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Introduction. The very basic idea o f  this work is that of
Newton polygon. Just to illuminate this view-point, let us take an
irreducible plane curve X  through the origin defined by an equation
f(x , y )=0 , say over an algebraically closed field k. Let y  b e  the
multiplicity o f X  at the origin 0, j. e., the order of f  a t 0. Then
we choose the parameters in such a  way that the coefficient of y'
is not zero in f(x , y ) .  Let f =S,, j c x'yfi be the power series expan-
sion of f. We map each term cd  x  y ' to the point (i/v, j/v) of the
Cartesian plane R 2 . Let E  be the set of those points corresponding
to nonzero terms of f ,  and F  the convex closure of the union U , E E

v+ R (
2
) , where R o denotes the set of nonnegative real numbers. The

part of the boundary o f F  not contained in the two axes is called
the Newton poly gon of f  with respect to the parameters x  and y-
As we have c0 „# 0  and c 15 = 0 fo r  all i + j< v ,  the first segment of
the Newton polygon has
(0,1) as its left end point.
Let S be the line contain-
ing the first segment, and
d  the intercept of S with ( 0, 1
the horizontal axis. This
d , in general, depends up-
on the choice o f parame-
ters x  a n d  y .  We can
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choose the parameters in such a way that d  takes the largest possible
value, which we denote by 8. It is not difficult to find a simple cri-
terion for (x, y )  to give d =8 , as follows. Let f s b e  the sum of
those terms o f f  which are mapped to points on S .  Then the
necessary and sufficient condition for d =8 is that f s  is not a perfect
power, i. e., it cannot be put into the form co,(y— h)' with h k[x].
(Here we exclude the case of a smooth point 0  o f X . )  The num-
ber 8 is an intrinsic character of the singularity o f  X  at 0 , which
is known as the f irst characteristic ex ponent. Rather, we put
into the form m /n  with relatively prime positive integers m  and n,
and call (m, n) t h e  f irst characteristic pair of the singularity of
X  at O . In  [7] , Ch. I, one can find a  good short account of the
characteristic p a ir  (ni, n) (a n d  o f  t h e  complete system o f th e
characteristic pa irs ) from th e  algebraic and the topological point
o f  view . Here we point out merely the fact that, [a] being the
integral part of 8 , the exactly [a] times applications of quadratic
transformations to v-fold points above 0  eliminate all such points.
(In  other words, following the classical terminology, we have exactly
[8] "infinitely near" v-fold points of X  at O .) To be more precise,
if f :  X '--->X  is  the quadratic transformation with center 0 ,  then
there exists at most one v-fold point 0 ' o f X ' with f (0 ') = 0, and if
such 0 ' exists, then the new ô attached to 0' is exactly one less than
the old.

In higher dimensions, the idea of Newton polygon becomes much
less exact but certainly much deeper. What the number 8 is gener-
alized to in  higher dimensions is not a  number but a  polyhedron
with a  finite number o f  vertices, which specializes itself to the
h a lf  l in e  [ 8 ,  0 0 )  in  th e  ca se  o f a  p lane cu rve. To  exh ib it the

essence o f our generalization, let us take the next simplest (but e-
nough complicated) case, i. e., that of a surface X  in a 3-space over
the base field k. Let us assume that X  goes through 0  and is de-
fined by f ( x 1 , x2, y) = O .  Let I. be again the multiplicity o f X  at O.
The most interesting and hardest case is when the leading form of
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f  is a p-th power of a linear form, say y". T h is  is the case of CUS 3-

like singularity. Let f  = z i pci i px yP be the power series expansion.
We map each term cu p .x. x.,yP to  the point (i/v, j/v , P/p) E R 3 . Let

E  be the set of those points corresponding to nonzero terms of f .
We project the portion of E  lying below the level of (0, 0, I), from
the point (0, 0, 1) into the horizontal plane W .  Let P  be the pro-
jection, which lies in the first quadrant (including the positive half
axes) of W .  Let { P}  be the convex closure of the union LL,,v+
R .  This {P }  depends upon the choice of xi , x , and  y . W ith (x1,
x 2 )  fived but y varying, we can make the set {P }  the smallest in
the sense of inclusions. (This fact is not obvious.) L e t J ( f ;  x)
denote this smallest possible {P}  , which depends only upon the sin-
gularity o f X  a t  0  and
the transversal parameters
x = (x i , x2 ). Define the
numbers a, ig  and e  as in-
dicated in the figure be-
low, where z l(f  ; x ) is the
shaded area. Note that e

is  positive and can be
+ 00 in an extreme case.
Consider all the triples

e, a )  attached to vari-
ous choices of the transversal parameters x , and let i`e) the
smallest one among them in the sense o f lexicographical ordering.
The system of four numbers (I), te ) is  an intrinsic character of
the singularity o f  X  at 0, and it turns out to be a  very useful
measurement in describing the effects of certain monoidal and quadra-
tic transformations to  the singularity, especially in regards to  the
problem of reduction of singularities. To describe what happens in
a little more details, let us localize the situation sufficiently near the
singular point 0 of X , so that the u-fold curves of X  (if there are any)
are all non-singular in  themselves away from O. Let us use the

be
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term permissible transformation to mean either a  quadratic transfor-
mation or a monoidal transformation whose center is a  nonsingular
v-fold curve o f X .  What one can prove is that there exists a  per-
missible transformation f :  such that i f  0 '  is any point of
X ' with f (0 ') =  0 , then the character (v, -a) of X  at 0  is strictly
greater than the corresponding (11, è ' ,  z e ')  o f X ' at 0 ',  where the
ordering is lexicographical. In  this way, one can obtain a  new
proof (without making any distinction with respect to the character-
istic of the base field k )  of the B. Levi-Zariski theorem o f reduc-
tion of singularities of an algebraic surface, which was proven by
Z arisk i in characteristic zero and by Abhyankar in positive character-
istics. (What happens about (v, i- t)  is this: v>v'; v=1/
— d/ (v!) with a nonnegative integer d; (v, ) ( v '  and < o ' =
è— e/ (v ! ;9) ! with an integer e 0; (v, ;9) = Y ) a n d  either e= 0 or t
= CX )  =  —c/ (v!) with a positive integer c.)

The key substance of the above approach is the totality of those
polyhedra d (f  ;  x )  with various transversal parameters x  and the
behavior of these polyhedra under suitable permissible monoidal trans-
formations. Those numerical characters ( , è , e l )  are nothing more
than an artificial and partial quantification of the behavior o f those
d (f ;  x ) ,  which happened to be sufficient for the mere purpose of
reduction of singularities of surfaces.

In the case of dimension 3  or more, the behavior o f A ( f ;  x)
(which is similarly defined if  X  is given as a hypersurface in a non-
singular algebraic variety) appears to be far more complicated and
has not yet been fully investigated. A t any rate, certain permissi-

ble transformations applied to the singularity are interpreted as cer-
tain transfigurations of the associated polyhedra in  a  real Cartesian
space, and a little experiments lead us to  an aphorism: Reduction
of singularities is charpening of polyhedra.

So much for motivation, what is actually done in this paper is
to generalize the definition of the characteristic polyhedra d ( f ;  x ) to
the case of singularities of an arbitrary scheme X  embedded in a
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regular scheme Z , and then to give a useful explicit description to

them so that their behavior under permissible transformations can be

analysed and, in some cases, numerically quantized. The large por-

tion of this paper is devoted to overcome the difficulties in the case

of large embedding codimensions, where there is no natural (or God-
given) system of generators for the ideal o f X  in  Z  locally at a

singular point in question. In the first section we will find an in-
trinsic definition of the characteristic polyhedra, and in the last an

explicit description of them by means of suitably chosen ideal base

and parameters. We do not know what this theory will develop into
in the future, except that for sure the results of this paper will play
an important role in the resolution o f singularities of an arbitrary

excellent surface at the very least.

§ 1 .  The characteristic polyhedron 41(J; u)

Throughout this paper, we fix the following notations :

R =  an arbitrary regular local ring
M = the maximal ideal o f R
k =  the residue field of R, j .  e., R IM
J =  an ideal in R , neither R  nor (0 )

u=  ( u 1 , • • •, u p )  =a system of elements u, M

such that

(1, 1) u  can be extended to a regular sytem o f parameters of
R .  We put R '=R /(u )R ,M '=M /(u )R  and J' =JR '.

We shall work with various choices o f a  system y= (y 1 , • •• , y,)

with y, G M  such that

(1. 2) (u, y )  is a regular system o f parameters o f R .  When-

ever such y  is specified, we shall write t=( t 1 ,• • • ,t ,)  fo r (u, y),
where n = p+ r.

We shall write ü=  (Ft 1 , • ••, iip) with the images Tt, of u, in grk (R ).
Then we have a natural isomorphism

(1. 3) g rk (R ) /M g rk (R ) ,g rk ,(R p
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If y of (1. 2) is chosen, then (1. 3) induces an isomorphism
(1. 4) k [y] , grm , (R '), where y= (yi, • • •, 5 ) with the image y ;

of y, in g rim ( R ) .  By taking its inverse, we get a monomorphism
of graded k-algebras

(1.5)e y :
Let R P  be the P-dimensional vector space over the real number

field R .  With the given (J, u) as above, wa shall deqne a  convex
set zI(J; u )  in R P ,  which is contained in the first quadrant Rf, where
R o denotes the set of nonnegative real num bers. A  linear homoge-
neous function L  on R P ,  real-valued, w ill be said to be positive if
it takes only positive values in R —  (0 ).  L e t  R , denote the set of
positive real num bers. Let L , denote the set of a l l  positive linear
homogenoeus functions on W .  Let us fix some notations as follows :
Given y  satisfying (1. 2), L  L , and b E R+ , we define

(1.6) I(L ; b)„,,, —  I(L ; b),= the id ea l in  R  generated by the
monomials ttAyB with A E z g  and B E.Z," such that L (A )+IB I>b ,
where Z o denotes the set of nonnegative integers and I B I the sum
of the r components of B.

( 1 .7 )  I+ (L; b) y = I+ (L ; b),= the ideal in R generated by those
O f  such that L (A )+1B I>b.

For each pair (g, b) of gEJ and b  R z , such that gE I(L ; b)„
we consider various expressions of g  in the following from

(1.8) g=27A ,B g(A ,B )+h, where A Z ,P) , B E Z , L (A )+IB I=
b, g(A ,B ) ttA yB R  and h E P ( L ; b ) , .  To each expression (1. 8), we
assign an element o f g r m (R ), denoted by in(g; L ; b)„, y o r  simply
in(g; L : b), and defined by

(1. 9) in(g; L ; b)=EA ,B G(A ,B ), where G(A , B ) i s  the image
of g(A , B ) in g r ( R )  with * = 1B I for each (A, B ) of (1. 8).

Now, given (J, u, y, L )  as above, we define the following symbol
(1. 10) {  J, L} {  J; L }  = the ideal in g r m (R ) which is gene-

rated by all those elements in (g; L ; b) obtained as above.

F o r  L E L + , we put J (L) = {v (v) 1}
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Definition ( 1 .  1 1 )  Given (J , u, y) as above, we define the sym-

bol 4 ( J; u ; y )  to be the intersection of 4 (L )  for all those L  .L,

such that
(1. 11. 1) {J; L}„ y = ey(grm , ( T , R '))gr N (R)

where gr,, , (J' , R ') denotes the associated graded ideal o f J '. (cf.

[3] , Ch. II, §2.)

D e ifin itio n  (1 . 12 ) Given ( J ,  u )  as above, we define J ( J ;  u) to
be the intersection cf d ( J ;  u ;  y ) fo r  all these y  satisfying (1. 2).
We call d ( J ;  u )  the (f irst) characteristic poly nedron o f J  with
respect to u.

Remark (1 .  1 3 )  Given ( J ;  u ;  y ), it is possible that there ex-

ists no L E L , satisfying (1. 11. 1). In  this case, J ( J ;  u ;  y) = R.
Moreover, i f  z l(J ; y) =RP° f o r  all y  o f (1 . 2 ), then d ( J ;  u )  =R .
This is the case, for instance, if J  is any non-zero ideal contained in

( u ) R .  Such a case is certainly uninteresting. In the following sec-
tion, we will find a condition under which such a case is excluded.

Remark (1 .  1 4 )  The most interesting is the following case:

(1. 14. 1) i  is  a free base of the k-module grL (R )/ T (J),
where

(1. 14. 2) T ( J )  is  the smallest k-submodule o f g ew (R)
such that g r m ( J ,  (grm(J, R) nk [T (J) ])g r m ( R ) .  (cf. [3] , Ch.
III, § 4.)
In this case, d ( J ;  u )  is a nonempty convex subset of IC; which does
not meet the reference symplex of lit, e . ,  {(a1 , «•, ap) RPo I E%i
a<1 } . W e  will find that, in this case, z l ( J ;  u )  closely reflects the
nature of singularities of the local scheme Spec(R/J).

