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§1. Introduction.

Let W be an arbitrary Riemann surface and {F,} its exhaus-
tion by regular regions, then there exists on W a canonical
homology basis {A;, B;} of A-type with respect to {F,} such that
A,,B,, -, Apoo, Bron form a canonical homology basis of F, mod 9F,
(Ahlfors (3)). We say that such a basis belongs to C.H.B.(F,)a
and we denote it by {A;, B}=C.H.B.(F,),. LetT, be the Hilbert
space of square integrable harmonic differentials defined on W and
r',, T, be its subspaces.

Definition 1 (Accola (1)). We say that the special bilinear
relation holds between w, and w, if we have

kCid

(1,1) (e, @) = lim $7( SA,,“" Lkaz— SAk‘T’ZSBk‘”‘) (a finite sum)

nyoo p=1

for w, and o, (0, with only a finite number of non vanishing periods)
where w,* denotes the conjugate differential of w,. In the same way
we say that the special bilinear relations hold between T', and T, if
the special bilinear relations hold between all o,€T, and w,=T,.

Definition 2 (Accola (1)). We say that the bilinear relations
in Accola’s sense hold between T, and w, with respect to {F,} and
{A;, B;}C.H.B.(F,), if we have

1,2) (@1, 0) = lim S7( SA,,“" SB,,GZ“ SAfZ Lkml) |

nyoo p=1
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for w, and any o,€T,. In the analogous way we say that the
bilinear relations in Accola’s sense hold between T, and T, with
respect to {F,} and {A;, B;} if we have (1, 2) for T, and all w,=T,.

Definition 3 (Kusunoki (6)). The exhaustion {F,} and {A;, B;}
eC.H.B.(F,), are same as those given in Definition 2. If, for given
differentials w, and w,, there exists a regular exhaustion {W.}
such that

1) {A4;,B}=sC.HB.(W,) . and
RSN TR G S Y

S0 p=1

where k(p) is the genus of W, then we say that the bilinear relation
in Kusunoki’s sense holds betweenw, and o,.

The validity of the bilinear relation in Kusunoki's sense
has been considered mainly in case that {F,} is canonical and
o, 0,=T,,, where T,,, denotes the class of semiexact harmonic
differentials with finite norm (Accola (1), Kobori and Sainouchi (5)
and Kusunoki (6)). On the other hand, in case {F,} is not
canonical, it was considered by Pfluger (10) and Kobori and
Sainouchi (5). The main purpose of this paper is to extend the
Theorem of Pfluger (10) to the abstract symmetric Riemann
surfaces that belong to the class Og,. In §2, we shall consider
the special bilinear relations on general open Riemann surfaces.
In §3, for the special choice of canonical homology basis the
bilinear relations in Kusunoki’s sense are discussed on symmetric
open Riemann surfaces. In §4, we shall give a condition that
assures the validity of the bilinear relations in Accola’s sense on
symmetric surfaces. In §5, on symmetric surfaces we discuss
the general period relations in Sainouchi’s sense. In this paper

we shall use the same notations and terminologies as in Ahlfors
and Sario (4).

§ 2. Special bilinear relation.

Lemma 2,1. Let T, be a subspace in T,,, then there exists a
subspace T', of T, with the property that the special bilinear relations
hold between T, and T,, but not between T, and any subspace con-
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taining T,, that is, if w,ET, then there exists a o, €T, such that
the special bilinear relation does not hold between o, and o,. We
call such a space T, the maximal space associated with T, and
denote it by M(T,).

Proof. Let o, be a differential with a finite number of non
vanishing periods and w,&T,. The set of w, such that the special
bilinear relation between w, and , holds is obviously a linear
closed space and we denote it by I',. Then M(T,) is equal to the
space QI‘G, where o, ranges over that class.

Theorem 2,1 (Matsui (8)). (i) M(T,..) =T}, (i) M(T,) =
CUT o+ T o)y (iii) M(T N Tpe)=Tpo+TheN Tk,

Proof. For example we prove the first relation. From the
assumption we have for any w,€T,,, and any w,&M(T,,)

Ak Bt

- Zk ( SAkwl gBkEZ_ SAkaz SBkwl) ’
where To, =3 b,o(A,)—auo(By) (a finite sum), ak=§A o, bk=s o,
3 k Bp

{4;, B;} C.H.B.(F,) ., and o(C) denotes the reproducing differential
associated with cycle C. On the other hand from the definition
o,— Tw,€T,,. Therefore we have w,*=(T,,)*, hence M(T,,.)CT,,.
Conversely, for w,= M(T',,.), we have (0,— Tw,, w,*) =0 because
0,— Tw,€T,,. Therefore we get M(T,,.)=T,.

