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Scattering for the Schrödinger operator
in an exterior domain
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§ 1. Introduction.

This paper is a continuation of or supplement to [6 ], in which
we have discussed the eigenfunction expansion problem connected
with the Schrtidinger operator 1-1,— — + q  in an exterior domain
of le , where q  denotes the operator of multiplication by a func-
tion q ( x ) .  More precisely, let an be a  bounded closed surface
of class C 2 in le , 1-2 the (unbounded) domain exterior to On, and
w its (bounded) interior. Let D  be a dense linear subspace of
un) characterized as follows :

(1.1) D  { f  EL ,g1): f  E  H2 (n), f  is continuous in El,

fi B o =  0 }

where n denotes the closure o f SI and 1-12 (11) is  the totality of
L 2 (û)-functions whose distribution derivatives up to second order
are all in 1,2 (12). The formal differential operator —A + q  equip-
ped with D  as its domain o f definition becomes a self-adjoint
operator if q(x ) satisfies appropriate conditions as will be stated
below. The operator thus obtained will be denoted by H, (D(11,)
= D 1 ) ) , while the whole-space counterpart ((1= le) of this operator
with q =0  will be designated by H°.

We have assumed in [ 6 ]  and shall assume throughout also
in the present paper that

1 )  The domain and range of an operator A will be denoted by D (A ) and R(A)
respectively.
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(A)

q(x) is a  real-valued L 2 (f2)-function locally H61der-continu-
ous in  S I except at a  finite number of singularities, and
satisfy the inequality I q(x)i •< CI xl - 2 - h fo r  I xi > Ro ,  with
positive constants C, h  and R,.

Results in the following few paragraphs are quoted from [6].
It has been shown that under the above assumption on q(x)

the spectrum of 14 is divided into two parts : The whole positive
real line is occupied by the absolutely continuous spectrum of 14,
i.e., (E,(X)f, f ) , , , , ,  is ,  a s  a  function of X, absolutely continuous
with respect to the ordinary Lebesgue measure for x >0, and for
any fEL,(n), where E,(X) is the right-continuous resolution of the
identity associated with 14 ; 2 ) th e  negative part of the spectrum
consists of discrete eigenvalues, i.e., isolated eigenvalues of finite
multiplicity. We should remark, however, that the origin 0 is
somewhat ambiguous ; E Q (X) may or may not have a discontinuity
at 0, although this does not give rise to any complication in
formulating the eigenfunction expansion theorem.

Now H , admits, besides L2(n)-eigenfunctions q3 q( ) (n = 1, 2,
••., N ; N  may be 00) corresponding to the non-Positive eigenvalues
Ag (n) , eigenfunctions p a(x, k) associated with positive eigenvalues
1k12 (kER 3 , k*O ) such that, though not in  L 2 ((2), 95,(x, k) satisfies
the Schriidinger equation

(1.2) — A 9 D + q ( x ) 9 )  =  I  k 1 2 9) in  (2

as well as the boundary condition

(1.3)
 

99 I u, — O,

and is bounded, continuous in x Eri for each fixed k* O. In terms
of these eigenfunctions yoq (n )  a n d  y9,(x, k), an arbitrary f /,2(11)
can be expanded in  th e  following sense : Let Z .,  and Z q '  (the
adjoint of Z q )  be defined by

2 )  The inner product and norm in a Hilbert space ...q( are denoted by ( , ) s t  and

II I I respectively.
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(1.4)Z ,g ( k )  = ( 2 7 0 - 3 1 2 1.i.m. k rg(x )dx (gEL 3 (0)), 3 )

(1.5)Z ,' g (x )  = (2 7 0 - 3 1 2 1.i.m. Sp,(x,k)g(k)dk (gEL2(14 3 )),

and let

(1. 6)
gq(n) (g, pac„))L2(0) (gEL,(n)) •

Then all these definitions make sense, and Z ,  is isom etric on
(1- E,(0))L 2 (n )  to L 2 (R 3 ),4 )  w hile the mapping :  g-›-g,'") is unitary
from E,(0)L 2 ( c )  onto 12 (dim /2 = N = dim E,(0)Ns1)), and we have

f  = z,,./z,f+Ef .,(n) (n)
(1. 7)

i f  = Z ,'Z a f  ( f E ( 1 - E , ( 0 ) ) L 2(n)) ,

the summation being taken in the L 2( 2)- topo log y . Moreover, Z q

maps onto 1,2(R 3 )  and hence m a p s  L 3(R 3 )  isometrically onto
(1- E,(0))/4S2), and

(1. 8) Z ,Z q' =  1 .

[Otherwise, Z ,' is merely known to be a contraction from L 2(R 3)
onto (1 -  E ,(0))1,2(f2).] To the properties o f  {99,(x, k)} that are
displayed by the second equation of (1. 7), and (1. 8), we refer as
completness and orthogonality, respectively.

