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In [1], the numerical characters »* and +* of singularities
were introduced and some basic theorems were proven in regards
to the effect of permissible monoidal transformations on those
characters under the assumption that no inseparable residue field
extensions occur in the monoidal transformations. They are, of
course, satisfactory in the study of singularities of algebraic
schemes in which the residue fields have characteristic zero, and
played a role of vital importance in the resolution of singularities
in characteristic zero. Inseparable residue field extensions are,
however, inevitable in the monoidal transformations of algebraic
schemes over fields of positive characteristics or over the ring of
integers. As was done in [1], if only separable residue field
extensions are involved, many of the theorems about the behavior
of »* and 7* can be reduced to the case of trivial residue field
extensions. Namely, we replace the given scheme by suitable
local etale coverings. This approach fails completely if an in-
separable residue field extension is involved, and, as is done in
this paper, an essentially different approach must be taken. At
one crucial point, I make use of Hasse differentiations. This was
inspired by [2], Proof of Lemma 7.1, p. 486. In a subsequent
paper, the theorems of this paper will play important roles in
proving the resolution of singularities of an arbitrary excellent
schemes of dimension 2 by means of quadratic and permissible
monoidal transformations.

* This work was supported by Alfred P, Sloan Foundation,
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Throughout this paper, Z will denote a regular scheme, X a
closed subscheme of Z and x a point of X. To analyse the
singularity of X at x, we extract a certain system of numerical
characters of the ideal of X in Z at x. J being this ideal, we
have defined »*(J) and 7*(J), which are also denoted by »}(X/Z)
and +¥(X/Z) respectively. (cf [1], Ch. III, §1, Def. 1, p. 205;
§1, Def. 2, p. 207; §1, Def. 4, p. 209; §4, Def. 6, p. 221) The
last integer +*(J) of the system +*(J), where ¢#=#(J), will be
simply denoted by +(J) or by r,(X/Z). (cf[1], Ch. III, §4, Def.
6, p. 221.)

Let R (resp. M, resp. k) be the local ring (resp. maximal
ideal, resp. residue field) of Z at x. Both v*(J) and (J) are
extracted from the graded (or homogeneous) ideal gr,(J, R) in
the graded k-algebra gr,(R). (cf [1], Ch. II, §1 and §2, pp.
180-197.) Let k—K be any field extension, gry(R)x=gru(R)Q.K
and gry(J, R)x=gru(J, B)®,K, which is a graded ideal in
gru(R)k. In the same way as »*(J) and +*(J) are extracted from
gru(J, R), we do v*(J)x and +*(J)x from gry(J, R)x. Namely,
let (@, ,-+, ®,,) be a standard base of the graded ideal gv, (], R)x,
i.e., a minimal base consisting of homogeneous elements ¢; of
monotone non-decreasing degrees for j=1, 2,---,m. Then v*(J)x
=(deg @, , -, deg ®,,, >, « ,-+-) and °(J)xk=rankxT(J)x, where

(1,0,1)  (pzy,e++, ;) being the system of distinct integers, in the
increasing order, which appear in v¥(J)k, T(J)x is the smallest
K-submodule T of gri/ R)x such that

grinJ, R)x=griu(R)x N (grm(J, R)xN K[ T]) gru(R)x

Sfor all integers p<p;. (1=i<t.) Also we denote the integers t
and p; by 1Nk and p(Jk, 1<i<t, respectively. When the suffix
K is omitted, it should be understood that K=k=R/M. (cf [1],
Ch. III, §4, Lemma 10, p. 221.) Then let *()x=E"x,
(k) with t=¢(J)x. We write 1¥(X/Z) for v*(J)k.

It is easy to see that a standard base of gry(J, R) is a
standard base of g7, (J, R)k, so that always v*(J)x=v*(J), n(J)x
=u(J) and #(J)x=#(J). Moreover, if k—K is separable, *(J)x
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=7*(J). (cf[1], Ch. IIL, § 4, Lemma 12, p. 223). In general, +*(J)x
can change depending upon K but always

(1,0,2) (N2 xr if k—>K—K'.

This can be easily deduced from (1,0,1). Moreover, it follows
immediately that

(10,3) () )z= min {+°(J)x}, where k is the algebraic closure
k>R

of k. We shall write ®(J) (resp. ¥*(J)) for +(J)z (resp. v™(J)s).
As before, #(J) denotes the last integer #®(J) of #*(J), #¥(X/Z)
=7%(J) and 7(X/Z)=7(]).

In this paper, I propose to generalize Theorems 3 and 4 of
[17], Ch. III, €5, pp. 233-234. Let Y be a closed subscheme of
X such that the monoidal transformation = : X’—X with center Y
is permissible, i.e.,

(1,0,4) Y is irreducible and regular, and X is normally flat along
Y. (cf [1], Ch. 0, §4, Def. 1, p. 135.)

This permissibility is a special case of [1], Ch. I, §1, Def. 6, p.
167. The condition (1,0, 4) at the point x can be expressed in
terms of the local ring R, the ideal J and the prime ideal P of
Y in R. For this, see [1], Ch. III, §5, Def. 8, p. 226. Now, let
p: Z'—Z be the monoidal transformation with center Y. Then
X’ can be canonically imbedded in Z’ and identified with the
strict transform of X in Z’ by p. (cf [1], Ch. I, §1, preceeding
paragraphs of Def. 6, p. 167.) The goal of this paper is to prove:

Theorem (1, A). Let the assumptions be the same as above;
above all the regularity of Z and the permissibility of ». Let x’
be any point of X' such that =(x')=x. Then:

1, A1) Always v¥X|Z)>v¥(X'|2Z").
(1,A,2) If the equality holds in (1,A,1), then +(X/Z)k
<X |Z")k

for all i and for all field extensions k—k —K, where k—F is the
canonical homomorphism of the residue fields at the points x and
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’

x"; in particular,
*AX|Z) <7 [Z)
for all i.

Remark (1, A*). We shall later see that, in the situation of
(1, A, 2), if the strict inequality holds for one i then the same
does for i+1. Intuitively speaking, (1, A) says that a permissible
monoidal transformation does not make singularities any worse
in terms of the numerical characters (v*, —7*) in lexicographical
ordering.