Corollary 2,1. The validity of the special bilinear relations
between T,=T,, and T,=T,,,, I',=T},, and T,=T,, or T,=T,NT;,
and T,=T,,,, is equivalent 10 T,,=T4NTh Tre NTht=¢ or
T, NT.XCTyE, respectively (Accola (1), Mori (9)).

§3. Bilinear relations in Kusunoki’s sense.

At first we construct a class of symmetric open Riemann
surfaces and a cononical homology basis for which we shall in-
vestigate the bilinear relations.

Given an open Riemann surface W, its Kerékjarto-Stoilow
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compactification will be denoted by W*, and the ideal boundary of
W (in Kerékjarto-Stoilow’s sense) by S(W). For a subset V on
W, we denote by V* (resp V) the closure of V in W* (resp W)
and V*NB(W) by B(V). For a subset « on B(W), the intersection
of a neighbourhood of @ in W* with W is called a neighbourhood
of ¢« (in W). When « has a neighbourhood Q such that B(Q)=¢«,
we say that « is isolated in B(W). Let F be a canonical region
and o a component of 9F, then o is the relative boundary of an
end S (i.e. a component of W—F). We say that each point on
B(S) is the derivation of o, or o has arbitrary points of B(S) as
derivation.

In this paper we partition B(W) into two disjoint sets « and
B such that « is closed on W* and not empty.

Let {F,} be a regular canonical exhaustion such that there
exists a sequence {S,} of the neighbourhoods of « where S, con-
sists of a finite number of ends (i.e. components of W—F,) S,>S,,,,

and fj,@(S,,)=a, then we put

F,: a parametric disk,

G

aln)
oF, =T, =T (a)Us,, T a)= UTia), o,= || o
— aCn) pCnd . il R CORR
FimF, =(J F)u(_U G,

j=a(nyt+1

(3, 1)

where F} (i=1, 2,---, a(n)), G, (i=a(n)+1, -+, p(n)) denote the com-
ponents of F,,,—F,, each T'/(«) (or &) denotes the inner boundary
of F! (or G!) and T}(«) has at least one point of « as derivation.
Clearly p(0)=a(0)=1.

Let V, be a parametric disk in F,, and 9V, =C, where
h=pn—1)+1,--, p(n—1)+a(n). Wecut F, along all C,, (p(i—1)<
hr<p(i—1)+a(i), 0<i<n—1 where p(—1)=0) and put

anFn_UVh’ aRn=aFnU(UCh):FnUAn)

3,2
( ) I‘,,=8F,,, A,,=UC,,.

Similarly we cut W along all C, (p(i—1)<h< p(i—1)+ a(i),
0<i< ) and put

(3,3) R=W-UV, =S, W), I,=limAa,.
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Now we take two copies of R,, say R, and R/, and put

and adjoin them along C, and —C; for all .. Thus constructed
surface will be denoted by IAQ,,. In the same way we take two
copies of R, say R and R’, and adjoin them along C, and —C,
for all %, and denote a resulting surface by I?:SA(L,, W) 1Itis
clear that {IAQ,,} is a regular exhaustion of R, but not canonical
one and 61@,,=1‘,.UI‘,’,,.

Remark 3,1. It is not essential that each C, is a parametric
circle. For example C, may be an analytic arc in F.

The involutory mapping j of R on itself has the following
property : If p—h(p) is a parametric mapping with domain V,
then p— h(j(p))is a parametric mapping with domain j(V). With
every differential » on R we associate a differential »~ as follows :
If w=a(z)dx+b(z)dy in terms of the variable z=A(p) in V, then
o~ =a(Z)dx—b(z)dy in terms of z=h(j(p)) in j(V). By means of
mapping j we get the unique decomposition of a differential
such that

0w = w;t+ow,,

where w,= —w; and w,=w;. We note the following facts:
(i) For w;,=w;;+w; (i=1,2) we get

(3,95) (wn 0, %) = z(wls» "-’éka)R +2(w1a’ wéks)l\’ ,

(ii) When C is a dividing curve on W and CcR=S(/,, W),
we get for w=wa+wsEI‘hs(,(IA?)

