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Introduction.

Let there be given an  n  ( _ 2)-dimensional complete and con-
nected Riemannian manifold M  o f  class C - . Throughout this
p ap e r , le t  a  geodesic be parametrized by a r c  length, unless
otherwise stated. A  geodesic loop is a geodesic segment for which
the initial and the final points coincide. Let 7 be a  geodesic loop
parametrized by arc  length s (0 . s 21) such that 7(0)=7(2/),
where self-intersections are permitted. 7 is said to be fundamental,
i f  there is no  parameter s  such that 7(s)= 7(0) fo r 0 Gs <21.
Throughout this paper, we mean by a geodesic loop a fundamental
geodesic loop . A  closed geodesic is by definition a  geodesic loop
whose in itia l tangent vector coincides with the final tangent
vecto r. In  connection with the study of homological properties
of compact irreducible symmetric spaces of rank one, Bott [3] 1 )

has studied the homological structure of Riemannian manifolds
M  having the following properties :
(a) there exists a point p  such that all geodesics starting from

p  are closed,
(b) all of these closed geodesics passing through the point p  are

of the same length,
( c )  all of these closed geodesics passing through the point p  are

simple and of the same index X.
Making use of the M orse theory of the loop space and the

* )  This work was supported by the Sakko-kai Foundation.
* * )  The helpful suggestions of the referee are grateful acknowledged.
1) Numbers in brackets refer to the Bibliography at the end of this paper.
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Leray spectral sequences of the two kinds, he has obtained the
following important Theorem A  concerning t h e  Riemannian
manifold with the properties mentioned above :

Theorem A .  I f  x is positive, then the integral cohomology ring
H*(M, Z) is  a  truncated Polynomial ring generated by an  element,
an d  if  X is equal to 0, then the universal covering m anifold of  M
is  a  homological sphere.

Studying the Riemannian manifold M  which satisfies only the
conditions (a) and (b), Samelson [15] has determined the cohomo-
logical structure of M  by a  different method from that followed
by Bott, that is , by constructing a  map of a real projective space
PR " onto M , which sends projective lines onto th e  geodesics
passing through p .  Summing up his results, we can state

Theorem B .  I f  M  is sim ply  connected, then H *(M , Z ) is  a
truncated Polynomial ring generated by an element, an d  if  M  is not
simply connected, then H*(M, Z) is isom orphic to H*(PR", Z).

On the other hand, Varga [ 1 8 ]  has recently proved

Theorem C . I f  a n  even dimensional simply connected homo-
geneous Riemannian manifold M satisf ies the conditions (a) and (b),
then M  is  homeomorphic to a  sym m etric space of  rank  one.

In  another paper [1 3 ] , Riemannian manifolds with certain
foliated structures are studied and we can show that such Riemanian
manifolds w ith  fo lia ted  structure satisfy th e  following two
conditions :
(d) there exists a point p  such that all geodesics starting from

p  are geodesic loops,
(e) all of these geodesic loops passing through the point p  are

of the same length.
The condition (d ) is slightly weaker than the condition (a),

but we can not make clear whether there exists any essential
difference between them o r n o t. Hatsuse and Takagi [ 7 ]  have
recently investigated a  two dimensional W*-manifold which is
one of examples of Riemanian manifolds with the conditions (d) and
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(e). Thus, it might be interesting to study the homological struc-
ture of the Riemannian manifold satisfying the conditions (d) and
(e). The purpose of this paper is to prove the following

Main Theorem. Let M  be an n ( 2)-dimensional complete and
connected Riemannian manifold satisfying the conditions (d) and (e).
(1) I f  M  is simply connected, then H*(M, Z) is a truncated Poly-

nomial ring generated by an element.
(2) I f  M  is not simply connected, then M  has the same homology

group as a real projective space PR" and the universal covering
manifold of M  is  homeomorphic to a sphere S".

