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§0. Introduction

In 1951, Feller [3] showed that a class of one-dimensional
diffusion processes on [0, oo) can be obtained as a limit of Galton-
Watson branching processes if one changes the scale of time and
mass (=size) in an appropriate way. Lamperti [12] determined
the class of Markov processes on [0, o) which can be obtained as
a limit of Galton-Watson branching processes. A main objective of
the present paper is to consider a similar problem in more com-
plicated situations. We shall show in §4 below an example of
branching processes with particles moving in an #-dimensional space
R" which converge, when we change the scale of time and mass in
an appropriate way, to a continuous random motion of mass distribu-
tions on R". To formulate such a limit process, we shall develop
the theory of continuous state branching processes (C. B-processes)
in earlier sections.

The concept of C. B-processes was introduced by Jirina [7] and
they were studied in some special cases, by Lamperti [11],
Silverstein [16] and Watanabe [17]. The general theory was
developed by Jirina [8] and Motoo [13]. In particular, Motoo
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determined the infinitely divisible laws on tie space of measures on
a compact space and gave some interesting examples of C. B
-processes. In §1 and §2, we shall obtain and extend Motoo’s results
concerning the formulation and existence of C. B-processes. The
method we adopt here is a natural extension of that used in [17].
The theory of infinitesimal generators is added for the purpose of
applying it to the limit theorem of §4. The theory is quite parallel
to that given in Ikeda-Nagasawa-Watanabe [6] in the case of or-
dinary branching processes. In §3, we shall consider the case
when C. B-processes are diffusion processes. In §4, a typical limit
theorem will be given.

§1. Infinitely divisible distribution on the space
of measures

Let S be a compact metrizable space, & be the set of all non-
negative Radon measures® on S and &, be the subset of & formed
of all probability Radon measures on S. Let &=&UJ {4}, where 4
is an extra-point and let &= [0, ] Xx&,. & is a compact metrizable
space by the product topology.? Define a mapping p; }=(§, A) =
—21=p(1, 4) ES by

- A A, if 2<<oo,
.1 vy ={ '

, if A=o0
and define the topology of & as the strongest of all topologies

rendering p continuous. ©& is a compact metrizable space.® Let

C*(S) be the set of all strictly positive continuous functions on S.*
It is easy to see that, for each f€C*(S), the function ¢,(1) defined
by

1) i.e., bounded Borel measures.

2) The topology of &, is that of weak convergence: &, is compact metrizable
by this topology.

3) Cf. Bourbaki [1] Chap. 9, p. 44.

4) This notation, which is slightly different from the usual one, is more con-
venient in future discussions.
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e—(,\.f)’ 15@,
1.2) o= o -4

where

4 )=\ raan
is a continuous function on &.

Let M= (S) be the set of all substochastic Radon measures®
on &, Clearly M (S) can be regarded as the set of all probability

Radon measures on & by the relation
P({4})=1—-P(®), Pem(®).

Define the Laplace transform of PEIMM (&) by
1.3) L:(f)= Sg er(MHP D)= See"“’P(dl)-

Hence the Laplace transform L,(f) is a function defined on C*(S)
and it is clear that, if f,—f point wise (f,, f€C*(S)), then
Le(f)—=L:(f).°

Proposition 1.1. Let P,eM(®),i=1,2, and Ly, (f)=Ls,(f)
for all fC*(S). Then, P,=P,.

This proposition follows at once from the following

Lemma 1.1. The linear hull of {¢o,(2); f€C*(S)} is dense

in Cy(&) where Co(®&)={F(n); continuous on & such that
F(4)=0}.

Proof. The linear hull is algebra under multiplication and it
separates the point of &. Hence the assertion follows from the
Stone-Weierstrass theorem.

Now the infinitely divisible measures are defined in the usual

way:

5) i.e., non-negative Radon measures with total mass <1.

