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Introduction.

Let there be given an »n (=2)-dimensional complete and con-
nected Riemannian manifold M of class C~. Throughout this
paper, let a geodesic be parametrized by arc length, unless
otherwise stated. A geodesic loop is a geodesic segment for which
the initial and the final points coincide. Let v be a geodesic loop
parametrized by arc length s (0<s=<2/) such that v(0)=+(2/),
where self-intersections are permitted. « is said to be fundamental,
if there is no parameter s such that v(s)=v(0) for 0 <s <2/
Throughout this paper, we mean by a geodesic loop a fundamental
geodesic loop. A closed geodesic is by definition a geodesic loop
whose initial tangent vector coincides with the final tangent
vector. In connection with the study of homological properties
of compact irreducible symmetric spaces of rank one, Bott [3]"
has studied the homological structure of Riemannian manifolds
M having the following properties :

(a) there exists a point p such that all geodesics starting from

p are closed,

(b) all of these closed geodesics passing through the point p are
of the same length,
(c) all of these closed geodesics passing through the point p are

simple and of the same index A.

Making use of the Morse theory of the loop space and the
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Leray spectral sequences of the two kinds, he has obtained the
following important Theorem A concerning the Riemannian
manifold with the properties mentioned above :

Theorem A. If ) is positive, then the integral cohomology ring
H*(M, Z) is a truncated polynomial ring generated by an element,
and if \ is equal to O, then the universal covering manifold of M
is a homological sphere.

Studying the Riemannian manifold M which satisfies only the
conditions (a) and (b), Samelson [15] has determined the cohomo-
logical structure of M by a different method from that followed
by Bott, that is, by constructing a map of a real projective space
PR” onto M, which sends projective lines onto the geodesics
passing through p. Summing up his results, we can state

Theorem B. If M is simply connected, then H*(M, Z) is a
truncated polynomial ring generated by an element, and if M is not
simply connected, then H*(M, Z) is isomorphic to H*(PR" Z).

On the other hand, Varga [18] has recently proved

Theorem C. If an even dimensional simply connected homo-
geneous Riemannian manifold M satisfies the conditions (a) and (b),
then M is homeomorphic to a symmetric space of rank one.

In another paper [13], Riemannian manifolds with certain
foliated structures are studied and we can show that such Riemanian
manifolds with foliated structure satisfy the following two
conditions :

(d) there exists a point p such that all geodesics starting from

p are geodesic loops,

(e) all of these geodesic loops passing through the point p are
of the same length.

The condition (d) is slightly weaker than the condition (a),
but we can not make clear whether there exists any essential
difference between them or not. Hatsuse and Takagi [7] have
recently investigated a two dimensional W#*-manifold which is
one of examples of Riemanian manifolds with the conditions (d) and
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(e). Thus, it might be interesting to study the homological struc-
ture of the Riemannian manifold satisfying the conditions (d) and
(e). The purpose of this paper is to prove the following

Main Theorem. Let M be an n (=2)-dimensional complete and
connected Riemannian manifold satisfying the conditions (d) and (e).
1) If M is simply connected, then H*(M, Z) is a truncated poly-

nomial rving generated by an element.

@) If M is not simply connected, then M has the same homology
group as a real projective space PR" and the universal covering
manifold of M is homeomorphic to a sphere S™.

The Main Theorem will be proved by a similar device to,
but slightly simpler than that followed by Bott, i.e., by making
use of the Morse theory of the path space and the Leray-Serre
spectral sequence of the fibre space.

In 81, we investigate the fundamental properties of a Rieman-
nian manifold M satisfying the conditions (d) and (e), and prove
some lemmas for later use. In §2 we shall prove the Main
Theorem for case (1), i.e., for simply connected M (Theorem 2. 2).
In §3 we shall prove the Main Theorem for case (2), i.e., for
non-simply connected case (Theorem 3.4). In the last proof of
§3, we study the orientability of M in the case that M is not
simply connected and obtain Theorem 3.5.

