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Let R{x,, -, x,} be the formal power series ring in a finite
number of independent variables x,, ---, x, with coefficient ring R.
It is known that even if R is a unique factorization domain R{x,}
is not always so.”

We shall denote the following condition for a ring® R by (x):

(¥) R{xy,+, x,} is a unique factorization domain, for any n (finite).

It is noted that (%) is satisfied by a regular semi-local integral
domain R, which follows from the fact that a regular local ring
is a unique factorization domain. This naturally raises the question
whether the unique factorization theorem still holds for the case of
infinitely many variables, provided coefficient domain R satisfies (x).
The question is only partially answered below (Theorem 1), where
notion of formal power series is taken in a wider sense than the
usual one.

As for the usual formal power series, what we show is that
if R is a Krull ring then R{x,, x,, --+, x,,, '} is also a Krull ring,
which is an application of Theorem 1.

The auther wishes to express his sincere thanks to Prof.
M. Nagata for his valuable suggestion and encouragement.

1. Let R be a ring, X be a set of indeterminates, card. X=N*,
As usual, by a X-monomial (x)° of degree n (n=0,1, 2, ---) we mean

1) See P. Samuel, Anneaux factoriels, Publicagdes da Sociedade de Matematica
de Sao Paulo, 1963, pp. 58-63.
2) A ring in this note always means a commutative ring with 1.
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(x) =1 x®; e(x): integer 20, Dle(x) = mn.
rEX ex

Let M(X) be the set of all X-monomials. We note that card. M(X)=
card. X=R*, if 8* is not less than R, (the cardinality of a countable
set). For each element (¢,)€RM“®, we consider the formal sum

(1) f=2alx); ac€R, (x)’eMX).

Let N be a cardinal number > R8,. We call (1) an R-series with
respect to X over R, if card. {(x)°|a,=+0} <X.

The set R{X}, of all these R-series forms a ring by the
obvious operations. This we see readily even when R <R*, taking
account of the fact that then for any element f in R{X}, there
is a subset Y of X such that feR{Y}, and card. Y=R.

We denote by f, (n=0,1,2,.--) the homogeneous part of
degree n of an R-series f. The subring R{X} of R{X}, consisting
of those R-series f such that f, is a finite sum (a polynomial)
for every n is nothing but the wusual formal power series ring;
that is, the (X)-adic completion of the polynomial ring R[X],
where (X) is the ideal of R[X] generated by the set X. We
note that although merely R{X},=R{X} if X is a finite set,
otherwise necessarily R{X}y+R{X}.>

The above notations will be fixed throughout this note.

Lemma 1. If R is an integral domain, then R{X}, is an
integral domain, and sois R{X}. Anelement feR{X}, (or ER{X})
is a unit if and only if the constant term of f is a unit in R.

Proof. We may make X a well-ordered set. We order X-
monomials by their degree, and then for X-monomials of the same de-
gree we order lexicographically. Namely : IT x°® < II ', if either
(1) De(x)<De(x) or (ii) Dle(x)=>¢(x) and e(y)>e’(y) where
y is the first variable such that e(y)=e’(y). Thus we make M(X)
a well-ordered set in such a way that if m,, m,, m,, and m, are four
X-monomials with m, <m, and m,<m, then we have m, - m,<m,-m,.

Let f and g be non-zero elements of R{X},, and let a,-m

3) If R*>N,, the N-series 3] x of degree 1, where Y is a subset of X with
card. Y=N,, is not in R{X}. s
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and b,/ -m’ (m,m'e M(X); a,, b,y R) be the first monomials
which appear with non-zero coefficients in f and g respectively.
Then, clearly, a,,-b,/-m-m’ is the first monomial which actually
occurs in f-g. Thus f-g=+0, and the first assertion is proved.
The second assertion is proved also by the same way as in
the case of a finite number of variables; by virtue of the ordering
of M(X). q.e.d.

Lemma 2. Let R be an integral domain and let Q be the field
of quotients of R{X}, then we have

R{X} = R{X}:NO.

Proof. Assume that there is an element f in R{X},NQ which
is not contained in R{X}. Then f is an R-series and we have

(2) f-F=G, with F,GeR{X}.