The M ain Theorem will be proved by a  similar device to,
but slightly simpler than that followed by Bott, j. e., by making
use of the M orse theory of the path space and the Leray-Serre
spectral sequence of the fibre space.

In § 1, we investigate the fundamental properties of a Rieman-
nian manifold M  satisfying the conditions (d) and (e), and prove
some lemmas fo r later u s e .  I n  2  we shall prove the Main
Theorem for case (1), j. e., for simply connected M (Theorem 2. 2).
In  § 3 we shall prove the M ain Theorem for case (2), i. e., for
non-simply connected case (Theorem 3. 4). In  the last proof of
§ 3, we study the orientability of M  in  the case that M  is not
simply connected and obtain Theorem 3. 5.

§ 1. Preparations.

Throughout this paper, M  denotes a n  n ( 2)-dimensional
complete and connected Riemannian manifold satisfying the follow-
ing two properties :
(d) there exists a point p  such that all geodesics starting from

p  are geodesic loops,
(e) all of these geodesic loops passing through the point p  are

of the same length 21.
The fixed point p  in the condition (d) is called the basic point of
M  and 2/ in the condition (e) is called the loop length at p .  We
know many examples of such manifolds ; for instance, a symmetric
space of rank one, a real projective space and a complete Rieman-
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nian  m anifold satisfying t h e  W,, 0-condition." However, as
remarked in the introduction, w e do  not know whether there
exists any example showing that there exists at least one geodesic
loop which is not a  closed geodesic or not.

First of all, we prove the following

Lemma 1. 1. M  is simply connected  o r a  fundam ental group
7r1(M )  is  o f  order 2.

P ro o f .  I t  is easily seen that arbitrary two geodesic loops
in  th e  loop space 1-2 (p , p ) are (p , P)-homotopic, for all geodesics
issuing from p  are geodesic loops. Then the product 72*7

1
 o f  any

two geodesic loops 7, and 72 is null-homotopic, j. e.,
because we have

72*71^ '71-1*71— ei, ,

where ep  denotes the constant curve at p  and is the inverse
geodesic loop of of, defined by 71-

1(s)=7,(21 — s). For an arbitrary
geodesic segment 7  in  n ( p ,  p ) ,  y  is expressed a s  a  product of
geodesic loops 71, 72 ,•••, 7 k  a t p  as  follows :

'Y 7k*Th -1* • - * 71 •

When k is even, this implies that y  is null-homotopic, and when
k  is odd, it is easily seen that 7 is homotopic to the geodesic loop
71 . Hence y  is null-homotopic, or homotopic to a  geodesic loop.

A s a consequence of the facts proved above, we see that the
fundamental group 7r1(m , p )  at p  is equal to 0, if  a  geodesic loop
is null-homotopic, and that the group n.,(m ,  p )  is of order 2, if
there exists at least one geodesic loop which is not null-homotopic.
Thus Lemma 1. 1 is proved completely.

We have easily

Lemma 1. 2. For an arbitrary geodesic loop 7, y(21) is  a  con-
jugate point o f  7(0) along y  an d  with m ultiplicity  n -1 .

Lemma 1. 2 shows that all geodesics starting from p  have
conjugate po in ts. Therefore M  is compact.

2 ) O ts u k i [ 14] .
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Taking an arbitrary point x in M , we consider the path space
x). The geodesic segment a- in  n(p, x) is  sa id  to  b e  of

order k , i f  there exist k  real numbers s„ s„•••,s k  such that
0 < s, < s, < ••• < sk  < L(0-) and

0- (s1) = cr(s,) = • • • cr(sk) P

where L(0-) denotes the arc length of a.
We denote by 7, a  geodesic loop of index and by Ind y

the index of a geodesic segment y . Th u s w e have

Lemma 1. 3. For an  arbitrary  geodesic loop 7 , ,  there  is  a
Point q  o f 7„ dif ferent f rom  p such that, for an arbitrarily  given
integer k, there ex ist in n(p, q ) two and only two geodesic segments

and o f order k, whose indices satisfy

(1. 1)I n d  a- 1k ( n - 1 ) , Ind a-, k ( n - 1 ) +  .