The whole purpose of this study in this paper is to find an al-
gorithm for computing, or at least a useful description of, the char-
acteristic polyhedron z l ( J ;  u ) .  In  a  later section, for instance, we
shall prove the following

Theorem ( 1 .  1 5 )  Let the situation be the same as in (1. 14).
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Let us assume that R  is complete. Then there exists a  system y
satisfying (1. 2 ) and a standard base f = ( f i , . . . , f . )  of J ,  such that

(1. 15 . 1 ) for each LEL + , L (v )> l fo r all v d (  J ;  u )  if and
only if f ,E I (L : p ,)„ , with p, —vm(f, ) for all i. (For the notion of
standard base, see [3], Ch. III, §1.)

Our result is more precise and constructive than it is stated
above. In a later section, we shall introduce the notion of d-pre-
p a r e d n e s s .  This notion is such that, in the situation of (1. 14), if
the pair ( f ;  y ) is d -p r ep a r ed  w ith respect to  u ,  then it has the
property (1. 15. 1). When R  is complete, starting from an arbitrary
pair ( f , y ) ,  w e apply to it repeatedly what we call vertex prepara-
tions and finally obtain one which is d-prepared.

§ 2 .  The in it ia l  id e a l { J ;  4 } ,  in  g r , f (R )

Our primary aim in this section is to give a useful description
of the ideal {J; L }„ , defined by (1. 10), or more generally {J;
which is to be defined below, in  terms o f a  suitably chosen ideal
base of J, such as a standard base.

An E -subset o f Z;], is, by definition, a subset E  such that E+
Z',; = E .  (cf. [3] , Ch. III, § 7 . )  Every E-subset E  of Z  can be ex-
pressed as

(2. 0 )  E ----U „.(A ,+ Z )

where {,41, •••, A s}  is  a f inite subset o f E .  In  other words, it is
bounded by a finite subset. (loco cito ) Such a  subset {A.,•••, A s }
o f E  with the smallest possible s  is uniquely determined by E  and
will be called the base of E .  The intersection of E-subsets is an
E-subset, and every subset F  admits the smallest E-subset contain-
ing it, which will be denoted by [F] . Quite generally, if a  system
of n  elements t .- ---(t 1 , •••,t „ ) is given in a ring R , then we associate
with every subset F  o f 1 V , the ideal in  R  generated by all the
monomials tA with A E F n T .  This ideal will be denoted by I (F ) ,
or simply l ( F )  whenever the reference to t  is clear. Clearly I ( [ F ] )

1 ( F )  for a subset F  of Z . M oreover, i f  R  is  the polynomial
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(power series) ring of n  indeterminates t  over k , it is easy to show
that A E  [F] if and only i f  tA E / ( F ) .  (One can prove (2. 0) using
this fact.)

Lemma (2. 1) Let R  be a noetherian local ring, and t=( t 1 ,•••,
t„) a regular R-sequence in the maximal ideal o f R .  Let E , be E-
subsets of Z .  Then  w e have n /CEO t=1(n iEi),.

P ro o f .  Let us first consider the case of two E-subsets, in which
the proof is by induction on n. We may assume n > 1 , and define

49(E1, E2) to  be the sum I, A, I + f i ll3j 1, where (A1, • • •» ( r e s p .
(131 , •••, B D ) is the base o f E i (resp. E D . We then take the second
induction on i3(E1, E 2 ) .  The assertion is trivial if min {E,
= 0 .  It is immediate from the regularity assumption on t , i f  max{/,
A 1 , x i ! B i ll = 1 .  Pick any other case. We may assume that X A,I

> 1  and where eEZ ',; is such that t' = t„. Then I (E 1 ) fl
I([e])---I([A ])-+ I([A 1,•••, A .-1])  fl 1( [e]). A pp ly  the induction as-
sumption to this last term, we get I(ED n I([e ])= I(E i n  [e ]) .  We

need this result below. Let R*----R/t„R, x (0 )  E , n zr ,  x (0), and
t* = (tp,•••,t„_,*) with the image t `  of t, in R * .  For any F*
we define I(F*),,, in the same way as before, and write it as I* (F*)
for short. Now we have {/(Ei) r1/(E2)} R * c /(E i )R * n /(E 2 )R*—
I* (E n  n /-*(E n .  By induction on n , this is equal to I*(E,*(1E49
— I(EirnEDR*, as the regularity assumption on t  implies the same
on t * .  Thus, I(ED n I(E2)= 1(E1 n + 1(E1) n 1(E2) n 1( [e]). But
this triple intersection is equal to /(E i n  [e ])n r(E 2 n [e ])  by the
above result and by the induction on Let E : be the E-subset of
Z',; such that E:+ e= E, n [e ].  Then I ( E ,n [e ]) =t„I ( E )  and t„/(E;)
n t,J ( E ) =t„( I ( E )  n 1-(ED) = n ED by induction on Hence
I(ED n 1(E2) = I(EirIED +t„I(E; n = 1(E1 n E2). Now, for the
general case, it is enough to prove: r(n,E,)=-n,l(E,) mod /(E (m ))
for every m , where E(m )= { A EZ '411A l>m }  . But this for each m
is a case of finitely many E,. Q. E. D.

I f  J  is any subset o f ICI, then { J}  will denote the smallest
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closed convex subset of l t  containing v + Rf, for all v E d .  If 4 =  {J} ,
then we call LI an F-subset of R .  For instance, 4 ( L )  for L E L+

is an F -subse t. We shall often identify 4 (L ) with L  itself, and in
this sense we shall generalize the symbol {J; „,y . For this pur-
pose, we introduce the notion of the essential boundary  of an F-
subset LI of 10, denoted by ad and defined by

(2. 2) J =  th e  subset of J consisting of those v J  such that
vE v '+ .1 it with v 'E d  unless v=v'.

Every pair (A, B )  with A ER,'; and B R  will be viewed as an
element o f R',;, where n = p + r .  With every pair (4, b )  o f an F-
subset 4 of RP° and bER + ,  we associate a  subset of R ,  {4: b}  in
symbol, which is defined by

(2. 3) {J ;  =the smallest convex subset of R l containing (b4)
x I ro and Itt x W  (b) , where W (b) = {B B  1 > - b }  .  Here bd = {bv
y E X  in the sense of scalar multiplication on vectors. By the con-
vexity o f 4 , LI= biLl+b,4 i f  b, E R + and b =b ,+b ,.  Moreover, it is
easy to see that {4; b}  is an F-subset of M.

Let us go back to the situation of § 1 .  We choose y  o f  (1. 2)
and put •t = (u , y ) . For every subset F  of R ,  w e have defined the
ideal I(F)„, y ---I(F ),---I (F F IZ O . I f  F  is  an F-subset o f R ,  then

we also define P (F )„ ,,,(= I+ (F ),) to be the ideal I (F —aF ) .  W e
now generalize the notations of (1 . 6 )  and (1 . 7 )  as follows: For
an F-subset J  o f R",, and b ER + ,

(2 .6 )  1(4; b) = I(4; b),-- I( { z1; b}  ), and
(2.7) P ( 4 ; I±(4; b),= i + ({4; b}):.

L em m a (2. 8) Let F  be any F-subset of I C .  Then every g E

I (F ) ,  can be expressed as

(2. 8. 1 )  g =z ,,g ( A ) +h , where g (A )E tA R , h .1 . +(F ) , and A
ranges through the set 6Fn E d . Moreover, i f  G (A ) denotes the im-

age of g (A )  in g rZ (R ) with *=  I AI, then

(2. 8. 2) EA G (A ) for the same range o f A  as above, is inde-
pendent of the expression (2. 8. 1).
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P ro o f .  The first assertion is trivial. To prove the second, let
us pick any other expression of the same g ,  say g =
which has the property of (2. 8. I ) .  Let G '(A ) be the image of
g' (A ) in g rZ (R ) with *= A . W e shall prove G(A ) = G' (A ) for
all A .  Let E= Fri Z g and A G OFF1Z7. Then the complement of
the element A  in E  is an E-subset of Z',;, which will be denoted by
E 0 . T h e n  w e  g e t  g(A) — g' (A) E 1(E0 ) fl I([A ]) = I (Eon [A ]) by
(2. 1). Since AE E o , I(E 0 n [A ])e M 1 ([A ])e M  A  + . Hence the
image of g(A) — g' (A ) is zero in g r ( R )  w ith  *=  A !, which is
G(A )— G' (A). Q. E. D.

Definition (2. 9) For g E I ( F ) „ the element of g r m (R ) defined
by (2. 8. 2) will be denoted by in (g ; F ) , and called the initial pol-
ynomial o f  g  in  gr m (R )  w ith respect to  ( F ;  t ) .  W e are particul-
arly interested in the case of F= {4; b}  with an F-subset I  o f R ;

and bG R + . I n  this case, in ( g ; F ) ,  will be denoted by in( g;
J; b) andand called the  in itial poly nom ial o f  g  in  gr, 1 (1?) with res-
pect to (d; b; u; y).

Remark (2. 10) Whenever the following symbols make sense,
we have

(2. 10. 1) in(g±g' ; 4; b)„, y =in(g; d; b)„, y ± in ( g '; J; b)„,, and
(2. 10. 2) in(g; J; b)„, y in (g '; J; ;  d ;  b + b r ) „ , ,  mod

/+(zI; b +b 9 i, where the last ideal is defined in the same way as
in (2 .7 ) w ith  the ring g r m (R )=k [T ] and the system T. The first
equality is immediate from (2. 8) and (2. 9). To prove the second
congruence, it is enough to check : {d; b} + {d; b'}  = { J; b+b'}  and
({J ; — 8{J; b}) + { J; b'}  c { 4; b+bq —8 { d; b+II}

R em ark  (2 . II) Suppose d is an F-subset of R f; such that its
essential boundary ad is conv ex . Then we get the equality j(04)
+ f ( u ) - ( i + f ) ( 8 4 )  for all j, j 'c  R + . It follows that & {d; b} is
convex and has the same property. Then (2. 10. 2) implies that, in
fact, the congruence can be replaced by the equality.

Definition (2. 12) 4 being an F-subset of R /J, we define the
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symbol { J; d} „,, to be the ideal in g r m ( R )  which is generated by
in (g; A; b)„, y  for a ll pairs (g, b) with b ER +  and gE jn/(d; b)..y .

R em ark ( 2 .  1 3 )  If A = R ,  th e n  in (g; J; b)„,, is nothing but
the image of g  in g em ( R ) = k .  Hence we get { J; „,y =  (0), inde-
pendent of J, u  and y. On the other hand, if d = d(L) with LE L + ,
then d is neither Rt, nor em pty. In th is  case, w e find  that (1. 9)
(resp . (1 . 10)) is  a special case of (2. 9) (resp. (2. 12)).

In general, an F-subset of 14 w ill b e  sa id  to  b e  ProPer i f  it
is neither R'o' itself nor empty.

Lemma (2 .  1 4 )  Let g  be any non-zero element o f M , and d
a proper F-subset of R .  Let y  be any system  o f  (1. 2). Let V
be the set of those b e-R , such that gEI(J; b)„, y . T hen V  is  an
interval (0 , v ] containing its least upper bound v, provided V is not
empty.

P ro o f .  If b>b 'E R + ,  then {A; b}  c {d; bq and I(J; b)„, y E I(J;
b') . Hence it is enough to prove that i f  V  is not empty, then V
contain its least upper bound. First of a ll V  is bounded because for
every integer d>0, I(J; b)„, y c M d  i f  b  is sufficiently large. (F o r
instance, choose b such that b >d  and d  is  le ss  th an  the distance
from the origin  to  bJ.) Let b e  the least upper bound for V.
We want to prove that gE  / (J; v )„ ,, . It suffices that gEI(J; v )„, y

+M "' for any given integer m .  For a fixed M ,  there are only a
finite number of A E Z ; w ith  12'11< m .  It is therefore easy to find
b E V (sufficiently close to v) such that if A E Ec; and  A  < n i, then
A E  {A; b}  implies A E  {A; .  This implies I(J;b)„,,EI(J; v )„, y +M ".
But g E I(J; Q. E. D.

Quite generally, we extend the notion of pow er P of an  ideal
I  in a ring R  to an arbitrary real number b as follows :

(2. 15. 1) For every real number b , le t  c  (resp . c ')  b e  the
smallest nonnegative integer (resp. > b ) .  Then we put P =
and P+=

(2. 15. 2) The graded R//-algebra g ri(R )  is viewed as the di-
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rect sum (as R/Tmodules) of all /V P+ for all real numbers b. In
other words, the homogeneous parts of degrees b , g r,(R ) , are all
zero except for nonnegative integers b.

Lemma (1 . 1 6 ) Let g ,  y and d b e  the same a s  in  (2. 14).
Let g '  be the image of g  in  R '.  Pick b ER, such that gE. /(A;
b) y . Then g 'E  M "  and, if Jr' is  the image of g '  in  g r,( R ') ,
then

(2. 16. 1) in(g; A; b)„ y e y  (VP' )  G  (u )g r m (R ) (cf. (1. 3) — (1. 5).)