In [6 ] , however, we have remarked that the orthogonality of
{.99,(x, k)} is not a sim ple consequence o f the completeness that
seems easier for us to handle, and that the orthogonality, which
is, in  fact, in  a close relation with the unitary character of the
scattering operator to be explained below, could be established
with the aid of the time-dependent scattering theory. One of our
purposes is to give a  complete orthogonality proof along this line.

In  passing it should be noticed that some of the notation

3) (27r) - 3 /2  is  a  normalization factor so that Z 0 be isometric, which entails the
asymptotic behavior of soq (x, k) being such that yog (x, k)—exp (ik •x) =o (1) as I x —.<>0.

By lim  •  ••  is meant the lim it in the mean for R —.0. of
 Ç

o r
B(), R)J  B(0, R)n

as the case may be, where B(x, r )  denotes the ball of radius r  about the point x.
z* means the complex conjugate o f z.

4) Irrespective o f  spaces under consideration, we denote by 1  th e  identity
operator not distinguished in symbols from the numeral 1.
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introduced in this Introduction will be used in the sequel without
further reference.

The scattering problem here consists in :  Constructing the
wave operators that re late  the (system  characterized by the)
operator H, to the (system characterized by the) operator H° which
has a  very simple spectral structure ;  defining, in  terms of the
wave operators, the scattering operator that connects the asymp-
totic states of the Hg -system in the remote past and in the distant
future, and proving that the scattering operator thus defined is
u n ita ry . In doing so, a little care must be taken in  that we have
to deal with operators acting in  different Hilbert spaces ;  other-
wise, the reasoning will not be essentially different from the one
due to  Ja u c h  [7 ] , Kato [ 8 ,  Chap. 1 0 ] and Kuroda [ 9 ]  among
others."

The problem presented above is also connected with the per-
turbation of continuous spectra of elliptic operators with variable
boundaries and boundary conditions. For this we refer to Birman
[ 1 ] ,  where the invariance of absolutely continuous spectra is
discussed in  terms of •what we have termed wave operators.

We should note here that there is a range of works on scat-
tering theory related to the (hyperbolic) wave equation in exterior
dom ains. T h e  w ave and  scattering operators a r e  defined in
essentially the same manner as ours, though there may be noticed
some seemingly different approaches. In  th is case, however, if
q(x) is present, various energy estimates will require a  stronger
restriction on q (x ) .  Eigenfunction expansions similar to ours can
also be obtained in the framework of th is theory. For this type
of approach to scattering theory, we refer to Lax-Phillips [11],
Schmidt [1 4 ], Shenk [1 5 ] and Thoe [16].

In § 2 we shall prove a  decay principle for wave packets that
has a  feature similar to the limiting amplitude principle and the
energy decay fo r so lu tions o f the w ave o r  (time-dependent)
Schriidinger equation (cf., e.g., Eidus [3], Ladyizhenskaya [10],
Lax-Phillips [11], M oraw etz [12], O deh  [13] and Zinnes [17]).

5 )  For the literature on scattering theory, Kato [8 ] may serve as a good reference.
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In  § 3 the existence of the wave operators will be shown (cf.
Cook [2 ], Kato [8 , Chap. 10 ] and Kuroda [ 9 ] ) .  The remaining
§§ 4 and 5 are devoted to the proof that the scattering operator
is unitary.

§ 2. Decay o f wave packets.

Consider a  physical system whose Hamiltonian is given by
the Schnidinger operator Ha . The behavior of a  wave packet in
this system is described in  terms of the unitary group Ug (t)--
exp (— i t I 4 )  associated with H , .  If th e  wave packet is initially
in the state f E L 2 (11), then at an arbitrary time t E( — 00, 00), it
will be given by U,(t)f , which is a f o rm a l  solution to  the time-
dependent Schriidinger equation i(d Idt)u= Hall, but not in the
strict sense, because U ,(t)f  does not necessarily admit the appli-
cation o f H ,, unless f ED (H ,).

Now le t  K  be any bounded domain o f  S I and E (K ) the
projection defined by

I f ( x )  i f  x EK
(2. 1) E(K )f (x )=

0 otherwise
(f  EL,(I1)) .

We shall prove the following decay principle for wave packets.

2. 1. Theorem . Let fe(1—E,(0))/- 2(2 )  and K  b e  a bounded
dom ain  of K. T h e n  w e  have

(2. 2 ) l i m E ( K ) U ,( t ) f I lL 2 ,„) =  0.

