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Let R {x••• , x„}  be the formal power series ring in a finite
number of independent variables x„ ••• , x„ with coefficient ring R.
It is known that even if R  is  a unique factorization domain R{x,}
is not always so."

We shall denote the following condition for a ring" R  by (*) :

(* ) R {x „•••  , x „ } is a unique factorization domain, for any n (finite).

It is noted that (* ) is satisfied by a  regular semi-local integral
domain R , which follows from the fact that a regular local ring
is a unique factorization domain. This naturally raises the question
whether the unique factorization theorem still holds for the case of
infinitely many variables, provided coefficient domain R satisfies (*).
The question is only partially answered below (Theorem 1), where
notion of formal power series is taken in a wider sense than the
usual one.

As for the usual formal power series, what we show is that
if R  is  a Krull ring then R {x„  x 2 , ••• , x„, •••} is also a K ru ll ring,
which is an application of Theorem 1.

The au th e r  w ishes to  express his sincere thanks to Prof.
M. N agata for his valuable suggestion and encouragement.

1. Let R  be a ring, X  be a set of indeterm inates, card. X =ti*.
As usual, by a X-monomial (x)e of  degree n (n=0 , 1, 2, •••) we mean

1) See P. Samuel, A nneaux  factoriels, PublicaOes da Sociedade de MatemAtica
de S o  Paulo, 1963, pp. 58-63.

2) A  rin g  in this note always means a commutative ring with 1.
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(x ) = I lx ` '"  ; e ( x ) : in te g e r O, E  e(x ) = n.
A.E X E X

Let M(X ) be the set of all X-monomials. We note that card. M (X )=
card. X = a*, if R* is not less than R, (the cardinality of a countable
s e t ) .  For each element (ae ) ERm(x ) , we consider the formal sum

(1 ) f =  E a ,(x)e ; a ,  R  ,  ( x ) e EM (X ).

Let b e  a card inal n um b er No . W e call (1 ) an s-series with
respect to X  over R , if card. {(x)e ae *0}  <

T he set R { X }  of all these R-series forms a  r in g  b y  the
obvious operations. This we see readily even when <te, taking
account of the fact that then for any element f  in  R { X }  there
is  a  subset Y of X  such that fE  R { Y} R and card. Y=

W e denote by f  ( n  = 0, 1, 2, • •-) th e  homogeneous part of
degree n of an a-series f .  The subring R{X} of R { X }  consisting
of those a-series f  such that f , ,  i s  a  finite sum (a polynomial)
for every n  is nothing but the usual f orm al pow er series ring ;
that is , th e  (X )-adic completion of the polynomial ring REX ],
where (X )  i s  the ideal of R E X ] generated by the set X .  We
note that although merely R{X} 8  = R  { X }  i f  X  i s  a  finite set,
otherwise necessarily R{X} R* R { X }  ."

The above notations will be fixed throughout this note.

Lemma 1. I f  R  i s  a n  in tegral dom ain, th e n  R { X }  is  an
integral domain, and so is R{X }  . A n element fE R{X } g  (or E R{X })
is  a u n it if  an d  only  if  the constant term  o f  f  is  a un it in  R.

Pro o f . We may make X  a  well-ordered s e t .  We order X -
monomials by their degree, and then for X-monomials of the same de-
gree we order lexicographically. Namely : II xe( x)  G 11E xe/ (x) , if either
( i )  E e(x)< E e' (x) or (ii) E e(x)— e ' ( x )  and  e(y)> e' (y) where
y  is the first variable such that e (y )* e (y ) . Thus we make M(X )
a well-ordered set in such a way that if m „ m „ m „ and m, are four
X-monomials with m1 m 2 and m ,<m , then we have m, • m ,<m ,•m ,.