Proo f. L et 7,(s 0 )  be a minimal point of p along y , .  We
choose a point q ,-7 ,(s i )  for a parameter s, satisfying 0 < s, <
and define two geodesic segments 7 1 a n d  7 2 joining p and q , by
71 (s )=7 ,(s ) for and 72(s)=7,(2/ —  s )  for
respectively. Then we easily see that Ind 7 ,-0  and Ind 72 = p, hold.

The index Ind a-  of a geodesic segment a  of order k in  fgp, q,)
satisfies th e  inequality Ind o-_>_k(n— 1), i f  0- has th e  property
cr(s)= 7 ,(s -2k l) for and Ind a  satisfies the inequality Ind 47

. k(n —1) + A , i f  a  has the property cr(s)— 7 2 (s — 2k1) for s
Thus, there exist necessarily at least two geodesic segments in
the path space t2(p, q1 )  satisfying (1. 1).

Let U ' be a  spherical neighbourhood centered at p and with
radius 8= d(p, c(p)), where c(p) is a  cut locus of p .  F or any
point x in the intersection of y, and U', geodesic segments joining
p and x different from y, are not minimal because of the property
of the cut locus, and hence they intersect the complement of U'.
This shows that their lengths are not less than 8 and not greater
than 2/-8.

We now define a map f  of [8, 2/-8] x Sp (1) into M  by f(s, u)
=exp p (su), where Sp (1 ) is the unit sphere centered at the origin
0  o f th e  tan gen t space T (M ) p . Since f  is continuous and
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[8, 2/-8] x S p (1 )  i s  compact, the image Img f  is closed. Taking
account of the condition (e ) that all geodesic loops at the basic
point p  are of the same length 21, we see that p  is not contained
in the image Img f .  Thus p  has a  neighbourhood U " such that
U"n Img f  = 4 ).  If we take a point q=7,(s 2) arbitrarily in U" — { p } ,
then any geodesic segment 0- joining p  and q  which is a part of
a geodesic loop satisfies the inequality

L(0-) <  8 or L(Œ) > 2/ — 8 .

When L(0-)<8, o- i s  minimal and therefore o- coincides with 71.
When L(0-)>2l— 8, the length of a complement of 0- in the geodesic
loop is less than 8 and hence 0- coincides with 7 2 . Consequently
there exist two and only two geodesic segments 0-, and o-, of order
k in n (p , q ) such that 0-, and 0-, satisfy the inequalities (1. 1).

Thus Lemma 1. 3 is proved completely.

Remark 1. 1. Taking account of Lemma 1. 3, we show that
i f  each point in M  i s  basic then all geodesics in M  are simply
closed.

For a geodesic loop y  of index w e fix  a  point q = p.(s2)
satisfying the properties o f Lemma 1. 3. We have to show now
th at the path space n (p , q )  is non-degenerate, since we shall
develop discussions in the sense of the Morse theory in 1-1(p, q).
We suppose that there exists a  geodesic segment a o f order k in
n(p, q ) at which the Hessian of the energy function is degenerate.
T hen  there is a non-zero Jacobi field X (s ) along 0- such that
X (0 )=  0  and X(L(Œ))= 0. From the property o f Jacobi fields, X(s)
is  orthogonal to the tangent vector 0-'(s) o f  0- a t  a (s ). On the
other hand, we see by virtue of Lemma 1. 2 that there exist n -1
linearly independent Jacobi fields Xl(s), X 2 (s) ,•••, X" - 1 (s )  along ()-
such that

X 1(2j1) = )0(2j1) = ••• = X' 1(2j1) = 0  f o r  j  =  0, 1, 2, ••• .