P r o o f .  It is sufficient to prove (2. 2) for f  in a dense subset
o f (1 — E,(0))/4,(2), for the norm of e ( K ) u ( t )  is uniformly bound-
e d  in  t E( — 00, 00). W e m a y  assume, therefore, fE  {E,(n 2 )—
E,(n - 2 ))L 2(n ), where n  is a positive number. This implies

(2.3)Z ,  f ( k ) 0 for kl >n 6 )

in view o f [6 ],  Theorem 7. 1. Consequently, by the inversion and

6 )  Strictly speaking we have to add here the phrase "almost everywhere". In
what follows we always omit the "almost every" or "almost everywhere", even when
it be necessary in the strict sense o f mathematical usage.
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diagonal representation formulas (En T heorem  7. 1),

(2. 4) t. 4(0 f(x) (27) - 3 0 f g(x, k)e - "I 2Z,f(k)dkn( 0, ”)—  B(0, n

Since for each fixed x E il 99,(x, k) is continuous and hence bounded
in k E B(0, n) — B(0, n - 1 )  (En Theorem 5. 3), the Riemann-Lebesgue
theorem can be applied to yield that (2. 4) tends pointwise to  0
as t  tends to ±  0 0 . On the other hand, since g),(x , k) is bounded
in Kx (B(0, n)—B(0, n - ' ) )  (En Theorem  5. 3), we have

(2.5) 1  Ug (t)f(x)1 const f I Z g f(k )Idk < const f L
2 (0)

13(0, —11(0,

uniformly fo r  x E K , where the la s t constant may depend on n.
Thus by the dominated convergence theorem (2.2) obtains. Q.E.D.

In 2. 1 E (K ) was the multiplicative operator by the character-
istic function o f K .  Without any essential change of the proof
we can replace E (K ) by any multiplicative operator by a bounded
function with bounded support, and thus obtain

2. 2. Theorem . L et 99(x) be a bounded function with bounded
support in  SI, an d  w rite 99 f o r th e  operator of  m ultiplication by
yo(x). Then we have for fE(i-E(0))L2(n)

(2.6)l i m t - ± c o  1 9 9 1 / a ( t ) f  L 2 (u) = O.

2. 3. Rem ark . In the above proof no use has been made of
the orthogonality of the eigenfunctions 99,(x, k) o f  HQ , i .e ., the
fact that Z , maps onto L 2 (R 3). (Cf. En Theorem 7.1 and remarks
a t the end of § 7.)

2. 4. Rem ark . The method of proof presented above applies
also to the case where the exterior domain S2 is replaced by the
whole space R 3 . This, of course, entails some subsequent altera-
tions in the formulation of the theorems, which, however, are
more or less obvious.

§ 3. Existence of the wave operators.

This § gives a time-dependent treatment of the wave operators.
The method is entirely independent of the eigenfunction expansion
results for H g , but is based upon some well-known results on



dt
(3. 5) =_ _ i e itHo o e -itHof  je l l  q(grad 72)• (g r a d  c itH 7 )

d  ( e itHq n . , e -itHo f) ie itHq (H a n , q )  n ,q)H-0)e -itHof
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Fourier transforms that, in fact, provide the eigenfunction expan-
sion associated with H° ( =  —A in all o f R 3 ).

3. 1. Definition. Let : L 2(R 3 )-- L 2(S I) be the "truncation"
operator defined by

(3. 1) ( f ) ( x )  f ( x ) (x e n ) .

Then the wave operators W± (11,, H°): 1, 2(R 3 )-÷L 2(c1) are, if they
exist,

(3.2)W ± ( H g ,  H ° )  =  s — l i m , „ _ W ( t  ;  H q , H°) ,

where s—lim means the strong limit being taken, and where

(3. 3) W(t ; H g , H°) = eitHq, e-itH°

3. 2. T heorem . The wave operators W± (H g , H°) ex ist and are
isometries d efin ed  on a l l  of L 2(R 3 ).

P r o o f .  Let .72(x )  be a  smooth function defined on n which
vanishes in a neighborhood o f an and assumes 1 outside a large
ball B(0, R ) .  Then

(3. 4) W(t ; H g , H °) =  e i t l i g ( 1 - 7 7 ) , 9 e - i t H °  ± e i t l i g n e - i tH °

where 72 denotes the operator of multiplication b y  i (x ) .  In view
of 2. 2 and 2. 4 the first term on the right side of (3. 4) can be
seen to tend to 0 strongly as t—)-±00, since 1-77(x) is a smooth
function with compact support and exp (itH q )  is unitary. Thus,
in  order to prove the existence of W± (H g , H °) on all o f L 2(R 3 ),
we need only show that the second term on the right of (3. 4)
converges. For th is it is, in turn, sufficient to show the con-
vergence on a dense subset g  of L2(s-2), because of the uniform
boundedness in t  of the norm of exp (it H q )n, exp (— it H°).

Assuming fE D (H ° )  we have

± e itH q 6 ,77,q
,
e _itH of

,

because 72(x) vanishes identically near a n ,  and hence 72(A, g )—
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77,9 g =  0  and  grad n • grad ( g ) =g rad n •  ,9  grad g. Integrating
(3. 5) leads to

lieitH,72,q5e-itH
f  II , 2 ( 3)

(3.6)
+  So I I grad 72•g r a d  (e- 1 1 )  L 2(62)d t

a. 

o
t 11(An) ,i t H ° f  II Lg o)dt

r

+  0 1* it HY II L 2 0 ,,,dt .

