t)— x has a fixed sign, and there-
fore has its extrema at times when x2(t)— x changes sign. But at
such times, either )3 coincides with h2(t, x )  in  a  neighborhood of
x or else x 2(t)—x becomes arbitrarily small within every period
(t —6, t E). In either case, we have Ifi(t, 0, x)— L 2(x )  GE for such
t, and hence for all t  sufficiently la rg e . Thus lim fi(t, 0, x)= L 2 (x)

in  (x„ .t 2 ), and since it converges also in the open complement,
a s  before, and is  equicontinuous lim (t, 0, x) does exist and is
continuous.

It remains only to identify this limit with h(0)h(x)(h 2 c/x)

but this is quite straightforward. Indeed, since ( t ,  y, x)<C x (E)h(y)
for all t>E, we can apply the dominated convergence theorem to
obtain

lim -fi(t, 0, x) = lim fi(t,+ t, 0, x)

= lim T , 0, x) = 7 lim fi(t , 0, x) ,„ ,

and since the limit is non-negative it must be given by ch for

some c> 0. B u t  we also have (by Fatou's lemma if h2 dx = 00)

7 )  It is not asserted that m, (t) <0 <m2(t).
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h(0 ) =  lim  fi(t, 0, x)h(x)dx

= c 112dx

Since the choice of 0 as the starting point is inessential, the proof
is complete.

As a final remark, it is quite easy to show using the methods
of theorem 1.2 that for each c, fi(t,O, x)— ch(x) can have at most
2  changes of sign fo r  fix ed  t> 0 . One need only choose the
densities f n , which approximate the "6  function", such that fn — ch
has this property, and proceed as before by applying T .

Section II. The General Case

The upper limit o f generality to which our methods apply
can be expected to be the equations of the form

(  d  d+  k(dx) (2. 1) a
A g  \ dm dx+ m(dx)) g ( t ' x )  =  g ( t ' x )

where m  is  a  strictly increasing right-continuous function on
( — 00, 00) and k(dx) is  a  signed measure o f  finite variation on
finite intervals. I f  k(dx) is non-positive such equations determine
the most general non-singular diffusion in the "natural scale" and
which "killing measure" k(dx) [6, p. 107], but the general case
cannot be "reduced" to this as in section I by multiplication by
e_ M t. The author is grateful to Professor J. L. Doob for calling
his attention to the "h-path transformation" which reduces the
problem of defining the solutions to  the case k(dx)-_-_-0, circum-
venting the obvious (but less general) method based on forming
monotone limits of V-sequences.

The operator A  on the le ft  o f 2 .1 ) is to be interpreted
throughout by integration. Thus 2.1) signifies that g is continuous
in x  and

a+ 0  (g ( t ,  x )   g(t , 0)+5 g(t, y)k(dy) = — g t, y)m(dy) .
ax+ 0x+ 04 ,04 at

As in section I, we introduce the
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Hypothesis 2.1. There ex ists a  strictly  positive, continuous, right-
differentiable solution h of

d+ c l '  2.2)
d x +  h ( x ) —  dx f - h(0) = J o ,  h(y)k(dy)

That the role o f this hypothesis is the same as in section I will
be clear from the sequel, where the Sturm comparison theorem is
extended to the operators A  and the absorbing barrier processes
are considered.

The h-path transformation, as it is involved here, is simply
the analytical device of replacing A  by operator f2f =h - 1 .A (hf ) for
h f  in the domain o f A .  In the situation of section I  for example

1 h'a direct differentiation shows that t v =  f " +—
h  

f ' ,  which is the2
generator of one or more diffusion processes with a "drift" deter-

h'mined by -h-. A transtion function p  determining a semigroup

with generator f2 is obtained from a given with generator A  by
the formula

p(t, x, y ) = h'(x )f i(t, x , y )h(y ) , and

conversely this determines a  from a given p .  However, because
the semigroup T , corresponding to so obtained is not necessarily
strongly continuous on Co , nor does it necessarily hold that T t h =h,
the methods of section I  do not always apply in the general case,
even when the generator SI can be expressed by differentiation.
It will be seen that the generator n can always be written in a
form for which the solutions are known, but that at most one of
the semigroups T ,  determined in  this manner is an instance of
those envisaged in section I, and that a further restriction on k(dx)
(or equivaletly on h )  is necessary in order that there exist even
one.

Taking up the general case, we first prove a lemma, following
[Feller, 2, p. 109].