(3, 6) Scwa =0, Scws = Sj(c)ws .

Next we construct the special canonical homology basis on R.

() The case that W is planar. We put
Copn= —B, for p(i—1)<h<p(i—1)+a(i), 0<i<n—1.

Let P, be a point on B,, P, a point on C,, then we join P, with
P, by an anlytic curve A; (0As=P,—P,) in the interior of R, so
that
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AinNAf = P, for all # and i, (h=i)
Next we denote the analytic curve —j(As) on R; by A; and put
(3,7) Ah=A;UA7:, Bh:—ch+1‘

By the same way as in Ahlfors (3) we can prove that {4,, B,}
is a C.H.B.(I@,,) 4. Simply we denote this basis by {A4;, B;} where
A, B,,-,B,,.» is a canonical homology basis on I%,, mod 61@,,.

Lemma 3,1. Lef o=w,+w, be a differential in Phse(é) n I‘M";(IA?)
for R=S(1,, W) (W is planar), then we get

w,=du, and o¥*=dv,

where u, v are harmonic functions on R (not on 1@) with the pro-
perties that u= constant on B,, v=constant on B, (h=1) and u=v=0
on C,.

Proof. Since W is planar, this is clear from (3,6) and the
fact that w,=0 along I,.

Lemma 3,2. For o,, wzthse(R)ﬂFh?e (I%) where R=S(I,, W)
(W is planar), the following relation holds :

m(Cn)

38  (onomp=lm{3([ of o] af o

h=1

42 SF (uldz‘)z*—zzzdvl*)} ,

where wu;, v; are harmonic functions that correspond to w; in
Lemma 3, 1.

Proof. From (3,5) and Lemma 3,1 we have for w;=w;,+ w;,
=du,—dv¥ on R (i=1, 2)

(3» 9) ((—"1» mz*)f? = lim {z(duu dvz)Rn_z(dUn duz)Rn} .

From the Green formula we have

mCn)

(it dou, = || widn =33 | wdvyr.

h=1

On the other hand we have
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SBhuldﬁz* = bPm SBhdvz*, Do = S o — lSA,,w" and

a 1a 2
S ®, = — S dﬁz* ’
By, Bp

where p,, denotes the constant value of », on B, (A>1). Therefore
we get

(3,100 2Adu,, do)e, = 2| wanr+3( o a..
Ty r=1 JAy By
Similarly,
m(n)
3,11) Adv,, di)p, = zg azdvl*+zg GS o,.
T'p k=1 JAp By

Putting (3, 10), (3,11) into (3,9), we get (3, 8). q.e.d.
(II) The case that W is not planar. We put

RNF.=Q,h=pn-1)+1, -, p(n—1)+an)),

RNG. =G, (h = p(n—1)+a(n)+1, -, p(n)),
and suppose the normal forms of the bordered surface Q, and G,
are respectively
(ﬁ aibiat—lbt_l)lchl_l(ﬁ 1717,

(3,12) »
Ilaba;'b;",

where v,,---, v, are sides that correspond to 9F), and p is the
genus of Q, (orG,). We say that a,, a,,,a, (b, b,,--+, b,)
are A-cycles (B-cycles) in Q,, (p(n—1)<h<p(n—1)+a(n)) or in G,
(p(n—1)+a(n)<h<p(n)), and denote A, B-cycles in Q, or G, by
{A%, Bi},. Next we put
Ay = —j(A), B =j(B),
and we say A}’ (BY), i=1,2,---, p are A-cycles (B-cycles) in j(Q,)
(p(n—1)+1<h< p(n—1)+a(n)) or j(G,) (p(n—1)+a(n)+1<h<
p(n)), and denote A, B-cycles in j(Q,) or j(G,) by {A/, Bi'},. We
say that the set of all A (resp B)-cycles in all Q,, G, (or j(Q,),
7(G,)) constitute the A (resp B)-cycles in R (or R').
Now we put
B, = —Cyy (h=1),
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where C,, is a component of 8Q,=0(RNF,) and n>1, and we join
Q, with Q,=RNF} by the sequence of domains {E,} such that
(i) Q,=E,, E,,-,E,=Q, where each E, is RN F with some
¢ and
(ii) 8E,NT, coincides with a component of T', N (—0E,_,)
for all k.
We take a point P,eB, and a point P,eC,, then we can easily
find a simple arc s, joining P, and P, such that s, does not
intersect any A, B-cycles in E; (i=1, 2,-.-, n), s,CD=the interior

of LnJE,, (except endpoints), and s,Ns,=P, for Ak We put
k=1

s, = Ar, —jlAr) = A; where 0A; = P,—P,, and
A, = A UA;,.