Let f  and g  be non-zero elements o f R{X} R ,  and  let a„„•m

3) If trk..>-No, the s-series x  o f  degree 1, where Y  is  a  subset o f  X  with
card. Y—kt o, is  not in R{X}.
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and b„„, • (m ,  m ' M (X ) ;  am , bm ,  E  R )  b e the first monomials
which appear with non-zero coefficients in f  and g  respectively.
Then, clearly, an z •bm /•m -m ' i s  the first monomial which actually
occurs in f - g .  Thus f•g *O , and the first assertion is proved.

The second assertion is proved also by the same way as in
the case of a finite number o f variables ; by virtue of the ordering
of M(X). q.e.d.

Lemma 2. Let R  be an integral domain and let II be the field
of quotients of R{X}, then we have

R {X }  R {X } R r In .

P ro o f. Assume that there is an element f  in R {X }  n D which
is not contained in R { X } .  Then f  is  an H-series and we have

( 2 ) f • F = G  , w ith  F, G ER {X} .

Let f  F „ ,  and G„ be the homogeneous parts of degree n of
f, F, and G  respectively. Let F q  be the leading form o f F ;  that
is, the homogeneous part * 0  o f F  of the least degree. Since
fE R {X } ,  there exists an integer n for which f „  involves infinitely
many variables ac tu a lly . Of all these integers let n be the least.
From (2),

( 3 )
 

G,, ± q  =  f n •F q +••--Ffe .F„ ± q .

Both sides of (3), except for f n •F q , involve only a finite number of
variables. While f„ .F q * 0  and involves infinitely many variables
actually among terms with non-zero coefficients, which is a con-
tradiction. q.e.d.

2. We consider a well-ordering of X, and fix it henceforth. Let
a  be the ordinal number of the ordered set X .  For each ordinal
num ber <a , we denote by xe the element y  o f X  such that E is
the ordinal number o f Ix < y }  ;  so that for e ach  <ce the set
Xe= fx , v< n  has the ordinal number

F o r  a n d  77 with 77<,.<., a and for any cardinal number te not
less than H, we have the ring homomorphism, denoted by pf

( 4 ) R {X e} - >  R { X, } ;
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by taking the residue class o f each element of R {X E} R modulo
the ideal generated by {x,Ii2<,<}. Then the following lemma
follows readily from Lemma 1.

Lemma 3. A n element o f  R{Xt} R i s  a unit if  and only i f  its
image by pf, is  a unit.

Lemma 4. A ssum e th at 14 „>--- te. L e t  a  transfinite sequence
(p e < c,  be such that :

a n d  pf, f e-- f, i f  n< V )

Then, there exists a  gE R {X } R such that p`Ég—ft f o r a n y  <ct.

Pro o f . We shall define g ,  for every y  (< a ), by transfinite
induction, such that

g,ER{X,}, t ,
( 6 ) i f  < a ,

a n d  jo g,= gh i f  <1, <a.

Set g 1 =  f1 . Assume g ,  has been defined for every y with y .< ,
so that (6) is satisfied.

Case 1. a  and a  is an isolated number.
Define ge=ge_ 1.

Case 2. is an isolated number and E <a.
As f  f  e _ g e _„  we have pi ,(11e . fe)= ge_ i ; where 14 is a unit
in R{XE} R (Lemma 3). Define gt=ht• f t.

Case 3. and a is a limit number.
For any given X e-monomial (x)e, there exists a y(< ) such that
(x)e is already a  X„-monomial, and the coefficient of (x)e in g,
is independent of the choice o f y. Therefore we can consider
lim g , R  {Xt} R. Define ge= lim g,.v< t v<t

Case 4. is a limit number an d  <a.
As pU t -4 , - -g „  for any we have g, (h,. f )=  g , ;  where h is

4 )  f  g means f  and g are associates with each other.

( 5 )
feER{Xe}
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a unit in R {X ,}„ . As it is easily seen that pihvh,=h,,,, we can con-
sider lirn he ER{X e} R . By Lemma 3 , he is  a unit in R{Xe}v< e
Define gt=hr f t . q.e.d.

