
J. Math. Kyoto Univ.
7-1 (1967) 71-75

On complete homogeneous surfaces

By

Makoto IsHIDA

(Communicated by Prof. M. Nagata, April 24, 1967)

It is known that a complete nonsingular curve C, which is a
homogeneous space for a connected algebraic group, is  birationally
isomorphic to either an abelian variety of dimension 1  or the
projective line 13 '.

The purpose o f th is paper is to  prove a sim ilar result for
the two-dimensional case. That is, we shall give the proof of the
following

Theorem . L et F be a complete nonsingular surface, which is
a homogeneous space f o r a  connected algebraic group G. T hen F
is  birationally isomorphic to one of the following:

1) an abelian variety  A  of dimension 2,
2) a bijective rational image" o f  the direct product A x 1:1 '  of

an abelian variety  A  of dimension 1  and the projective line P 1,
3) the projective space 13 '  of dimension 2,
4) the two-fold direct product Plx  13 ' of the projective line 13 '.
Of course, if the characteristic of the universal domain is 0,

then 2) is same to
2 ' )  the direct product A x  P'.
We note that an algebraic homogeneous space can be embedded

in some projective space (cf. [ 2 ] ) .  Hence, in order to prove the
theorem, we may assume that the complete homogeneous surface
F  is contained in a projective space.

1 )  This means that F  is (birationally isomorphic to) the image of A x P  by a
bijective regular rational mapping.
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1. First, we shall show that a projective homogeneous surface
F  is  a relatively  minimal model (cf. [8]).

We remark that if a projective nonsingular surface V is not
a relatively minimal model then there exists an irreducible non-
singular exceptional curve of the first kind on V  (c f. [8 ]). In
fact, for such a surface V, there exist a relatively minimal model
Vo and an antiregular birational mapping o f V , to  V. Then, by
the factorization theorem for antiregular birational transformations

co(cf. [8]), we have a sequence of quadratic transformations Vo

0-1 Cts-i
- - -> V n , where Vi i s  a projective surface and Vn is

birationally isomorphic to V .  By the assumption, we have n
and so, for the center P„_, of o-n _.„  we see that cr.- 1 { P n - i }  is  an
irreducible nonsingular exceptional curve of the first kind on Vn = V.

Now let F  be a projective homogeneous surface for a conn-
ected algebraic group G and (A, a )  the Albanese variety o f F.
Then we have the inequality 0__.q= dim A ._-<dim F= 2 (cf. [3]).

(a) The case q= 2. Then we have F= A, i.e. F  is an abelian
variety (cf. [3 ]). So, in  this case, F  is  a minimal (and conse-
quently a relatively minimal) model (cf. [7]).

(b) The case q = 1 .  If, in  this case, F  is not a relatively
minimal model, there exists an irreducible nonsingular exceptional
curve E  of the first kind on F .  Then, as E  is a rational curve,
it is contained in one of the a-fibres. On the other hand, each
a-fibre is a homogeneous space, of dimension (dim F)— q=1, for
a connected linear algebraic group (cf. [3]) and so, of course, is
an irreducible subvariety of dimension 1 on F .  Hence we have
E = a 1 (a)  fo r some point a  on A .  Then the self-intersection
number (E 2 )  o f E  must be equal to 0, which contradicts to the
fact (E 2 )= —1 (cf. [8]).