P ro o f .  It is clear from the definition that /(d; b),R'= M"—
(y)bR ', where t = (u, y ) .  Hence we find hE (y )bi? such that g—h
E I ( J; b), - -1 ( u ) R .  By (2. 10), in(g; A; b)„, — in(h; A; b)„ y = in (g—
h ; ;  b)„, y . Thanks to (2. 1), we find this element in  (Tt)grm (R).
It is easy to see that i n ( h ;  ; b) y = ey (11/). Q. E. D.

Corollary (2. 16. 2) Let ço= i n ( g ;  ; b)„ y. Let be the ini-
tial form of g '  in g r m , ( R ') .  Suppose çoEkryl and Then we
have b = , f , (g ') = the largest number with g e  I(J; b)„, y ,  and ço=
ey (kk). In particular, b  is a positive integer and ço is homogeneous
of degree b.

P ro o f .  Thanks to (2. 16), it is enough that b  is  the largest
number with gE I(J: b)„,,,. Suppose gE I(.61; b'),,., with b '>b .  Then
b y  (2. 16), g 'E M "  so that by (2. 16. 1), p O m o d  (ü )gr m (R).
This is impossible, as cp#0. Q. E. D.

We are interested in the following condition on a pair (y, d)
of a system y  o f (1. 2) and a proper F-subset A  o f Rt':

(2.17) {J ;  M .,= ( {J ;  zi},,yrik{5, ])grm(R)

This condition implies { J; is homogeneous by (2. 16. 2). As
will become clear later, the condition is very significant fo r  a  cer-
tain type of F-subsets A but not for some others at all. It is most
significant, when d  is effective in the following sense.

Definition (2 . 1 8 ) An F-subset d of l i t  is said to be e f f e c t i v e
i f  it is a proper F-subset such that Rt— d is bounded.
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Remark (2 . 1 8 . 1 )  For L E L + ,  the associated F-subset A (L ) is
effective. In general, i f  LI is an effective F-subset of Rg, the {A; L.}
with b ER + is  an effective F-subset of R .  ( c f .  (2. 3). )

Lemma ( 2 .  1 9 )  Let gE M , * 0 ,  and let LI be an effective F-
subset of R .  Then there exists the largest 1, ER + such that g E
1(d; v)„, y . Moreover in (g ; d ; b )„ , y  fo r  b -1 , is  zero if and only if
b<v.

P ro o f .  In this case, the set V  o f  (2 . 1 4 )  is not empty, be-
cause A being effective, every point of R"o other the origin is contained
in some {A; b} with bER + .  Hence 1, exists by ( 2 . 1 4 ) .  For b>b'ER + ,
{d; b} = (b/ b') {d; b'} , so that {A; c  {LI; V} - 0 {A; b'}. Hence it is
clear that i n ( g ;  ; b ) , = 0 for all b<1,. Now, suppose i n ( g ;  A; p)„,, = O.
If we take an expression (2. 8. 1) with F= {4;0 , then all the G(A)
o f  (2 . 8 . 2 ) are zero. This implies that g (A )E I+ (F ), for a ll A.
Hence gE L F ( F ) , = 1 ( ( F - 0 F ) n z ) t .  Since F  is effective, OF has
a positive distance from ( F - 0F) n  Z .  L e t  e be this distance. Let
m=max { I v I for v E 6 F } .  Then for c ER + w ith  1< c< 1 -P e/ m , cF

( F —  )  n  Z  .  But cF=  {A; c v }  and gE I+ (F ) ,c1 ( cF ) ,= 1 (d ;
This contradicts the m axim ality  of v. Q . E . D .

Recall that a standard base of a homogeneous ideal in a graded
algebra is, by definition, a minimal base consisting o f homogeneous
elements which are arranged in the order of nondecreasing degrees.

Definition ( 2 .  2 0 )  A  system o f elements f  = ( f , ,• • • , f , n )  with
f ,E j ,  will be called a  (u ) - e f f e c t i v e  base of I  i f  there exists a
system y  satisfying (1 . 2 )  and an effective F-subset A  o f RP° such
that if 1), is the largest number with f , E / ( J ;  v , )  for all i,

( 2 .  2 0 .1 )  k [y] contains the initial polynomials ço, =in ( f ,; d;
for all i ,  1 <i<m , and

(2. 20. 2) {J; A} =  ( ç a l  • • • y  çon ,) g r , ,(R ) .

A  (u)-effective base is called a  (u ) - s ta n d a rd  base i f  (v i , • • çp„ ,) is
a standard base of the ideal o f (2 . 2 0 . 2 ) . A pair (y , d )  having the
above property will be called a reference datum  of the (u)-effective
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(or (u)-standard) base of J .

Remark (2. 20. 3) Let f=  ( f i ,  . . . , f „)  be any standard base of
J  in the sense of [3 ] , Ch. III, §1. Let T  be any k-submodule of
grk (R ) such that the initial forms ço, of f ,  in g r,( R )  are contained

in k [T ] for all i. If the system u  o f (1 .1 ) is such that -74 is  a
free base of g r ( R ) / T ,  then f  is a (u)-standard base of J  in the
sense of (2. 20). In fact, let y be any system such that y is a free
base of T , and let 4= { ( a i ,  • ••, ap ) i t  I Thea ( y ,  d )  is
a reference datum for that f .

We shall use the symbol 1(4; b).  o f  (2. 6) in the following

extended sense : 1(4; b)„,.= R  i f  b  is any nonpositive real nu:nber.
Recall that (2. 6) defined it or ly for positive b.

Theorem (2 . 21 ) Let f=  (1 .
1 , - - ,f „,)  be a (u)-effective base of

J .  Let f  b e  the image of f .
 o f  (1 .1 ) ,  a n d  le t  v ,  f  :),

1 < i < m .  Let J  b e  a proper F-subset of M  and y  a system of (1. 2).
Suppose f , E I (  ; 1),)„,, for all i. Then, for every b E R , and E-subset
N  of Zf) ,  we have

N / (J ; b ) . , , n / =  ( I N / (4 ;  b—v1).,,f1)-F(N1 + ( J; b ) . , y ( 1 J )  where

NI substitutes for I (N )„n  I. (Note :  N /=/  i f  N = n )

P r o o f .  Let (z , 4 ° ) be a reference datum of the (u)-effective
base f  of J .  Throughout this proof, we shall abreviate symbols as
follows: in ( g ; b )  (resp. in ( g ; b ) ° )  fo r  in(g; d; b)„, y  (resp . in(g;
4°; b)„, y ). We shall first consider the case in which z = y .  Until

we discuss the case of z * y ,  we shall suppress the reference indices

(u , y ) attached to various symbols. Now, to prove the theorem, we

shall consider an arbitrary pair ( g ,  b )  with bE R ., and g
b), * 0 .  We then want to prove that

(2.21. 0 )  there exists g*E E T -iN I(4; b - 11)f1 such that g— g*
E P (J ; b).

We will prove this for each fixed bE R + ,  b y  the descending induc-

tion on the number d = d ( g )  which is the largest real number such

that gE  / (4° d ) .  (Note that, for every real number e ,  say E R ,
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the set (R'ô— {J; n z  is finite and hence there are only a finite
number of possible values of d (g )  which are less than e.) I f  d(g)
is big enough (with respect to b), then gE I+ (J; b) and the asser-
tion (2. 21. 0) is trivial. N o w , pick any (g, b) as above, so that g

N I (  ; b )n r(2 ) ; d)= I( {z1; b) (1 {J°; d } fl N xZ ) by ( 2 .  1 ) .  Then
we have an expression

(2. 21. 1) g= Z .,iEg(A )+ h, which has the property o f (2. 8. 1)
for F= { J; b), so that in (g ; b )=Z Œ E G (A ) in the sense of (2. 8. 2),
where the range E  of A  is equal to a {4; b} n {zr ; d } n N x .Z .  Note
that this implies

(2. 21. 2) N /(J° ; d )  contains all the g (A ) and h.
I f  G(A ) = 0, then g(A )E N I+(d ; b ) . Hence we may assume that

(2. 21. 3) g(A ) =0 i f  G(A ) =0 for each AGE.
We hava g(A )EtA R  with t=  (u , y ) .  Hence in (g(B ); d)°  =in(g(B );
b )=G (B )  for a ll B E E n a {4° ; d ) .  Let us put E. = En a {J° ;
n { A I G ( A ) 0 } .  Let H =in ( h ; d ) ° .  This is well defined by (2.
2 1 . 2 ) . Let P  be the subset of Z,P, such that

(2. 21. 4) H = where H , k  [ y ]  and 0  fo r  each
aE P.
Let Q be the subset o f V° such that

(2. 21. 5) 27/.E,G(A) = /7,

where G,Ek [y- ]  and  *0  for each a E Q .  We then claim

(2. 21. 6) Pn Q= 0.

In fact, let a E pr- 1Q, so that there exist A= (a, c )  r o and A ' = (a,
c')E.Z 'c; such that -t- A. (resp. TA') has non-zero coefficident in the polyno-
mial H  (resp. EA.EG ( A ) ) .  Then, since 6{2) ; d }  contains both A
and A ',  a E (d— lc! )04° rn cd— c' 1)8J°. But this intersection is
nonempty if and only i f  I c I =  c' I. S in ce  A ' Ea {4; , this equality
implies A a {J; . But this contradicts 1z E1+(z 1; b). (2. 21. 6) is
thus established. We know that

(2. 21. 7) in(g; d)°  =i,A ., G (A )+ H , which belongs to the ideal
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{ J; J°}„, y . This ideal will be denote by { J} °  in  sh o rt. L e t çp., =
in(f  „b p °  with the largest s u c h  t h a t  f ,E I (d °  ; b,). By as-
sumption, ço,.Ek [ y ]  fo r  a ll i  a n d  { J} ° =(ç , i, • • • ,  gon ,)g r m ( R ) .  By
(2. 19) and  (2. 20), (p, -±--0 for any i. Hence by (2. 16. 2) we get
b, =v , for all i. Now, (2. 21. 4)-(2. 21. 7) readily imply that {J}
contains H , for all a E P  and G , for all a E Q .  Hence we can write

(2. 21.8) H ,=E7_,11,,1Ç91 with forms H ,„E k [y ] o f  degrees
deg./4 -vi, and

(2. 21. 9) G ,-E 7 _ 1 G,, 1 Çoi w ith  fo rm s G,,, E k  [y ] o f  degrees
deg G , - v , .  Here it should be notes that all the H ,  an d  G , are
homogeneous. Let us then choose an  element h,,,(resp. g ,,,)  of the
ideal ( y )* R  whose im age in  g rZ ( R )  is equal to 1-1„, 1(resp. G,,,),
where *= deg H ,- v ,  (resp. deg G ,-  u p .  Let us then put

(2. 21. 10) hc, ,  and
(2. 21. 11) g o =E ,,,u 'E % i g,„ f

Let g' = g - h o -  g o . Then we have

(2. 21. 12) g -  E Z "- ib rl(z 1 ; b - 1) f 1.

In fact, this ideal contains both h ,  and g . .  Take h o  for instance.
Due to our selection of E  in  (2. 21. 1), we have h E / ( { J ;  b} f l { 4 ';
d} .7\rx Zô). By the assumptions in  (2. 21. 4), (a ,b) E  {4; n {40;
d} nNx Z,P)  fo r all a E P  and all c E r a with icl= deg 14 . There-
fore every H,,, #0 in  (2. 21. 8), (a, c') E  (d; b-u,}  f l N x Z1; for all c'
EZ'o with Ic'j= deg H,,,. This implies z eh„,,E N I(d; b-v ,) for all
such (a, i). (The proof for g o  is quite s im ila r .) By the above in-
duction, it is now suffices to prove that d ( g ') > d .  In fact, we will
then have g i*  having the property (2.21. 0) for g ',  so that g* = g o

+h o + g '*  has the same for g .  Now, we have f , E I(d°  ; v ,) for all
i. (W e proved b1 =v 1 fo r all i.) Therefore, it follows from (2.21.
10) and (2. 21. 11) that /(4 0 ; d )  contains both h o  a n d  g o . More-
over, by (2. 21. 4)-(2. 21. 9), we get in(h o ; d ) °  =H -- in (h ;d ) °  and
in(g° ; d) ° =E A E ,G (A )=in (E A .E .g (A ) ; d )° . H ence, b y (2. 10),
(2. 21. 7) shows in (g '; d ) °  =in (g ; d )°  - in (g o ; d )°  - in (h 0 ; d)° =0.
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Hence, J °  being effective, (2 . 1 9 ) implies that g 'E I(4 `) ; d ')  for
some d '>d ,  i. e ., d ( g ') > d .  This completes the proof of the theo-
rem for the case of y = z .  In the general case, we can find a  third
system x = (x 1, •••, x ,)  satisfying (1 . 2 ) , such that y = x  mod (u)R
and (x )R = (z )R . Pick any effective F-subset D  of RP° which con-
tains both J an d  {(a 1 , • • • , ap) E R f,' E ,a ,> 1 / 2 }  .  Then we have y,
—x1 E I+(D ;1) =I+(D ; 1)„,, for a ll  i, 1 S i . < r .  It follows that
I(D; b ) , = I ( D ;  b ) ,  and 1. +(D; b) =I+(D; b)„,, for all
b ER + . Let us denote these ideals by I(b )  and I+ (b )  respectively.
Pick any g E I ( b )  with b E R _ .  On one hand, w e have uaỳ it'x'
mod I+(b) for all (a, c) Ea {D;b} n Z ',;. Hence, in(g; D; b)„,,, is got-
ten from in (g ; D; b)„,, by replacing I- by y (and fixing Ft). On the
other hand, if E ( j) =  (b — i) (aD )n z t; for each integer j ,  0 < j< b ,
then a {D ; b} ( - 1Z'd— UJE(j) x  { vEZrol Iv }=j1 . Therefore, i f  we
write g------E,E„e E c o g(') mod I+(b) with g ( ' ) E tr(x )iR =T r(z )'R , then

both in (g ; D ; b)„,„ an d  in (g ; D; a r e  equal to  E J E „ , ( 1 ) G ( ' )

where G ( ' )  denotes the im age of g ( ' )  i n  g rZ (R )  w ith  *=  a  + j.
Thus, i f  q  is  th e  k[f]-autom orphism  o f  g r m ( R )  w ith  q( 1) =y 1 ,
q(in(g; D; b)„,,)— in(g; D; b ) „, .  This being so for every (g ,b ) as
above, we get