Thus each of Jocobi fields X 2(s), X 2 (s) ,•••, X ' 1(s ) is  orthogonal to
0-'(s). Consequently X(s) is expressed as a linear combination of
Xl(s), X 2 (s) ,•••, X ' 1(s). Thus we get X(2k1)= 0  and hence we see
that q  i s  a  conjugate point of p  along a  geodesic segment o - ,
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defined by 0-1( s ) - 0 - ( s )  fo r  2 k l-s L (0 -). This geodesic segment
o-, i s  a  part o f a  geodesic loop . Therefore the Hessian of the
energy function at 0-, must be degenerate. This is  a contradic-
tion. Thus 1-2(p, q ) should be non-degenerate.

By choosing the point q  fixed, there exist two and only two
geodesic segments 0-, and 0-2 of an arbitrary order k  in the path
space wp, q ) such that the index Ind o-, is greater than or equal
to  k(n — 1) and the index Ind a-, is greater than o r  equal to
k(n —1)+ it .  Accordingly, the index Ind o- of any geodesic segment
o- in n(p, q ) satisfies one of the following relations :

Ind 0-= 0, Ind o- = /1 , Ind cr _n—  1, Ind Gr.._n — 1 +  Ind 0- 2(n — 1) ,

Ind 2(n — 1)+ ,

and for each of the relations above there exists a unique geodesic
segment satisfying that relation. We denote the indices of all
geodesic segments in 1-1(p, q )  b y  0, p ,„ p 2 , • • •  and suppose that
they are arranged in such a way that

where A ,  is greater than or equal to n -1 .
B y m eans of the M orse theory o f th e  path space, since

n(p, q) is non-degenerate, it has the same homotopy type as that
of a  C W-complex A  obtained by attaching a p,-cell e l ,  a /12-cel1
e2 ,• • • to  Elr(p, q ), where irp ,  q )  i s  a certa in  set o f piecewise
differentiable curves belonging to s-gp, q). A s  is well known, a
cell decomposition o f  A  is  g iv e n  b y  {e°, e 2 ,  • • • } .  Now we
shall prove

Lemma 1. 4. If  there is a  geodesic loop at p of  index  0, then
NI is not simply connected.

P ro o f. First we consider the case 3. Let y o be a geodesic
loop of index 0. T h e  cell decomposition of the C W-complex A
is given by {e°, e°, e2, e3 ,• • •} , and p2 is  n o t less th an  2 .  For a
0-chain group and a 1-chain group o f A , we have

C0 (A ) =  Ze° + Ze° , C1(A) 0  ,
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which implies that the 0-dimensional homology group 110(A ) of
A  is given by

Ho(A) = Z + Z .

Since S2(p,q) an d  A  a re  o f  th e  same homotopy type and the
homology group is homotopy invariant, we get

H 0(12(P, q)) = Z+Z .

This means that M  is not simply connected. In fact, suppose
that M  is simply connected, then û(p, q ) is  pathwise connected
and hence it is connected. Thus we get Ho (n (p , q))= Z . This is
a contradiction.

In  the case n = 2 , b y  the same device a s  that followed by
Hatsuse and Takagi [7 ]  in  a  two dimensional W*-manifold (see
Remark 1. 3 below for the definition o f  a  W*-manifold), we can
prove that M  is  n o t orientable. M  is therefore not simply con-
nected. Thus Lemma 1. 4 is proved completely.

R em ark  1. 2. If M  is simply connected, then each geodesic
loop at p  is  of positive index.

Remark 1. 3. In Lemma 1. 4, we have assumed the existence
o f  a  geodesic loop at p  of index  O. H o w ever, H atsuse and
Takagi [ 7 ]  have introduced the notion of a W*-manifold, which
i s  an 2)-dimensional complete an d  connected Riemannian
manifold satisfying the property that the first conjugate locus of
p consists of a single point p  and all geodesic loops at p  are of
the sam e length . It is easily  seen  that a  Riemannian manifold
is  a  W*-manifold if and only if  it satisfies the conditions (d), (e)
and the condition that all geodesic loops at p  are of index O.