§1. Preparations.

Throughout this paper, M denotes an #n (=2)-dimensional
complete and connected Riemannian manifold satisfying the follow-
ing two properties :

(d) there exists a point p such that all geodesics starting from

p are geodesic loops,

(e) all of these geodesic loops passing through the point p are

of the same length 2/.

The fixed point p in the condition (d) is called the basic point of
M and 2/ in the condition (e) is called the loop length at p. We
know many examples of such manifolds ; for instance, a symmetric
space of rank one, a real projective space and a complete Rieman-
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nian manifold satisfying the W, ,-condition.” However, as
remarked in the introduction, we do not know whether there
exists any example showing that there exists at least one geodesic
loop which is not a closed geodesic or not.

First of all, we prove the following

Lemma 1.1. M is simply connected or a fundamental group
(M) is of order 2.

Proof. It is easily seen that arbitrary two geodesic loops
in the loop space Q(p, p) are (p, p)-homotopic, for all geodesics
issuing from p are geodesic loops. Then the product vy, of any
two geodesic loops v, and v, is null-homotopic, i.e., vxv,~e,,
because we have

YHVI~YL KV I~E,,

where e, denotes the constant curve at p and v, is the inverse
geodesic loop of v, defined by v, (s)=v,(2/—s). For an arbitrary
geodesic segment v in Q(p, p), v is expressed as a product of
geodesic loops v,, 7., v, at p as follows:

Y = VYRRV ek kY.

When k is even, this implies that ¢ is null-homotopic, and when
k is odd, it is easily seen that vy is homotopic to the geodesic loop
v.. Hence v is null-homotopic, or homotopic to a geodesic loop.

As a consequence of the facts proved above, we see that the
fundamental group =,(M, p) at p is equal to 0, if a geodesic loop
is null-homotopic, and that the group =,(M, p) is of order 2, if
there exists at least one geodesic loop which is not null-homotopic.
Thus Lemma 1.1 is proved completely.

We have easily

Lemma 1.2. For an arbitrary geodesic loop vy, v(2l) is a con-
jugate point of v(0) along v and with multiplicity n— 1.

Lemma 1.2 shows that all geodesics starting from p have
conjugate points. Therefore M is compact.

2) Otsuki [14].
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Taking an arbitrary point x in M, we consider the path space
Q(p, x). The geodesic segment o in Q(p, x) is said to be of
order k, if there exist k real numbers s,, s,,:-,s, such that
0<s, <85, <+ <8, < L(o) and

a(s)) = o(s;) == a(sy) = P,

where L(o) denotes the arc length of o.
We denote by v, a geodesic loop of index u, and by Indy
the index of a geodesic segment yv. Thus we have

Lemma 1.3. For an arbitrary geodesic loop ., there is a
point q of v. different from p such that, for an arbitrarily given
integer k, there exist in QU p, q) two and only two geodesic segments
o, and o, of order k, whose indices satisfy

(1.1) Indo, = k(n—1), Indo,=kn—1)+p.

Proof. Let v.(s,) be a minimal point of p along v.. We
choose a point g,=wv.(s,) for a parameter s, satisfying 0<s, <s,,
and define two geodesic segments v, and v, joining p and ¢, by
v(S)=vu(s) for 0<s<s,, and 7v,(s)=7v.(2/—s) for 0<s<2/—s,,
respectively. Then we easily see that Ind v,=0and Ind v,= x hold.

The index Ind o of a geodesic segment o of order & in Q(p, q,)
satisfies the inequality Ind o=k(n—1), if ¢ has the property
o(s)=rv,(s—2kl) for s=2k/, and Ind o satisfies the inequality Ind o
>k(n—1)+u, if o has the property o(s)=rv,(s—2k[) for s=2kl.
Thus, there exist necessarily at least two geodesic segments in
the path space Q(p, q,) satisfying (1.1).