6) Clearly Le(f) can be extended as a function on B*(S)=(the set of all
strictly positive bounded Borel measurable functions) and has the same continuity
property.
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Definition 1.1. P& is called infinitely divisible if for every
natural number m, there exists P,E9% such that

1.4 Le(f) =1L (O],

Our next task is to prove Motoo’s result which characterizes
completely infinitely divisible measures. For each n=1, 2, ---, take
finite number of non-empty Borel subsets of S, {K{"}, =1, 2, ---, y,
such that
(i) KPNKP=¢, if i+#j,

(i) UK®=S,

(i) diameter (K®)<1/n for all i=1,2, -y,

Since S is a compact metric space, we can always define such
{K{}. Choose xi€ K", then clearly U {x7}", is dense in S. Define
a mapping 7,; &€& by ’

(1.5) 7. () =2 AK D3P
Following properties of 7, are clear:

(1.6) 2.2+ 1) =7,(2) + 9. (),
1.7 7,(1) =14 weakly when #n—oo,
(1.8) 70 (2, (D] =2, (D).

Let B*(S) be the set of all strictly positive bounded Borel
measurable functions. The dual operator of %, is a mapping
7¥: B*(S)—B*(S) define by

.9 7 f () = 35 F(a) ().
Clearly we have

(1.10) 2@ f) = (a8) (F) = (nad) (2 ),
where

W=\ feonan.

7) 8z is the unit measure at x=S.
8) Ix(x) is the indicator function of KCS.
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Define a function £(3; f) defined on &xC*(S) by

(1 _ e—Z-Au(/)) 1 "_‘ I )
A

<1<<oo

=]

1/

1.1 s(};f>={ ~0
t o

where 1= (3, 1) €8=[0, oo] x&, and zo(f>=gsf(x>xo<dx). It is

easy to see that, for each fixed f€C*(S), there exist constants
0<<C,<<C, such that

>

(),

—
|

s

1.12) C<e(x; /H<C, for all 1€8,
and E(i; f) is continuous in 1€8.

Theorem 1.2.° (M. Motoo [13]). P &9 is infinitely divisible
if and only if

(1.13) —log Li(f) =3 ¢ fyncab)

by some bounded non-negative measure n(di) on e.

Proof. Let P be infinitely divisible and define, for each n=1,
2, -, P®=y0P' For each m=1, 2, ---, there exists P,E9IN such
that
LP(f) = [me(f)]m-

Set P{’=qy,oP,, then,
(1.14) Loo(f) = Sge—"—«\mp(dx)
_ S@ e D P
=Le(pf (f))=[Lp, G (f)]"= Lo (f)I".

P™ and P$ can be identified with substochastic measures on

7"(&)=R* where R* is the positive part of v,-dimensional Euclidean

9) Cf., also Jirina [8].
10) ie., P™(B)=P(n;'(B)) for every BEB(S).



146 Shinzo Watanabe

space R (1.14) implies that P, considered as a measure on

R*r, is infinitely divisible. Hence by the classical result,

Lun(f) =exp( = {5e G Pyn(dD)))

where n""(df) is a non-negative bounded measure concentrated on
[0, =] X%,(€&). For each fe&C*(S), Ly»(f)—L,(f) and by
(1.12) it is easy to see that sup n(”)(%)<w. Then, clearly,

L.(f) =exp(—Sée(I; f)n(di)) ,

where 7(d1) is a weak limiting point of 7™ (d.).
Conversely, given a bounded non-negative measure n(dji) on @,

we shall show that
exo - {56G: fontab)

is the Laplace transform of an infinitely divisible measure PE9NR.
For this, it is sufficient to show that the above function is the
Laplace transform of some P &9, since then, L.(f)=[L, (f)]",
where P, It corresponds to nm(a'/l~ )=—71n~n(d/1~). Again, by the

well-known result for finite dimensional case,
exp ({36 (r)n@d)
=exp(—gé5(m§; f)n(d5)>‘2’
=3B~ a5 D)
=i P,

where P,(d}) is a substochastic measure concentrated on %,(&). P,,

considered as a probability measure on &, has a weak limiting point

11) ie., Ri»={(x1, -, 2,,); 2i=0,i=1,2, -+, vn}.
12)  mea=Cx, mmro) for A= (A, Ao).
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P and then, it is clear that
exp(~ {56 Hncad ) =tim exp( {6 22 ()In(ad)
| ewopan,

which completes the proof.