(2. 21. 13) { J; D} , y =q ({ J; DI „,„)

Since DD 21°, ço, = in(f , ; D; 1)1)„,y — q(in(f 1 ; D; 1),)„,,) for a ll i. By
Theorem (2 . 21) fo r the case in  which the proof is already done,
we can associate with every pair (g , b) as  above, an  element .g*E
ET=1I(D; b— v,)„,,f, such that g—  g* I+ ( b ) .  Write g* ac-

cordingly. Then, since f ,E (z )-R +I+(li,)  for all i ,  it is easy to see

that if  ço, (y2:49 , in(g*; D; b),,,,= E, in (h ,; D ; b -1 ),)„,, e . Clearly
this coincides with in (g ; D; b)„,,, and  it fo llows that (vP, Ç9 )
generates the ideal { J; D}  „,,. Therefore, in  view o f (2. 21. 13), we

find that (y , D ) is also a  reference datum fo r the given  (u)-effec-
tiv e  base f  of J .  In other words, we could choose (y , D ) instead

of (z , 4°) from the very beginning. Q .  E .  D .
Theorem (2 . 21) has many useful consequences, some o f which
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are stated below as corollaries.

C oro llary (2. 21. a) Let the assumptions be the same as in
(2 . 21 ). Suppose a y  is convex. Then the ideal { J; is genera-
ted by in ( f i ; A; v i),,  for 1<i<ni.

P ro o f .  P ick any pair (g , b )  w i t h  b E R a n d  g E I ( J ;  b ) „ , y .

Then, by (2 .21), there exists h 1 E 1(4; b— v i )„, y ,  1 < i< m , such that
g— E i h i f, P(4 ; b)„, y . Since Od is  convex, (2. 11) is applicable to
th is  case. N am ely, by (2. 10) and (2. 11), w e  have the equality
i n ( g ;  A; b)„, y = in (E i h ,  f i ; A; b)„, y = E 1 in(11,; A; b — v i ) y i n ( f i ;  A; ,
where i n ( * ;  d; d )  = 0 i f  d < 0  and ( t h e  residue class of * mod M )

if d = 0. Q . E . D .

C oro llary (2. 21. b) Let the assumptions be the sam e as in
(2.21). Suppose w e  have f , E ( y ) ' , R+ I+(z1; v,)„, y  f o r  a l l  i. Let

ço, =in( f ;  A; V i ) u , y ,  1 < i < t n .  T hen  w e have { ., Y  ((P1 1 •  •  . 1  g9
111)

g rm (R )=  J ' ,  R ' ) ) g r , ( R ) ,  where e y  i s  the homomorphism
o f (1. 5)

P ro o f .  Pick (g, b) and put g— E,h 1 f 1 E/+(z1;b)„, y  in the same
way as we did in the proof o f (2. 21. a ) .  B y (2. 10), w e have the
congruence in( g ;  A; b)„ ,,--- - -S , in (h , ;  d; v i mod P ( J ;  b ) i .  But,
by the assumption on f ,  go, are forms only in -y- . Hence the right
hand side of the congruence (as well as the left hand side) is a linear
combination of only those monomials of the form 7 11 w ith  A { 4 ;

Z;;. Since /+(A; b ) i  is generated by those monomials TA with
A E  {LI; b} —0 {Ll; b}) nz',;, which is an E-subset o f .Z;;, the above
congruence can be replaced by the equality. W e conclude that { J ;

A} ,,, y = (ç0i, • • • , çon , ) g r m ( R ) .  Now, if J r  denotes the initial form of f
in g r m , (R ' ) ,  then Ç9, = ey (-k ,) for a l l  i. (See (1. 16. 2). ) We now
have only to prove that g rm , ( •••, \trm ) g r m , ( R ' ) .  Pick
any form qE gr,,,, , ( J ' ,  R ' ) ,  * 0 .  Then there exists an element g  of
J  such that, g ' being the image of g  in R ' ,  q  is  the initial form of
g ' in g r m , ( R ' ) .  Then we can find an effective F-subset D  o f M,
so large that D D A  and gE (  y ) b +  P (D ; b )„ , ,  w ith  the integer b=
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deg q. Then, by what is already proven above, { J; „,, is genera-
ted by in( f ,; D; v ,) =in ( f ,; A; v,)„,,=q ,„ 1 < i< m .  Hence, i f  s=
in(g; D; b) y ,  then sE (ço i , • • • , ço„,)grm (R). Since k [y ] contains all
the ço, and s , w e get sE (ço i , • • • , 0..)k[y] .  Since ey  i s  injective, q E

• • • , *,n)grm , (R '). Q. E. D.

C oro llary  (2. 21. c) Let the assumptions be the same as in
(2 . 2 1 . b ). Assume that A  is effective. Then (y , d )  i s  a  reference
datum for the (u)-effective base f  of J.

P ro o f .  B y (2 . 16) and (2. 19), 1), i s  the largest number with
E  I(J; ,),)„ y  for each i. Then the assumption on f ,  o f (2. 21. b)

im plies that in( f ,; A; k ['A for a ll i, j ,  e ., (2 . 2 0 . 1 ) . On the
other hand, we have (2. 20. 2) b y  (2. 21. b). Q. E. D.

C orollary (2. 21. d ) L e t  th e  assumptions by the same as in
(2 . 2 1 ) . Assume th a t A  is  effective. T h e n , fo r  every bER ÷ ,  we
have ./(A ; b ) . , y n  I  b—v,)„,yf,. In particular, every (u)-
effective base of J  generates J.

P ro o f .  Since Jc M  and A  is  effective, w e have JcI(A ; b)„, y

for sufficiently small bER + . Thus the first assertion implies the
second. Let H  and H ' denote the le f t  and the right hand side of
the claimed equality, respectively. Let V = { dER + I H cI(4; d)„, y +
H '} .  This set V  is unbounded above. In fact, if otherwise, we have
the least upper bound b o f V . A s  is easily seen, if > 0  is small
enough, {A; b— }  nz;= {A ; b} nzno and hence /(A ; b--,3) =1(4;
b) y . It fo llo w s th at b E V . P ick  an y  e lem en t g E jn  / (J;
Then by (2.21), there exists g * E H  such that g— g*E1+(4; b)„, y .
Since A is effective, there exists a > 0 , so  sm all that ( {A; b} -a {z1;
b } ) n z =  {z1; b 4-co n .z . This implies P (4 ; b)„,,c./(4; b+a)„, y . It
then follows that E V, which contradicts the assumption on b.

Q. E. D.
Let us recall the definiton (1. 11) of the symbol A( J; u; y).

C oro llary  (2. 21. e) Let the assumptions be the same as in
(2 .21 ). T h en  z1 contains 4( J; u; y ).
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P ro o f .  Take any L L „.  which takes only values > 1  at the
points of J .  We shall then prove that L  takes only values > 1  on
,61( J; u; y ) .  T h is  certainly suffices. The assumption on L  implies

that f , (  y ) R + I+( D ; y  with 1,, = vie( f  :) and D = 4 ( L ) .  Hence

by (2. 21. b), this L  satisfies the condition (1. 11. 1). Q. E. D.

Corollary (2. 21. f) L et th e  assumptions be th e  same as in
(2 . 2 1 ) . Let N  be any E-subset of Z .  T h en  w e  have I (N ) .n .f

P ro o f .  In  (2. 21), choose .61 to be effective and b  to be suffi-
ciently small. Then we get I(N )„=N I(J; b)„, y = N I(4; b-1) 1)„, y  fo r
all i. In the same way as we did in  the proof o f (2. 21. d ), we ap-
ply to our situation the theorem (2. 21) for a fixed J  and various b,
and prove that 1-(N)„(1.T =E7=1/(N).f, + I(N)„1"-1 I(z1; b)„, y n J  for
all bE R ,_ . The equality of (2. 21. f) follows from this by the closed-
ness of every ideal in a local ring. Q. E. D.

If there exists a  (u)-effective base of J, then there exists a (u )-
standard base of J .  In  fac t, a s  is easily seen from th e  definition
(2. 20), the latter can be obtained a s  a  suitably reordered subsystem
of the form er. It should be noted, however, that there does not al-
ways exist any (u)-effective base of J .  We thus look for some use-
ful criteria for the existence of such a base.

Lemma ( 2 .  2 2 )  Let D  be any proper F-subset of k , and y a
system o f (1. 2). Let .k  be the completions of R, MI? and .rf=

J .  Then for every bER +  and  gE I(D ; b) y ,  the symbol in (g ; D;
b)„, y  defines the same element when R  is replaced by i ,  i n  terms
o f th e  canonical isomorphism of g rm ( R )  and g r ( ) .  Moreover,
we have {7  D}„, y =  {J; D}„, y .

P ro o f .  The notations I(D; b)„, y  an d  l÷(D; b)„, y  will be meant
with reference to R .  The corresponding ones with reference to k
will be denoted by Î(D; b)„, y  a n d  Î ( D ;b ) , . .  Clearly, we have Î(D;
b)„, y =I(D ; b)„,:k  and 7+(D; b)„, y = P ( D ; b ) „,,i .  Take any
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Then iD; b} nz',; is  an E-subset of r o', and hence as in  (2 . 0 ), it
has a  finite base {A1, • , A ,} . L e t t = max,(I A I ) .  Now take any
A.E-V IN (D ; b)„,„,. This ideal is equal to ( in I (D ;  b)„,,,) i ,  and hence
there exists gE P 7  /(D; b)„,,, such that g = g  mod /M ' .  Then by
the selection o f  t, w e can  p ro ve i n ( ;  D : b)„,,,= in (g ; D ; b)„,,,.
This proves (2. 22). Q. E. D.

Lemma (2. 23) Q uite generally, let R  be a  noetherian local
ring w ith  the m axim al ideal M , and u = (u 1, ••• , up) a regular R -
sequence with Zti E M . Let J  be an ideal in  R  which is contained
in M .  Then the following conditions are equivalent to one another:

(2. 23. 1) u  is  a regular R/ J-sequence.

(2 . 2 3 . 2 ) g r o o (R /  J)  is  a polynomial ring of p  indeterminates

over R /( J, u )R  where (u )  denotes the ideal (u)R .

(2. 23. 3) (u)g Rn (u)° J for all integers q>1.

(2. 23. 4) (u)R F1J= (u)J.

P ro o f . Let IC denote the Koszul complex generated by u over R.
Knowing that K „ is acyclic, (2. 23. 4) can be proven to be epuivalent
to Hi (K n O R R /i)  ( 0 ) .  Hence Propcsition (2. 8) o f  [ 2 ]  proves the
equivalence between (2. 23. 1) and (2.23. 4 ) . We have proven the equi-
valence of (2.23. 1 )  and (2. 23. 2), by Lemma (1. 9) o f [4] . (2 .2 3 .  3)

(2. 23. 4) is trivial. Therefore, it is enough to show : (2. 23. 2)
(2. 23. 4) ( 2 .  2 3 .  3 ) .  This i s  clone by induction on q. Let q>1
and pick any gE (u)a+IR n J. Assume g E  ( U ) U .  We can write g =
EAtt A g A  with g A E I  where the range of A is  { A EZ }1 A  =q }  . Let
S =R /J, and k A  (resp. TO  the image of g A  (resp . u i )  in  S/ (u)S
(resp. grlo ) ( S ) ) .  Then we get LATtAgA =0 because g E  (u)q+1 R .  By
(2. 23. 2), we get grA = 0 for a ll A , i. e., g A E ( u ) R n J. But this ide-
a l  is  (u )J b y  (2. 23. 4). Q. E. D.

Let us return to the situation of § 1. Note that the above Lem-
ma ( 2. 23) is not only needed in the proof of the following theorem
but also important as a supplement to the statement of the theorem
itself.
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Theorem ( 2 .  2 4 )  T he following conditions a r s  equivalent to

one another:

(i) There exists a  (u)-standard  base of J.
(ii) There exists a  (u)-effective base of J.
(iii) u  is a  regular R/J-sequence.