Theorem 1 ."  If a ring R satisfies the condition (*),then R{X} g
is a unique factorization domain.

Pro o f . We use transfinite induction on it* (=the cardinality of
X ) .  When X  is a finite set, the assertion is trivial. Let
Assume the assertion holds for variables of less cardinality.

Let a  be the least ordinal number which has cardinality X*.
We reorder X so that the ordinal type of the ordered set X  is a.
With respect to this ordering, let xe , X e ,  and g be as above.
Then, for every <a, the cardinality of X e= {xv Iv < }  is less than

; so that R{Xe} R i s  a unique factorization domain by the in-
duction assumption. We note that a  is  a  limit number ;  for
otherwise a  is an isolated number (not finite), and therefore a - 1
would also have cardinality

Furthermore, we may assume N>N*. Indeed, if  N<N*, then,
letting Y run over all subsets of X such that card. Y= ti , we have
R{X} g  =  U R{Y} . The assertion in the case where N<N* follows
from the facts that R{Y} It is  a unique factorization domain, that
any finite number o f elements of R{X} R can be contained in a
suitable R{Y},, at the same time, and that an element of R{X} R

is irreducible if and only if it is so in a R{Y} 8 .

First we shall show that :
U F  1 . every element f *0  of R{X} R is expressed as a product
of a f inite num ber o f irreducible elements.

W rite  f  f  .  We consider a sufficiently large 1) (< a) such that
f v * O . In the unique factorization domain R{X,} g  let the factori-
zation of f v into ireducible factors be

.(.)
( 7 ) =

i=1

5 )  The case where N  N * has been obtained by E. D. Cashwell and C. J. Everett,
Formal pow er series, Pacific J. Math. 13, 1963, pp. 45-64; D. Deckard, M . A . Thesis,
Rice University, 1961; D. Deckard and L. K. Durst, Unique factorization, Pacific J.
Math. 16, 1966 pp. 239-242.
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w here h  is a unit, p,, i i s  an irreducible non-unit in R{X,} g  such
that p,,, i //4),, i  fo r i * j .  The number of non-unit factors in (7) is

(,)
denoted by d(u): d(v )=

„,

E  e(v, i). If v <  <a ,  then f , * 0 ,  and we

get another factorization of f  by going down from p, :

mcp,)
( 8 ) f , = gf p. = (p','14)•  ( g 1 ) , , ,i)""  •

In (8) we see that each foctor (1 <i <m(,u,)) is  a non-unit and
pvi' hp, is  a unit in  R { X } g ,  by Lemma 3.

Since of all factorization of f ,  the factorization into irreducible
factors has the largest number of non-unit factors, it follows from
(7) and (8) that d(v) is  monotone decreasing with v. Hence, there
exists a vi such that if v,.<v, d(v) is a constant : = d .  When d(u )=d,
each factor i n  (8) (v< p, <a, 1<i <m(p,)) must be irreducible
in  R { X ,}  .

Consider ,u, and v such that vi < v < F , .  Comparing once more
(7) with (8), we see that  m (u) m(/L); since m(v) is  the number
of distinct irreducible components of f „. This implies that m(v)
is monotone increasing with v if  v,< v. M oreover, m(v) is  upperly

bounded since E  e(v, i)=. d .  Hence, there exists a 710 such that if
,=1

U0 <  1 ), M ( V )  is a constant : =  m ; and therefore i f  u0 <  u e(V , i)
(1 <i(M )  must also be a  constant :  =e 1 . Thus we get if  vo <v,

f ,—  i t •  Hp, i ei (factorization into irreducible
( 9  ) 1 factors in  R{X,} 8 )

(vo <v<p,<a, 1< i<m ).