By the same way as in Ahlfors (3) we can prove that
{A,, B,, {A%, Bi},, {AY,B/’},} isa C.H.B.(R) .. Hereafter simply
we denote it by {A;, B;} where A,, B,,:*,B,.» 1S a canonical
homology basis on R, mod 9R,.

Let » be a differential in T, (R)NT,%(R) which has a finite
number of non vanishing periods along A, B-cycles in R or R/,
and put

(3,13) ITo = Y {b;o(A;))—a,0(B;)} (a finite sum),

where A;, B; range over only A, B-cycles in R and R’, and
bi:S w, ai:S w.
B A

Lemma 3,3. Let w be a differential in P,,se(lé)ﬂr‘,,,’é‘e(lﬁ?) which
has a finite number of non vanishing periods along A, B-cycles in
R and R, then we get

wh=du, and ol*=dv,

where o—ITo=ow' =w,+ o, and u, v are harmonic functions on R
with the properties that u= const on B,, v=const on B, and
u=v=0 on C,.

The proof can be carried out by the same way as in Lemma 3, 1.

Lemma 3,4. Let w,, w, be the differentials as in Lemma 3,3,
then the following velation holds :
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mCn)
*) — i w,— @
319 e =lm (3 (] of o] af o)

1

+2 SP (4,d,* — i,dv,%) |

where u;, v; are functions corresponding to w; in Lemma 3, 3.

Proof. For o,, o, we have
*) = 4 @, — D _ *_ *
o) =3 (| of -] af o)t@—ITo,or—(Toy.

Decomposing w;,— I Tw;=w,=w|,+w};, we can prove easily (3, 14)
by the analogous way as in Lemma 3,2. q.e.d.

From Lemma 3,2 or Lemma 3,4 we know that if we could
get the exhaustion {W,} such that

S u,dv,*— 0 and S #,dv*—>0,

T'n T

where T',=0W,—0W,N1,, then the bilinear relation between w,
and w, would hold on R=S$(I,, W).

To find such an exhaustion, we consider in a neighbourhood
of o some families of curves on R=S(/,, W) and near @ a certain
graph of R=S({,, W).

We put for m>n>n, (n,: a fixed number)

a(nd n
(Rm_ Rn) U 1-‘m = Rmn U Gmn; Rmn = U Rv‘nn 5 Gmn = pD) G;,m,
i=1

=041

(3,15) { OR1NT ()= |JTH(a) =Th(a), (—8R:)NT () = Ti(a),
Q=IlimR,,,

)
where each T/(a), I'i)(a) is a closed curve which has, considering
on W, at least one point of o as derivation.

(A) The families of curves in a neighbourhood of o.
Define the families of curves C(«), C,,., Ct.., C,, L,,,, Lt.., L%,
on Q as follows (Marden and Rodin (7)):

C(a)={v :v is a countable union of closed curves in Q* —B(Q)
and separates I', and a},
C, ={v:veC(a) and yC(Q—-R,)*—T.,},
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C.. ={v:v is a finite number of closed curves in Ri¥—B(R%,)
and separates T'i(a) and Ti(a)= [JT4(a)},

Com =1v:v=U7i, 7:ECm} ’

L,,={y:v is an arc in R,X= () Ri¥ connecting T,(a) to
T}, ‘

L}, ={y':v is an arc in R} connecting Ti(a) to T'i(a)},

L, ={v':v’ is an arc which connnects T'(a) to T'}/(a) and
lies in the interior of R!, except endpoints}.

Now we put
N,,, = max MLy )MC hn) »
iy

M, = 23 MCrm) »

where )\ expresses the extremal length.