Therefore, it suffices to show that

(3.7) I 1(An) e - it"Y I 1 L2w,dt < o c ,

(3. 8) I I grad 77 • .g 5 grad (c i t H Y)II L 2 (Q )d t  < co ,

(3.9) I I qn e  " H  I I 1.2(a) dt <

Now let g )  be the linear manifold spanned by the functions

(3. 10) ue,(x) =  e x p  ( I x — a1 2 12)EL2(R 3 )

where a  ranges over R 3. Clearly . 0  is dense and c D (H °).
Then we have

(3. 11) c o l°  ua (x) = (1 + 2it) - wexp ( — I x —  a 12 /(2 + 411 )) •

Consequently

(3. 12) 1(607),95e- "H °  u a L2(k2)‹  I IA7711 L2(c2)(1 + 4t2) - 3 /4 .
(3. 13) I Ig c itH ° u a l < L 2 ( 2 ) (1 + 4t2) - 314 .

(3. 12) and (3. 13) yield (3. 7) and (3. 9) for f E g .  In  order to
show (3. 8) we compute the gradient of (3. 11)

(3. 14) grad (c itH ° u,i ) (x )  = — (1 + 2it) - 5 /2 Ix— al x
x exp ( — I x— a( 21 (2+4 it))  gradl x — a ,

which is seen to be bounded by (1 + 4t2 ) - 3 1 4 . Hence

(3.15) I Igrad n • grad ( c o i f
° ua )I L2 (2)--<, I grad n11 L2(0)(1 4t2 ) - 3 1 4 ,

7 )  See Kato [ 8 ] ,  p. 5 3 4 . Cf. also Kuroda [9 ].
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and (3. 8) obtains for fE Since D is dense in / 4 / 0 ,  we have
shown the existence of W± (H g , H°) on a ll of L 2(R 3).

It rem ains to show the isometry o f  W± (H g , H ° ) .  One can
write

(3. 16)
=  I e - "H Yll 2 L2(R 3) le(w ) c - itil°_ f 2I 1 L2CR 3)

where (0 is the bounded domain interior to an, and where use has
been made of the fact that 6 (12) and e(co) are orthogonal.

From 2. 4 and 2.1 it follows that the second term in the last
member of (3. 16) tends to 0 a s  t—.± 0 0 • T h e  first term equals
I If  H2 L2c R .  This shows th at W± (H g , H°) are isometric. Q .E .D .

3. 3. Defin ition. Let H= H0 (q(x) =0). 8 ) T h e  wave operators
W ± (H g , H) : L 2 (11)—>L2 (1-1) are

(3. 17) W±(Hg, H) ; H g , H) ,

where

(3. 18) W(t ; H g , H) e " H q e - "H

if  they exist.
The following theorem can be proved in exactly the same way

as for the preceding theorem, if one puts R 3 =S2 and ._q `  = 1 »

3. 4. Theorem . W, (H g , H )  ex ist and are isometrics on L2(c2).
We shall prove in the next § that W i (H g , H°) and W± (H,, H)

are complete in the following sense.

3. 5. Definition. W ,(H g , H") and W± (H g , H )  are complete if
they map onto (1—  Eq (0)).L2(2).

3. 6. T h eosem . Suppose W ,(H, I I ')  and W ± (H g , H ) are  com-
plete. T h e n

(3. 19) W,(Hg, 11°) W ± (H g , H)W ,(H, H°),

and W ,(H g , H°) are com plete. (3. 19) ex presses a chain rule for
the wave operators.

8 )  I f  q (x ) = 0 , we agree to drop the subscript 0. Thus, e.g., EGO — E0( 2)
* )  See the note added in proof at the end of this paper.

H w jt  ; H g , H ° ).1̀112 L 2 ( 0 )  =  1 1 ,9  i t ' ' ' . 112 L2 (0)
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P r o o f .  (3. 19) is obvious from

(3. 20) eitHa,93e-itHo _  (e itHg e -itH)(e itH se -iwo)

and from the fact that the norm of each parenthesized operator
on the right side o f (3. 20) is uniformly bounded in t. The com-
pleteness o f W ± (H,„ 11°) readily follows i f  we note E(0)= O.

3. 7. Defin ition. Let J  denote the conjugation operator :

(3. 21) Jf (x ) = f (x )* (f  EL ,(R 3) o r  EL,(n)) .

A self-adjoint operator A  is called real with respect to J  if

(3.22)J A  =  A J

11° and f i g  are clearly real with respect to J. Consequently,
we have

(3. 23) it"° = Je"" °  J an d  e -  W i g  j e i t H a j ,

whence follows the following assertion.