(iv) There exists an effective F-subset J  of 17f,' and a system
y  satisfying (1 . 2 )  such that (2 . 17) holds.

Remark (2 . 2 4 . 1 )  Under the assumption (iv), we find a  (u)-
standard base of J  with reference datum (y, J ) .

P ro o f .  (i)/; -_,.\ (ii) ( iv )  are  tr iv ia l. Assume ( i i ) .  Then we get
(2 .23 .4) as a special case of (2 .21 .f), and hence ( iii)  by (2 .2 3 ). Thus
0 0 -7 >  ( iii) . We shall next prove (iv)= 7') ( i) . L e t G= { J; u ,  and
G  the k[y l-part*) of G. The condition (2.17) says that G =G gr„(R ).
Hence we can find a system of elements f  = ( f . )  w ith  E j n i
(d; v i )„,,, for certain positive integers p1, such that if h ,= in ( f i ; d;
and the k [ y] -pare )  of /4, then G =( h ) k [y ] with 1 = ••-, Tz„,).
Replacing f  by a suitably reordered subsystem, we may assume th a th
is a standard base of G. Let i be any positive integer such that hi = hi

for all j < i .  Let P  be the subset of V., such that hi—Tzi=EA.pi4AhA
with hA E k  [ Y ]  ,  # 0 .  Then hA are  all homogeneous and  such that
(A, B ) Ea {4; v i }  for all B E Z ; w ith  IB I=deg hA  . Moreover, 1AI
> 0  for all A E P  and hence deg hA <deg . Therefore, a s  we
have 11, —Tii E G  =Cgrm ( R ) ,  th e  ideal (k, •••, k _ i )k  [y] m u st con-
tain hA  fo r all A E  P .  Let us write hA =  hA,,, hi  with forms hAi
of degrees deg hA—vi . Then let us pick any gA i E ( y ) * R  such that
hA l is  the image of g A i in  g r* (R ) , where *-= deg hA—vi . Let f " =

f  g A i f p  Then the above remarks on A P imply that
f " / ( 4 ;  v 1)„, y and  in( f " ;  J ;  vi )„,,, =h i . We can then replace f ; by
f "  without affecting the assumptions on f .  In other words, we could
choose the above f  in  such a  way that 111 = -1i, for all i ,  so that f  is
a  (u )-s tan d a rd  base o f J  with reference datum (y , J ) .  Next, to

* )  For the meaning o f "part", refer to the paragraph preceeding Def. (3.8) below.
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prove (iii) we fix any system y  o f ( 1 .  2 ) .  For each integer
d > 0 , let Da =  { V E - 1 0  I V I > 1 /  .  Let {J} d denote the k [y ]  - Part of
the ideal {J; Dd}.,y. I f  d > d ',  then { P  dp { d'• Hence, g r,( R )
being noetherian , there exists a  such that {J ) . = { , n d  fo r all

d>-a. Replacing a  by a still larger integer i f  necessary, we may
assume that there exists a system o f elements f  =(  f i , •••, f 7„)  with
f i E j n ( ( y ) ' , + I+ (D„; p,)„, y )  for certain positive integers y, ,  such
that q), = in( f ,; D„; y ,)„,, E k [y] for a ll  j  and { J }  =  ( ( p ) k [y ] with
ça =  (ç o i ,  • • • ,  yam). Now, pick any b E R ,  and g E jn I(D „; b )„, y . We
then want to prove that

(ii*) in(g; D„; b)„, y E { J}  „grm (R ).

I f  this is done, then it is clear that there exists a suitably reordered
subsystem of f  which is a  (u)-standard base of J . Now, to prove

we may assume that R  is complete, by virtue of ( 2 .  2 2 ) .  Let
us assume a n d  define q =q ( g )  to be the largest integer such
that g E ( u ) q R .  I f  q >b , then gEI+(D„; b)„, y  and ( ii* )  is then tri-
vially true. We shall prove ( ii* )  in general by the descending in-
duction on q ( g ) .  Let s = s ( g )  be the largest integer such that we
have an expression g— EA sEu A gA  with g A E Jn  ((y )s ie+  (u )R ) and

E = { A E Z M A I =q } .  Such s  exists for the following reasons. First,
by (2 . 23), (iii) implies that jn (u )q ?— (u ) , j -  and hence we find such

an expression of g  for at least one nonnegative integer s. Secondly,
such an expression is not possible for all s > 0 ,  because if  it is, we

get gE nr.,E A .E u A (Jric (Y )sR + (u)R ))c(u)Q + 1 R .  Now, an expres-

sion of g  as above being given, we let g 'A  ( r e s p .  h 'A ) denote the

image of gA  (resp . g 'A )  in  R ' (resp . g r ,(R ')). Let hA = e y (k A ).

Then as is easily seen, hA =in(gA ; D d ;  s ) u , y  for all sufficiently large
d > a .  Hence h A  { }  =  {  J } a. Write hA = E,hA ,ço, with forms hAi

o f degrees s— y, in  k [ y ] .  Pick any g A ,E ( y ) * R  whose image in

g rZ (R )  is h A „  where *= s  y , .  Then let g" = g— EA E EuAET=igA,f,.
By the definition of s(g), hA  # 0  for at least one A  E . Therefore,

since gEI(D „; b)„,,, { D „; b}  contains all (A, B )  with A E  and



Characteristic polyhedra o f  singularities 275

BEZT, such that I B I > s .  Hence, g m  E l (D ;  b—v1) , ,  for all (A , j).
It follows that

(ii**) i n ( g " ;  D , ; b).,,, mod{ J} ,g rm (R ).

Moreover, if  s  is sufficiently large in comparison with b  and q, then
the congruence of (ii* * ) becomes an equality. We repeat the modi-
fication from g  to g "  as long as possible, and then, by the comple-
teness of R , we find an element j jn (u )q -H E R  such that (ii**) holds
for j instead o f g " .  Then (ii* * ) implies ( i i* )  by induction hypo-
thesis. Q .  E .  D .

Theorem (2 . 24) gives us various interpretations of the number
d ep th (R / J ) . For instance, we get

Corollary (2. 24. 2) r ( J ) > -  dim R — depth(R/J ).

P ro o f .  Recall the definition o f r (  J ) .  (  [3] , Ch. III, §4 , Def.
6.) It is the rank of the smallest k-submodule T =  T ( J )  of g rV R )
such that ( g r m ( J ;  R ) n k [ T ] ) g r m ( R ) = g r , ( J ;  R ) .  (2. 24) follows
(2. 24. 2) by (2. 20. 3). Q. E. D.

§ 3 .  Vertex-preparations

Definition (3. 1 )  Let f =  ( f i , f m )  be a finite system o f ele-
ments f ,  of M  such that the images f :  of f ,  in  R '  are not zero.
Let v, pm, ( f ) ,  1 < i< m .  Then the symbol t l ( f  ;  u ; y )  denotes the
intersection of all those F-subsets D  of R such that f i El(D ; y,)„,,,
for all i.

If f  is a (u)-effective (or (u)-standard) base of J ,  then we have
.61(f  ;  u ;  y )D z I ( J ;  u ;  y )  by (2. 21. e), and hence

(3.2) 4 ( f  u ;  Y) D J ( " ) .

Clearly, J ( f ;  u; y )  is  more explicit and easier to deal with than
.61( J; u), while the latter is more intrinsic than the former as data
to describe the singularity of S p ec (R / J ) . Our aim in this section
and in the following is to find a process of successive modifications,
applied to f  and y, such that in the end the inclusion of (3. 2) is re-
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placed by an equality.

Lemma (3. 3) L e t y  by a  system of (1 . 2 ), and t = (u, y).
Then, for each g E M , there exists the smallest F-subset F  o f R'.0'
such that g E I(F ) t .

P ro o f .  An intersection of F-subsets are an F-subset. Let F a

be F-subsets of Rg such that g E I(F a ), for all a. Then g E n a r(F a ),
= 1 ( n .F . ) ,  by (2. 1). Q .  E .  D .

Let F ( g ; t )  denote the smallest F-subset o f (3 . 3 ). Let g ' be
the image of g  in R '.  Then for every b ER, such that b<viv .'(e),
there exists the smallest F-subset J of Rig such that {J; b} F(g;
I). This existence is clear from the equality : n a { 4 .; b } ={  a d O E ;

b}  for an arbitrary family of F-subsets J ,  of R .

Definition (3. 4) For a  pa ir (g , b )  with g  E M  and bER ÷ ,
such that b<J),,, , ( g ')  with the image g ' of g in R ', the symbol 4(g;
b; u; y )  will denote the smallest F-sutset J of R , such that {J; b}

F ( g ;  t ) .  I f  b=1 , ( g ') E R ,  then we write 4(g ; u ; y ) fo r  4(g;
b; u; y ).

Remark (3. 4. 1) If f = (  f i , ••., f i n )  is a system of (3. 1), then

Z i(f ; u; y)— {UT -iz i(f ,; u; y )}  , where {*} denotes the F-subset
spanned by * in the sense of the paragraph following (2. 1).

Remark (3. 4. 2) I f  D  is  an F-subset of R',; (or R g) then a
point v ED is called a v ertex  of D  if there exists a positive linear
homogeneous function L  such that D n{ w iL (w )= 1} = v. W e note
that J(g ; b ; u ; y )  of (3 . 4 ) can be derived from F ( g ; t )  by the
following procedure: Let V  be the set of vertices o f F ( g ;  t ) .  Let
W be the set of those acR f ; for which there exists c  /to and j E
R ,  such that I ci =b—  j and ( j a ,c ) E V .  Then J(g; b; u; y )  is the
F-subset of R spanned by W.

Lemma (3. 5) For g E M , every vertex of F (g ; t )  is integral,
j. e., it belongs to Z .

P ro o f .  Let y be any vertex of F ( g ; t ) .  We then have a pos-
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it iv e  linear homogeneous function L  on l e  such that F(g ; t) f l {wi
L(w)=1} = v .  If y  is not integral then there exists a neighborhood
of 7) which contains no integral points. Therefore, as is easily seen,
we then find ceE R , so small that F ( g ;  t ) n z  is contained in {iv
L ( w ) > 1 + } .  Namely, i f  F ' denotes the F -su b se t F ( g ; t ) n  {w L
(w) 1+ oz} , then g G I(F(g ; t) ) ,— I(F ')„ which is impossible by
the m inim ality  of F(g ; t) . Q. E. D.

If  b G li + ,  then b Z  denotes {v lif ,;(1/b)yEZ;,} .

Lemma ( 3 .  6 )  Let the assumptions be the same as in  (3. 1).

Let e  be any positive integer which is divisible by every positive
integer not exceeding max, {y: } . Then z1( f ; u; y ) coincides with the

convex set spanned by the intersection d ( f ; u ; Y ) n ( l / e ) Z f , .  In
particular, every vertex of J (  f ; u ; y )  belongs to ( 1 / e ) ro.

P ro o f .  Let us recall the notation o f  (3 . 4 . 2 ), as we choose
( f „ y ,)  for (g, b )  there, 1 < i < m .  By (3 . 5 ), the set V  consists of
integral points. Since b=y , is an integer, every a E W  must be such
that jaE Z 'o' for some positive integer j < , .  L e t  W *  denote the
union of those W  for various i. Then W *c(1 /e )Z t) ,  and by (3.
4 . 1 ), A( f ; u ; y ) is the F -subse t of R  sp a n n ed  b y  W * .  Hence

f  ;  u; y ) is the convex set spanned by U w * w  + V o .  Q. E. D.
If  b ER +, then an E-subset o f bZPo will mean a subset E of bZf,

such that (1 / b )E  is  an E -subset o f Z f , in the sense of the early
paragraph o f §2.

Corollary ( 3 .  6 .  1 )  ,J( f ; u ; y )  has only a finite number of ver-
tices.

P ro o f .  Since 4( f  ; u; y ) is an F-subset, 4( f  ; u; y )n (1/e)Z f ,
is an E-subset o f (1/e) n  Call it E .  Let (A 1 , ••., A s )  be the base
of eE  in the sense o f ( 2 .  0 ) .  Then by (3 . 6 ), every vertex of z1( f ;
u; y ) is of the form (1/e)A 1,  1 <j<s .  Q. E. D.

Let h be an element of g r m (R)-----k [7] with a certain t = (u , y),
and write it as: h=EA .Ec(A )P with c(A )Elz  and a subset E of
Let v ER io'  and bER o. Then the (y ; b)-part o f  h  will mean the
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partial sum h*=E i.,*e(A )tA  where E *=E n&  f v +R ; I f  there
exists a  nonzero homogeneous element ça Ek [ y] such that h— ça
(R )g r,(R ) , then the (7); deg go)-part o f h  will be called simply the
v -part o f  h.