Let U’ be a spherical neighbourhood centered at p and with
radius 8=d(p, C(p)), where C(p) is a cut locus of p. For any
point x in the intersection of v, and U’, geodesic segments joining
p and x different from v, are not minimal because of the property
of the cut locus, and hence they intersect the complement of U’.
This shows that their lengths are not less than § and not greater
than 2/—38.

We now define a map f of [, 2/—8]xS,(1) into M by f(s, u)
=exp,(su), where S,(1) is the unit sphere centered at the origin
0 of the tangent space T(M),. Since f is continuous and
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[8,2/—8]xS,(1) is compact, the image Img f is closed. Taking
account of the condition (e) that all geodesic loops at the basic
point p are of the same length 2/, we see that p is not contained
in the image Img f. Thus p has a neighbourhood U” such that
U’'NImg f=¢. If we take a point g =ry,(s,) arbitrarily in U’ — { p},
then any geodesic segment o joining p and ¢ which is a part of
a geodesic loop satisfies the inequality

Lig) < § or L(c) > 2/-3.

When L(c)<3$, ¢ is minimal and therefore o coincides with «,.

When L(c)>2[-3, the length of a complement of o in the geodesic

loop is less than § and hence o coincides with ,. Consequently

there exist two and only two geodesic segments ¢, and o, of order

k in Q(p, ¢) such that o, and o, satisfy the inequalities (1.1).
Thus Lemma 1.3 is proved completely.

Remark 1.1. Taking account of Lemma 1.3, we show that
if each point in M is basic then all geodesics in M are simply
closed.

For a geodesic loop . of index p, we fix a point g=1.(s,)
satisfying the properties of Lemma 1.3. We have to show now
that the path space Q(p, ¢) is non-degenerate, since we shall
develop discussions in the sense of the Morse theory in Q(p, q).
We suppose that there exists a geodesic segment o of order % in
Q(p, q) at which the Hessian of the energy function is degenerate.
Then there is a non-zero Jacobi field X(s) along o such that
X(0)=0 and X(L(s))=0. From the property of Jacobi fields, X(s)
is orthogonal to the tangent vector ¢’(s) of o at o(s). On the
other hand, we see by virtue of Lemma 1.2 that there exist n—1
linearly independent Jacobi fields X'(s), X%s),--, X" '(s) along o
such that

X' (21) = X¥2jl) == X*'2jl) =0 for j=0,1,2 .

Thus each of Jocobi fields X'(s), X*s),---, X" (s) is orthogonal to
a’(s). Consequently X(s) is expressed as a linear combination of
X'(s), X*s), -, X"'(s). Thus we get X(2k/)=0 and hence we see
that ¢ is a conjugate point of p along a geodesic segment o,
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defined by o,(s)=0(s) for 2k/<s<L(s). This geodesic segment
o, is a part of a geodesic loop. Therefore the Hessian of the
energy function at o, must be degenerate. This is a contradic-
tion. Thus Q(p, ¢) should be non-degenerate.

By choosing the point ¢ fixed, there exist two and only two
geodesic segments o, and o, of an arbitrary order & in the path
space Q(p, q) such that the index Ind o, is greater than or equal
to kn—1) and the index Ind s, is greater than or equal to
k(n—1)+p. Accordingly, the index Ind ¢ of any geodesic segment
o in Q(p, q) satisfies one of the following relations :

Inde=0, Indo=py, Inde=n—1, Indozn—1+4, Ind 6=22(n—-1),
Ind o=22(n—1)+p ,,

and for each of the relations above there exists a unique geodesic
segment satisfying that relation. We denote the indices of all
geodesic segments in Q(p, ¢) by O, u,, u,,-- and suppose that
they are arranged in such a way that

O§.U'1§ﬂ'z§”‘

b

where u, is greater than or equal to n—1.