3. 8. Theorem . The f o l lo w in g  relations hold  :

(3. 24) W ,  (H q , H °) = JW (H q , H ° )J, W + (11, H ) = JW _(H q , H )J .

§ 4. T h e  wave operators W± (H, H °).

In this §  we shall make use of the results obtained in  [6 ],
§  7  fo r  H  (q(x )= 0). The orthogonality o f th e  eigenfunctions
99(x, k), or the fact that Z = Z. maps onto L 2(R 3) , can be established
without any use of the time-dependent scattering theory. With
this we can proceed to define a "stationary" wave operator (U
below) and show that it coincides with W  H ° )  that was defined
in a time-dependent fashion in § 2.

We first state the orthogonality theorem fo r  {90(x, k)}

4. 1. Theorem . The op era to r  Z : L 2 (11)—>L2(R 3)

(4. 1) Zf(k) = (270 - 3 1 2  1.i.m. (19(x, k)* f(x)dx

m ap s on to  L 2(R 3).

P r o o f .  See [5 ].
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4. 2. Defin ition. Let Z , ' be the adjoint (dual) of Z , :

(4. 2) ( f , Z g 'g) L 2 ( „) ( Z , f ,  g ) L 2 (R3 )
(11 E (1 — Ea (0))L 2(&2), gEL ,(R 3 )) •

Since Z ,  is isometric on (1 -E ,(0))/„(n) (En  § 7), Z , ' is  a
contraction from L 2 (123 )  onto (1— E,(0))1, 2 ( 11), as is seen from the
Riesz theorem and the completeness of the eigenfunctions cp(x, k):
Z i 'Z,— 1 (see (1. 7)). It is easy to see that is  e x p re s s ib le  as

(4. 3) Z,' f(x) = (27-t) - 3 1 2 1.i.m. k )f (k )dk (f  EL ,(R 3 )) •

Let us also note that Z '= Z 0 '  is unitary on L 2 (R 3 )  onto L 2((1)  and
inverse to Z , as is stated by 4. 1.

4 .3 . D efin ition . The " stationary "  wave operator U: L 2 (R 3 )
—>L2 (11) is defined to be

(4. 4) U  = Z '5  =

where 5 is the Fourier transformation :

(4.5)5  f (k ) =  (27z) -
3/2  1.i.m. f (x )dx

4. 4. R em ark . U  is unitary on L 2(R 3 )  onto L 2(&2), as is clear
from 4. 1 and 4. 2.

4. 5. Theorem . W _(H, H")= U, and hence W _(H, H ') is com-
plete.

Pro o f . Since the existence and isometry o f  W _(H, I I ')  are
known from 3. 2, it is enough to show the weak convergence of
W (t)= W (t ; H, 11°) to U for t—>— c o ."  Furthermore, we need only
test the weak convergence on some dense subsets o f L 2(R 3 ) and
L 2(11), respectively, because the norm o f  W (t): 1, 2 (R 3 )—>L2( 11) is
uniformly bounded in t.

Let D =  ft f  L , ( R 3 ) : 5f  e  CW(R3 )} and D '= L 2 ( 2 )  :  Z  g  E
C ( R )  and has compact support exclusive of 0} . D and D ' are
dense in L 2 (R 3 )  and L2(n ) respectively.

9 )  In this case, however, the existence of W - (H , H°) is a consequence of the
proof that follows. For this see the remark, 4.6, after the proof.
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Now assuming f D  and g E D ', we have

(4.6)
( W (t)f , g ) L 2 ( E D ( g ' e - " l e f ,

5-1M (t)5f(x)(Z 'M (t)Zg(x))* dx ,

w here M ( t )  denotes the m ultip licative operator : M (t)f (k )=
exp (— i t  k1 2) f ( k ) .  Noting that the 99(x, k ), that may be viewed as
the "kernel" of Z ', is representable as

(4. 7) 99(x, h) e + h(x, k)

(see [ 6 ] ,  Theorem 3. 2), we can rewrite (4. 6) as follows :

(4. 8) ( W (t)f , g)L 2 <o) (5 f ,  Z g )L 2 (R 3 )+ I i+ .1 2 + J3 ,

where

J i  —

( 4 .9 )  J2=

— 5-W (t)5f(x)(5-1/14(t)Zg(x))* dx .

5 - 'M (t)5 f(x ) [ ,h(x  h)e - itikt 2Z g(k )dk ] dx  ,
R -B (o ,R )n  s2

J3 = -1M (t)5f (x ) ,h(x  k )e - ifiki2Z g(k )did dx  , 1°)

B (o ,R ) R -

R  being sufficiently large.
By using 2. 1 and 2. 4 J ,  is easily estimated to give

(4.10) J1 - 0 a s  t co .

Similarly we get

(4.11)J ,  —  0  a s  t — co .