Definition (3. 7) Let the assumptions be the same as in (3. 1).
Let J= A( f ;  u; y) and y a vertex of J. Then the  v -initial of  f
w ith respect to  (u; y ), denoted by in,( f ) , 1 ,  will mean the system
(h 1 , ••• with h,= the v-part o f in( f  ,; J;

Remark (3. 7 .1 ) L e t  us pick L L  such that 4n {a}L(a)—
1} = v .  Then the v-initial in,( f  ) „ , y  coincides with the system of the

initial polynomials in( f ,; L ;
Let U be a graded k-algebra with a field k , and U + a maximal

ideal of U  such that k------U /U„ in  a  natural w a y . L e t  w  (w i , • ••,

w ,) be a system of indeterminates over U .  (For instance, let U=
, u += (a)u a n d  w  y.) Then, for every element h E  U[W] ,

there exists a unique 7 k [w ] such that h—]iE U  ,[w ] . We shall
call T2 the k [w ]-part o f  h. I f  G is an ideal in  U [w ] , we obtain
an ideal G  in k [w ], called the k [w ]-p art o f  G , which consists of

the k [w] -parts o f elements o f G.

Definition (3 .  8 ) We say that an ideal G  (resp. a system of

elements g=(g1,•••,g„,)) is solvable in  U  i f  there exists a U-auto-

morphism q  o f  U[w] such that q(w ,)— w ,EU for all i and that q(G)
is generated by the k [w ]-part G o f G  (resp. q(g 1)  is equal to the

k[w] -part of g , for all i). The system s= (s 1 , s , )  with s, =q(w i )
—w, will then be called a solution for G (resp. g )  in  U.

Definition (3. 9) Let the assumptions be the same as in (3. 7).

We say that f  is v-solvable w ith respect to  (u; y ) ,  i f  in ,( f  ) . , y  is
solvable in k [-a] with a solution s= (s 1 , •• , s ,)  o f th e  form s i = c , i r

with c, k  for all i. Here re = 0  i f  YEE Z t .  Such a solution s  will
be called a v-solution f o r f  w ith respect to  (u; y).

Remark (3. 9. 1) We shall later find out that under a reasona-
ble assumption (which is always satisfied in the case of our major
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interest) if  in ,( f ) „, ,  is solvable in k [ù ] in the sense of (3. 8), then
the solution s  is  unique and necessarily of the form described in
(3. 9), i. e., it is a  v-solution for f  with respect to (u; y).

Remark (3. 9. 2) Following (3. 7), le t  in ,(f  )„,,=(h„ •••, h m ).
Then we have hi k  [  y i (i.e., h , is different from its k [y] -part) for
at least one i. In fact, L  being the same a s  in  (3. 7. 1), i f  t3E R +

is small enough, then h ,E k [y ] implies f , I(D; v ,)„,„ fo r D = {al
L ( a) >1 + But v  4=  4 ( f ; u ; y ) an d  D  cannot contain A. We
thus get the assertion . It follows that a  v-solution cannot be zero
and it exists only if v  2 .

Lemma (3. 10) Let the assumptions be the same as  in (3. 1).
Let y be a vertex of 4( f  ; u ; y ) .  Suppose we have a v-solution s=
(s„ •••, s r )  for f  with respect to (u ; y ) . L e t  d =  (di„ •••, dr) be any
system of elements d,E uvR such that s 1 i s  th e  im age  o f d ,  in
g r! '( R )  for each i. Let z = y — d . Then z  has th e  property (1. 2)
and

(3. 10. 1) 4 (  f ; u ; z ) c ,d (  f ; u ; y),
(3. 10 .2 ) 4 ( f  ; u ; z )  does not contain y  but does every other

vertex y' of z1( f  ; u ; y ) , and
(3 10. 3) for every y '  o f  (3. 10. 2), we have in„, ( f  ),•=q,„,
f ) , y )  where q . the k [tit] -automorphism o f  g rm (R ) such

that q„(5),) =2, for all i.

P ro o f .  Let D = A( f ; u ; y ) .  By the assumptions of (3. 1), .%1( f ;
u; y )  * R  and hence v*O. Hence m o d  (u )R  for all i, so that
clearly z  satisfies (1.2) as y does. Since v ED , if  (a, c) { D ; b }  (resp.
{D; b}  — 0{ D;b} ) with a E Z .  and c E Z ,  then (a+ (Ici— ic'D v , c ')E
{ D; b}  (resp. {D ;  —&{D; b } )  with every c' EZ 'o such that c Ecr +
Z .  It fo llow s that I(D ; b) =I(D ; b )„„ and I+(D ; b ) ,=I+(D ;
b ) .  Hence f , I(D; v ,)  for a ll i ,  an d  (3. 10. 1) follows. Now,
write in,(f  )„,„= (hi, •••, hm )  and fix any LE L+ such that Dn {al L
( a ) = 1 }  v. W e then  have h i=in ( f i ; L ; v ,)„, for all i. Let ç2, be
the k [ :9] -part of h,. Then, viewing each element of g r m (R )  as a pol-
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ynomial in  y  with coefficients in k [ f ] ,  we have h i ( y+ s)-- g,i(y )
for all i. From the definition (2. 9) of initial polynomial (and also
(2 . 8 )), it is easily seen that h,( +s)— in (f ,; L ; v ,)„„ where

• • -2,.) with the im age 2rj o f  z 5 i n  g rL ( R ) .  (In  fact, we can
show I(L; b)„, y =I(L ; b ) ,„ and I+(D; b)„ =I+(L ; b )„„ in  the same
way a s  above. It then is enough to check that in(w (z + d)` ; L ;
v ,)„,,=T e( + s)` for all (a, c )E 0 { D ; v ,}  n Z O . This shows vE zi( f ;
u ; z )  by (3. 9. 2). As the rest in  (3. 10. 2) follows from (3. 10. 3),

we have only to prove th e  last. Choose L E L , such the D n { alL (a)
=1}  =v '. T h e n  L ( v ) > 1 .  I t  follows that uqz  + d)'=ua z ` m c d  (L ;
v,)„,, for all (a, c)EZ ',; such that L (a)+Ic l = L i .  Also I+(L ;
=I+(L ; p,)„,, as before. (3. 10. 3) is now clear from th e  definition
(2. 9).

L et (LEI+ and w  be the same a s  in  th e  paragraph o f  (3. 8).

We have the notion of E-function A r: k[w ]--->Z 'o and E -se t E r(H )
o f  a  homogeneous ideal H  in  k [w ] with respect to ( k ; w ) .  (cf.
3], Ch. III, § 7, p. 2 4 5 .) Let h= (121, •••, h,,) be a system of elements

of U [ w i  such that the k [w ]-parts h ; o f  h , are  homogeneous for all
i< m .  We say that h  is norm aliz ed w ith respect to ( U; w) if, for
every i ,  the U-coefficient of the monomial W A  in  h ,  is  zero for all
A E  •••, hi_Ok[w]).

Definition (3 . 1 1 ) Let the assumptions be the same as  in  (3.

7). We say that f  is  v -norm aliz ed w ith  re s p e c t  to  (u; y )  i f
in,( f  )„,,, is normalized with respect to (k [Ft] ; 5)).

We shall avail ourselves o f th e  following notation, supplemen-
tary to the definition (3. 7) : Under the assumptions o f (3. 1),

(3. 12.1) i n (  f  ) , , ,y= (H1, ••• where Hi= in( f ;  4 ;

w i t h  = 4( f ; u ; y ) .  We call it the to tal in itial of f  with respect
to (u ; y).

(3. 12. 2) in o ( f  )„„= (ç a , • , ço n ,) , where q)i is  the k [ y] -part of
H , as above. We call it the basic initial of f  with respect to  (u;
y ) .  I f  L E L ,  is any one which takes values > 1  on the above 4,
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then the (pi can be obtained as in( f i ; L; v i )„,,, for 1 <i<m .

Definition (3 .  1 3 ) We say that f  i s  J-nornz aliz ed (resp. 0-

R orm alized) with respect to (u; y ) ,  i f  in( f ) , ,  i n o ( f )„, y )  is
normalized with respect to  (k [Ft] ; y).

Lemma (3 .  1 4 ) Let the assumptions and the notation be the
same as in (3 . 1 ) and (3 . 12. 2 ). Suppose ço= (çpi , •-•,4 )  is  a  mini-

mal base of the ideal which it generates. Then there exist d i i E
<y)" , - ' JR  such that i f  gi= f  I ,  then g = ( g 1 , •- ., g .)  is  0-

normalized with respect to (u; y ) .  Moreover, i f  g : is the image of
g i in  R ',  then vi„,, ( g ; )  v i fo r  a l l  i  aad d(g; u; y )  is contained ia

f  ; u ; y ) .  Furthermore, if f  is a  (u )-effective (respectively (u )-
standard) base o f J ,  so is g.

P ro o f .  By Lemma (1. 11) o f  [5] , there exist forms ci ;  c f  de-
grees vi —v  in  k [ y ]  such that if =ç9i — c  ç o i ,

 th e n  (iki, • • •,
-q ,,)  is normalized with respect to  (k ; y ) (a n d  hence, with respect
to  (k [a] ; y ) ) .  Pick any d d  E (y ) iR  such that c i f  i s  the image

of d i ;  in  g r ( R )  with *----- vi — pi . It  is  ea sy  to  check that g. E /(J;

with 4( f ; u ; y) and  in (g i ; J; v i )„,,,,= in (  f  d ;
,ci ;  in( f  i ; vi ), y fo r  a ll y. (c f. R em ark  (2 . 10 ); a key point here

is that b}  + A ca{ d; b+ !A I}  fo r every A E (0) x Z O .  I t

follows that 1,tr, is  the k[y]-part o f  in (g i ; J; v i )„,,, fo r  a ll i. The

assumption on çp implies that qpi 7L-0  for any i. Let 11,, =  Oki , • • •,

Then we have ((p)gr m(R)= (*)gr m(R) and if ço is a standard base

of this ideal, so is qp. Moreover i f  L E L +  is  an y  one which takes

values > 1  on LI, then çoi = in( f  :; L; v i ) „,, and qpi i n ( g i ; L; v i )„,, for
a ll i. Hence if f  is a (u)-effective base of J ,  then by (2. 21. b) the

ideal {J; L } ,  is generated by in( f i ; L; v i )„, y  and hence by in (g i ;
L; v i )„, y . According to (2. 20), this shows that g  is  a  (u)-effective

base of J, too . The assertions of (3. 13) are now immediate. Q.E.D.

Lemma (3 .  1 5 ) Let the assumptions be the same as in (3. 1).

Let us assume that f  is 0-normalized with respect to (u; y ) .  Let y

be a vertex of d( f  ; u; y ) .  Then there exists eri E (u )R n I(v +
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such that if  hi—fi— Ei):1
(3. 15. 1) d (h ; u ; y )c d (  f ; u ; y ),

(3. 15. 2) i f  v E4(h ; u ; y ) , then h  is v-normalized with respect
to  (u; y ) ,

(3. 15. 3) i f  2/ is  any vertex of .%1( f ; u ; y )  other than y , then
2/ is also a  vertex of d (h ; u ; y )  and in, , ( f )„, y =in i

, (h) y ;  in  par-
ticular, ino( f ).,y—ino(h)uo.

P r o o f . I f  e i , E 1 ( y + M ; — vi )„, y  , then, since v  4 ,  w e have
h i E I(z1; v i ),, y . This implies (3. 15. 1). Let L E L , be any such that

An { alL (a)=1}  — 11 for any y ' o f (3. 1 5 .3 ). T h en  L (v )> 1 , and if
th e  above ei j E ( u ) R  then ei j EI+(L ; v i —vi )„, y  so  that  h 1 f i mod
I+(L ; v i )„, y  fo r a ll i. T his im plies (3 . 1 5 . 3 ) . Thus we have only
to prove the existence of such c i f  fo r which (3. 15. 2) ho ld s. Let us
write in, ( f  ) = ( • • • , J-

7„) . As before, we p u t t= (Ft, 5 i) , so that
g r m ( R ) — k [t].  An element c k [i] w ill b e  c a lled  a  (y , b)-form
(re sp . (y, b)*-form ) if  c=E A c(A )P w ith  c (A )E k  and w ith  a {v
IV) ; b} nr,; (resp. 8 { v +M ; b} n (zz- (0) x zo) as the range o f A.
Note that Ti i s  a  (v, v i )-form  for each i. We shall prove that there
exist (2), pi — i )*-forms a j E k i j l  such that i f  H, = f i — f ; then
(H 1 , • • • , Hm) is normalized with respect to (k  [u] ; Y ). If this is done,
it follows without any difficulty that there exist e i f E I ( y +R ;

n ( u ) R  w ith  a i i =in(e d ; Y -1- R 10'; vi — v i).,y , and th at i f  e ,  are
such, then (3 . 15 . 2) ho ld s. In fact, thanks to (2 . 1 0 ), i f  in,(h)„, y -----
(H ;,  • • • ,  H ) ,  then m o d  T - (4 ( f  ; u; y ); v i)7 . Since both

and H , are (y , v1)-form s w ith  a  vertex  v  o f A( f ; u ; y ) ,  this
congruence im plies th e  equality  H H H , .  (3 . 15 . 2 ) is immediate
from  th is. Now, suppose we have found a ,  for a l l  ( i ,  j )  w ith  1 <
j < i< a  for some a. Let çoi = the k[Y ] - Part of j .  N o te  that (çoi, •••,
Ç2,„) is normalized by assumption. Let G=lf- a —çoa . We want to find
(2), V —v i )*-form s I);  such that i f  G* =G b  H ,  then  ( H1, • ••,
1 1 „,G * )  is normalized with respect to  (k [a] ; Y). The proof of
th is  fac t is  s im ilar to  th at o f Lemma 1 7 , Ch. III, [3] , p. 246. In
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this case, we consider the following ordering in Z'o :  a > a '  i f  either
lal >1 a' I o r ! al= i a' I and a' precedes a  in the lexicographical or-
d erin g . The proof is then by induction on a = a (G )  w hich  is the

largest element in E'((ç01,•••,ç9a_i)k[331 )  such that the k [ i ] -coeffic
ient of y  in G  is not zero . If a  is such, then there exists a  form
C E (y9i, • • • , çoa_i)k [y] with A'(C)= a .  Write C =  C  ççii with forms
C f of degrees l ai - -1); in k [y ].  As G is  a (y, va )*-form, the coefficient
of i n  G  is  of the form dvii" with d E k and q E R , such that ! a
+  q=  v„ . Let d ' be the coefficient of y  in C .  Then let b;= (d/ d')
Cif Fri, which are obviously (y, va — vi)*-forms. Let G'
We know that H i  i s  a (y , vi )-form and çoif i s  the k [ ji] -part o f HI .
W ith these facts, we can easily conclude that a (G )> a (G ')  unless
(111 , • •., Ha_i , G') is normalized with respect to  (k [ii] , Y ) .  Q .  E. D.