Theorem (1,B). Let {z,: X,.,—X.,}, a=>0, be an infinite
sequence of permissible monoidal transformations, and {ps: Za.,
—Z,} the sequence of wmonoidal transformations with the same
centers, where Z,=Z and X,=X. Let {x,} be an infinite sequence
of points x,=X, with x,=x and w(X4.,)=%x, for all «>0. Let
k, be the residue field of Z, at x,,, and let (li£n ky)—K be a field

extension. Then there exists an integer @ such that

AL XalZ2), 75 Xul 20
= (A (XalZe), T Xnl Zo)e)

tor all a and B>a. The same holds if 7™( )x is replaced by 7*( ).

Again intuitively speaking, any singularity can not be improved
indefinitely in the sense of (v*, —7*), so that the problem of
resolution of singularities is reduced to find a finite succession of
permissible monoidal transformations which actually improve given
singularities.

Theorems (1, A) and (1, B) correspond to Theorems 3 and 4,
respectively, of [1], pp. 233-234, and the essential point here is
that the residue field extension k—£’ is not assumed to be separ-
able algebraic. (cf Proofs of Ths. 3 and 4 of [1] loc. cit.)

The proofs of (1, A) and (1, B) will be given after several
lemmas below.

Lemma (1,1). Let k& 7] be a polynomial ring with s+r
indeterminates £=(E, -, &) and n=(n, ,---,n,), where k is a field.
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Let g; be a form of degree v, in k[n], 1<i<m—1, and g* a
polynomial of degree v in k[E, 7] such that g*)"k[E, 7] with
an integer n>0. Let R be a localization of k[E, 7] by a prime ideal
containing all the n;, 1<j<r, and Q the maximal ideal of R. If
there exists a;€R, 1<i<m—1, such that

” -

1,1,1) -3 ageQ

then there exist b,ck[E, 7], 1<i<m—1, such that deg b;<v—v;,
b, () iklE, ] for all i, and

(1,1,2) g -3 bgeq

Moreover, if pw=v, then we can choose such b; so that b; is a form
of degree pw—v; in k[n] for all i, and

(1,1,3) gr=21

1 b:g; .

=1

Proof. Both R and R/(n)R are regular. Hence » can be
extended to a regular system of parameters of R, say (», £&). We
shall first prove that the «; in (1,1,1) can be so modified that
a;,eQ" i for all i. Let p;=ve(a;), the Q-adic order of a;, and let
p=min v;+p;). Let k=R/Q, and consider the graded k-algebra
gro(R). Let A; be the image of a@; in gry “i(R), and G; the initial
form of g; in gro(R). If a;&@Q""i for at least one i, then p<p
and (1,1,1) implies that

> AG=0

Since gro(R)=[gre »(k[€, 71)1®.k canonically, we can find a
finite system {«,}, »,ER, and forms b;; in k[¢’, n] of degree p—v;
such that the images U; of u; in k are k-linearly independent and
that if B;; is the initial form of b;; in gre ,(k[£’, 7]), then

A= 2;’ BijUJ' .

By the independency of U;, we have

> 1 B;;G;=0 for all j.

=
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Since g; and b;; are forms in £A[¥’, 7], this implies

Z. _1 (20 b:u;)8:=0.

{=

Let a/=a;— >3; b;;u;, 1<i<m—1. Then we have a/€Q“*"™" for
all 7, and (1,1,1) holds if the ¢; are replaced by these a,/. By
repeating this process (at most u—p times), we can achieve the
desired situation. From now on, we assume that ¢,€@Q"* for
all i,1<i<m—1. Now, let R=R/(¢)R. We have a monomor-
phism k[7]—R and the image of » is a regular system of para-
meters of K. We have k=R/Q, where Q=(y)R= the maximal
ideal of R. Let us choose a set of elements {w,}, wxER, such
that if &, is the image of w, in k, then {&,} form a free base of
E as k-module. We can choose {w,} so that if w is any monomial
in £, then the image & of w in k is a k-linear combination of
those &, {&,} such that o, are monomials in & of degrees
< degw. We have gro(R)=gro(k[n])®k, where (7)=(n)k[7].
Let g* be the image of g* into grg(ﬁ ). We can write uniquely

(1, 1, 4) g* = Zx ‘T))\g;k

where g¥egrl,(k[n]). Let & be the image of g, into gri™i(R),
and g; that of g; into gr'i, k[»] for all i. Then, by (1,1,1), we
get

m-—1

(1’ 1’5) g*: Z digi

i=1

We can write @;= >, @ o, with dhegro(k[»]). By comparing
(1,1,4) and (1,1,5), we get

”—1

(1,1,6) g;\k: 2 ang;

=1

for every A which appears in (1,1,4). Since degg*=v, g* is a
linear combination of monomials in & if degress <v—pu with
coefficients in k[%]. Hence, by the selection of {w,}, those w,
which actually appear in (1,1,4) are monomials in £ of degrees
<v—u. Now let a,=k[7] be the form whose initial form in
gra(k[m]) is equal to 4;,. Let A be the set of those A for which
w, are monomials in £ of degrees <v—pu. Define
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(1,1,7) b;=2>] [PUFN

AEA

for each i, 1<i<m—1. These b, have the required properties in
Lemma (1,1). For instance, (1,1,2) can be shown as follows.
Let h=g*— > b;g;. Clearly he(n)“k[E, 7], so that ke(®n)“R.
On the other hand, by (1,1,4)-(1,1,7), the image of % in R is
contained in Q**. This means that re(n)**'R+(¢)R. Since
(¢, ) is a regular system of parameters of R, we get

he(@)* RN @) R+(g)Rc(0)* (0, E)R.

In particular, h=@Q"**'. Moreover, if p=v, then g* is a form in
k[7]. In (1,1,7), only w,=1 appears, and b; is a form of degree
w—v; in k[n]. Thus % is a form of degree u in k[7%]. Since 7
extends to a regular system of parameters of R, h=@Q**' then
implies #=0. Thus we get (1,1,3). Q.E.D.

Let A be a commutative ring. A Hasse differentiation is a
sequence of endomorphisms of A as additive group (not as ring),
say {d,} for veZ,, such that

(1) dix)=x,
(2) dx)=2 dux)ds(y), and

(3) duldslai)=(“57)durst)

a
for all ¥, y€A and «a, BEZ,.