(3,16)

Definition 3,1. We say that R=S(I1,, W) has K-property in the
neighbourhood of o if R satisfies the conditions

3,17) MC(a)) =0, and limN,,,<N<oo,

Lemma 3,5. (i) If aM(C(a))=0, A(C,)=0 (Kusunoki (6)).
(ii) If AMC,)=0, then 1,}52, MC,,,)=0 (Suita (12)).
(i) AMCLIMLE)=1, and so
ML)+ M,,,=1 (Marden and Rodin (4)).

B) A graph of R=S,, W) near f.
Let D) (i=a(n)+1,---, p(r),) be annuli each of which has an
inner boundary oy, and we assume DiNDji=¢ for i+j or n¥k

(n, k>n,) and DanI=¢ for all n,i (n>n,). We put D,= pﬁ) D;,

i=a(n)+1
and denote the harmonic modulus of D} and D, by », and »,,
respectively. Also we denote by U,+:{V, the function which maps

D= D D, onto the strip domain 0< U, < T= :T;J v,, 0<V,<2z. We
o n=ny

m=n

call this strip domain the graph of R near 8 associated with {D,}.
Definition 3,2. We say that R has S-property near B if R
satisfies the condition

(3,18) Smin st = oo,

n=ny i
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and that R has A-property near B if
(3,19) minvi>E>0 for any n (E: a constant).

Definition 3,3. We write ReS,(I,, W) when R has K-property
in the meighbourhood of o and S-property near B. When RES,
(I, W) we write ReS(1,, W).

Lemma 3,6. For ReS,(I,, W) (W is planar and o is isolated),
the bilinear relation in Kusunoki’s sense holds between o, and o,
(@:EThR)NTWA(R), i=1, 2).

Note that {R,} is not canonical.

Proof. From the assumption, we can suppose 0R,,No,,=¢
for n>mn,.

(i) Evaluation of the integrals along T (a)in (3,8).

We put
max (ju(p)L,| u(p)|) = t,(u,, u,)
du; = dU;+idV;, dv;=dU}+idV}, f;dz=dU,+idU¥,

‘dz = dU+idUs*, g;dz =dV;+idV¥, gidz=dVi+idVi*

where U;, Uj, V,, V4 (j=1, 2) are real harmonic functions on R.
Then we get

Idu}“],|du}“|,|du,|,|dv,]<p|dz| (j=17 2))

OB gy [_{ isiscur Dt Duto+Dxt

where p=|f,| + ol + 11l +1fil + g+ &l +1gil +1gil, and K
is a compact domain in R. Moreover from (ii) in Lemma 3, 5, for
fixed » there exists m such that

1
\/an

To make the notations simple, with respect to above m, n we put

3,21) MO { ] > th, wp.

alnd)
S=Rim, US=R}., 0S5NT,=TI"= UIY,
i=1
(=38S)NT, =T where T is a closed curve,
C = C:rm) LZL:MH Lj:L:}ir’n, tn(uu uz) = t(uu uz) ’
M = M,, = 2IMCh), N=N,,
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Then there exists v,= [Jv,EC (v,: a component) and yjeL;
k
such that

@22 [ laul, | 1aor<] pldel <vEMEODSD),
S ldu, | <S pldz| <</ZML)Dp) .
5] 3

From the definitions of L; and C, v, intersects v at least once
at a point ¢ that lies on a component v, of ;. Therefore we get

)| <t )+ | ldwl,  (i=1,2).
J
Consequently we obtain for any point p on v,
B <t w)+ il +( Jdwil,  (=1,2).
’Yj Yk

From (3, 21) we can get for each S

3,29 | jwdotl, | |adot <{ﬁ‘4+ VZmax ML )D(p)
+VEINODSR) || pldzl .

Summing up the relation (3, 23) for all S, in the former not-
ations we have

G20 | lwdotl, | 1mdor] <V Do) {2V Mo (Lo
+ 2V N,puDigpnP) + 4V M, D, (P},

where v,,, denotes Uy, (v,;xEC,..). Let m, be an integer such
that (3,21) is fulfilled with #=n, and m=m,, then ther exists v,,
which satisfies (3,24). Next, let m, be an integer such that (3, 21)
is fulfilled with n=#x,>m, and m=m,, then then there exists v,,,,
which satisfies (3,24). By this way, we can get from (3,20) a
sequence of the level curves {v,,,.,}={7.:} such that