Definition (3 . 1 6 ) Let the assumptions be the same as in (3.

7 ) .  W e say that ( f ;  y )  is  v - p r e p a r e d  w ith respect to  u ,  if f  is
v-normalized and not v-solvable w ith  respect to  ( u ; y). W e say
that ( f ;  y )  is  totally  prepared (or 4 -p r e p a r e d )  w ith respect to  u,
if f  is 4-normalized and not w-solvable w ith  respect to  (u ; y )  for
any vertex w of J ( f ; u ; y).

R em ark (3. 16. 1) Note th at the v-preparedness (resp. 4-pre-
paredness) o f ( f  ;  y ) implies the 0-normalizedness of f . I f  d ( f ; u ;
y )  is empty, then the 4-preparedness o f ( f ;  y ) with respect to u is
equivalent to the 0-normalizedness of f  with respect to (u ; y ). Th is
is exactly the case in which f , ( y ) ' , fo r a ll i.

Theorem (3 . 1 7 ) Let the assumptions be the same as in (3. 1).
Let 4 =  J (  f ;  u ; y ) .  Let us assume that R  is complete and that

(3. 17. 1) in o ( f  )„,,, i s  a minimal base of the ideal which it
generates in g r m (R ) .
Then there exist x, 5 E./(4; j < i < m ,  and d c, E I ( A ; 1 ) ,
n (u )R , 1 <c e <r, such that

(3. 17. 2) (g ; z )  is totally prepared with respect to  u ,  where
g= ( g i , g„,) with g 1 = f ,— E ;:1  f f  and z = (zi, . , Zr) w ith  z a  =
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y a — da .
Moreover, if f  is 0-normalized with respect to (u ; y ), then we can
choose those x, f  in the ideal I(J; v ,--v ; ),,,,, n ( u ) R .  Furthermore, if
{vo f3E P } is a nonempty set of vertices o f J ( f ; u; y) and if ( f ;
y )  is vo-prepared with respect to u  for all 13 EP, then we can choose
the above X 1, in H(p,--1, ; )  and d a  in  H ( 1 )  for all i, j ,  and a , where
H ( b )  ( - 1 , 1 . +(L ,g; b)„,,,n1(4; b)„,_,,n ( u ) R  w ith  any L 3 E  L + such
that zin f alL s(a)=1) =v 3 .

P ro o f .  By (3. 14), i f  we put g 1 = f , — E d 1 f i  with suitable
E (y)'' , - ", R , then g  is 0-normalized with respect to  (u; y). H ere

clearly ( y)" - v, Rc /(zl; v ; — vf ) ), and hence z i(g; u; y )cz1( f  ; u; y).
This shows that we have only to consider the case in which f  is 0-
normalized with respect to (u; y )  from the very beginning. From
now on, we apply to f ,  repeatedly and alternately, the vertex-nor-
malization in the sense of Lemma (3. 15) and the vertex-dissolution
in the sense o f Lemma (3. 10). To be precise, let us consider the
following ordering in R :  v > v '  if either Ivi>1 v i  I or a n d
y ' precedes v  in the lexicographical ordering. Given ( f ,  y) as above,
let v be the smallest vertex v of ( f ;  u ; y )  such that either f  is
not v-normalized or f  is v-solvable with respect to  (u; y ) .  I f  f  is
not v-normalized with respect to  (u ; y ) ,  then by (3. 15) we have
suitable ed  ( u ) R n  i ( V ± R t ; — 1).1)„, such that (3. 15. 1)-(3. 15.3)
hold. Then we replace each f ,  by f— 1 i:  N o te  that such ed

belong to the ideals to which x,./ should, and that (3. 15. 1)-(3. 15.
3 ) assure us that the various starting assumptions are unaffected by
the replacement. If f  is v-normalized with respect to  (u; y ) , then
by assumption, we have a v-solution for f  with respect to  (u; y).
By (3. 10) we then have d, u 'R  such that (3. 10. 1)-(3. 10. 3) hold.

Then we replace each y, by y i — d ,. Again (3. 10. 1) assure us that
the various starting assumptions remain unaffected by this replace-
ment. We repeat this process as long as it is possible (i.e., as long
as the goal of the theorem is not achieved). If an  infinite repeti-
tion is possible, i. e., i f  we find an infinite sequence o f vertices to
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which the above vertex-normalizations and vertex-dissolutions are ap-
plied successively, then this sequence must ten d  to  00 in the
space R .  T h is  is due to the fact that vertices must belong to a
certain lattice (1/ e)Z t; by (3. 6), and that each vertex can appear
at most once in vertex-normalization and once in vertex-dissolution,
thanks to (3. 15. 3), (3. 10. 2) and (3. 10. 3). The completeness of
R  now suffices for the proof. Q .  E .  D .

Corollary (3. 17. 3) Let us consider the case in which ( f  ; y)
is vs-prepared with respect to u for all 5'E P .  Then (g ; z )  of (3. 17)

can be so chosen that va is also a vertex o f 4(g; u; y) for all E P

arid i1 ( f  ) , = q „ , ( i n ( g ) )  for all ig EP, where q „, is the k[Fs]-
automorphism of gr m (R ) with q,,,,(2,)=-y, for all i.

P ro o f .  The claimed equality is due to the condition that x, i

H(1) 1 — v1 )  and do, E H (1 ) for all i ,  j  and a. Q. E. D.

Corollary (3. 17. 4) The assumptions being the same as in (3.
17), if f  is a  (u)-standard base of J, so is g  o f (3. 17. 2).

P ro o f .  To prove that g  is a (u)-standard base of J, let L EL +

by any such that L  takes only values > 1  on .z1( f  ; u ; y ) .  Let -.-t11-=
in(x i i ; L ; v i — v3 ) ,, 7 =  f i ; L ; v i )„, y  and g i —in(gi ; L; v i )„ y . Then
these are forms of degrees pi — vj , I), and y, respectively, and g,==7 —

f .  It is clear that (g i , •-•, gm ) is a standard base of {J; y .

Q. E. D.

§ 4 .  Totally prepared (u )-standard  base.

If a  (u)-standard base of J  is such that for some y  o f  (1. 2),
( f ;  y )  is totally prepared with respect to u, then many o f its pro-
perties turn out to be intrinsic of the ideal J  itself. In this section,
we shall prove that the inclusion of (3 . 2 ) becomes an equality in
this case, i. e., d( f  ; u; d ( J ;  u ) .

The following lemma will be found useful in regard to  the
uniqueness of a vertex-dissolution.
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Lemma (4. 1) Let k--, K  be a  separable field extension, and
K [w ] the polynomial ring of r  indeterminates w, over K .  For each
s=(.91 ,•••,s ,)E K r, let us denote by V (s)  the graded k-subalgebra

of k [w ] which is generated by those forms h  such that h (w +s)=
h ( w ) .  Let V ( s ) 1 denote the homogeneous part of degree one of
V ( s ) .  Then we have V (s)=k  [ V (s) i ] .

P r o o f .  Applying a  suitable k-linear transformation to  w (and
accordingly to s) , we may assume that (w,,i, •••, wr) i s  a free base
of V (s) 1 for a certain c < r .  Put w'= (w1, •••, wc) and w"= (w,+1, •••,
wr ). I f  g  is  a form in k [w ], w e can  w rite  g— E g E w"E with gE
k [ w ' ] ,  where the range of E  is  a certain finite subset of Zro - .̀ Then
gE  V (s) if and only if g E  V ( S )  for all E .  Therefore, replacing w
by w ' and accordingly the others, we can reduce the proof to the
special case in which V(s),— ( 0 ) .  In other words, it suffices to prove
that, for any given s ,  i f  V (s) contains a form g  of positive degree
then V(s) 1 * ( 0 ) .  This statement with variable s  will be proven by
induction on deg g .  Say deg g = d > 1 .  Clearly g (w +s )=g (w )  im-
plies g ,(w +s )=g ,(w )  for a ll i ,  where g1=8g18w 1. Hence by induc-
tion, either V (s) 1 # (0 )  or g, = 0  for a ll i. I f  th is  la s t  is  the case,
then the characteristic p  of k  must b e  positive and there exists a
form h  of degree d / p  in  k [w ] such that g (w )=h (w q ) w ith  w =
(wf, •••, W .). It follows that h E  V(S P )  with S P =  ( S I P ,  • • • , e ) .  By in-
duction, V (sP), ( 0 ) .  This implies that the r  elem ents s are line-
arly dependent over k. Hence the s , are linearly dependent over a
certain purely inseparable extension of k. Since K  is separable over
k , the same must be true without any extension. This means that
V(s) 1 (0).

Corollary (4. 1. 1) Let h1 ,•••,h„, be forms in  k [w] . Suppose
there is no k-submodule T  of the linear homogeneous part k[w]j,
k[w ]1, such that h ,E k [T ] for a ll j. L e t  s  and s ' be two elements
of K r .  I f  h ,(w +s )=h ,(w +s ')  for a ll i, then s =s'.

P ro o f .  We may assume s '=  (0 ), because hi(w +s)— hi(w +s')
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implies h ,(w +s— s')=h ,(w ). Since h,Ek [V (s) i ] for all i by (4. 1),
we must have V(s)1 =k[w]1 by assumption. Hence s = (0). Q.E.D.

Let U, U +  and w be the same as in the paragraph of the defini-

tion (3. 8) of solvability in general. We shall follow the terminology

introduced there. The polynomial ring k [w ] being graded in the

usual manner, k[w] c ,  will denote the homogeneous part of degree a.

Proposition (4. 2) Let G be an ideal in U [w] and G its k [w] -

part. Let us assume that

(4. 2. 1) U is an integral domain which is separable over k,
(4. 2. 2) G  is homogeneous, and
(4. 2. 3) there is no k-submodule T of k [w ]i, #k [w ]i, such that

(G n k [T ])k [w ] =G.

Then the solution for G  in  U is unique, if it exists at all.

P ro o f .  Let s  be any solution for G  in  U and let q  be the U-
automorphism of U [w ] associated with it. (See (3. 8). ) Then we
have q(G) =GU [w ].  Therefore, to prove the uniqueness o f s ,  we
may assume G=GU[w ] from the very beginning. The claim is then
that the only solution is zero. Let us choose a standard base (h1, ••',
hm )  o f G with is normalized which respect to (k ; w). (See Lemma
(1. 11) of [5] for the existence of such a  base .) We shall prove
that h,(w +s)=11 1 (w ) for all i. By (4. 1. 1), it will then follow that
s ( 0 ) .  The proof o f h,(w +s)=h,(w ) is done by induction on i>0.
Now, suppose we have h f (w + s)= h i ( w )  for all j < i  for a certain i
> 1 .  Since sEU , h,(w +s)— h,(w ) has degree <deg h.  terms of
w .  Hence, this difference being in the ideal 6U[w] , it must be of
the form E):1 c;  hi  with c1 E U[W] .  We know that the E-set Er((h i , • • •,
h,_i )k [w ]) with respect to (k ; w ) is egual to E'((h i , • ,  h _ ) U[w])
with respect to ( U; w ) .  (cf. Remark 1, §7, Ch. III, [3] .) Call it
E .  I f  h,(w + s)* h,(w ), then E  contains A'(E ;:l c;  h i ) A' (h,(w +
s)—  11,(w )). Call this B .  Then the rule of binomial expansion
tells us that there exists at least one B ' B+ Z  such that the coeffi-
cient of wE in h .  not zero. But B EE implies B 'E E , and this
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contradicts the normalizedness assumption on the 111 . Thus h,(w
s)=h ,(w ). Q. E. D.