Remark (1,2,1). Let A be either a polynomial ring k[x] or
a power series ring k[[x]], where % is a ring and x=(x,, -, x;)
a system of indeterminates. Then there exists a natural system
of Hasse differentiations

(d®, d® .., de)
where d'° = {d‘}’}, veZ,, such that, ¢ being an indeterminate over A,

geA—> 3 dV(e)reAll1]]

in the unique homomorphism of k-algebras ¢;: A—A[[¢]] with
@x;)=x,; for all j={ and @,(x,)=x;+1
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Remark (1,2,2), Let d={d.,}, v€Z,, be a Hasse differentia-
tion of a ring A. Let S be a multiplicative subset of A and
A’=S7'A, the localization. Then ¢ is uniquely extended to a
Hasse differentiation of A’.

Remark (1,2,3). Let d and A be the same as in (1,2, 2).
Let @ be an ideal in A. Then we have

da(QF)C QP

for all a, 8>0, where @**=A if 8<a. (The proof is done by
the property (2) of Hasse differentiation and by induction on the
pairs (B, o). It follows that d induces a unique differentiation in
the @Q-adic completion of A).

If ¢ is a k-module with a ring k, then k[e¢] will denote the
symmetric tensor k-algebra of the module e. For instance, if £ is
a field and ¢ is a k-module of rank N, then k[e¢] can be identified
with the polynomial ring of N indeterminates (x,,-:-, xy) over k,
where (x,,--, xy) is a free base of the k-module e. If x=x, for
instance, then k[x '¢] will denote the polynomial ring k[x,/x,,--,
xx/x.]. Note that k[¢] has a natural structure of graded k-algebrs,
while k[x~'¢] has only a natural structure of k-algebra (without
any natural grading). k[x7'¢] is the homogeneous part of degree
0 in the localization k[e][x~"] of k[e].

. Lemma (1,3). Let e be a finite k-module and ¢ a k-submodule
of e, where k is a field. Let (h,, Iy, ,h,) be a system of forms
in kle], and v;=degh;, 1<i<m. Let x,€e—¢’, R a localization of
K xite] and @ the maximal ideal of R. Suppose

(0) »,>0,
(1) hekle’] for 1<i<m—1,
(2) x2'eQ for all x'se, and

(3) there exist a,ER, 1<i<m—1, such that
1
8m— 2 aigiEva

where g;=hxs"ieR, 1<i<m.
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Then there exist forms b; of degrees v,,—v; in k[e], 1<i<m—1,
and a k-module ¢’ with eDe”’ De’ such that

(a) x25'2"€Q for all x"€e’, and

®) hp— 3 bhekle’].

Proof. Let e¢’={xce|x'x=Q}. Then, by (2), we have
eDe’De/. Without any loss of generality, we may assume ¢ =¢’.
Let us pick a free base (y,,-,%,) of ¢. Then (y,,-,,,%,)
extends to a free base of ¢, say (¥,,:*,¥,, %o, X,,, %;). Identify
k[¢] with the polynomial ring k[x, y] with x=(x,,--, x,) and
y=(3,,%,). In this sense, if heh[e], #(k) will denote the
number of those terms of %# whose degrees in y are less than »,,.
Given #4,,, consider various forms b; of degrees v,,—v; in k[e],
1<i<m—1, and let ¢ be the smallest integer obtainable as
g=4h,,— 73 bh;). If g=0, then with such b;, the assertion (b)
is established. Suppose ¢>0. This will lead to a contradiction.
To begin with, we may replace %, with such a difference
h,,— S "t bk, as above (and accordingly, @; by a;—b,x3i*m for all
i), and assume that ¢=4#(%,). Let =%,=y;/x,, 1<i<r, and
E;=x;/%,, 1<j<s. We shall speak of grading in k[£, »] in terms
of £=(¢,,,&) and n=(%,,-,7,). Let u be the largest integer
such that g,=(»)“k[& 7n]. We have u<w,,, because p=v, im-
plies ¢=0. Let g’ be the sum of those terms of g,, whose degrees
in n are equal to g. Then the assumption (3) implies that

m-1
g — 2i=1 a;8;,€Q""".

If g’€k[n] and hence g’ is homogeneous, then the last part of
Lemma (1,1) implies that there exist forms b/ degrees p—v; in
k[7] such that

1

g=3 ba.

Then, with b;=b/xy="" for 1<i<m—1, we get #(h,,— 73 b:h;)
<g, which contradicts the minimality of ¢q. Thus g’¢k[7]. Pick
a term of g’ of the maximal degree (=deg g’). Write it as c&*7*
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where cek, a=(a,,-,a;) and@’ =(B/,-,0')., (c+0) We then have
at least one ay>0. Pick one such ¢/, and define o'=(a/, -, ;')
by aj/=«a; for j+i’ and al/=ay—1. Let (d® -, d®, &P .-, 87)
be the Hasse differentiations of k[£, »] corresponding to the
indeterminates (&, ») in the sense of Remark (1,2,1). Let
d=dJ)---dy). The extensions of those differentiations to R will
be denoted by the same symbols. (cf Remark (1, 2,2).) The as-
sumption (3) implies, by Remark (1, 2, 3),

13,1 d(gm)— 20 11 d(a))g;€Q*m™ "

where |a’| =a,/+ - +a,. Clearly d does not affect degrees in 7.
Hence d(g’) is the sum of those terms of d(g,,) whose degrees in
» are equal to u. Moreover, |a’'|=|al—1, |a|+|B| <Ly, and
|B| =p. Hence v,,— |a’|>p+1. Therefore (1, 3,1) implies
m—1
dig)— 2 da)geQ"

=1

By the selection of d, d(g’) has degree =p+1 and has a non-zero
term c£/7" of degree wu+1. By Lemma (1,1), there exist
b/sk[E, 7], 1<i<m—1, such that degb/<u+1—v, b/(n)* "
kL&, 7] for all i, and

(1,3,2) dg)— 3 blgeQ

Let g”” denote this difference.

I claim that £;7* has a non-zero coefficient in g” for some §.
Suppose this is not the case. Then let b/ be the sum of those
terms of b,” which are divisible by £+. Then >'r3 b,/'g; is the sum of
those terms of d(g’) which are divisible by £. Let b¥=58,"£% xym i,
which is a form of degree v,,—v; in k[ x, y]. 7 b¥h; is then
equal to the sum of those terms of /%, which are divisible by
g%xym~* (and have degree u in y by the selection of x). This sum
is not zero, and we get the contradiction #(k,,— > 7' bFh,)<q.
We concluce that g/7° has a non-zero coefficient in g”. Let
8=25¢---8¢°. We have [B|=p and (1,3, 2) implies

1,3,3) 3(g")eQ.
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(cf Remark (1,2,3).) We have degg”’<p+1 and degd(g”)<1.
But £ has a non-zero coefficient in 8(g’’). Hence 8(g’’) has degree
1 and is not contained in k[»]. Therefore (1, 3, 3) implies that
the element x”=x,8(g”)Ee has the property (a) of Lemma (1, 3).
By the assumption on ¢’ in the beginning of the proof, we then
get x”<¢’. This is absurd because §(g”)&k[7]. Q.E.D.