S \udv¥| +S |\, dv¥ ] — 0.
Y Y

(ii) Evaluation of the integrals along o, in (3, 8).
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b n-1
We denote the level curve U,=¢ by 8,= 0i and > v, <t

> F=ng
"
<3>lv,. From the fact S ,av¥=0, we have
k=n0 o?"

pCud

< {Sagld”‘ls | dv¥ |+S§|a’uzg |dv¥ |}

=@ (n)+1

S uldz")z—g i, dv¥
0 8

<L =2324(| taw i+ (| 1amiy (| 1aorir(| | 1aer oy

We set du,=a,dU,+b,dV,, dv,=aidU,+0,dV, (k=1, 2), then
by the successive applications of Schwarz inequality we obtain

L) < 4ei(®) | 18,17+ 16,17+ 161+ 10434V,

where At) = maxg dv, = max_ . Hence again applying the
i i ln

Schwarz inequality, we get

Sn i"f(?)dt 1ot |13+ [lda,| 13+ 1o, 1%+ 1o

T .
Consequently, under the conditiong Adgt)=2 min v, = co, we have
0 o i i
fm L(t) = 0,
and so there exists a sequence of the level curve {f.:U,=t%.}

such that
Li#l)—0 as pu—>o0.

From the results of (i) and (ii) we can get an exhaustion {W,L}
such that
S |u,dv¥ | + S |, dv]—0 as p—>oco,
r, »
where OW,—oW.NI,=v.U6,.=T,., q.ed.

In the analogous way as in Lemma 3,6, we have from
Lemma 3,4 the following

Lemma 3,7. For ReS,(I,, W) (W is not planar and o is
isolated), the bilinear relation in Kusunoki's sense holds between o,
and o, where o, =T, (R)NTXR) (i=1, 2) and w; have a finite
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number of non vanishing periods along A, B-cycles in R and R’.
Theorem 3,1. For I@ESAO(I‘,,, W) (a is closed), the bilinear
relation in Kusunoki’s sense holds between o, and o, where w;E
T, (R)NTWXR) (i=1, 2) and w; have a finite number of non vani-
shing periods along A, B-cycles in R and R’.
Note that besides non vanishing periods along A, B-cycles in R
and R’, o; may have an infinite number of non vanishing periods.

Proof. As in the proof of Lemma 3,6 or Lemma 3,7, we
take the sequence of the level curves {f.} where 6,=J#.. Let
my, 1. be the integers such that '

(i) the inner boundary of D{ is o5,ET,,,, and

(i) (3,21) is fulfilled with m=m,. and n=mn,.

To make the notations simple, with respect to above m,, n,
we put

2 2
Muy=m, wu=mn, 0.=0;, Rm,m,;,

=S where 8SNDi+¢,
then there exists the curves v, which satisfies (3,23). We put
0,=J0; (6; is a curve on S such that B(v,)NB(H;)=¢, where B(c)
denotes all the points of B(W) that are the derivation of c).

Thus we get an exhaustion {W,L} such that

S Iuldz‘)é‘l+g |#,dvf|—0 as p-—>oo0,
Tu Tu

where (J{v,U0,}=T.=0W.—oW.NnI,. q.ed.

Corollary 3,1,1. For ReS(I,, W) (W is of finite genus and
a is closed) the bilinear relation in Kusunoki’s sense holds between
w, and o, where o, €T, (RYNTE(R) (i=1,2). Then ReOxp
(from Corollary 2,1).

Corollary 3,1,2. When W is z-plane, B=¢ and I, is a set
of slits on real positive axis, Theorem 3,1 reduces to the Theorem
of Pfluger (10).

Remark 3,2. Theorem 3,1 is true for o, and o, with an

infinite number of non vanishing periods along A, B-cycles in R
and R’, if ||IT,»,|| and ||IT,w,|| are uniformly bounded, where

I T,,co=‘2’ byo(Ag)—a,o(B,), and A;, B; range over only A, B-cycles
k=1
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in R and R’. From the Corollary 4 in (8) we can construct an
example of surface R such that for any differentials mEI‘,m(I?),
IIT,»|| are bounded.

§4. Bilinear relations in Accola’s sense.

Suppose D! is an annulus in K, whose outer boundary is T'(«)
(Ti(a):Cf (3,1)) and D’:ND’},=¢ for n%m or i+=j. We put
D:‘ :dij)D/:.