By means of the Morse theory of the path space, since
Q(p, q) is non-degenerate, it has the same homotopy type as that
of a CW-complex A obtained by attaching a u,-cell e, a u,~cell
e’z .-« to Q7(p, q), where Q7(p, q) is a certain set of piecewise
differentiable curves belonging to Q(p, ¢). As is well known, a
cell decomposition of A is given by {¢, e, e, ---}. Now we
shall prove

Lemma 1. 4. If there is a geodesic loop at p of index O, then
M is not simply connected.

Proof. First we consider the case n=3. Let v, be a geodesic
loop of index 0. The cell decomposition of the CW-complex A
is given by {¢, ¢, e*2, e*s,---}, and u, is not less than 2. For a
0-chain group and a 1-chain group of A, we have

C(A) = Ze+ 2, C(A) =0,
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which implies that the O-dimensional homology group H,(A) of
A is given by

H(A)=Z+Z.

Since Q(p,g) and A are of the same homotopy type and the
homology group is homotopy invariant, we get

HXp, 9) = Z+Z.

This means that M is not simply connected. In fact, suppose
that M is simply connected, then Q(p, ¢) is pathwise connected
and hence it is connected. Thus we get H,(Q(p, ¢))=Z. This is
a contradiction.

In the case =2, by the same device as that followed by
Hatsuse and Takagi [7] in a two dimensional W*-manifold (see
Remark 1.3 below for the definition of a W*-manifold), we can
prove that M is not orientable. M is therefore not simply con-
nected. Thus Lemma 1.4 is proved completely.

Remark 1.2. If M is simply connected, then each geodesic
loop at p is of positive index.

Remark 1.3. In Lemma 1.4, we have assumed the existence
of a geodesic loop at p of index 0. However, Hatsuse and
Takagi [7] have introduced the notion of a W*-manifold, which
is an n(=2)-dimensional complete and connected Riemannian
manifold satisfying the property that the first conjugate locus of
p consists of a single point p and all geodesic loops at p are of
the same length. It is easily seen that a Riemannian manifold
is a W*-manifold if and only if it satisfies the conditions (d), (e)
and the condition that all geodesic loops at p are of index O.

They have proved that any W*-manifold is not simply con-
nected. In their proof for the case n=2, the following properties
of W*-manifolds play essential roles: a W*-manifold satisfies the
conditions (d) and (e), and that there is at least one geodesic
loop at p of index O.
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§2. Proof of Main Theorem: the case (1).

In this section, we assume that M denotes an n(=2)-dimen-
sional complete, simply connected and connected Riemannian
manifold satisfying the conditions (d) and (e). Denote by E(p, M)
the space of all piecewise differentiable curves having the fixed
point p as their initial points. Then, as is well known, the set
(E(p, M), M, Q) is a fibre space in the sense of Serre, where Q
denotes the fibre. We shall prove

Proposition 2.1. If M is simply connected, then the index of
each geodesic loop at p is positive and less than n.

Proof. Since M is simply connected, the indices of all
geodesic loops at p are positive, as a consequence of Lemma 1. 4.

Suppose that there is a geodesic loop v, at p of index A=n.
For a fixed point ¢ on v, given by Lemma 1. 3, the non-degenerate
path space Q(p, q) has the geodesic segments of index 0, A, A, ,--
such that

NENMSENS -

Thus Q(p, q) has the same homotopy type as a CW-complex A
which has a cell decomposition {¢’, e, ¢*z,:--}. Therefore A is
(n—1)-connected and so is Q(p, ¢). It is well known that = ;(M)
~m; (Q)~n;_ ,(Qp, q)) for j=1. Consequently we obtain that M
is n-connected, and in particular, we get =, M)=H,(M)=0 by
means of Hurewicz isomorphism theorem, which contradicts to
H, (M)=Z. Consequently, there is no geodesic loop v, of index
=n.