Let xXCZ be the same as those in the beginning of this
paper. Let R(resp. M, resp. k) be the local ring (resp. maximal
ideal, resp. residue field) of Z at x. By assumption,

(1,4,1) R is regular.

Let J be the ideal of X in R. Let Y be a closed subscheme of
X which contains x. Let P be the ideal of Y in R. We assume
that Y is regular at x, i.e.,

(1,4, 2) R/P is regular.

Let p: Z/—Z be the monoidal transformation of Z with center Y,
and X’ the strict transform of X in Z’ by p, so that p induces
the monoidal transformation = : X’—X with center Y. Let us pick
any point x’e X’ such that z(x’)=x and let R’ (resp. M’, resp. k')
be the local ring (resp. maximal ideal, resp. residue field) of Z’
at «/. Let J7 be the ideal of X’ in R. According to the ter-
minology of [1], Chap. III, §2, pp. 209-217 (esp. Definition 5),

(1,4,3) R’ is a monoidal transform of R with center P, and J'
is the strict transform of ] in R’ (with respect to the center P).

We want to show that if p: Z’—Z is permissible for X at x (or,
P is a permissible center for J in the sense of [1], Ch. III, §5,
Definition 8, p. 226), then »¥( X/Z)>v¥/(X'/Z’). As is shown
below, this question is related to a certain question about T(J)
defined by: T(J)=T®(J) with t=#_]), i.e.,

(1,4,4) T(J) is the smallest k-submodule of gri(R) such that
&ru(J, R)=(gru(J, R)YNELT(J)]) gru(R).

(cf [1], Chap. II, §2, p. 189, for the definition of gr,(J, R), and
Chap. III, §4, Definition 6 and Lemma 10, p. 221.) We have
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rank, T(J)=1(J)=7,X/Z). The question is about the inclusion
relation between 7(J) and E(R’/R), where

(1,4,5) E(R’/R) is the image of PM'NR into gri(R).

The ideal PM’N R has an obvious geometric significance. Namely,
let D be any regular subscheme of Z through x. Then the strict
transform of D in Z’ by p goes through x’ if and only if the
ideal I, of D in R is contained in PM’N K. Moreover, there exists
such D (not unique) with E(R'/R)= the image of I, into gri(R).

We want to prove that: If P is a permissible center for J
(loc. cit.) and if v¥(J)<v*([J'), then

(1,51 T(J)CER/R),

(1,5,2) v»¥(J)=v*(J"), and

(1,5,3) (<t J)x for all i and for all field extensions
k—k'—K.

Theorem (1, A) will easily follow from these. But, to prove
Theorem (1, B), we need more detailed results than these.
Let us pick (f,, -, f,), f:€J and p>0, such that

(1,6,1) it extends to a standard base of ].

(cf [1], Ch. III, §1, Def. 3, p. 208; it means that the associated
system of initial forms in gr,(R) extends to a standard base of
gru(J, R) in the sense of the paragraph above (1,0,1).)

(1’ 6) 2) VP(.fi):VM(fi) f07’ all i, 1£i£p7 and

(1,6,3) if h; is the initial form of f; in gryu(R), then
h.€k[E(R'|R)] for all i, 1<i<p.

There exists an element x,€P with (x,)R'=PR’. Pick any such
%,. Letv;=v,(f;) and g;=x5"if;, 1<i<p. Let us choose a regular
system of parameters (9, x,2) of K, where y=(3,,,%,),
x=(%,, %,,, %) and z2=(z,,---, 2,), such that

(1,6,4) the initial forms of the y; in gry(R) form a free base of
the k-module E(R'|R), and
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(1,6,5) P=(y, 2)R.

Here x, may be the one picked above. Let A=R[x;'P]
=R[x5'x, -, x5 %, %59, ,++, 251y, ]. Then there exists a prime
ideal N in A with R'=A,. Let y/=x5'y;, 1<i<r. Then (¥, x,, 2)
extends to a regular system of parameters (J, x,, &/, 2) of R/,
where x'=(x,",---, x{/) with suitable xR’ and s’ <s.

Let e (resp. %;, resp. j,) be the image of P (resp. x;, resp. y;)
into gri(R). Then we have a canonical isomorphism ¢: A/MA
—k[e/%,], induced by the natural homomorphisms R—k and P/x,
—e¢[x,. LetN=N/MA. (Recall R"'=Ay.) Then, by localization,
@ extends to a homomorphism

(1» 6’ 6) v R/“>S=k[6/.‘f0]¢(ﬁ)

which is surjective and‘ whose kernel is MR =(x,, 2)R’. Let
(¥, %/, ', ") be the initial forms (all linear) of (¥, x,, x’, 2) in
gru/(R’), so that gry,/(R)=FK[ ¥, x,/, ¥/, Z]. ¥ induces a homomor-
phism of graded k’-algebras

(1, 6,6%) w*: gruw(R)—>gro(S)

with @ =¢(N)S, which is surjective and whose kernel is (%, ')
grw(R). As j/%,=(3,/%,,-, 9,/%) extends to a regular system
of parameters of S, we obtain an inclusion k[#/%,]—g7o(S) which
maps each y;/%, to its initial form. In this sense, we view

(1,6, 6%) kL9/%.1C gro(S)

The natural inclusion £C £’ and the substitution of variables define
a k-homomorphism

(1,6,7) A RLyl=KL5]

such that M(j;)=7/, 1<j<r. Clearly, A is related to «* by

(1,6, 7%) y*(\(h))=h/%; for every form h of degree v in k[ y].
Let us remark

(1,6,8) If g/=g,—g/” with g/’'€MR’ such that vy/(g/)>v;, and
if b/ is the image of g/ into gry"i(R'), then

k! =n\(h;) mod (%, Z) gru(R’).
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In fact, (1,6, 3) implies that f;=f/+f; with some f;/&(y)"R and
vm(f/)>v;. Then x5 f"€MR’, so that \/(g/)=v(g)=v(x5" 1)
=h;[%ei =y*(\(k;)). Hence y*(h/)=+*(\(h;)). The conclusion of
(1, 6, 8) follows.