They have proved that any W*-manifold is not simply con-
nected . In their proof for the case n =2 , the following properties
of W*-manifolds play essential roles: a  W*-manifold satisfies the
conditions (d ) and (e ), and th at th ere  is  a t least one geodesic
loop at p  of index 0.
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§ 2. Proof of Main Theorem: the case (1).

In this section, w e assume that M  denotes an n(_. 2)-dimen-
sional complete, simply connected and connected Riemannian
manifold satisfying the conditions (d) and (e). Denote by E (p , it i)
the space o f a ll piecewise differentiable curves having the fixed
point p  as their initial points. Then, as is well known, the set
(E(P, M ), M , f2 )  is  a fibre space in the sense of Serre, where 1-2,
denotes the fibre. We shall prove

Proposition 2. 1. I f  M  is simply connected, then the index of
each geodesic loop at p  is  Positive and less than n.

P roo f. Since M  is sim ply connected, the indices of all
geodesic loops at p  are positive, as a consequence of Lemma 1. 4.

Suppose that there is a geodesic loop 7,, at p  of index X . n.
For a fixed point q on yx given by Lemma 1. 3, the non-degenerate
path space n(p, q) has the geodesic segments of index 0, X„ X„•..
such that

n _-< 21/4.1 .- X 2  . -  • • •  •

Thus n(p, q ) has the same homotopy type as a CW-complex A
which has a  cell decomposition (e°, eh', e4 2 ,• • •} . Therefore A  is
(n-1)-connected and so is n(p, q). It is well known that mi (M)

q )) for j . .  1. Consequently we obtain that M
i s  n-connected, and in particular, w e get 71- (M )= 1/(M )= 0 by
means of Hurewicz isomorphism theorem, which contradicts to
H (M )= Z .  Consequently, there is no geodesic loop ryx of index

.n.
W e state the following

Theorem 2. 2. I f  M  is simply connected, then there is a posi-
tive integer x  such that the integral cohomology ring  H *(M , Z ) is
a truncated Polynomial ring generated by an element of dimension
x, + 1. Thus

Ilka+i)(M).-=' Hk(x+ 1)(M ) =  Z  f o r  k = 0, 1, 2 ,—, m

and the other (co)homology groups are zero, where n is necessarily
equal to m(X+1).
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P roof. The case n = 2  is obvious, and we may restrict our-
se lv e s  to  the case From  Proposition 2. 1, th e r e  is  a
geodesic loop 7,, of index X such that O<X For a fixed
point q-7 ,,(s 2)  in Lemma 1. 3, the indices of geodesic segments
contained in n(p, q) are listed up as follows:

X j  X 2  X 3  , • . .

where X I =X 1  and  n-..X,2 2k.3 - •••. Consequently, a  cell
decomposition of a  CW-complex A, which has the same homotopy
type as n(p, q), is g iven  by {e°, e

Xl,  e x2,...},
First we consider the case x =n —1. In this case it is easily

seen that A  i s  (n -2 )-c o n n e c te d . It fo llow s that M  i s  (n— 1)-
connected as in the proof of Proposition 2. 1. Obviously H ( M )
= H "(M )= Z . Then the theorem is proved for this case.

Next we consider the case X <n —1. Then we have easily

[P (c2) = H i(A ) =  Z
o

fo r  j  = 0, X
f o r  j  0, X  and j  <  n .

Now the theorem is a direct consequence of the following

Lemma 2. 3. I f ,  in  a  sim ply  connected and connected to-
pological space M , the j-th cohom ology group 1-17(n) of a path space
11 o f M  satisf ies the above condition for O < X < n-1 , then there is
an element u of H 1(M ) such that the cup-product with the element
u  induces an isomorphism Hi(M)-- ,--113 - '(M ) f o r j  +1).