We state the following

Theorem 2.2. If M is simply connected, then therve is a posi-
tive integer N such that the integral cohomology ving H¥(M, Z) is
a truncated polynomial ring generated by an element of dimension
A+1. Thus

H. o ox(M) =~ HFO(M) = Z for £k=0,1,2,---,m

and the other (co)homology groups arve zero, where n is necessarily
equal to m(\n+1).
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Proof. The case n=2 is obvious, and we may restrict our-
selves to the case »#=3. From Proposition 2.1, there is a
geodesic loop v, of index A such that O<ix<z—1. For a fixed
point g=1,(s,) in Lemma 1. 3, the indices of geodesic segments
contained in Q(p, ¢) are listed up as follows:

0; Ais Agy 7\'3 "t

where A =A<n—1 and #n=),<\,<--. Consequently, a cell
decomposition of a CW-complex A, which has the same homotopy
type as Q(p, q), is given by {&, e, ¢*z,---}.

First we consider the case A=#n—1. In this case it is easily
seen that A is (#—2)-connected. It follows that M is (n—1)-
connected as in the proof of Proposition 2.1. Obviously H,(M)
=H"(M)=Z. Then the theorem is proved for this case.

Next we consider the case A<n—1. Then we have easily

Z for =0,

HfQ=H‘A={
@ =M=y for j+0,n and j<n.

Now the theorem is a direct consequence of the following

Lemma 2.3. If, in a simply connected and conmnected to-
pological space M, the j-th cohomology group Hi(Q) of a path space
Q of M satisfies the above condition for 0<A<mn—1, then there is
an element u of H"'(M) such that the cup-product with the element
u induces an isomorphism H(M)~H7 (M) for 0<j<n—(\+1).

Proof. Consider the cohomology spectral sequence {E?%
associated with the fibre space (E(p, M), M, Q). (For the details
see [16].) By the fundamental theorem of [16] we get

Ex = HAM, H'(Q)) = H(M)®H*(Q)+Tor (H**(M), H*(Q))
for g <m.

By means of the assumption, we have E%3?=0 if ¢=+0,x and
q<n, and the same is true for E?% r=2. Then d,: E2°
— Erire-r+l g trivial if r#=A+1, (p, ¢)=%(0, n) and p+g=<n. From
the fundamental property H(E?%)=E?"% of the spectral sequence
it follows that Ep'=FE?Y%y and E7%=E2®if (p, ¢)==(0, n) and
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p+q=<n. Since the total space is contractible, we have E2?=0
for (p, ¢)=+(0, 0). Consider the homomorphisms

A . A A+1.0
d{u = d)\+1- E{u - Eﬁﬁ .

Since each element of Ei{i}*'° is a d,,,—cycle, we have E{}*!°
Img diN=E{i}**°=0 for 0<j4+r+1=<nu, that is, d{} is an
epimorphism for 0<j+Ax+1<n. We have also, for j+A+1=<mn,
Ker dl\/dy El7y = HE{N)=E{}%»=0. Here E{7}~"*=0 since
220, v and j—A—1<0if 2n=xn. Thus we get Ker d{}=0, and
dl} is a monomorphism for j+A+1=<#xn. Consequently we have
obtained an isomorphism

dyit EP* = BN ~ E{J370° — Ef%° for 0<j+ra+1<n.

Let v be a generator of HMQ)=Z. Using the identification
2= H(MYQ H?(Q)+Tor (H**'(M), H’(Q))), we see that the
formula d,,(x®v)=¢*(x)®@1 defines an isomorphism

o*: Hi(M) ~ H*(M)  for 0<j <n—(n+1).

Put u=¢*(1) in H**'(M). By means of the derivativity of d,.,,
we have, for x&€H/(M), dy,(xQ0)=d, ,(xQ1)(AQv))=(—1)**"
(x@1)d, ,(1v)=(—1)"(xUu)®1. Thus we obtain (—1)"'¢*(x)
=xUu for 0<j<n—(A+1), and the lemma is proved.

This completes the proof of Theorem 2.2.