Let f,, F,, and G, be the homogeneous parts of degree » of
f, F, and G respectively. Let F, be the leading form of F; that
is, the homogeneous part 0 of F of the least degree. Since
f&R{X}, there exists an integer » for which f, involves infinitely
many variables actually. Of all these integers let # be the least.
From (2),

(3) Gn+q=fn°Fq+°°'+fo'Fn+q-

Both sides of (3), except for f,-F,, involve only a finite number of
variables. While f,-F,+0 and involves infinitely many variables
actually among terms with non-zero coefficients, which is a con-
tradiction. q.e.d.

2. We consider a well-ordering of X, and fix it henceforth. Let
a be the ordinal number of the ordered set X. For each ordinal
number £<a, we denote by x; the element y of X such that ¢ is
the ordinal number of {x&X|x<y}; so that for each £<a the set
X:= {x,|v<E} has the ordinal number £.

For £ and 7 with »<£< e« and for any cardinal number & not
less than X, we have the ring homomorphism, denoted by pf,

(4) pri R{Xe}y = R{X,} s
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by taking the residue class of each element of R{X}, modulo
the ideal generated by {x,|7<v<E}. Then the following lemma
follows readily from Lemma 1.

Lemma 3. An element of R{Xt}y is a unit if and only if its
image by pi is a unit.

Lemma 4. Assume that R =R*. Let a transfinite sequence
(fe)e<w be such that :

{ fEER{Xe}R ’
and pife~f,  if 1<EP

Then, there exists a geR{X}y such that pig~fe for any E<a.

(5)

Proof. We shall define g, for every v (<«), by transfinite
induction, such that

gVER{Xv}R,
(6) g~f if v<a,
and p.g, = g if p<v<a.

Set g,=f,. Assume g, has been defined for every » with v<§,
so that (6) is satisfied.

Case 1. ¥=a and «a is an isolated number.
Define gt=g:_,.

Case 2. § is an isolated number and £<a.
As pf_ fe~fe-,~g:-., we have pf (ke fe)=gp_,; where kg is a unit
in R{X¢}y (Lemma 3). Define g¢=#h;-ft.

Case 3. £=a and « is a limit number.
For any given X,monomial (x)°, there exists a »(<§) such that
(x)° is already a X,-monomial, and the coefficient of (x)° in g,
is independent of the choice of ». Therefore we can consider
lvlgl g,ER{X;}y. Define gEZIViBél gy

Case 4. E is a limit number and £<a.
As pffi~f,~g, for any v<g, we have p(h,-fr)=g,; where h, is

4) f~g means f and g are associates with each other,
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a unit in R{X,},. As it is easily seen that p}k,=/h., we can con-
sider lir? hy=hcR{X;}y,. By Lemma 3, /4 is a unit in R{X},.
v

Define gi=/h;-f:. q.e.d.

Theorem 1. If a ring R satisfies the condition (%), then R{X}
is a unique factorization domain.

Proof. We use transfinite induction on 8* (= the cardinality of
X). When X is a finite set, the assertion is trivial. Let R*>R,.
Assume the assertion holds for variables of less cardinality.

Let a be the least ordinal number which has cardinality R*.
We reorder X so that the ordinal type of the ordered set X is a.
With respect to this ordering, let x;, X, and pf be as above.
Then, for every £ <ea, the cardinality of X;= {x,|v<£} is less than
R*; so that R{X}, is a unique factorization domain by the in-
duction assumption. We note that « is a limit number; for
otherwise « is an isolated number (not finite), and therefore a«—1
would also have cardinality N*.

Furthermore, we may assume X >N8*. Indeed, if 8 <x*, then,
letting Y run over all subsets of X such that card. Y=8, we have
R{X}y=UR{Y}y. The assertion in the case where R <®* follows
from the facts that R{Y}, is a unique factorization domain, that
any finite number of elements of R{X}, can be contained in a
suitable R{Y}, at the same time, and that an element of R{X},
is irreducible if and only if it is so in a R{Y},.

First we shall show that :

UF 1. every element f+0 of R{X}y is expressed as a product

of a finite number of irreducible elements.
Write ptf=f,. We consider a sufficiently large v (<a) such that
f,+0. In the unique factorization domain R{X,}, let the factori-
zation of f, into ireducible factors be

m(y

(7) Fo= T, 0

5) The case where X >N* has been obtained by E. D. Cashwell and C. J. Everett,
Formal power series, Pacific J. Math. 13, 1963, pp. 456-64 ; D. Deckard, M. A. Thesis,
Rice University, 1961; D. Deckard and L. K. Durst, Unique factorization, Pacific J.
Math. 16, 1966 pp. 239-242,
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where £, is a unit, p,; is an irreducible non-unit in R{X,}, such
that p, ,p, ; for i#j. The number of non-unit factors in (7) is

denoted by d(v): d(u):’ge(v, ). If v<p<a, then f.=+0, and we

get another factorization of f, by going down from u:

m(r) .
( 8 ) f'v = Pﬁfu = (Pflip)'l}l (ptp“.i)”(l"vt) .