Lemma 2.1. T he S turm  comparison theorem is valid for operators
o f  th e  f o rm  A . F o r f ix ed k (dx ) le t  h , and h , be any continuous
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d ' d+ solutions of  2.2). Then th e  W ronsk ian W  =h 
d x

,  h h2 h  is

constant.
P ro o f. Let k 1(dx )<k 2(dx ), and let h . t o  k „ i = 1

or 2. Then because the differentials satisfy 0 = d(le (x )—  (0)+
d+h i (y)k i (dy )), where f +  denotes d x +  f ,  we obtain

0 = (;) P2(Y )d(hi(Y )+ hi(Y )ki(dY ))0
— h1(y)d(14 (Y )+h2( 02(dY ))] and

therefore

0 < Lh2(Y )d14(Y ) - 111(Y)dhl(Y)

= h 2hi" —h,hd x  — k ' — 16 dy
0 0

= h 2hi'

with equality only if k 1 =k 2 . In particular this establishes that W
is  constant. Now i f  x , and x 2 are successive roots of h , and if
h2 t 0  in [ x„ x2]  then assuming as we may that both are positive
we obtain for x i < x < x 2 the inequalities 0 </z2hi' —h i k 1 ;< h 2k ( x )
—lt i li (x ), and the right side is non-decreasing in x. But since
lim inf hi(x )<O  it follows that the right side is zero in (x„ x 2 ).

This is  impossible unless k 1 =k 2 and h i =c h ,  for a constant c.
Thus h , must vanish in [ x„ x 2]  and the proof is complete.

I f  follows from this lemma that i f  ho is any solution of 2.2)
d linearly independent of h  then 

d x

1r 1h0 =.12- 2 W  has no zeros, and

hence h - lho is monotone. Let ho be fixed with 110(0)=0, h 0(x )>0  for
x > 0, and define u(x )=h - lho (x ) and dp(u)= W 6- 1 112(x )dm (x (u)). The
function u(x ) has the role of a scale change, and we set (u„u2)=
(lim  u(x ), lim  u(x )). Then we have the

Theorem 2.1. For f  such that A  (h f )  is continuous, the  operator
Elf =h - lA (h f )  satisfies

d  d + 111.(x) —   f (x (u)).clA du+
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Proof. It is sufficient to show that

A (hf )dm (x ) = Ç c x ) h(x (u))  (f (x(u)))dm (x(u)) .0

Setting f = h -1 g ,  whence d
d
x
+ g  exists, the right side becomes

U(X) ih _, ( x ( 0 )   cdp , (, 2 dd-Fx t  n   (h-1 g))d,a(u)

. (x) d d+= h-1(x(u)) dp, h  d x ,  g  g h)dp,(u)
d xJo

= o h- 1 d ( h  d
d
x
+ , g  g  c

d
i x

+
+ h)

d+ d += h - 1 (hg+ — glz+)1+ ,ço  d x , h d x +  (h -  g)dx

=  g -E3 — xo h - 'g d ( d
d
x

+
+ h)

=  g + 3 _ ,ç o g(x )k (dx ),

d+where we have used the notation f+ — f  when convenient.

T h is completes th e  proof. T he correspondence o f semigroups
induced by the generators A  and n  follows easily from the de-
finitions.

Theorem 2.2. For each sem igroup T ; w ith generator of  the form
1-2 which is strongly continuous on a space C  o f bounded continuous
functions on (u „u 2)  w ith the domain .0  o f SI dense in C, the rela-
tion T tf ( x ) =h ( x ) r( h - 1  f (u)), u=u(x ), defines a strongly continuous
sem igroup w ith generator A on the space Ch o f functions f  such
that h - i f ( u ) E C .  The supremum norm on C corresponds to the norm
Hf  i n f  l c  If(x)1 .<ch(x ) f o r  a l l  x }  and the dom ain g h  i s
If (x ): h - l f ( u ) G 2 } .  Conversely, to each sem igroup T , with gener-
ator A on a spcace o f continuous functions bounded in the h - norm
there corresponds by the same definition a sem igroup of  ty pe  T .

Proo f. L et T '; be a  semigroup of the specified ty p e . Then
clearly  w e h ave  11 T tfIlh = IV T i f  =  M c  f )11 and thus T t is
strongly continuous on C h .  Moreover, the identity
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T ,f —  f
A g

h g
A

           

7 ( h 'f ) —  h _ 1 g
A

       

shows that the domains of the generators corresponds as asserted.
Finally, for 11- 1 1 • E g  we have s- 2(h-f )---11'A f =h - 1g if the above
norms have limit 0 as A—>0. Thus A  is the generator of T .  Since
the steps are clearly reversible, the converse follows immediately.