(1,6,9) Let v>0 and 8/ forms of degrees v—v; in K[7], 1<i<p,
such that

p-1
S 8/Mh)=0.
Then we can choose d;/(y') ViR’ such that SVWzid/g.€MR' and
8/ = the image of d/ into gry* " i(R’). In fact, pick a free base
{w,} of the k-module k. Write §,/=3, M&:)w, With &,k 7].
Then the assumption of (1, 6,9) implies

(1’ 6) 9) 1) Zp 1 8;,,k,~=0

for all n. Pick any e;,,=(y)" R such that &,= the image of e;,
into g7y Vi(R). Also pick any u,ER’ such that »,= the image
of u, into . Let d/= >, (e;,/x37"})u,. Then it is clear that §;/=
the image of d; into gr,/ " i(R’) for all i. Moreover, >1d/g;
= > u x5 (>l e f;). For every n, SWiie,fieM'™' N\P"=MP®
so that x5" >Vl e, /;,€MR'. Hence V21 d/g; € MR’, as is claimed
in (1,6, 9). ‘

If ¥®(J)=»"(]), then we have vy/(g)=v, (cf [1], Chap. III,
§3, Lemma 8, p. 217) so that »*(J)=v"(J) and g, extends to a
standard base of J’. This fact generalizes itself to the following

Lemma (1,7). Assume (1,4,1)-(1,4,5) and (1,6,1)-(1,6, 3).
If (W), VPN oo, v2(J)) in the lexicographical
ordering, then there exist g/’ (g, -, g&- )R’ NMR', 1<i<p, such
that (g, 8,) with g/=g,—g/ extends to a standard base of J'.
Moreover, we have v>(J)=v(J') for all i<p,

Proof. After (1,6, 8), the proof of (1,7) is reduced to find
g/’ e(g,,, g&-)R' N MR’ such that v,/(g/)>v; with g/=g,—g;/” for
all i<p. In fact, since (%, .-:-. k,) is a minimal base of the ideal
which it generates in gry,(R), (1,6,8) implies that v,/ (g/)=v; for
all 7 and that the initial forms of the g/ in gry/(R’) form a mini-
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mal base of the ideal which they generate. Now, the existence
of such g/’ will be shown by induction on p. This is already
done for p=1. Thus, assume p>1 and that we have found g/’
for all i<p. We look for ¢,eR, 1<j<p—1, such that g,”
= >Wnic;g/ €EMR and vy(g,—g,”")>v,. Suppose such {c;} does
not exist. Then pick one {c}} for which >Vl c¥g/ MR’ and, if
g*¥=g,— 25zictg;/, the number u=v,(g*) is the maximum for
various such {cf}. So vyu(g*)=p<v,. We have v(g*)=4(g,)
=*(\(h,)). Since deghp=v,>p, the initial form of g* in gry/(R’),
say h*, belongs to the ideal (z,. z’) gry/(R’). By induction assump-
tion, (g/,--+, g,_,) extends to a standard base of J' and »“(J)
=v¥(J) for all i<p—1. Hence, the inequality assumption of
(1,7) means »®(J)<v®(J). It follows that, if %/ is the initial
form of g/ in gry(R') for 1<i<p—1, h*/, ---, h,_)) grw(R').
Namely, there exist forms §; of degrees p—v; in gry/(R’) such
that a*= >Wwz18h/. By (1,6,8), h/—\h,)E(x,, 2") graw(R’) where
ME)ER[ 7). Let us write
8= 24 81aX' 448/

where &8,k [5] for every A=(a,,,ay) with non-negative
integers a; and 8, (%, ) grm(R’). We have h*e(x,, Z') gry/(R').
Therefore we get 3221 (304 848 ) M(k;)=0, so that D71 8% an(%;)
=0 for all A. Hence, by (1,6,9), there exist d;,&(y)* " 4R
such that 8’,= the image of d;4 into gry” " A(R’) and

721diag/ EMR for all A. Let ¢/= 34 d\ax’*+d;”, where d;’
is any element of MR’ =(x,, )R’ such that vy/(d;")>p—v; and §;”
is the image of d;” in grpy*"i(R’). Then we get >Vj-ic¢/g/ MR’
and vpy(g*¥— >V2ic/g/)>up. This contradicts the maximality of
u. Q.E.D.

Lemma (1,8). Let the assumptions be the same as in Lemma
(1,7). Assume v*(J)=v(J') for all i<p. Let f&]J be such that
vp(f)>v, where 0<v< Min (2™(]), v?*(J)). Let g=x3"f.
Suppose :

(1,8,1) there exists (a/,--,a,) with a/€R such that
g— 2 a/g;EM”.
Then :
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(1,8,2) there exists (b ,-+, b,") with b/ €P” i such that the image
of f— 2%..b/f; into gry(R) is contained in k[ E(R'|R)].

Proof. If vy (f)>v, then (1,8, 2) is trivially true. Hence we
assume vy(f)=v. Let & be the initial form of f in gr,(K). The
assumption feP¥ implies that kzek[e]=FKx, ¥]. (See (1,6,1)-
1,6,6).) Since Ker (v)=MR’ (cf (1,6,6)) and R/(MR' NR)=Fk, we
get Y(g)=~h/xy. Similarly, J(g,)="h;/xsi, 1<i<p. Let a;=(a)).
Then (1, 8,1) implies

WE— 3 ah /B EQ

where Q@ =+(M’)= the maximal ideal of S. (cf (1,6,6) and
(1,6,6%).) Apply Lemma (1,3) to {e, E(R'/R), (h,,, hy, k),
v, %y, S, Q, (h,/x31,+++, h,[%se, h[%5)} (which play role of {e, ¢,
(By sy Bis)y Voo, R, Q, (g1, &)} in Lemma (1, 3)). We then find
forms b; of degrees »—v; in k[e] such that

h—3 bhekle’]
j=1

where ¢”"={wee|w/x,€Q}. In view of the definition of +» of
(1,86,6), if w=e is the image of we P, then w/x, =M’ is equivalent
to w/xz,=Q. (Note that ~(w/x,)=w/x,.) It follows that
¢’=E(R'[|R). Now, pick /=P, for each j, such that b; is the
image of b, into gz, “i(R). Then the image of f— >15..6,f; in
gru(R) is equal to kA— 3., bk; which belongs to k[E(R'/R)].
Q.E.D.