C’i={y:v is a colsed curve in D’} which separates the inner
boundary and outer boundary},

C.={v: V=E)v.-, v:€C"}

L= {y:v is an arc that connects I', to T/(«) and lies in the
interior of R, except endpoints},

{A;, B;} : the same C.H.B.(R,) as in Theorem 3,1,

and we set

a(n)
X, =22MC1),

Y, = max ML)X,,
[

Definition 4,1. We say that R=S(,, W) («a is closed) has
A'-property in the neighbourhood of a if R satisfies the conditions:

4,2) X,—0 as n—> o0, and limY,<Y<oo.
Definition 4,2. We say that R=S(I,, W) (« is closed) belongs
to S(I,, W) if R has A’-property in the neighbourhood of o« and R

has A-property near 3. When ReS,(1,, W), we write ke §,(Iw, w).
Note S,(I,,, W)c S(I,, W).

Theorem 4,1. If ReS(I,, W) (a is closed), then the bilinear
relation in Accola’s sense holds with respect to {Ié,,} and {A;, B}
between o, and ©, where w,EI‘,,;',‘(Ié)nl",,sg(I?) (i=1, 2) with only a
finite number of non vanishing periods along A, B-cycles in R and R'.

Proof. The proof is omitted since it is simpler than that of
Theorem 3,1. Note {l@,,} is not canonical.

Remark 4,1. It is easily seen that « satisfying the conditions
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stated in Theorem 4,1 consists of only a finite number of ideal
boundary points on G(W).

§5. Period relation in Sainouchi’s sense on kzg(Iw, w).
We assume that {R,} is an exhaustion and oR, N 6R,=
alnd)
T'(a)Ues,=T, as in (3.1) or (3,15), where I‘,,(a)=.[_j Tia),o,=

PG

os. For w,, mzeI‘,,sl.(I@)nI‘,L;‘;(IAE) with a finite number of non
i>®n)

vanishing periods along A, B-cycles in R and R’, we obtain as in
Lemma 3, 4

6.0 oot =tm3 ([ o], o[ 0] 0

+2 SF (u,d0% — i, dv7) ,

where u,, v, (k=1, 2) are harmonic functions on R, w,—ITw,= v}
= whet+ why, 0he=0du, in R and w}¥=dv, in R. Note that dv¥ (k=1, 2)
have in general a non vanishing period along a dividing cycle on
R (not dividing on k). Let D! (h=1, 2,---, p(n)) be annuili each of
which includes a contour T'(a) (1<h<a(n)) or o (a(n)<h<p(n)),
and we assume that D:NI,=¢ for all », k, and D:NDJ}=¢ for

)

h+j or n+m. We put D,= |JD%, and denote the harmonic

h=1

modulus of D} and D, by v, and »,, respectively. Also we denote
by U/(p)+iV(p) the function which maps D= DD,, onto the strip
domain 0 < U,<R= ‘i v,, 0<V,<2z. By the same way as in

n=1

Sainouchi (11) we get the following

Theorem 5,1. If R=S(I,, W) satisfies the conditions

(5, 2) Stmin vl = oo,

=1

then for {A;, B;} and o,, o, as in Lemma 3,4 there exists a regular
exhaustion {W,L} such that
m(%)
(@, o) =lm (5| of -] af o)
Byoo =1 Ag B; Aj Bji

{1
“ O
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where m(u) denotes the genus of W,L, WNoW.=Tuwa)Ucpu, Tula)
—UTY, 9,';:Spﬁdvo, dﬁzgrtdv’f and d;ﬂ:SPLdﬁ.

®

Proof. From (5,1) we can prove this Theorem quite similarly
as in Sainouchi (11) except that {W,} is not canonical, and so the
proof is omitted.

We say that R=S$(I,, W) belongs to S,(I,, W) if R satisfies
(5,2). Then WeOg, (Sainouchi (11)).

In the present step it is not sure that there exists a surface
of class Sz(lw, W) (or a surface of class SA(L,,, WeOkp)) which is
not of class Ogp,.

At the end, the auther wishes to express his hearty thanks
to Professors A. Kobori and Y. Kusunokif or their kind guidance
and their constant encouragement during his reserch.

Faculty of Technology
Doshisha University
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