C oro lla ry . T ,  is Positive and T t h = h  if  and only if  T  is  positive
and M arkovian.

In accordance with these theorems, we consider the Markov
'semigroups o n  (u„ u 2 ) with generators o f  th e  fo rm  d   d  

d ia du ' •
These have been widely studied, and their classification depends
upon the boundary type of u , and u 2 . The corresponding criteria
can be easily expressed in  terms of the original data.

Theorem 2.3. S etting J±
 =

h 2 a n d  If±
0 0±- 0±

h 'd y d m (x ) , where the signs are chosen equal, the upper boundary

is  ex it if  J +  < 0 0  an d  entrance i f  K + <0 0 , w ith th e  analogous
conclusion for the lower boundary in  term s of  J—  and K— .

Remark : If both J+  = co and K + =0 0  the boundary is some-
times called natural, while i f  both are finite it is called regular.
This terminology seems to obscure the fact that each "boundary"
is naturally dual, depending on on whether the p re- o r post-
arrival behavior is considered.

P ro o f .  T h e  classification i n  terms o f th e  v a r iab le  u  is

determined by ([5, p . 5 2 2 ] )  J i =S d (v )d u , ud,u(u), i 1
0-± 0

or 2. Thus, for example, we have
U( X)

= W„11- 2 d  A ( v ) d x
0+

= h - 2 h 2(y )dm (y)dx and0 01
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K 2 = Wi;ihhodm(x)0+

= h' h 'd y d m ( x )
01- 0

as required.

This completes the proof.
It is clear by determining first m (dx ) and then k (dx ) to

obtain a given function h(x) that all types of boundaries can occur.
However, if (for example) m(dx)=A dx as in section 1, then there

-
can be no regular boundaries, as either h'dy  or r   1  d y  must

0 J  0  h'
be infinite. The other there types are still possible.

On the other hand, the method of section 1 requires that
T t h= h for all solutions of A h  h. This means that only Markov
semigroups T';. can be considered. Moreover, our construction
of the sequence {f„}  requires that there be positive functions
vanishing at x  =  o c  in the domain g h , and this holds only if all
"instantaneous return" processes are excluded. Combining these
facts, we see that the method applies only if the minimal process
is  Markovian, o r  possibly i f  there are regular boundaries and
"reflecting barrier" boundary conditions (any transition between
the boundaries is evidently excluded by T t h0 =h 0 ). But finally we
have made use of the "absorbing barrier" approximation of 7;
wherein T ,  is approximated as n ,  c o  by the semigroups with
absorbing barriers at ± n , and this possibility coincides exactly
with the condition that 7 ; is the minimal process. Thus, howso-
ever these restrictions might be lifted by using other methods
(and it seems possible that they could be for the reflecting
barriers) the most natural case is perhaps the present one, and
will be assumed.

Hypothesis 2.2. F o r  any  solution h 0 s 0  o f  2.2) w ith h0 (0)= 0, the

integrals 1:14 (5: + 14dm (y))dx  and h
li, ( h g d m (y ))d x  are  in-

finite.
Concerning this hypothesis, we note first that since ho vanishes

only at 0 the integrals have a meaning. Secondly, since the class
of possible solutions can be written { ch„: c*O1 the condition holds
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for all solutions if it holds for any one of them. Thirdly, since
for large c  one has ch0(1)> h(1) and — cho( — 1)> h(— 1), and there-
fore, by considering the differences h— eh, ,  the same inequalities
hold fo r Ix  >1, we can show that for any solution h > 0 the h-
path semigroup has n o  ex it  (o r  regular) boundaries, i.e. the
minimal h-path process is M arkovian. Indeed, by considering the
intersection point of c h , and  h  one sees that the Wronskian
11()h— hoh ' = W , i s  positive and from  th e  equation ho(x) = h(x)

xÇ. dy  it follows that122(y)

0 0
 d m ( y ) ) d  x 1h g d m ( y ) d x  =  0 00 14 01

with an analogous result in the form

0
-1 - 0 x d m ( y ) ) d  x > 1k g d m ( y ) d x  = 0 0  .le 0- —  0  hi;  0-

It will next be shown that if  there are two positive solutions
h  and h l ,  then the corresponding semigroups T , obtained from
theorem 2.2 are essentially the sam e. However, since their spaces
are different, the identity is phrased in  terms of the kernels of
the transformations. It is known [ 5 ]  that f o r  a  given h  the

semigroup T'" in the scale u  is given by T 'L f (u )=S  p (t, u, v)f(v)

x  dp(v ) for a unique kernel p ( t ,u , y )  continuous in  each variable

fo r t> 0 . In  terms of x this becomes T ,f(x)—
h ( x )  

p ( t  u (x )w o ,

u(y))11.1.(y )d m (y ) . Letting the subscript 1 denote the analogous
quantitites defined using h l instead of h  w e will show that