Now we are to estimate J 3 . It can be seen from [6], § 1 and
Theorem 3. 2, that

h(x , k ) = -
1  1a  e11 1

0 - ( y ,  k ) d S y271- ao any  x  — Y1
1  .f 011'11' 1  

7- ( y ,  k ) d y  ,471- lx — y1

where 0-(y, k) and T(y , k ) are continuous on an and (7) respectively,
and are regular in  k. By means o f  a  straightforward computa-

1 0 )  S  denotes the complement o f  S.

(4.1 2)



1  fr
r 2 0 (x ,  r ) T1st term  of (4. 14) —

1x1lLi(1x1-2rt)

c 6 i ( l x 1 - 2 r t ) a r
[r2(1)(x, r)]dr}

(4.15)
e i l x v - i t r 2 a
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tion (cf. En Proposition 5.6  and  [4], Lemma 3. 2) using (4. 12),
we obtain

1(4. 13) h(x, k) —  x k l n i(x , k )+ 
 1 x1

,772(x, k)1 1

for 1x1 „>,-R, where R  is sufficiently large, and where n i (x, k )  and
772(x, k ) are bounded in x ,1x 1>R , and regular in k, and a 1(x, walk
is bounded in  x,1x1.,>,R, i f  1 k l  remains bounded by a  constant.

The k-integral in J „  where integration is actually performed
over the finite region a < 1 1 e l <  on account o f the assumption
made on g, can now be written by (4. 13) as

1 eilkiiri n i (x , k) e - Z g ( k ) d k
xl Jack1‹13

1 773(x, k)e - itik 12 Zg(k)dk
1 x1 2 Jo‹iki<s

For the first term  o f (4. 14), b y the above remarks on 771(x , k),
we have

(4.14)

with

(4. 16) cI3(x, r) = ni(x, r0) 4(rO )d0 (k= rO) ,

and hence
( 4 . 1 7 ) 1 1 s t  t e r m  o f  ( 4 . 1 4 ) 1  

‹
const <  const

(1-/c1 —2at)1 x1 1.Xr2
if  t  is negative and large enough. The second term of (4. 14) is
easier to handle, and we obtain

(4. 18) 12nd term of (4. 14)1 < const
1x12

Thus from (4. 17), (4. 18) and (4.9) we have as an estimate of J,
1/2

(4. 19) IJ31 constlIfIlL,<R3)0 ,1x1-4dx)
B(O,R)

which can be made arbitrarily small by choosing R  sufficiently
large.
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Now (4. 8) together with (4. 10), (4. 11) and (4. 19) gives

(4. 20) ( W (t)f, g ) L " ) --. (5 f, Z' g)2(3) — (U. f, g)L 2(0)

for t—>— co, which was to be shown. Q.E.D.

4. 6. Remark. As has been noted in the course of the above
proof, one does not have to have recourse to any time-dependent
theory such as developed in 3.2, in order to establish the exist-
ence and isometry of the wave operator W _(H, H°). In fact, since
W(t) has been shown to converge weakly to U, and since U is a sur-

>lim jective isometry, it follows that s u p  j (  W(t) f L.,(0)
>11UfHL 2(62)=IlfilL 2 (R3 ). This is a  well-known sufficient condition
in  order that weak convergence imply strong convergence. In
consequence, the desired existence and isometry follow.

4. 7. Remark. The method o f proof developed in 4. 5 has
utilized the fact that g)(x, k)— exp(ik- x ) is expressible in the from
(4. 13) when Ix is large, with 771(x , k ) and 772(x, k ) having appro-
priate regularity in their arguments. Such an asymptotic expan-
sion for the eigenfunctions is also possible for Hq  ( q * 0 ) ,  i f  q(x)
behaves asymptotically like I x  3 - " (h > 0 ), as can be seen from
[6], (5. 26), Proposition 5. 6 and Theorem 5. 3. Also the analogue
o f 4 . 1  for H q holds good in this case. Thus we can develop a
complete stationary method concerning the wave operators without
resort to the results of § 3.

The following is an immediate consequence of 3. 8 and 4. 5.

4. 8. Theorem . W  ,(H, H")=JUJ, and W _(H, H") is  complete.

§ 5. The wave and scattering operator fo r  H q .

We have already discussed in § 3 the existence of the wave
operators W± (H q , H') (also W ,(H q , H)) by a time-dependent method.
Now it remains to prove their completeness, which has been
carried through in § 4 for the special case of the wave operators
W± (H , H ° ) . Here we shall first be engaged in showing the com-
pleteness o f  W± (H ,, H ), and then proceed to that o f W (H q , H°)
making use of the chain rule 3. 6. The reasoning will be almost
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a complete copy of [4], § 11, and accordingly, some minute points
of the discussion will be omitted.