P r o o f .  Consider the cohomology spectral sequence {E }
associated with the fibre space (E(p, M ), M , n ) .  (For the details
see [ 1 6 ] . )  By the fundamental theorem o f [ 1 6 ]  we get

=  HP(M , Hq(S1)) = HP(M )0Hq41)+Tor (HP'(M ),1 -1'(Ç2))
f o r  q < n .

By means o f th e assumption, we have .E.° = 0  i f  q*O , x and
q < n ,  a n d  th e  s a m e  is  t r u e  fo r  E;".•°, r 2. Then d r :

Er. g - r  4 .1  i s  trivial if r* x  +1 , (p , q)* (0 , n) and p + q n .  From
the fundamental property  H ( E ) =  E 1 of the spectral sequence
it fo llow s that E r 7 =E;; ...°1 and Ez,:.,°2 =E t'q  i f  (p , q)*(0 , n) and
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p + q n .  Since the total space is contractible, we have E!)..:7 = 0
for (p, q)* (0, 0). Consider the homomorphisms

= d x + i : E 1E l + 1 + 1 '° .

Since each element of EV+ 1+" is a  c/À + 1 -cyc1e, we have
Img dM=EV A + 1 •°= 0  fo r  0< j+X +1 that is, d M  i s  an
epimorphism for 0<i +X +1 W e have also, for j + X +1 n,
Ker dj,•A I dx ,,ET 1 - 1 2 A =H(a,A i )=E .

+A2 -= O. Here E 2 À  =  0  since
2x 0 , X  and j— X— 1 <0 if 2x Thus we get Ker c/M = 0, and

is a  monomorphism for j+ X +1 Consequently we have
obtained an isomorphism

= = El+?,+1,0 f o r  0 <  j+ X + 1  n .

L e t  y  b e  a  generator o f  Hx(S1)=Z. Using the identification
= HP(M)011q(11)+ Tor (HP+1 (M ), Hq((1)), w e  s e e  th a t  the

formula dx ,(x 0y )=4)* (x )01  defines an isomorphism

H A M ) Hi+A -"(M ) for 0 j  n— (X +1) .

Put u=95*(1) in H ( M ) .  By means of the derivativity of dx+1,
w e  h a v e , f o r  xEHi(M ), dx+1(0100=dx-p1((x0 1 )(1 0 v ))=( - 1 )x ± '
(x01)d x , 1(1 0 y )= (-1 ) '(x  U  u )0 1 . Thus we obtain ( -1)'+'4)*(x)
= x U u  for 0 (X+ 1), and the lemma is proved.

This completes the proof of Theorem 2. 2.

Remark 2. 1. When x = n - 1 ,  it follows from  Wang exact
sequence that H 5 (S2)— Z for j= 0, n-1 , 2 (n -1 ), •  •  and Hi (n )- 0 for
other j. Thus we get X,= i(n— 1) for i = 1, 2, 3, ••• . When X < n— 1,
w e  g e t n= m(x +1) an d  further computations in the spectral
sequence show that 1-/1 (2)= Z for 0 and j O, X(mod n+X —  1) and
l i f (n)— 0  for the other values of j. Thus we have X 2 i  i(n +X -1 )
for i = 1, 2, 3, • • • and X 2 1  X ± i ( n + x - 1 )  for i = 0, 1, 2, • • • .

Remark 2. 2. We assume that n  is greater than or equal to
3. If there is a  geodesic loop 7,, of positive index X in  n(p, q),
then all geodesic loops at p are of the same index X .  In fact,
if we suppose that there exists a  geodesic loop 7 ,  of index ,u,* x ,
then we get H , 1(M ) =Z  by developing a  similar discussion con-



216 Hisao Nakagawa

cerning as those developed in the proof of Theorem 2. 2. This
contradicts Theorem 2. 2.