13

In (8) we see that each foctor pjpu ; (1<i<m(p)) is a non-unit and
pbh. is a unit in R{X,}y, by Lemma 3.

Since of all factorization of f, the factorization into irreducible
factors has the largest number of non-unit factors, it follows from
(7) and (8) that d(») is monotone decreasing with ». Hence, there
exists a v, such that if v, <v, d(v) is a constant : =d. When d(v)=d,
each factor pip.; in (8) (v<p<a, 1<i<m(p)) must be irreducible
in R{X,}y.

Consider p and v such that »,<v<u. Comparing once more
(7) with (8), we see that m(v)<m(u); since m(v) is the number
of distinct irreducible components of f,. This implies that m(v)
is monotone increasing with » if »,<v. Moreover, m(v) is upperly

m(v)
bounded since >le(v, i)=d. Hence, there exists a v, such that if

i=1
v,<v, m(v) is a constant: =m; and therefore if v, <v e(v, i)
(1<:i<m) must also be a constant: =e¢;. Thus we get if »,<v,

1 by i (factorization into irreducible
= Sfactors in R{X,},)

l fv = hv'
(9)
l Pybui~Dy; <v<pu<a, 1<i<m).

i

By using Lemma 4, we can find ¢;ER{X}y (1<i<m) such
that pyg;~p,; (vo<v<a,1<i<m). Let & be the unit in R{X.,},
such that f,= C-pf(if[q,-"’i). As pthl="h, and « is a limit number,
we can consider lim A=#H&R{X},; where % is a unit, by

vo<V<a
Lemma 3.

Thus we get a factorization of f in R{X},:

(10) f=HW-Tgf.

=1
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It is clear that every g¢; is a non-unit, by Lemma 3. That
every ¢; is moreover irreducible follows from the fact that if ¢;
were factorized into two non-units, then, by going down to v, (¢;),
~p, ; would be factorized into two non-units. This completes
the proof of UF 1.

Remark. The following is also a consequence of our argu-
ment above.

If f is irreducible, then f, is irreducible for sufficiently large
v(<a).

(The converse is also true as we have seen above.)

Indeed, assume the contrary, suppose that f is irreducible and
that there are » arbitrarily large such that f, is reducible. Then
we can find » such that f, is reducible and » is larger than u,

defined in (9). Therefore, in (9), ‘ﬁe; must be >1. Thus, we
have f=#-11¢/, 3 e;>1; by (10). As each ¢, (1<i<m) has
been a non-unit, we obtain a contradiction.

Finally, we shall show that:

UF 2. if plf-g with p, f, geR{X}y and if p is irreducible,
then either p|f or plg.

Indeed, let v(<a) be sufficiently large so that (f-g),+0, and that
p, is irreducible (by Remark above). From p|f-g we have either
DSy or p,lg,. Therefore, we see that either the upper limit of
the set {v|v<a, f, is divisible by p,} or that of the set
{r|v<a, g, is divisible by p,} is equal to . For otherwise, since
«a is a limit number, there would be a » sufficiently large such
that neither f, nor g, is divisible by p,.

We consider the case where the upper limit of the former is «.
Then f, must be divisible by p, also for every »(<e«); since if
v<u and pu|fu., then p,|f,. Write f,=p,-f{, then (f!),<, satisfies
the condition p%fi=f{; and therefore we can consider lvlgvl fr=x

in R{X}y. Thus we conclude f=p-f’. This completes the proof
of UF 2, and therefore of the theorem,
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3. We remark that the question whether R{X}, in Theorem 1
is replaced by R{X}, namely every g; in (10) can be chosen as
an usual formal power series when f is so, remains unsolved.
Now we shall consider R{X} under a mild condition that R
is a Krull ring. We recall® that an integral domain R is a Krull
ring if and only if the following three conditions are satisfied :
KR 1. Ry is a discrete valuation ring for any prime ideal p of
R of height 1.
KR 2a. Every principal ideal of R has only a finite number of
prime divisors p such that height p=1.
KR 2b. Letting p run over prime ideals of height 1 in R, we
have R= (] Ry.
)

Theorem 2. If R is a Krull ring, then so is R{X}.