It might be noted that it is not impossible to proceed directly
with W± (H ,, H°) instead o f W ,(H,, H ) without using the results
of § 4, which, however, would lead to many a complication due to
the fact that operators acting in different Hilbert spaces have to
be dealt with at the same time.

5. 1. Definition. The "stationary" wave operators U,(H,, H)
are defined as follows :

(5. 1) U _(H,, H)f(x)= Z Z f(x) = (270 3 1 2 1.i.m .q; a (x, k)Zf(k)dk ,

(5. 2) U,(H ,, H ) = JU_(H,, H)J .

A t  present we know only that U± (H ,, H )  are contraction
operators on L 2( f )  with range equal to (1 — E,(0))L2(1).

5. 2. Lem m a. The adjoint U_(H,, H ) ' o f  U_(H,, H ) admits
of a representation

(5. 3) U _(H, , H)' f(x) = Z' Z f(x) = (2n-Y - 3 1 2 k ) Z , f ( k ) d k  ,

and the follow ing relations hold :

(5. 4) U_(H,, H)U_(H,, H)' = (1—  E,(0)) ,

j U_(H,, H)' F(H,) = F(H)U _(H,, H)'
1U _(H,, H)' 11,c HU _(H,, H)',

where F(X ) is a bounded function and F(H) (F(H,)) is the operator
defined in term s o f F(X ) and E(X )(E,(X )) in the oridinary  sense
of operational carculus.

P ro o f . (5. 3) is immediate from (5. 1). (5 . 4 ) is clear from
(5. 1) and (5. 3). For the special case when F(X ) is  the charac-
teristic function of ( — 00, p], the first of (5. 5) follows from

(5. 6) U_(H,, H)' E,(A ) = Z'Z,E,(A ) = Z'X (A )Z,

and

(5. 7) E(A )U_(H,, H)' = Z/X (A )ZZ'Z, = Z/X (A )Z, ,

(5. 5)
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where X (A ) denotes the operator of multiplication by the charac-
teristic function X(k ; th) of B(0, N/7:, ) i f  0 ,  a n d  0  i f  AGO.
The general F(X) case can be deduced from this. The second of
(5.5) follows from the first. Q.E.D.

5. 3. Theorem . W ± (H , , H )=  U ± (H q , H), and hence H)
are  complete.

P roo f. In  virtue of (5.2) and 3. 8 it is obviously sufficient
to prove the assertion for the lower subscript. For the sake of
simplicity let us om it H  and H ,  appearing in  parentheses as
"arguments" o f  W.,  and U .

By 3. 4 and (3. 17)

(5. 8) U' W_

O n the other hand, differentiation followed by integration of
I l W (t ) gives

A = g)L2(0)— (UU, g)L 2(0)

(5. 9) _ (u/ e i tH, q e -
g) L 2(62) d t

o

=  i l im ,  0 5 :  e " ( e
itnu ! . q e -ithrf, g  L 2 „ . 2 )) dt

where f E D (H )= D (H „ )  (see  [6 ] ,  Theorem 5. 1) and g -1 -2 ( t ) ,

where we have used (5. 5), and where the abelian limit has been
taken by virtue of the fact that the (improper) t-integal exists,
i.e., the fact that W_ exists (see 3. 4).

For the integrand of the last member of (5. 9) we have

(OHL f ,  g ) L ,( „ ) = (LIqeitH  f, e - 1 tHg) L 2 ( „ )

= (ZU!_qe - itn f, Ze-
i t H g ) L 2 ( R 3 )

= (Z„qe - 'fil f, M (t )Z g ) L 2 C R
3
)

= (27r) - 3 1 2 9 9 , ( x ,  k
)*

 q(x)e - it' i t l k 12 f(x ), Z g (k ))
L2(12 3 )

where M ( t )  i s  the same as in the proof of 4. 5, and where the
1.i.m. in front of the integral has been left out, since qEL 2 (n).

Now substituting (5. 10) in (5. 9), we have

(5. 10)
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(5.11)

(2703 1 2 A = i urn ,3 [  99,7 (x, k)*q(x)( 6.- 1 tH+illk12-1 ' d t)f (x )d d x
R 62 0

X  Zg(k)* dk

= urn, (x. k)*q(x)(H— 1k1 3 +iE)' f(x)dx]Zg(k)*dk

= lim, r_Lf(x)(H— 1k12 —ie)l(q(•)95,(-, k))*(x)dxlZg(k)* dk

= lim ,
R

f ( x ) 0  G ( x ,  y, (1h1 2 +i6))q(y)99 q (y, k)dy) *  dd x
 6 2 62

X  Zg(k)* dk

=  R 3 1 -f (X )6 . G(x, y, Ikl)q(Y)Pq(Y, k)) *  dx]Zg(k)* dk

=  L 3 h . f(x)(9)(x, k)-99,(x, k ) ) *  dx]Zg(k)* dk

(270312 [(Zf, Zg)E. 2 (R3)— (Z if, Zg), 2 ( 3) ]