Remark 2. 3. According to the cohomology theory (Adams
[1], Adem [2] and Milnor [1 0 ] ) ,  if the integral cohomology ring
is  a truncated polynomial ring generated by a unique element of
dimension X + 1, then X is necessarily equal to 1, 3, 7 o r  n - 1 ,
where n  should be equal to 16 in the case x = 7 . In particular,
when n  is odd, x  must be equal to n -1 .

When n ( .5 )  is odd, M  is  a homological sphere and hence a
homotopical sphere, because o f  X= n — 1. Taking account of
Smale's Theorem on the generalized Poincaré conjecture, we see
that M  is  homeomorphic to a sphere, i f  n(.. 5) is odd.

Remark 2. 4. As examples of simply connected Riemannian
manifolds satisfying the conditions (d) and (e), w e have sym-
metric spaces o f rank one, that is,
(1) the sphere S" (n 2),
(2) the complex projective space PC" (n= 2rn 4),
(3) the quaternion projective space PQ" (n=4m _8),
(4) the Cayley projective space PCa" (n=16).
These spaces have a truncated polynomial ring generated by a
unique element as their integral cohomology ring.

Eells and Kuiper [5]  h a v e  recently constructed compact
sim ply connected manifolds w hich  h ave  th e  same integral
cohomology ring as the quaternion or the Cayley projective space,
but, whose homotopy type are different from the corresponding
projective space.

§ 3. Proof of Main Theorem: the case (2).

L e t M  b e  an  n( . 2)-dimensional complete and connected
Riemannian manifold satisfying the conditions ( d )  a n d  (e )  men-
tioned in the section 1.

First of all, we shall prove
Lemma 3. 1. I f  M  is not sim ply  connected, then there is no

geodesic loop at p  of Positive index.

P roo f. B y  v irtu e  o f  Lemma 1. 1, the fundamental group
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7r1 (M )  o f M  is  o f order 2. Let /1-4. b e  a n  universal covering
manifold of M and n-- 1 (p)—  {fi„ P-

2 }  the inverse image of p  under
the covering map 7r. Since all geodesic loops at p  in M are (p , p ) -
homotopic to each other and none of them is null-homotopic, the
locus of the final points of their lifts starting from fi, (from fi,)
in 17ï consists of the single point fi, (of the single point fi i ). Thus
all geodesics starting from a re  geodesic loops at and have
the same length 41. Consequently ra  satisfies the conditions (d)
and (e) such that two points a n d  a r e  b a s ic ,  a n d  t h e  loop
length at or

 2
 is equal to 41.

Suppose that there is a  geodesic loop ry, at p  of positive
index X .  Let be th e  lift o f yx starting from fi,. Then an
index of the extended geodesic loop of at fi, is not less than
n-1+  X, that is , not less than n. This contradicts Proposition
2. 1, i.e., the fact that there is no geodesic loop at in /q, whose
index is greater than or equal to n. Thus all geodesic loops at
p  in M  must be of index O. This completes the proof.

Combining Lemmas 1. 4 and 3. 1 together, we get

C o ro lla ry  3. 2 . I f  th e re  is  a  geodesic loop of index 0, then
all geodesic loops at p  are of index O.

R e m a r k  3. 1 . Taking account of Lemma 1. 4 and Corollary
3. 2, we see that M  is simply connected if and only if all geodesic
loops at p  in M are of positive index. That is to say, the funda-
mental group of M  is of order 2 if and only if all geodesic loops
at p  in  M  are of index O. By means of Remark 2. 2, if  there is
a  geodesic loop at p  of positive index X, then all geodesic loops
at p  are of the same index X, that is, an index of M  at p  in the
sense of Bott is equal to X. Thus a  theorem due to Samelson
is a  generalization of a  theorem due to Bott.

A s mentioned in the section 1, a W *-m anifold introduced
by Hatsuse and Takagi is by definition a complete and connected
Riemannian manifold satisfying the conditions (d), (e) and the
condition that all geodesic loops at p  are of index O. Hatsuse
and Takagi [7 ]  has shown that a  two-dimensional W*-manifold
is homeomorphic to a  real projective space PR 2 . W e have now
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the following Corollary 3. 3 from Lemma 3. 1 or Corollary 3. 2.