Lemma (1,9). Assume (1,4,1)-(1,4,5), that there exists a
system (f,,-, f,) having the properties (1,6,1) and (1,6,2), and
that (v(J) o+, v2() K@) o, vP(J)) in the lexicographical
ordering.  Then there exist b;;&P"i™"i for 1<j<i—1 and 1<i<p,
such that (f; -, f,)) with f/=f,— 2210}, f; has the properties

(1,6,1)-(1,6,3). Moreover, it follows that v (J)=v(J) for all
7<bp.

Proof. 1 shall prove the assertion by induction on p. If
p=0, it is trivially true. Assume p>1 and that (f,,-,f,-,) has
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the properties (1,6,1)-(1,6,3). By Lemma (1,7), v>(J)=v"(J)
for all j<p—1. Apply Lemma (1, 8) to f=f, and v=v, (p playing
the role of p+11in (1,8)). Here, thanks to Lemma (1,7) applied
to (g, ", &p-.), the inequality »®(J)<»*(J’) implies the assump-
tion (1, 8,1) of Lemma (1, 8). Thus, as is in (1, 8, 2), there exists
(b, -, b;,) with b/ P*»™"i such that if f,’=f,— >5-1b,'f;, then
the image of f, in gry(R) is in E[E(R'/E)]. Since (f,,,f5)
extends to a standard base of J, vy(f,)=v, and (f,, -, fp-1, [
extends to a standard base of J, that satisfies (1,6, 1)-(1,6, 3).
Q.E.D.

Let G=F[7], a polynomial ring over a field k which is
naturally graded. Denote by G, its homogeneous part of degree
w. Let n=(n,---,1,). We have defined the E-function A”: G—Z;
with respect to (k;7), and the E-set E'(H) of any homogeneous
ideal H in G with respect to (k;n). (See [1], Ch.III, §7, p. 245).
Here Z73 denote the set of »-tuples of non-negative integers, and
for a form ¢ in G, A’(@) is the largest A=Z} in the lexicogra-
phical ordering such that the monomial »* appears with non-zero
coefficient in @. E7(H) is the set of all A"(¢) with forms @< H.
If (@, ., *, ®,,) is any system of forms in G, then we ask whe-
ther there exists A€E"((®,,**, ¢,,-,)G) such that »* has non-zero
coefficient in ¢,,. If the answer is negative, then we say that ¢,
is normalized by (@, , ++, p,,-,) with respect to (k;n). We say that
(@1, @) is a normalized standard base of H with respect to
(k;m), if it is a standard base of H in the sense of the paragraph
preceeding (1,0,1) and if, at the same time ¢, is normalized by
(@1, @;-,) with respect to (k;7%) for all i<m. (Compare these
terminologies with those of [1], Ch. III, §7, Def. 9, p. 248.)

Lemma (1,10). Let G=Fk[n] and HCG be the same as above.
Let (@, *, @,,) be a normalized standard base of H with respect
to (k;7m). Let T be any k-submodule of G,. Then

(1,10, 1) H=(HNKH TG
if and onty if @, €k[T] for all i.

Proof. The if-part is trivial. To prove the converse, let us
choose a free base £=(&,,---,&,) of T such that
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(1,10,2) if A()=A'E,) for 1<j<t, then AQ)>A2)> > A(r),
and

(1,10,3) for each pair (i,7), i<j, the coefficient of 7P (resp.
74D in the linear form L,€k[n] is O (resp. 1).

Let ¢(j) be the index with 7. ;,=7%7 for each j. Let £=(¢,,-,
£,-.) be the complementary system of (%..»,"**, 7.cr») in 7, SO that
we have a sequence of indices a(1)<a(2)<-- <a(r—7) with
;=74 for all q. Let 7 be the system obtained by replacing
N.p> DY €, in the system % for 1<p<t. Clearly k[n]=Fk7]. Let
us write ¢, for n.,. By (1,10, 3), we get

(1,10,4) for every p, T,=C,+34 hpiEoht e EF, where q runs through
those q with c(p)<a(q). In particular, A”(T,)=A"({,). Since 7;=n;
+V,5: fim; with f;;€k for all i, we see that

(1,10,5) if A" denotes the E-function with respect to (k; %) (in the
same way as A" is to (k;7)), then A (p)=A"(p) for all forms
pEG. Now, suppose @, & k[ T] for at least one p. Let p denote
the smallest index with this property. Let E’ be the E-set of the
ideal (@, ,:,®,-,)G with respect to (k;7) and E,/ be the subset
of E’ which consists of those A’(¢) with forms o<=(o,,-,
®,-1) KL T]. G being a free k[ T ]-module generated by the mono-
mials in &, it is easy to prove

(1,10,6) every AcE’ is of the form A'+B with A'€E, and
BeZj;. This B may be so chosen that 7% is a monomial in E. Let
us write @,=¢'++ with ¢’€k[T] and <()G. By (1,10,1),
we have v E(@, -, @, ,)G. Since @, k[ T], ¥=+0. Let A=A"(Y),
which is in E’. Let us write ¢’ as a form in &, say

@' =3p8pt?, gpEk and DeZj,

where |D|=degp,=deg@’. For each D, we shall write D* for
the unique element of Z; with ZP=#%P* Following (1, 10, 4), we
can write {=¢+hE Since A=E’ and, by assumption ¢, is nor-
malized by (@,,-::, @, ,) with respect to (k;7), the equality
@,=¢’++ implies that, ¢’ and + being viewed as forms in 7,
the term of %“ in +» must cancel with the same in ¢’. This term
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in @’ should arise from the binomial expansion of (¢ +h4£)? for at
least one D. Thus there exists at least one D such that g,=0
and D*— A’'eZ;, where A’ is the element of E,/ such that »4-4
is a monomial in & (cf (1,10,6).) Since Y <(¢)G, D*+ A’ and
hence D*¥*+A. But D*— A’eZ} implies D*€E’. By (1, 10, 4), we
must have D*>A. This implies that the term of »”* in ¢’ can
only cancel with the same in @,. Namely, 7”* has non-zero
coefficient in @,. But this contradicts the assumption that ¢, is
normalized by (@, -, ,-,) with respect to (k;7). QE.D.

Lemma (1,11). Let G=Fk[n] be the same as in Lemma (1, 10).
Let (Yr, >, V) be a system of forms in G, and v,=deg~r; for
1<j<n. Then there exist forms c; of degrees v,—v; in G for
1<j<n—1, such that ,— 23521 ¢\, is normalized by (Nry >+, Yray)
with respect to (k;n). (cf [1], Ch, III, §7, Lemma 17, p. 246).