By using Lemma 4, we can find qi ER{X }  ( 1 <  j  <m ) such
that p,aqi — p,, i  (v o < v < a , i < i < m ) .  Let 11(, be the unit in RIX ,1,,

such that f  k ,  •  p ( f l  e i ) .  As 14 and a  is  a  limit number,

w e can  consider lim lif,=W ER { X } R ; where h '  i s  a  u n i t ,  by, 0<v<a
Lemma 3.
Thus we get a  factorization of f  in  R {X } R

(10) f  = h' • fi qi ei .
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It is  c lear th at every  q i  i s  a non-un it, by Lemma 3. That
every q , is moreover irreducible follows from the fact that i f  qi

were factorized into two non-units, then, by going down to y , (q1),
— p  wouldwould be factorized into two n o n -u n its .  This completes
the proof of UP 1.

Rem ark. The following is also a consequence o f our argu-
ment above.

I f  f  is irreducible, then f ,  is irreducible f o r sufficiently large

(The converse is also true as we have seen above.)
Indeed, assume the contrary, suppose that f  is irreducible and
that there are y arbitrarily large such that f %, is reducible. Then
we can find 7, such that f  is  reduc ib le  and y  is  la rger th an  yo

defined in  ( 9 ) .  Therefore, in  (9), e ,  must be > 1 .  Thus, we

have f = h '• i i  q i ei, e1 > 1 ; b y  ( 1 0 ) .  A s  each q 1 ( 1 ( i < m )  has

been a non-un it, we obtain a contradiction.

Finally, we shall show that :

U F  2 .  i f  p i f . g  with p , f ,  g E R { X } , an d  if  p  is irreducible,
then either p i f  or p i g .

Indeed, let y(< a) be sufficiently large so that (f •g ) 0, and that
p ,  is irreducible (by Remark above). From p i f . g  we have either
P v if„  or T h e r e f o r e ,  w e  s e e  th a t  e i th e r  the upper limit of
th e  set {v1v<a, f ,  i s  divisible b y  p , }  o r  th a t  o f th e set
{ y ly < a , g ,  is  divisible by p ,}  is equal to a .  For otherwise, since
a  i s  a  limit number, there would be a y  sufficiently large such
that neither f ,  nor g , is  divisible by p v .

We consider the case where the upper limit of the former is a.
Then f ,  must be divisible by p y  also for every v ( < a )  ;  since if

< p, and pi., If,, then  pv If .  W r i t e  p ,  . f ,  then ( f ) , < „ satisfies
the condition f ;  and therefore we can consider limv‹ .
in R{ X } R . Thus we conclude f = p - f ' .  This completes the proof
of UP 2 ,  and therefore of the theorem,



158 Hajime Nishimura

3. We remark that the question whether R{X} R in  Theorem 1
is replaced by R{X} , namely every q, in (10) can be chosen as
an usual formal power series when f  is so, remains unsolved.

Now we shall consider R {X } under a mild condition that R
is a Krull ring. We recall" that an integral domain R is a Krull
ring if and only if the following three conditions are satisfied :
KR 1. Rp is a discrete valuation ring for any prime ideal p of

R of height 1.
K R  2a . Every principal ideal o f R has only a  finite number of

prime divisors p such that height p =1.
K R  2b . Letting p run over prime ideals o f  height 1 in R, we

have R=  f l  Rp

Theorem 2. I f  R is  a  Krull ring, then so is R{X}.

Pro o f . Let K  and n be the fields of quotients of R  and
R {X } respectively. Let tt be any cardinal number _>-tio . Let p
be a prime ideal o f R of height 1. Since Rp is a discrete valu-
ation ring (KR 1.) ; using Theorem 1, we see that Rp{X} g is  a
unique factorization dom ain, and therefore a  K ru ll ring.
Similarly, we see that K{X} R is  a Kru ll ring. Since, by Lemma
2, K {X }  is expressed as an intersection of K{X} R and a field ;
K {X } is also a Krull ring."

Now, let V be the set consisting o f those discrete valuation
rings y of the field n, such that y is either equal to one of y q

or equal to one of y q , of the following types :

(i ) vq=K{X}grIn,
where q is  a Prim e ideal o f  K {X } o f  height 1.