Corollary 3. 3. I f  M  is not simply connected, then M  is  a
W * -manif old.

I f  there is a  geodesic loop at p  of index  0, then M  is a W *-
manifold.

In  particular, if  M  is not simply connected f o r n =2 , then M
is homeomorphie to PR'.

Next we shall prove the latter half of M ain Theorem. We
verify the following

Theorem 3. 4. I f  M is not simply connected, then M  has the
same homology group a s  PR" and 11-1  is  homeomorphic to a  sphere
Sn.

Proo f. First we shall prove that fa is homeomorphic to Sn.
Let {fi„ fi,} be the inverse image of p  under the covering map 7r.
Because the universal covering manifold /a satisfies the conditions
(d) and (e), the indices of all extended geodesic loops at in  -M"
are less than or equal to n - 1 ,  as a consequence of Proposition
2 .1 . By virtue o f Lemma 3.1, all geodesic loops at p  in M  are
of index 0, and therefore the lifts of them starting from fi, are
of index O. T h u s  the final point of any lift is a first conjugate
point of along the lift. A s  it is already seen that the locus
of the final points of all lifts consists of a single point 1-32 , we can
take Q ( A ) = 2 ,  w h e re  Q(fii) denotes the locus of first conjugate
points of along all geodesics issuing from A. Similarly we
get Q(132 ) — fi i . Since the projection of a minimal geodesic segment
joining f ), a n d  2  in /a is a  geodesic loop at p  in M , the length
of the minimal geodesic segment is equal to 21,  and is equal to
that of all lifts of geodesic loops at p .  Hence the cut locus C(731 )
of consists o f /52 and C(A) consists of fi,. Thus la is home-
omorphic to S .

Let f  be a homeomorphism o f S " onto M. The sphere may
be regarded as an universal covering manifold of M  with the
covering map p = 7 r o f  and the fundamental group ?r1(M ) is of order
2. Making use of the spectral sequence of such covering manifold
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and the homology groups of the cyclic group of order 2, we can
precisely calculate the homology group of M  (cf. H u  [ 8 ] ) .  We
have now the following results:

Hi (M )=  0 f o r  j ;  even, 2  j  n ,
Hi (M )=  Z , f o r  j ;  odd, j  n - 1,
H (M ) =  Z i f  n is odd.

W e shall sketch briefly the proof of the relations mentioned
above. B y the covering space theorem of the homotopy theory,
we get

7ri (M ) =  0 f o r  2  j  n - 1.

Taking account of the above homotopical structure of M , we have
in the spectral sequence of the covering manifolds

HAM ) = H 1 (Z 2 ) f o r  1  j  n - 1 ,

where H; (4 )  denotes the j-th homology group of the cyclic group
Z , of order 2 .  On the other hand, taking account of the asser-
tion given by the complete computation of the homology groups
H (Z ,), we have

H1 (Z 2) =  0 fo r  j ;  even, j  2,
HAZ,)= Z, f o r  j ;  odd, j  1 .

After determining the orientability of M , the n-th homology
group H (M )  o f M  is  g iven . T hus the homology groups of M
are obtained.

Concerning the orientability of M , w e  se e  [ 8 ]  th a t  the
following theorem holds, because the sphere Sn i s  the universal
covering manifold of M  and the fundamental group is the cyclic
group of order 2.

We can state

Theorem 3. 5. I f  M  is not simply connected, then M  is
orientable for odd n, and M  is not orientable for even n.

Remark 3. 2. A s  a  consequence o f  Theorem 3. 4, we can
prove the fact th at the integral cohomology ring H *(M , Z ) is
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isomorphic to H *(P le, Z ), and m oreover it is obvious that the
third assertion of Corollary 3 . 3  holds.

Tokyo University of Agriculture and Technology
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