2.3)
h ( x )  

p(t, u(x), u(y))h(y) —  
h x )

 p l(t , u,(x), u,(y))h,(y) .WoW ,

To prove this it suffices to show that the h,-path transform of the
left side defines a  M ark ov ian transition function with generator
d d +

d , , ,  d u i ,
. N ow  in  terms of the variab le u ,  this hl -path trans-

formed kernel is hTih(u)p(t, u,v)h -1 1/,(v) with respect to the measure



Behavior of the Solutions of Certain Heat Equations 379

dp,, and the corresponding generator is seen to be hi - ih n ( h 'h ,f )
=  A ( h i f )  as required. The Markovian property follows i f  we
show that T h,11- 'h 1 =h - l h 1 . Now since

d  d+ _  d 1  W ,   d x ( u )  d  W, 02.4) 11(11- 1 h 1) = h
dp, du' -  1 - 1 \ x `u

\ \

"  d  f A h 2 (x (u ))  du ) d iL  W o

the "harmonicity" of h - lh , is demonstrated. Moreover, the mini-
mality of the semigroup T ' implies the validity of the "absorbing
barrier approximation", i.e. i f  we define th e  absorbing barrier
kernels in (u ,  u (

2
) ) with generator 1 -1 then p(t , u, 0 is the monotone

limit of these kernels a s  u ?  u ,  and u (
2
) u 2 . It thus follows by

Fatou's lemma that T'È12- 1 111 <V 1h , .  Therefore, the hl-path trans-
form is sub-Markovian. However, since the minimal process with
generator li ',A(h 1f )  is Markovian, this process must be in  fact
Markovian, and the proof is therefore complete.

We turn , next to the task of showing that T ,h =h  for all
(not necessarily positive) solutions of 2.2), where T h  is interpreted
by integration of the kernel of T .  Since this is known for h, it
suffices to prove it fo r h , .  We first consider the processes on
(0, co) and on ( — 00, 0) separately with 0 a s  "absorbing barrier".
Indeed, let T  correspond in the manner of theorem 2.2 to the

d  d+minimal h-path semigroup (0, u ) with generator and zerodp, dur
at 0, and let TT correspond to the analogous semigroup on (u„ 0).
We shall show that h , is invariant under both T and T  in the
respective intervals (0, 00) and ( — 00, 0). To this end, consider
the ho-path transformations of T. Expressed in the scale u , they
becomes ho /h-path transformations of the h-path transformations
of T . By theorem 2.3, replacing the lower limit 0 of the in-
tegration by ±1, and the upper limits ± 00 by 0, it follows from
the boundedness of 11,; near 0 that 0 is not an exit (nor regular)
for these ho-path processes, and since neither is ± 00 they must
be Markovian. This implies, as before, the invariance of ho lh  for
the h-path kernels, and equivalently that of ho for T .  T o  show,
finally, the invariance of ho fo r  T , it suffices to demonstrate the
invariance o f h „lh  fo r the h-path transform o f  T „  which is a
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minimal Markovian semigroup on the space Co(u„ u2 ) or continuous
functions with limit 0 at u , and at u2 . Now if  X (t) denotes the
corresponding diffusion process [see 6] what we have just shown
is that i f  To = inf {t >0 : X(t)— 0} <00, then

2.5) E x (h-lho(X (t)); t To) = 11 - 1 110 (x) .

By the strong Markov property, it thus suffices to show that
E 0 ( h 'h 0 (X ( t) ) )=0  fo r all t > 0 .  We introduce by induction the
sequence of stopping times

inf { t> T ,„: X (t) = 1} < 0 0 a n d
= inf {t>  T2„ , : X (t) = 0} < 0 0

and set S„= { T„ _<_t< T„ + ,} an d  K = sup I h - l ho (x )1 . Then we have

E 0 (111- 1 h0(X(t))1; S 2 „)< K P(S ,„), and since by 2.5) and the strong
Markov property E0(Ih - 1 120(X (t))1 ; S2n1-1)<KP(S.+1), hence also
E 0 (I Ir l h0(X (t))1)< K .  Next, because n(h - 1 /0= 0, it follows that if
X(0)=0 then h 'h o (X (t A T i )), 0<t, is a bounded m artingale. Thus
by using 2.5) again and the strong Markov property we get

0 = E 0 (h - lh0 (X (t A T1)))
= E o (h - lho (X (t)); t <  T ,)+ Po { T , t ,  X ( T 1)=1}11 - 1 h0 (1)

+ P 0 { = —1}12 - 1 14( —1)
= EA/CI ho(X (t)); t < 7 . 21 •

Since X (T 2 ) = 0, repetition of this reasoning shows that T , may
be replaced by T 2 ,  and our result follows by letting n  tend to
infinity.