Proof. Let K and Q be the fields of quotients of R and
R{X} respectively. Let 8 be any cardinal number >R,. Let p
be a prime ideal of R of height 1. Since Ry is a discrete valu-
ation ring (KR 1.); using Theorem 1, we see that Rp{X}, is a
unique factorization domain, and therefore a Krull ring.
Similarly, we see that K{X}, is a Krull ring. Since, by Lemma
2, K{X} is expressed as an intersection of K{X}, and a field;
K{X} is also a Krull ring.”

Now, let V be the set consisting of those discrete valuation
rings v of the field Q, such that v is either equal to one of v,
or equal to one of vg, of the following types :

(i) ve=K{X}4nQ,
where q is a prime ideal of K{X} of height 1.

(i)  vg,=[Rp{X}xlo,NQ,
where Y is a prime ideal of R of height 1, and q, is a prime
ideal of Rp{X}y of height 1 such that q, contains an element
whose leading form has all coefficients in PRy.

6) As for the theory of Krull rings see, e.g., M. Nagata, Local rings, John Wiley,
New York, 1962, pp. 115-118.
7) See Theorem (33.6) and (33.7), pp. 116-117, idid.
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Owing to the criterion for a Krull ring,” we have only to prove
that

1) if an element f of R{X} is not zero, then there are only a
finite number of » in V such that f is a non-unit in v;

2) R{X}= ().

Proof of 1). By virtue of KR 2a for K{X}, almost all prime
ideals q of height 1 in K{X} do not contain the given f. (“almost
all” means all but a finite number.) Whence we see that there
are only a finite number of wvq of type (i) in which f is a non-
unit.

By virtue of KR 2a for R, there are only a finite number
of common prime divisors p of height 1 for all the coefficients
of the leading form of the given f, For such a common prime
divisor p, almost all prime ideals g, of height 1 in Ry{X}, do
not contain f; by KR 2a for Rp{X}y,. While for a remaining
prime ideal p of R of height 1,in Ry{X} no prime ideal q, of height
1 contains both f and an element whose leading form has all
coefficients in pRp. (Note that a prime ideal of Ry{X}, of
height 1 is principal.) Thus we see that there are only a finite
number of vq of type (ii) in which f is a non-unit.

Proof of 2). Clearly, R{X}c (lv. Conversely, let fe (Lv.
Since (] vq=K{X} by KR 2b for K{X}, we have
q

L2 = (N oan( N w)SKXKI (] TRXD).-

As an element of K{X}, f can be written
(11) f=Xa/(x), a, €K  (formal power series).

We fix p for a while. Then as an element of the field of
quotients of Rp{X},, f is also written

(12) f=G/JF; F,GERy{X},, F+0.

Since Ry{X}, is a unique factorization domain, we may assume
that (F,G)=1 in (12); so that F and G in (12) are uniquely

8) See Theorem (33.6), p. 116, 7bid.
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determined by f except for unit factors. Let F, be the leading
form of F. Let p be the prime element of Ry. (We note that p
is also a prime element of Ry{X},.) Then, p¥F, in Ry{X}s. For
otherwise a minimal prime divisor q, of F in Rp{X}, would satisfy
the condition in (ii) above; and Feq,, Geq,, so that [Rp{X}.]q,
would not contain f=G|/F.

We shall show that every coefficient ¢, in (11) must be in
Rp. Assume the contrary. Of all the homogeneous parts of
series (11) one of whose coefficients is not in Ry, let f, be of the
least degree. As f is a formal power series and therefore f,
is a polynomial with coefficients in K, we can write

(13) f.=fi/p*; k:integer > 0, fleR{X}, (f1, p)=11in Rp{X},.
From f-F=G, we get
Gn+q = fn'Fq+ "'+f0'Fn+q ’

and so it follows that f,-F,eRy{X}y. Therefore, by (13), we
have p*|f4+F, in Ry{X},; which contradicts to the fact that p ¥ £,
PAXF, and p is irreducible in Rp{X}.

Thus, we have shown that in (11) every a,Ry, where p may
be an arbitrary prime ideal of height 1 in R. Since []| Rp=R by

P
KR 2b for R, it follows from this that every coefficient «, in (11)
must be in R, therefore feR{X} as desired. This completes the
proof of 2) and of the theorem.