Definition 1. 2.

1.15) w= {\lr(f) =Sée(2; n(dr); n(dl), non-negative bounded
measure on S }

Thus the above theorem states that P9 is infinitely divisible iff
—log L,(f)ew. By (1.12), it is easy to see that we have the
following

Proposition 1.3. If €%, n=1,2, -, and ,(f)—=>v(f)
for every fED where D is a non-empty open subset® of C*(S),
then there exists a unique extension of +» such that <¥.

Definition 1. 3. A function y»=+-(x; f) defined on S xC*(S)
is called a Z-function if

(i) for fixed xS, it is an element of ¥,

(ii) for fixed f€C*(S), it is an element of C*(S).
The set of all ¥-functions is denoted by ¥. Given two ¥-functions
Yr; and +r,, the composition ry=nr; (yr,) is defined by

(1-16) Vs (x5 ) =y (x; 4 (-5 ).
Lemma 1.2. If v, €, i=1, 2, then y,(yn) ET.

Proof. For any =S and €7, Ssmp(x; fHu(dx) €w. Therefore

given 4, 1=1, 2, and u, there exists a unique P, such that

exo(~{ e rutan)={ eerpican.

13) With respect to the uniform topology.
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Define, for each xS, P.(dx) €M (S) by
P.(an =, PLidw Pican,
then
{oeenp.an =fexp( - wut: @0 PLw
=exp[—vn(x; ¥ (-5 )],
which proves yr(yr) EZ.

Definition 1.4. A one-parameter family {yr},cr,«) of Z-func-
tions is called a ¥-semi-group if

1.17) Yrowe = (Yro),
‘!’o(' B f) =f-

§2. Continuous state branching processes

Definition 2.1. Let X=(u(dx, w), 2, &,, P,)' be a Markov
process on &=6J {4} with 4 as a trap. X is called a continuous
state branching process (C. B-process) if it satisfies, for every
1>0, fEC+(S) and uy, 1. €EE,

@D Bunle ) = By (e @) B, (e00).
The property (2.1) is called the branching property.

Definition 2.2. A C. B-process is called regular if E, (e*”)
is continuous in #E€& for each ¢>>0 and f€C*(S).

Theorem 2.1. (Jilina) There is a one-to-one corrvespondence
between a regular C. B-process X={u, P.} and ¥-semi-group
{Yre} teto,y: the correspondence is given by

2.2) Eue o) =exp(—{w(xi £lutdn).

14) @ is an abstract space, &: is an increasing family of Borel fields on £,
wi(dx, ») is a mapping [0, ©) X235 (¢, w)—u(dx, ©)ES adapted to F; and {P,
pES) is a family of probability measures on {2,\/<.} such that P.{w: p(dx, ©)=

t=0
w(dx)}=1.
15) E,‘(-)=S~Pu(da>). We set always e (4 72=0 for every f&C*(S).
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Proof. Let X={p, P.} be a regular C. B-process and set
E; (e ”) =exp(—yn(x; f)).
Then, for each xS and t>0, 4 (x; f) E¥ since

exp(—vn(x; f)) = E; (e7 ) = [E1, (e /)],

By the regularity of X, it is easy to see that, for each {>0
and f€C*(S), v.(-; f)eC'(S). Now we claim that

@.3) Eu(e ) =exp(—\w (x5 £u(dn).

When 4 is of the form #:z,!gf d.;, (m;, n; natural numbers, x;€S)
i=1

this follows from the branchix;g property. Then, by regularity,
(2.3) holds for every #€&. Now,
Es (e P) = E (E, (e747))
—Eefexp(— (x5 Pmtan) ]
=exp[—yn (x5 9. (-5 )]

Hence, Yrry.=vr (). Thus, ¥, =+ (x; f) is a ¥-semi-group.