We next consider the regularity properties 1.1) i-iii for the
kernels 2.3). Properties i  and iii are immediate from the form
2.3) of the kernels. It remains to check ii. Since applying A  to
y  we have

Ap(t, u(x), u(y ))h(y) = h(y)np(t, u(x ), u(y ))
a

=  —

at 
p(t, u(x), u(y))h(y) ,

the result follows likewise from 2.3,
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W e are now in a position to  extend all o f th e  resu lts of

section I to the kernels
h ( x )

 p(t, u(x ), u( y ))h(y ). There are only
Wo

three points requiring further mention, namely, the solution con-
sidered in  lemma 1.1, the choice of the sequence Ifn i. in the
proof o f theorem 1.2, and the non-uniqueness of of the "tangent
solutions" a t a point where the kernel is non-differentiab le. It
is not hard to see that the first two points can be considered for
the operators f2 and semigroups T r in place of those given, since
the transformation of theorem 2.2 preserves positivity pointwise,
and the generators are identical at corresponding functions. Now
the existence of i f , j  is evident for 1-2, and the required property
of the solutions in lemma 1.1 is also  practically obvious. A
rigorous proof can be carried out, at least for functions f  in the
domain g  or f-2, by first showing the uniqueness of the solution.
Thus i f  there is a solution f  boundary values 0 at t =0

and a t u = a  and u = b ,  a < b ,0 < t < t i ,  then O .< f 2(t, u)d,a(u) and
a

1, 1, 1,

f 'd ,a= 2 f ( 1 1 f ) d p , = 2 f f  '1  — 2  ( f l) 2d u = — 2  ( f  1- )2 du <O.
dt a a a

Since at t =0 th e  first integral vanishes, it vanishes fo r  t <ti,
along with f  itself. N ow  a  solution, and hence the can be defined
by a method of D oob [7 ] using the "downward directed process"
Z u ,t (T)=(t—  T  1 ,‘  X( -r)). One introduces for a < u < b  and 0 < t < t 1

the stopping time T = i n f  > 0 ; either u + X(7-) E  {a, b} o f  t--z- = 0.
Then f ( t ,u )  is  g iven  by E o (B (Z„,,(T))) where B  is  the boundary
function. Clearly f ( t ,u ) >0  holds for B  of the assumed positive
character. To extend this reasoning to the interval ( — 00, a] it
is only necessary to construct in this manner the solutions f  in
(—N, a). Since these are  equal on  their common domain as

the limit defines the actual solution. Moreover, since
as N -->—  o c  the contribution of the boundary at u =— N  approa-
ches 0, — 00 being an inaccessible boundary fo r X (t) , the limit
solution is given by replacing the boundary at u= — N  b y  the
whole t= 0  axis, and thus is strictly positive as long as this is
true at u = a .  It is easily checked that in the applications made
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one had fE .0  hence this suffices for the sequel.
Finally, the non-uniqueness of the "tangent solutions" is not

serious because there do exist "tangent solutions from the right",
and also, by "k-convexity", "tangent solutions from the le ft" . At
the point x2(t) we choose whichever o f these has a smaller angle
02 (t). A t all the other points x> 0 we adopt the convention that
the "tangent solutions" are from the right. For x <0 it is not
obvious that the angle 0 1(t, x) can be defined, but in any case we
are free to replace x by —x in the original definition of the semi-
group and then re-transpose the resulting quantities. The rest of
the discussion now applies without change, by appealing when
necessary to the form 2.3) of a n d  th e  known properties o f p .
In particular, the discussion of the case when h is non-unique can
be easily transferred since in this case, by 2.3), the Green func-
tion of p  finite. We conclude with the

T h e o re m  2.4." T he result and proof  o f theorem 1.3 remain valid
for the kernels f i  under the hypothesis 2.1. and 2.2.

University of Illinois
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8 )  The argument commencing the proof perhaps requires a  further comment.

From hypothesis 2.2 we haveh 2 d m ( y ) d x = o o .  T o g e th e r  w ith  c . ' i
2

dx<0.0.0 h
this implies that r , 1z2 d m ( y )  o s  a s  required.