(ii) =  [ R p  {X } jq 1 n
where p is a prime ideal of  R of  height 1, and q, is  a prime
ideal of  Rp{X} 8 of  height 1 such that q, contains an element
w hose leading form  has all coefficients in pRp.

6) As for the theory o f Krull rings see, e.g., M. Nagata, L ocal rings, John Wiley,
New York, 1962, pp. 115-118.

7) See Theorem (3 3 .6 )  and (3 3 .7 ), pp. 116-117, idid.
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Owing to the criterion for a Krull ring," we have only to prove
that
1) if an  element f  of R {X } is not zero, then there are only a
finite number of y in V such that f  is  a non-unit in y ;
2) R {X } =  n v.

Proof o f 1). By virtue of KR 2a for K{X}, almost all prime
ideals q of height 1 in K {X } do not contain the given f .  ("almost
all" means all but a finite number.) Whence we see that there
are only a finite number o f  vq of type (i) in which f  is  a non-
unit.

B y v irtue o f K R  2a for R, there are only a  finite number
o f common prime divisors p  of height 1  for a ll the coefficients
of the leading form of the given f ,  For such a  common prime
divisor p , alm ost all prime ideals q , of height 1 in  Rp{X} R do
not contain f ;  b y  KR  2 a  for Rp{X}„ . While for a remaining
prime ideal p of R of height 1, in Rp{X}„ no prime ideal q, of height
1  contains both f  and an element whose leading form has all
coefficients in p R p . (Note th a t a prime id ea l o f  Rp{X} R o f
height 1  is  principal.) Thus we see that there are only a finite
number of vq i of type (ii) in which f  is  a non-unit.

Proof of 2 ) .  Clearly, R {X }  g f l v .  Conversely, let f c  n v.
Since ri vq = K {X }  b y KR 2b for K {X }, we have

n ( n von( n vcoçlçal fl( n [R„{x}], i ).
vE id, Ili P,

As an element of K {X }, f  can be written

(11) f  =  E ae (x)e, a e K (formal power series).

W e fix  p  for a  w hile. Then as an element of the field of
quotients of Rp{X},, f is also written

(12) f  =  G IF ; F ,G R p {X } R , F # 0 .

Since Rp{X} R i s  a unique factorization domain, we may assume
that (F ,G )=1  in  (12) ; so  th a t F  and G  in  (12) are uniquely

8 )  See Theorem (33, 6), p. 116, ibid.
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determined by f  except for unit factors. Let F , be the leading
form of F .  Let p be the prime element of R .  (W e  note that p
is also a prime element of Rp{X} R .) Then, p X F , in Rp{X} R. For
otherwise a minimal prime divisor ch of F in Rp{X} R would satisfy
the condition in (ii) above ;  and F E q„ GEEq„ so that [Rp{X}O q i•
would not contain f= G IF .

We shall show that every coefficient a e  in  (11) must be in
R .  A ssu m e  th e  contrary. O f a ll th e  homogeneous parts of
series (11) one of whose coefficients is not in  Rp, let f „  be of the
least degree. A s f  is  a  formal power series and therefore f„
is a polynomial with coefficients in K , we can write

(13) f n =f,ypk ; k: integer >0, .g eR p { X } , (f '„  p)= 1 in Rp{X} .

From f .F = G , we get

G „ „ =  f n •F ,+ •••+ f o -F „ , ,

and so it follows that f , i •F,ERp{X} R . Therefore, by (13), we
have p h !f•F , in Rp{X} R ; which contradicts to the fact that pxp„
p x F,, and p  is irreducible in Rp{X} R .

Thus, we have shown that in  (11) every a e E R p, where may
be an arbitrary prime ideal of height 1  in  R .  Since n Rp= R  by

KR 2b for R, it follows from this that every coefficient a e  in  (11)
must be in R, therefore f  E R {X } a s  desired. This completes the
proof of 2) and of the theorem.