Conversely, suppose we are given a ¥-semi-group {y»}. Then,
just as in the proof of Lemma 1.2, there exists a unique P,=IN
such that

@ exp(—\wx Hu@n) =\ carpi@n,
for each >0 and x€&. Now
e, PuanPican |
—{Puan eerpia
={Pucanexp(~fvux: £acdn) |
—ext] —{un (i v (5 )0t |
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=exp( — (v xs £a(an)

= S@ e—(v»!)P ::-S <dV) s
and hence

S@deo Pi(dv)=Pi*(dv),

ie., {P.(dAr)} is a transition function on & Thus {P}(da)} defines
a unique Markov process on &=& {4} with 4 as a trap, (cf.
Dynkin [2]). The branching property is clear from (2.4). q.e.d.

When S is a single point or finite number of points, & can be
identified as the positive part of the finite dimensional Euclidean
space and in these cases the structure of C. B-processes are
completely determined under a slight regularity condition in time
t, cf. Lamperti [11], Silverstein [16] and Watanabe [17]. Following
the method of [17], we shall now describe a large class of C. B-
processes. Some examples were obtained already by Motoo [13].

Let 7, be a non-negative strongly continuous semi-group of
bounded operators on C(S) and let A be the infinitesimal generator
in Hille-Yosida sense of 7. Let D(A) be the domain of A. Let
o(x; f) be a ¥-function and ¢(x) be a non-negative function in
C(S). Now, consider the following non-linear evolution equation for

v (x) €C(S):

%:A\]f,‘l‘d[(&’(' ) "I"t) _"I"t]
2.5)
\If'o:f~

In practice, we consider the equivalent integral equation:
@5 w@=Tef@+\ as{ T2(x, dna(eCss v,

where 77 is the semi-group with infinitesimal generator A—o.'®

16) It is well known that there exists a unique semi-group 7°° with infinitesimal
generator A°=A—o with D(A°)=D(A). T’ is non-negative and strongly continuous.
Ti(x, dy) is the kernel of T°.
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Proposition 2.2. For fC*(S), the solution = (x; f)
of (2.5) exists and unique. Further «r, defines a ¥-semi-group.
For the proof we need the following

Lemma 2.1. Let C:(S)={feC*'(S); ngg f(x)>¢€ ' For
every €0, there exists K=K (e)>0 such that
leC5 )= DIKKI -2l
for every f, g€C¢(S).
Proof. By the mean value theorem,

l-l-/l
]

6@ ) =€ @) || P —gn®] .

<TN(F) — () e LA w

Hence, by taking K(e)= sup (1+2)e™¢, the lemma is proved.

XE(0,0)

Proof of the proposition. Let f=C*(S) then for some >0,
f€C5(S). Then, there exists £,>>0 such that 77f=C¢(S) for all
t= |0, t,). Define ¥ (x), t€ [0, t,], xES, successively by

i’ (%) =Tif(x)

(2.6)
i@ =Trf@ + | ds| Trwdnanerivi).

Then " €C¢(S) for all t€[0,4] and n=1,2, ---, and also, by
Lemma 1. 2, "¥. Using Lemma 2.1, we can show by the

standard argument that

sup [[4i” =y |0

for some 4 &C*(S). Then ¥ by Proposition 1.3. Also, by
Lemma 2.1, we can show that «r, is the unique solution in C*(S)

17) Thus C+(S)= U C&(S).
€0

18) A=(x, A0)EL0, 501 X G .
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of (2.5) in [0, 4]. We denote this solution as y,=+r(x; f) then,
by the uniqueness of the solution, yr,,, =+ (yr,) for t+s<t,. If we
define yr,=vr,(x; f) in the interval [¢,, 2¢,] by

1ll‘:<x; f)ziﬁf-:o(x; ‘I/‘ro(’ ) f));

then, ¥, €% by Lemma 1.2 and {y~}, < [0, 2¢,] defines a solution
of (2.5) in the interval [0, 2¢,]. This is the unique solution in
C*(S) by virtue of Lemma 2.1. Continuing this process, we get
the unique solution r,, tE€ [0, o) of (2.5)" in C*(S) and clearly
Y, is a ¥-semi-group. q.e.d.