= ( 2 7) ' 2 [(f, g)L 2 (0) — ( U!..f, g)L2(0)]

where we have used the following : (H— 1k 2 1E) - 1  is  an integral
operator of Carleman type with kernel G(x, y, V(Ik1 2 +16)), i.e.,

(5. 12) (H— 1k1 2 —iE) - -1 f(x) = 1 . G(x, y, \/(1k1 2 +i6))f)dY

for fE L 2 (n) ([6 ], Theorem 2. 1) ; the function

(5. 13) G(x, y, K)q(y)u(y)dy, ,

where u(x) is a  bounded, continuous function of x En, is continu-
ous in  x and K  for x E n  and Tm K  0 ([6], Propositions 5. 1 and
5. 10) ; 9),(x, k) is continuous for (x, toEn x (R 3 — {0} ) and satisfies

(5.14)9 9 q(x, k) = cp(x, G(x, y, I k  )q(Y)99 .7(Y, k)dy

(P i  (5. 25), (5. 26) and Theorem 5. 2) ; f  and Z g  in  (5. 11) are
assumed to be in  cw(( ) and Cw(R 3 — {0}), respectively.

The facts enumerated above enable u s  to justify each step
in (5. 11) (for a more detailed argument, cf. [4], § 11).

From (5. 11) an d  th e  density i n  L2( 2)  o f  cw(s-2) and of
Z - 1 C,;(R 3 — {0} ), it follows that
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(5. 15) U' W_ = 1 , o r  W _  =  U_

as can be obtained by multiplying the first equation from left by
U _ and utilizing 5.2. Q.E.D.

As a consequence of (5. 15) one can see that Z,' is  an isometry
on L 2(1e) onto (1 -  Ea(o))L,(n). In fact, from (5. 15), (5. 1) and
the isometry o f  W  _(H,, H) and Z  established in 3. 4 and 4. 1,
respectively, it follows that  Z ,'= W  _(H,, H)Z - '=W  _(H ,, H )Z ' is
an isometry on L 2 (1?3 )  onto (1- E,(0)).1,2 (c1), and thus one can give
a proof of the orthogonality assertion in [6 ], Theorem 7. 1:

5. 4. T h e o r e m . Z ,  m aps onto L 2 (.1?3), or { 9),(x , k )}  i s  an
orthogonal f am ily  of  eigenfunctions of  H,.

In view of the chain rule 3. 6, 4. 5 and 5. 3 we have

5. 5. T h e o r e m . The wave operators W ,(H,, HO are complete.

5. 6. D e f in it io n . The scattering operator S, : L 2(123) - 4 2 (R 3)
is defined to be

(5.16)S ,  =  W ,  (1-1,, H°)' W _(Ha , H°) .

5. 7. T h e o r e m .  T h e  scatte rin g  o p o rato r S , is  u n itary  on
141e).

Pro o f . Direct from 5. 5 and 5. 6.
Now we shall touch upon the intertwining and commuting

properties o f  W ,(H,, H°) and S, respectively.

5. 8. T h e o r e m . The follow ing relations hold :

(5. 17) W ±(Ha, H°)H° = H,W ,(H,, H 0 ) ,

(5. 18) W, (1-1,, HOW , = H°147 _,(H,, H°)'

(5. 19) S411° = H°S, .

Pro o f . From 4. 3, 4. 5, 5. 1, 5. 3 and 3. 6 one can see that

(5. 20) W  _(H,, H°) = Z,'ZZ - 1 5  = Z,"5

Denote by M  the multiplicative operator : M f (k )  =Ik rf (k ) . In
view o f [6 ], Theorem 7.1 (including the orthogonality assertion,
5.4)
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(5. 21) Za1511° = =

which proves (5. 17) for the lower subscript. For the upper sub-
script (5.17) follows if one takes account of 3. 8.

(5. 18) can be shown similarly. (5. 19) is now an  immediate
consequence of (5.17), (5.18) and the definition of Sa . Q.E.D.

5. 9. R e m a rk . So far we have been discussing with H° as
the "reference" operator, in  other words, the "reference" system
has been the free-particle system in  3-space. Physically this is
quite reasonable. Theoretically, however, the choice of the refer-
ence operator is quite arbitrary. One can thus take, for instance,
H as the reference operator. Then all the results so far obtained
remain valid mutatis mutandis.
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Note added in p ro o f . The proof o f 3.4 which asserts the existence and isometry of
W ±(Hq , H )  w as incorrect. However, this may be proved as follows : By 4.5 the iso-
m etric  W ± (H, H°) exist and are complete, which implies the existence of W± (H°, H).
Thus by m eans o f th e  chain rule for wave operators, (H5, 11) =W ± (Hq , H°)x
W ±(H°, H )  are known to exist and be isometric.