Proof. Assume that v, is not normalized by (VJr,,*, Vu-r)
with respect to (k;7). Let A=A(y,) be the largest element in
Z; such that |A|=v, that A€E" (¥, , V¥, ,)G) and that 24
appears with a non-zero coefficient in +,. Then the existence of
those ¢; will be proven by induction on A. Since A€E" (Y,
V.-, )G), there exists a form @ of degree v,&(y,, ", Y,_,)G such
that A’(@)=A. Then clearly we can find a non-zero element ack
such that the coefficient of »4 in yr,—ag is zero. We then have
A(Y,—ap)<A. QE.D.

Back to the preceeding situation, we can improve Lemma
(1,9) as follows.

Lemma (1,12). Let the assumptions be the same as in Lemma
1,9), and pick any (f¥,--, f¥) having the properties (1,6,1) and
(1,6,2). Then we can find bf,sP%i, 1<j<i—1 and 1<i<p,
such that (f,,,f,) with fi=fF— 242105 fF has the properties
1,6,1)-(1,6, 3) and also the following :

(1,12,1) w being an arbitrary but fixed free base of the k-module
T(]), where q is the integer with u@(J)=v?(J), the initial forms
h; of f; in gru(R) belong to klw] and the system (h,,--, h,) is a
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normalized standard base of the ideal (h,,---, h,)k[wW] with respect
to (k;w).

Proof. By (1,9), we shall assume from the beginning that
(f¥,, f¥) has the properties (1,6,1)-(1,6,3). The lemma will
be proven by induction on p. It is trivially true for p=0. Assume
>0 and that (f¥,---, f},) has the property (1,12,1). Thus we
let f;=f* for all i<p—1. Let us extend w to a free base 7 of
¢ (= the image of P into grj(R)). Then, by (1,11), there exist
forms c; of degrees v,—v; in k[7], 1<j<p—1, such that if A} is
the initial form of £} in gry(R), then h¥— 321 c;k; is normalized
by (A, ,, h,-,) with respect to (k;?). Call it k,. By (1,10) and
by (1,0,1) with K=k, we get h,ck[w]. It is then easy to prove
that %, is normalized by (4,,---, k,_,) with respect to (k;w), too.
(cf [1], Ch. III, § 7, Remark 2, p. 245.) Pick any b¥&P*»™"; such
that c; is the initial form of &% in gry(R). Let f,=f}F
— 2%1b%f;. Then #, is the initial form of f, in gr,(R) and
(fi,+,f») has the property (1,12,1). Clearly it has the pro-
perties (1, 6,1)-(1,6,2). We have only to check (1,6, 3), or, that
h,ck[ER'[R)]. We have (h, -, h,,, b})k[e]=(h,, -, h,)k[e],
h,€kR[E(R'/R)] for all i<p—1 and A}fck[E(R'/R)]. Moreover,
(hy,+, h,) is a normalized standard base of (%,,, %,)k[e] with
respect to (k; 7). Thus h,ek[E(R'/R)] follows from (1, 10) applied
to H=(h,,--+, h,)k[e] and T=E(R'/R). Q.E.D.

Lemma (1,13). In addition to the assumptions of (1,9), we
assume that p is such that vP(J)<v?*>(J). Let q be the integer
such that p(J)=v?(J). Then we have

T9O(J)CE(R'|R).

Proof. By (1,12), we have (f,,, f,) having (1,6, 1)1, 6, 3)
and (1,12,1). By the assumption on p, (1,12,1) implies that
T(J) is the smallest k-submodule of gri(R) generating all the
initial forms #; of f;. But, by (1,6, 3), k;€k[E(R'/R)] for all j.
Hence T(J)CE(R'/R).

Lemma (1,14). Let the assumptions be the same as in (1, 13).
Let k—F—K be any field extension, where k—Fk is the canonical
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homomorphism of the residue fields of Rand R'. Let T=T(J)x
and T'=T(J k. Then we have

(1,14,1) (e <7(J)k for all a<q, and

(1,14,2) if 7()e=1(J)x and if v&(J)<v?*O(J"), there exists
an isomovphism of graded K-algebras

o:K[T]-K[T]
such that, for all p<u@(J)=u(J"),
griw(J', R)k=griv(R)xNo{gru(J, kN K[ T} gru(R )« .

Proof. By (1,12), we have a system (f, ,-++, f,) having (1, 6, 1)-
(1,6,3) and (1,12,1). (Here we fix a free base w of T<(J). We
shall follow the notation of (1,6, 4)-(1, 6,8), under the following
additional assumptions.

(1,14,3) y=(¥.,*,,) is so chosen that, if r=rank, (TC(]J)), then
277=(3_’1 ""’y-'r)’ and

(1,14,4) we choose once for all the g/’€MR’ of (1,6,8) so that
(8, &) extends to a standard base of gry(J, R').

Here (1,14, 3) is possible by (1,13) and (1,14, 4) by (1,7). Let p
be the endomorphism of the graded K-algebra gr,/(R’')x such that
p(x,)=p(2;/)=0 for all j, p(#/)=5/ and p(x/)=2x,; for all i>1.
Then, by (1,6,8), we have p(h,)=x(h,) for all a. If T=p(T"),
then, by definition of T°(J’), we must have H=(HNK[T])
K[v,x'] where H=(\(h,), -, Mh,)K[7,%]. By (1,12,1) and
(1,14, 3), (h,, -+, h,) is a normalized standard base of (k)k[ 7] with
respect to (k;7), and hence, as is easily shown (A(k,),:, M(£k,)) is
a normalized standard base of H with respect to (K;y, ). It
follows, by (1,10) that a(k;)eK[T] for all i. Moreover, by the
same reason, we get A%,)EK[Ax(T)] for all i, where rg: K[ 7]
—K[ 7] is the base extension of A. By the definition of
T=T“(])k, »x(T) must be the smallest K-submodule of K[ j']
which contains all the A(%;). Therefore Ax(T)cT. Hence 72(J)x
=rankx T = rankx M T) < ranky(T) <rankx T’ = 79(J')x, which
proves (1,14,1) for a=¢ (and similarly for all a<q because the
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assumptions for the given integer ¢ include the same for smaller
integers). If the equality holds, we must have Ax(7T)=T and
Ker (p)N T'=(0). Hence p induces an isomorphism o,: T— T’
such that po,=Ak|7. Let o:K[T]—-K[T’] be the unique iso-
morphism of K-algebras which induces ¢,. I claim that this o
has the property of (1,14,2). (The proof of this is quite similar
to that of [1], Ch. III, §5, Lemma 16, p. 232.) In fact, since p
induces an isomorphism in 77, we must find forms v;; of degrees
v;—v; in Ker (p) such that

hi”:hx’,_ f'f;ll ')'ijhj/EK[ T/]

for all ;. Then p(k;/)=ph/)=rk(h;)=pc(h;) for all i. Since p
induces an isomorphism in K[ 7’], we must have %/ =c(h;) for
all ;. In other words, (¢(%,),-, o(k,)) generates the same ideal
in gry/(R)x as (k,/, -, h,) does. (1,14,2) follows immediately.
Q.E.D.