More interesting class of #-semi-grougs can be obtained by the
following limiting procedure. Let A(x; f) be a function defined on
SxC*(S) such that k(-; f)eC(S) for each fixed f€C*(S). We
assume that i(x; f) is locally Lipschitz continuous in f, ie., for
every feC*(S), there exist a neighborhood” D=D(f) and a
constant K >0 such that

@D IhC5 £)—h(s DIS K| f—2l

for every f, g&D. We assume further that there exist a non-empty
open set D,C C*(S), a sequence {¢,(x; f)} of Z-functions, and a
sequence {s,(x)} of non-negative functions in C(S) such that

2.8 sup lowfe, (-5 FO—=f3 —h(; £I—0

when n—>oo, Let T, ke, as before, a ncn-negative strengly cor.tinuous
semi-group on C(S) and A be the infinitesimal generator with tlke
domain D(A). Now, consider the following evolution equation for

Y () €C(S):

O At B ),

(2.9 ot
‘!f‘o:f-

In practice, we consider the equivalent integral equation:

19) With respect to the uniform topology.
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@9 w@=Tr@+\ds| T.cx dp)ncys v,

Theorem 2.3. There exists a unique solution yr,(x) in C*(S)
of the equation (2.9)'. If we write this solution as «r,=+,(x; f),
then «r, defines a ¥-semi-group.

Proof. We first remark that, if there exists a solution vr,(x)
of (2.9)" in C*'(S), then it is a unique solution. This can be
proved by the usual argument using the local Lipschitz continuity
of h. We shall show, therefore, the existence of the solution
Yo=Y, (x; f)EF. By the local Lipschitz continuity, the solution
¥ (x; f) of (2.10) exists in C*(S) for each f€C*(S) in sufficiently
small time interval [0, #,]. For each n=1, 2, ---, let " =y"(x; f)
be the solution of

W@ =T.f 0+ ds\ T.0x, d9)0.(5) l0.(55 vi2) —w2.(9)].

Then " is the solution of

O = Trf) +| ds| T2(x, d9)a (D51 wi2),

and hence, by Proposition 2. 2 (" is a ¥-semi-group. Now, using
(2.8), we can show, by the same proof as in Lemma 2, §2 of [17],

that there exists a non-empty open set D,cC*(S) and £>0 such
that

Sup sup et s ) = (-5 £OII=0
when n—oo. By Proposition 1.3, =+ (x; f)E¥ for t |0, t,].
Then +r, can be extended as a solution in £& [0, o) just as in the
proof of Proposition 2.2 and it clearly defines a #-semi-group.

Corollary. Let F(¢) be a function defined on £<(0, o)
given by

— . 2 - —tu su
(2.10) F(&) =CotCit — st S(e 1+ )n<du>.
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where C;, i=0,1,2, are constants such that C,>0, C,>0 and
n(du) is a non-negative measure on (0, o) such that

oo uz
| <ce.

Let s(x) be a non-negative continuous function on S and define
hix; ), x€8, feC*(S) by

(2.11) h(x; f)=e(x) F(f(x)).
Then the solution +, of (2.9) or (2.9)" defines a ¥-semi-group.

Proof. 1t is clear that h(-; f)eC(S) for each f€C*(S) and
it is locally Lipschitz continuous. Also it is not difficult to show
that there exists a sequence of functions F,(¢) of the form

F.(&)=C.(e.(&) —8),

where C,>0 and (on(é):S[ ](l—e'"f)lzu N,(du) with a non-
0,00

negative bounded measure N,(du) on [0, o], such that F,(&)—F(¢)
uniformly on each compact interval in (0, o) when n—>oo. Now,
v(x; =e.(f(x)) €T for n=1,2, -+, since

(£ =\38G5 NHN:@D),

where N:(d2) is the image measure of N, under the mapping
ue [0, o] —(u, 8.) 6. Thus, h(x; f) satisfies the condition
(2.8).