Proposition (4. 3) Let G be an ideal in U [w ] and g= (g„ --• ,
gm )  a system of elements which generates G .  Let g ; b e  the k[w]-
part of g 1. Let us assume (4. 2. 2),

(4. 3. 0) deg k i>d e g (g i— k )  (in w alone) for all i;
(4. 3. 1) -g= (ki, • • •, kn,) is a standard base of the k[w] -pa7t

of G, and
(4. 3. 2) g  is normalized with respect to ( U; w).

Then g  is solvable in U  if and only if so is G with the same solution.

P ro o f .  The only-if part is trivial. L e t  u s  now assume G  is
solvable in U .  Let s= (s„ •••, sr )  be a solution for G  in  U , and q
the U-automorphism o f U[w ] associated with it. ( c f .  (3. 8). ) Let
g i ' =q (g i ). We shall prove g: =,g, for all i. Suppose the contrary,
and let i  be the smallest integer for which the equality fails. Then

q(G ) - -GU[w ] , and its degree in  w  is less than deg
Hence g - 1, E Cki, • • •, _ )  U [w]. This implies that (ki, • • •,
g:— g 1)  is not normalized with respect to ( U ; w ) .  But this is im-
possible. In fact, first o f a ll, (4. 3. 2) implies that k  (and hence
(g„ •••,g ,)) is normalized with respect to ( U ; w ) .  Secondly, by the
binomial expansion theorem, (4. 3. 2) also implies that (ki , • • •,
g D  is normalized with respect to ( U; w). Q. E. D.

Let us consider the situation in which U  is  a  multi-graded k-
algebra with the homogeneous parts IL of multi-degrees a Z f ,.  As
before, we set U „ (0 )  for every v  RP — Zf;.

Proposition (4 .  4 )  Let g= (g„ • •• , gm ) be a system of elements
in  U[w] , and g , the k [w ]-part of g,. Let us assume (4. 2. 1),

(4. 4. 1) g i is homogeneous o f degree n 1 EZ , and there is no
k-submodule T  of k [w ]1 , *k [w ]„ such that E k [ T] fo r  all i,

(4. 4. 2) there exists VER, # (0), such that gi E j E R 0  Ujok [ W ]

for all i.
Then the solution s=(s1, s r )  for g  in  U  is unique and S 1 E U.
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for all i ,  if it exists at all.

P ro o f .  Using the U-automorphism o f  U [w ] associated with a

solution s , we can reduce the proof to the case of g = g ,  for all i.

Then the uniqueness follows by (4. 1. 1). We may assume s (0).

Let y' be the smallest element o f 1'4 in the lexicographical ordering

such that either v' = v or s , has a nonzero homogeneous part of de-

gree y' for at least one i. Suppose v .  T h e n  the equality g (w +
s)= 1 (w )  implies that g ,(w + -s- ) = g ,(w )  where 3 = (3„ • • •,.3,) with

the homogeneous parts 3, of degree I/ of s 1 . (H e r e  (4. 4. 2) is ne-

eded .) But this implies 3  (0 )  b y  (4. 1. 1). Thus we must have

= v. In view o f (4. 4. 2), we then get g (w + -s- )= -k -,(w ) for all i.
By the uniqueness of solution, we must have 3 = s. Q. E. D.

Let k [-a] , U ,= M U  and w  y. Then U satisfies (4. 2. 1)
and has the multi-grading in which the k-module generated by tit is
the homogeneous part of multi-degree a E n  Thus we get the fol-
lowing special case of (4. 4).

Corollary (4. 4. 3) Let assumptions be the same as in (3. 7).
Let us assume that there exists no k-submodule T of k[Y ]i, k[y]i.,
such that in o ( f ) „, ,E k [T ]" '.  Suppose ino( f  is solvable in k[Te]
in the sense o f (3. 8). Then the solution is unique and of the form
s= (.91 , ,  s , )  with s i Ekrt for all i. In  other words, f  is then v-
solvable with respect to (u; y ) in the sense o f (3. 9).

From now on, the basic situation w ill be the same as in § 1.

Let be the completion of R, M i  and ,r= J1. Every element

of R  will be identified with its image in ./R by the canonical homo-

morphism Let y be a system o f  (1. 2), and f = (
a system o f (3. 1). Then the symbol d( f  ; u; y) is given two mean-

ings, the one with reference to R  and the other with reference to
instead o f  R .  The fact is that these two coincide. In fact, using the

symbols 7(2.1;b)„,,, in the same sense as in the proof of (2.22), we

see that f i EÎ(D ; v i )„,,,<=>f , EI(D ; v ; )„,,, for all i  and all F-subsets D
of 1=1,1.
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Lemma (4. 5) 4 ( 1 ;  u )  defined by (1. 12) with reference to R
is equal to the coresponding d( I ;  u )  defined with reference to R.

P r o o f .  If = (u )R  and :Nr=1 1/2', then R' is the completion
of R ' and I' . Hence we get g r ie( J ' ,  R ') , IN?') with

= We also have { J; L} „, y = {I; L},  for every L E L + , by
(2 . 2 2 ) . Therefore, clearly d( J; u; y) = d( u ; y )  b y  (1. 11).
Hence d( J; u) D  ( 7; u ) .  Pick v E  —.41( u ) .  We then have a

system y * of elements in Si, which satisfies (1. 2) with reference to
R, such that v  d ( 7 ;  u; y*) • W e then  have L E L , such that L(v)
< 1  and

(4. 5. 1) { L} „,y* =e y * (g n , R ') ) g rç f ( . I ? ) .

Clearly Î ( L ; 1 ) , , *  (according to the notation used in the proof of
(2 . 22)) contains some power of Si, say /Q.' .  Assume s>-2. Let us
then choose a system y  o f (1. 2) such that y, E R  and y:"---=y 1 mod

/Qs for all i. Note that, since s > 2 , y , and y;* have the same image

in g rV (R ) . Then, as is easily seen, in (g*; L ; b)*=in(g*; L ; b)„, y

for all g* E Î(L;b)„, y *  = /1Z-L ; b ) .  Moreover, ey * = ey .  Thus it follows
that (4. 5. 1) remains true if  y *  is replaced by y .  Since L (v)< 1,

this proves v 4( u; y) =4 (J; u ; y), and hence v Er d( J; u).
Q. E. D.

L e m m a (4. 6) Let f =  ( f i , • «, fm ) be  a system o f elements of
J,  y a  system o f (1 . 2) and zi an effective F-subset of R .  Then  f
is a (u)-effective (resp. (u)-standard) base of J  with reference datum

( y, if it is the same of 7 with the same reference datum.

P r o o f .  Let id; be the same as in (2.20). Then f ; / \+(d;

+ ( y)v .k  if and only if f ,E1+(z1; p,)„,„+( y) R .  Moreover, by (2.

22), {  7; d} , y  =  j ;  4} . (4.6) then follows from these by (2.21.
c ) .  Q. E. D.

In many important cases, the following condition is satisfied :

(4. 7) There exists no k-submodule T of grk , (R '), * grim , (R '),
such that (g rie( j', R 9 n k [T ])g rm ,(R ')---g rm ,(J',R ') .
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For instance, let y be a regular system of r-parameters for J in the
sense o f  [3] , Ch. III, and let u  any system for which (2 . 1 ) holds.

Then J  with this u  fulfills (4. 7).

Theorem (4. 8) Let f  be a  (u)-standard base of J, and y  a
system satisfying (1. 2 ) .  Assume that ( J, u) satisfies ( 4 .  7 ) .  I f  v
is any vertex of 4( f ; u ; y )  such that ( f  ; y )  is v-prepared with res-
pect to u, then y is also a vertex of 4 ( 1; u ) .  In particular, if ( f ;
y )  is totally prepared with respect to u, then d( f ; u; y )-= J( J; u ).

P r o o f .  B y (4 . 5 ) and (4 . 6 ), we may assume that R  is com-
p le te . Then, b y  (3 . 17) and (3. 17. 4), we can find a  (u)-standard
base g  of J  and a system z  satisfying (1 . 2 ), such that (g ; z ) is to-
tally prepared with respect to u and that every vertex y of 4( f ;
u; y )  having the property in (4 . 8 ) is also a vertex of d(g; u; z ).
Therefore, we have only to prove the last statement of ( 4 .  8 ) .  We
know 4( f  ; u; y )  ZI( J ; u ) b y  (3. 2). Suppose these two are not
the same. Then there exists a system x  (x 1 , • • x r) satisfying (1.
2 )  and L E L , such that

(4. 8. 1) {  J; L}  =e ,(g r m , ( ,  R ') ) g r m (R ), and

(4. 8. 2) L ( w ) < 1  for some w E zl( f ; u ; y).

By (2. 24. 1), there exists a  (u)-standard base f  , t )  of
J with reference datum ( x ,  ( L ) ) .  Hence, y, being the largest num-

ber with f  ,*El(L ; y ,)„,,, we have f  ( x ) " , +P(L ; v 1) ,„ for a ll i.
By virtue o f (3 . 5 ), this condition remains unaffected if L  is replaced

by L +L ' for any sufficiently small linear homogeneous function L'
on R P . B y (2. 21. c), (x, zl(L + L ') )  with such L ' is also a reference

datum for the (u)-standard base f *  o f J. Therefore, by replacing
L  by L +L ' with a suitable L ', we m ay assume (4. 8. 1), (4 .8 .  2)
and

(4.8. 3 )  there exists a vertex y of z1( f  ; u; y ) such that d( f ;
u ; y )n  {a E R f;IL (a)=s}  =v , where s=L (v ).
We may replace x by any minimal base of the ideal (x )R  without
affecting (4. 8. 1). Therefore, in  view  o f  (1 . 2 ), w e m ay assume
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mod (u)R  for all i. Let us take the smallest t E li o such that
y i E I( tL ; 1)„„ for all i. Here, if t = 0, tL  should be identified with
the empty F-subset of RI; and we can then choose x = y .  In general,
let if = max ( t, s - 1 ). Since t>t ,  y, I ( t 'L  ; 1 ) , and in( y ‘ ; t'L ;1),„
= . ,+d „ where is the initial form of x ; in  grm (R ) and d , is a
k-linear combination of those monomials with t 'L ( A ) =1 .  Since

4 ( t 'L )  4 ( f ; u ; y). L e t h—(h„ • • • , hm )  w ith  h,— in(f ,;
11 , ) “ , y  and h *  = (h t, •  •  h )  with le = in( f ,; t'L; v ,)„,.r . Let q'

(resp. q ")  be the k [tit] -automorphism of gr N (R ) such that q'(y,)
q"(:x. ,) = -i,i,--d,) for all i. We have q"q' (h,) = l e  for all i.

Let h '= • • • ,  h '„ , )  with h: --q ) ( h , ) .  Since t> .3 - 1 > 1 ,  by (4. 8. 1)
(4. 8. 4) {  J; t'L } „,, is generated by its k [ ] - part.

This last ideal in k r.t] will be denoted by G . If t i >s - 1 , then t'L (v)
> 1  fo r  y  o f (4. 8. 3), and h=in o (f  )„, y . Therefore h' =in o ( f  ) .
By (2. 21. a ) ,  J; t'L l „,, is generated by h* and C is by h'. By the
preparedness o f ( f  ; y ), h  (resp. h ')  is a standard base of (h)k[ y]
(resp. C), which is normalized with respect to (k ; y )  (resp. (k ;:x )).
H ence, by (2. 21. a ) ,  { J; ,,, is gen era ted  b y  h  and, by
q"q' (h) = h*, d = (d,, • • • , d r )  is  a  solution for { J; in  k [a].
Clearly (0 )  is also a solution for the same, and b y  (4 . 2 ), d= (0).
This shows that r> t ,  which contradicts r> .3 - 1 . Next we assume
t' = s .  B y  (4. 8. 3), we then have h=in ,(f  )„,,, which is, by as-
sumption, normalized with respect to  (k [Ft] , y ) .  Hence h ' is nor-
malized with respect to (k m  , ) . But h * ,q " ( h ')  and {J; t'L}
= (h*)grm ( R ) .  Hence, by (4. 3), (4. 8. 4) implies that d  is a solu-
tion for h ' in k [fl]. T h is  then is also true for h  in  k [u], which
contradicts the v-preparedness o f ( f  ; y )  by (4. 4. 3). Q. E. D.

Corollary (4. 8. 5) Let us assume that ( J, u) satisfies the condi-
tion of (2.24) and (4 . 7 ) . Let (pi , • • • , p )  be the degrees of a standard
base of grm , ( J', R ') , and e  any positive integer which is divisible
by every positive integer not exceeding max, {v,} Then d( J; u )  has
only a finite number of vertices, all of which belong to the lattice
(1/ e)Z f).
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P ro o f . Immediate from (4 . 8 ), (3 . 6 ) an d  (3. 6. 1). Q. E. D.
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