Lemma (1,15). Let the assumptions be the same as in Lemma
(1, 14), excluding (1, 14,2). Let k—k'—K—L be any field extensions.
We have: v

(1,15,1) If (k=1 )k, then v“(k=1"(J")x for all a<q.

(1,16,2) If #P(e=1")x then =(J),=1J);, provided
P <SP,

Proof. In the proof of (1,14), it was shown (near its end)
that (o(h),,a(h,)) generates the same ideal in gr,(R')x as
(h) -+, k), provided 7?(N)xg=7(J")k. It follows that the equality
of (1,14, 2) holds for all p<u“"(J). This implies (1,15,1) for
all a<q. The above fact about o(%;) and %,/ remains the same
after the base extension K—L, which shows (1, 15,2). Q.E.D.

We are now ready to prove the theorems stated early in
this paper.

Proof of Th. (1, A). Under the assumptions of (1, A), we
may follow the notation (and the assumption) of (1,4, 1)-(1, 4, 5).
The permissibility of the monoidal transformation = :X'—X im-
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plies that P is a permissible center for J. (cf [1], Ch. III,
"§5, Def. 8, p. 226.) This means that we have a standard base
(fis*» fm) of J having the properties (1,6,1) and (1,6,2) for
p=m. If v¥X/Z)<v¥(X'|Z"), then, by (1,9), we get v¥X/Z)
=v¥(X’/Z"). Thus (1, A,1) of the theorem follows. Moreover,
in this case, the assumptions of (1,13) are all satisfied and there-
fore, by (1,14), we get 7 X/Z)<7 (X' |Z )k for all i and all
field extension k—k'—K. We thus have (1, A, 2) except for the
assertion on ¥, But this is only a special case of the above
inequalities, because 7%’( )¢ remains unchanged if K is replaced
by any separable extension. Q.E.D.

Proof of Th. (1,B). Let R, (resp. M,, resp. k,) be the local
ring (resp. maximal ideal, resp. residue field) of Z, at x,, and
let J, be the ideal of X, in R,. Let P, be the prime ideal of
the center of p, in R,. With these notations, the rest of the
proof of (1, B) is quite similar to the proof of [1], Ch. III, §5,
Th. 4, p. 234. Namely, let 5;= lia{n v¥(J,) and @m;= liin wP(J).
These limits exist by Th. (1, A). For each j, let b(j) be the
largest integer such that v,;,,=7;. Let «a(7) be the smallest
integer such that, for all a>a(7), we have p,=»%(J,) for all
i<b(j) and T(J,)xk=7"(Jar)x for all a<j. Such a(j) exists by
the existence of (3;, z;, b(j)) and by (1,14, 1). Clearly the sequence
{a(7)} is monotone non-decreasing. Let T<P=T(J,)x by the
given homomorphism k,—~K. Then by (1,14,2), we find an
isomorphism

out KIT]— K[ T,
such that, if G(8)=gra,(Rs)x and H(B)=gr,(Js, Re)x, then
Ha+1)=Gla+1)uNo {H@)NK[TPYT}G(a+1)

for all 4 <m;, where (a, j) is any pair such that a(j+1)>a>a(j).
Let us modify {o,} as follows: If a(j+1)>a+1>a>a(j), then
G,=04; and if a(j/+1)>a(j)=a(j+1)=a+1>a>a(j), then

as: K[TP) > K[TJ}

which is the composition of o, and the canonical inclusion K[ T§?,]



42 Heisuke Hironaka

CK[T§3]). Let K[ T] be the limit ring of the inductive system
{os}, which is a polynomial ring over K. The number of vari-
ables in K[ 7] is bounded by the dimension of R. For each g,
let 7(B) is the largest integer such that B>a(7(B)), provided it
exists at all. Clearly j(B) exists for every B3>0. For every 8
for which 7(B) exists, let H(B) be the ideal in K[ 7] which is

generated by the canonical images of
H(B)F n K[ T(é(ﬂ))]

for all p<7;p. Then we get H(@)C H(B+1) for all 8>0. Since
K[ T] is noetherian, {H(B3)} should be stationary. It follows that
there should be only a finite number of z,. For each j, there
can be only a finite number of indices ¢ with »,=%;. In fact,
the number is bounded by the rank of the homogeneous part of
degree 7; of any of gr, (R,). Thus the lengths of the integer-
valued portions of the »*(J,) for various a are bounded. It
follows immediately that there exists @’>0 such that

v¥(Ja)=v*(Jp)
for all a, B>a’. Now, (1, B) is immediate from (1, A, 2). Q.E.D.

Note that (1,5,1) is an immediate consequence of (1,13).
Because of its special importance, we reclaim (1,5,1) as follows.

Theorem (1,C). Let the assumptions be the same as those of
1, A). If v¥X/|Z)=v¥(X"|Z"), then

T(J)CE(R'[R)
where R (resp. R') is the local ving of Z at x (resp. Z' at x') and
J the ideal of X in R. HereT(]) is defined by (1,4, 4) and E(R’|R)
by (1, 4,5).

The importance of this thcorem is seen even in the following
special situations.

Corollary (1,C,1). Suppose 7(X/Z)=dim, Z (i. e., vank, T(J)
=dim R). Then, if the permissible center Y contains x, Y must
be the closure of the point x and v¥(X|Z)>v¥¢(X' |Z") for all points
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x" of X' with =(x")= x.

Corollary (1, C, 2). Suppose r(X/Z)+1=dim, Z. If v¥(X/Z)
=v¥(X'/Z") and if Y contains x, then Y must be the closure of
the point x and the rvesidue field extension k—Fk is trivial, i.e.,
k=Fk. Moreover, in this case (X|Z)<t(X'|Z') for all i.

Columbia University and Purdue University
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