Remark 2.1. When MA=#xn—1, it follows from Wang exact
sequence that H;(Q)=Z for j=0, n—1, 2(n—1), --- and H;(Q)=0 for
other j. Thus we get A;=i(r—1) for i=1,2,3,-.-. When A <n—1,
we get m=m(A+1) and further computations in the spectral
sequence show that H;,(Q)=Z for j=0 and =0, A(mod n+x—1) and
H;(©)=0 for the other values of j. Thus we have \,;=i(n+x—1)
for i=1,2,3,: and A\,;,,=A+i(n+r—1) for i=0,1,2,:

Remark 2.2. We assume that » is greater than or equal to
3. If there is a geodesic loop v, of positive index A in Q(p, q),
then all geodesic loops at p are of the same index . In fact,
if we suppose that there exists a geodesic loop v, of index p=2X,
then we get H,.,,(M)=Z by developing a similar discussion con-
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cerning v, as those developed in the proof of Theorem 2. 2. This
contradicts Theorem 2. 2.

Remark 2.3. According to the cohomology theory (Adams
[1], Adem [2] and Milnor [10]), if the integral cohomology ring
is a truncated polynomial ring generated by a unique element of
dimension A\ +1, then A is necessarily equal to 1,3,7 or n—1,
where # should be equal to 16 in the case A=7. In particular,
when # is odd, » must be equal to n—1.

When #(=5) is odd, M is a homological sphere and hence a
homotopical sphere, because of A=#n-—1. Taking account of
Smale’s Theorem on the generalized Poincaré conjecture, we see
that M is homeomorphic to a sphere, if #(=5) is odd.

Remark 2.4. As examples of simply connected Riemannian
manifolds satisfying the conditions (d) and (e), we have sym-
metric spaces of rank one, that is,

(1) the sphere S* (#=2),

(2) the complex projective space PC” (n=2m=4),

(3) the quaternion projective space PQ" (n=4mz=8),

(4) the Cayley projective space PCa” (n=16).

These spaces have a truncated polynomial ring generated by a
unique element as their integral cohomology ring.

Eells and Kuiper [5] have recently constructed compact
simply connected manifolds which have the same integral
cohomology ring as the quaternion or the Cayley projective space,
but, whose homotopy type are different from the corresponding
projective space.

§3. Proof of Main Theorem: the case (2).

Let M be an n(=2)-dimensional complete and connected
Riemannian manifold satisfying the conditions (d) and (e) men-
tioned in the section 1.

First of all, we shall prove

Lemma 3.1. If M is not simply connected, then there is no
geodesic loop at p of positive index.

Proof. By virtue of Lemma 1.1, the fundamental group
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m(M) of M is of order 2. Let M be an universal covering
manifold of M and = '(p)={p,, p.} the inverse image of p under
the covering map ». Since all geodesic loops at p in M are (p, p)-
homotopic to each other and none of them is null-homotopic, the
locus of the final points of their lifts starting from p, (from p,)
in M consists of the single point 3, (of the single point 3,). Thus
all geodesics starting from 7, are geodesic loops at p, and have
the same length 4/. Consequently M satisfies the conditions (d)
and (e) such that two points p, and p, are basic, and the loop
length at p, or p, is equal to 4/.

Suppose that there is a geodesic loop v, at p of positive
index A. Let &, be the lift of «, starting from p,. Then an
index of the extended geodesic loop of #, at p, is not less than
n—1+n, that is, not less than xn. This contradicts Proposition
2.1, i.e., the fact that there is no geodesic loop at 3, in M, whose
index is greater than or equal to n. Thus all geodesic loops at
p in M must be of index 0. This completes the proof.

Combining Lemmas 1.4 and 3.1 together, we get

Corollary 3.2. If there is a geodesic loop of index O, then
all geodesic loops at p are of index 0.

Remark 3.1. Taking account of Lemma 1.4 and Corollary
3.2, we see that M is simply connected if and only if all geodesic
loops at p in M are of positive index. That is to say, the funda-
mental group of M is of order 2 if and only if all geodesic loops
at p in M are of index 0. By means of Remark 2.2, if there is
a geodesic loop at p of positive index A, then all geodesic loops
at p are of the same index A, that is, an index of M at p in the
sense of Bott is equal to A. Thus a theorem due to Samelson
is a generalization of a theorem due to Bott.