( c )  The case q= O. T h en  F  may be considered as a homo-
geneous space for a connected linear algebraic group L  (cf. [3]).
If F  is not a relatively minimal model, there exists an irreducible
nonsingular exceptional curve E of the first kind on F .  Let k  be
an algebraically closed field of definition fo r F, L , E  and the
operation of L  on F .  Since L  is linear and connected, we see that
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1(E) is linearly equivalent to E  for any rational point 1 o f L
over k  (c f .  [5 ]) .  Hence we have (1(E), E)= (E 2 )= —1. On the
other hand, as E  and 1(E) are irreducible, we see that i f  1(E )tE
then (1 (E ), E )_ 0 . So we have 1(E )=E  for any rational point l
of L  over k , i.e. L kE = E  where L k  is  the set of all the rational
points of L  over k. Let P, be a rational point of E over k. Then
the mapping q): 1P0 o f L  to F  is a surjective regular rational
mapping defined over k. Since the set Lk  is everywhere dense
in L , we have, for any open subset O*95 o f F, 99 - 1 (0 )nL k *45.
Then, taking a point lo in 95 - i(0)n L k , we see that 9)(0 = 4 P , is
in 0  and so L k Po is everywhere dense in F .  However, as L kPo

( c L kE )  is contained in the proper closed subset E  of F, we have
a contradiction.

Therefore, in any cases, F  is a relatively minimal model.

2. Next, we shall prove the following

Proposition." L et V  be a  complete homogeneous space for a
connected algebraic group G. Then there exist an abelian variety A
and a connected linear algebraic group L  such that V  is the image
of  the Product A x (L 1H ) by  a bijective regular rational mapping,
where H  is a connected algebraic subgroup o f  L .  (Clearly we have
dim A = the irregularity of V and L 1H is a rational variety.) In
particular, if  the characteristic of  the universal domain is 0, V  is
birationally  isomorphic to A x (L IH ).

Proo f . We may assume that G  operates effectively on V.
Then G  is generated by an abelian subvariety A and the maximal
connected linear normal algebraic subgroup L  of G : G = A . L
(c f. [3 ]). Moreover the isotropy group of any point on V  in G
is connected and linear and so is contained in L  (c f. [4 ]). Any
element g  in the intersection Au, belongs to L  and so has a
fixed point P  on the complete variety V (cf. [1]). On the other
hand, as the operation of G  on V  is effective, the isotropy group
of P  in G  has no common element other than the identity e with

2 )  Cf. A. Borel und R. Remmert, Über kompakte homogene Kdhlersche Man-
nigf altigkeiten, Math. Ann. 145 (1962), 429-439.
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the central subgroup A of G .  Hence we have An L = {e} and so
the canonical rational mapping r of A x L  to G= A. L  is bijective.
Let Po be a point on V and H the isotropy group of P0 in G which
is connected and is contained in L .  By means of 7r, A x L  operates
on V transitively and the isotropy group of Po in  A x  L  is clearly
{e} x H .  Then the rational mapping p of A x L  to V defined
by 9(a,1)=a1Po induces a bijective regular rational mapping of
A x (L I H ) onto V.

3. Proof o f  Theorem. If the irregularity q  of F  is 2, then
F is (birationally isomorphic to) an abelian variety. If q =1, then,
by Proposition, F  is the image of Ax (L I H ) by a bijective regular
rational mapping, where A  is an abelian variety of dimension 1
and L  is a  connected linear algebraic group with an algebraic
subgroup H .  Then it is clear that LI H  is an irreducible non-
singular rational projective curve and so is birationally isomorphic
to the projective line P 1 . Now we consider the case q =O . It is
known that a  relatively minimal model o f nonsingular rational
projective surfaces is birationally isomorphic to one of 1) P 2 ,
2) P 1 x P 1 and 3) F„ (n=2, 3, •••) (cf. [6]). Clearly P 2 and P 1 x P 1

are algebraic homogeneous spaces. On the other hand, on the
surface F„ (n=2, 3, •••), there exists an irreducible curve B„ such
that ( B ) =  n <0  (cf. [6]). Then, if F„ is a  homogeneous space
for a connected algebraic group and consequently for a connected
linear algebraic group L , we see that l(B„) is linearly equivalent
to B„ and so (1(B„), B„)=(BD= —n <0 for any rational point 1 of
L  over k , where k  is an algebraically closed field of definition for
F„, L, B„ and the operation of L on Fn . So, by a similar argument
as in the case (c) in 1, we have a contradiction.

Hence the proof of Theorem is completed.
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