As mentioned in the section 1, a W*-manifold introduced
by Hatsuse and Takagi is by definition a complete and connected
Riemannian manifold satisfying the conditions (d), (¢) and the
condition that all geodesic loops at p are of index 0. Hatsuse
and Takagi [7] has shown that a two-dimensional W*-manifold
is homeomorphic to a real projective space PR:. We have now
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the following Corollary 3.3 from Lemma 3.1 or Corollary 3. 2.

Corollary 3.3. If M is not simply connected, then M is a
W*—manifold.

If there is a geodesic loop at p of index O, then M is a W*-
manifold.

In particular, if M is not simply connected for n=2, then M
is homeomorphie to PR?

Next we shall prove the latter half of Main Theorem. We
verify the following

Theorem 3.4. If Mis not simply connected, then M has the
same homology group as PR and M is homeomorphic to a sphere
Nigh

Proof. First we shall prove that M is homeomorphic to S™.
Let {p,, p.} be the inverse image of p under the covering map =.
Because the universal covering manifold /1 satisfies the conditions
(d) and (e), the indices of all extended geodesic loops at %, in M
are less than or equal to #—1, as a consequence of Proposition
2.1. By virtue of Lemma 3.1, all geodesic loops at p in M are
of index 0, and therefore the lifts of them starting from p, are
of index 0. Thus the final point of any lift is a first conjugate
point of p, along the lift. As it is already seen that the locus
of the final points of all lifts consists of a single point p,, we can
take Q(5,)=5,, where Q(p,) denotes the locus of first conjugate
points of p, along all geodesics issuing from p,. Similarly we
get Q(p,)=p,. Since the projection of a minimal geodesic segment
joining #, and 3, in M is a geodesic loop at p in M, the length
of the minimal geodesic segment is equal to 2/, and is equal to
that of all lifts of geodesic loops at p. Hence the cut locus C(5,)
of p, consists of p, and C(p,) consists of p,. Thus M is home-
omorphic to S”.

Let f be a homeomorphism of S” onto M. The sphere may
be regarded as an universal covering manifold of M with the
covering map p==of and the fundamental group =,(M) is of order
2. Making use of the spectral sequence of such covering manifold
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and the homology groups of the cyclic group of order 2, we can
precisely calculate the homology group of M (cf. Hu [8]). We
have now the following results:

H,M)=20 for j; even, 2<j<mn,
HM) = 2, for j; odd, 1<j<n-1,
HM)=2 if »n is odd.

We shall sketch briefly the proof of the relations mentioned
above. By the covering space theorem of the homotopy theory,
we get

7 (M)=0 for 2<j7<n-1.

Taking account of the above homotopical structure of M, we have
in the spectral sequence of the covering manifolds

H(M) = H(Z) for 1<j<n—1,

where H,Z,) denotes the j-th homology group of the cyclic group
Z, of order 2. On the other hand, taking account of the asser-
tion given by the complete computation of the homology groups
H/(Z,), we have

H(Z,) =0 for j; even, ji=2,
H(Z) = Z, for j; odd, ji=1.

After determining the orientability of M, the »-th homology
group H,(M) of M is given. Thus the homology groups of M
are obtained.

Concerning the orientability of M, we see [8] that the
following theorem holds, because the sphere S” is the universal
covering manifold of M and the fundamental group is the cyclic
group of order 2.

We can state

Theorem 3.5. If M is not simply connected, then M is
orientable for odd n, and M is not orientable for even n.

Remark 3.2. As a consequence of Theorem 3.4, we can
prove the fact that the integral cohomology ring H*(M, Z) is
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isomorphic to H*(PR", Z), and moreover it is obvious that the
third assertion of Corollary 3.3 holds.
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