Example. For a non-negative continuous function ¢(x) on S,
the solutions of the following equations define ¥-semi-groups:

_5%’%=A\;p,—a- W 1<a<2,
or,

GT";'zA\;,,ﬂ- e 0<a<l.

Given 7, and A, we have constructed a ¥-semi-group in
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Theorem 2.3 and by Theorem 2.1, there is the unique C. B-process
corresponding to it. Let T, be the semi-group of this C. B-process.
Since

20)
’

T () =gucon() = exp| =\ (i fHucan |

it is easy to see that T,(C,(®))cC,(&), where C,(&)={F(x);
continuous on & and F(4)=0}. Since [y (+; f)—f[—0, we see
easily that T, is strongly continuous on C,(&). Hence the C. B-
process is a Hunt process; in particular, we may assume that it is
a strong Markov process with right continuous and d,-discontinuous
sample functions (cf. Dynkin [2]). The case of diffusion processes
will be discussed in the next section. We shall now study the
infinitesimal generator of the semi-group T, on C,(&). Let A4 be
the infinitesimal generator in Hille-Yosida sense of T, with the
domain D(A4). A linear manifold DCD(A) is called a core® of 4
if 4 is the smallest closed extension of A][,.*?

Theorem 2.4. Let T, and h be as in Theorem 2.3 and let

D be the linear hull of {¢;(n); fEC'(S)ND(A)}. Then DCD(A)
and Ap;, f€C'(S)ND(A), is given by

@12) oG =e =\ (hixs )= AS(0)) u(d).

Furthermore, D is a core of A.

Conversely, if f€C*(S) is such that ¢,=D(A) then fED(A)
and hence, Ay, is given by (2.12).

Remark. If DcD(A) is a core of A, then the linear hull D’
of {¢,(w); f€C*(S)MND} is a core of 4. In fact, as is easily seen,

the smallest closed extension A|p of A|p satisfies A|pDAlp.

Proof. We first show that DcD(A4) and A|p is given by

20) er(w=ewD=exp(~§ f(Du@n), rec(s).
21) Ci. Kato [9], p. 166.
22) A|p is the restriction of 4 on D.
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(2.12) and also that, if f€C*(S) is such tkat ¢,=€D(A), then
feD(A) and hence, o, D. First, if (x; f) is the solution of
(2.9) for feC*(S)ND(A), then

HL'(';{#——(Af—h(- :f)) =0 when t—0.

This can be proved by the same way as in the proof of Theorem
4.10 of Ikeda-Nagasawa-Watanabe [6]. Then, as is easily seen,

‘% {etmy? —e 7} —e‘“"”Su(dx) h(x; ) —Af(x)} 1@—> 0

when t—0. Thus, ¢o,D(A) and Ay, is given by (2.12). The
second asserticn can be proved by exactly the same way as in the
proof of Theorem 4.10 of [6].

It remains only to show that D is a core of D(A). First of
all, we remark that if f€C*(S)ND(A) then = (x; f)EC(S)
N D(A) for each t>>0; in fact, f€C*(S)ND(A) implies ¢,=D(A),
then Tw,(n) =¢y,(2) ED(A). This implies, again by the above
result, that v,€D(A). From this, it is clear that T,(D)CD. Also,
by Lemma 1.1 D is dense in C,(&). Now the assertion is a
consequence of the following general

Lemma 2.2. Let U, be a strongly continuous semi-group of
bounded operators on a Banach space B such that |U|< M-e*
for some M >0 and 3>0. Let G be the infinitesimal generator
of U, with the domain D(G). Let D be a linear manifold of B
such that

(i) DCD(G),

(ii) D is dense, i.e., D=B,

(iii) D is U,-invariant, i.e., U,(D)CD.

Then D is a core of G.

Proof. 1t is sufficient to show that for some a>g3, (al—G) (D)*>

23) I is the identity.
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is dense in B. In fact, if this is true, then for every u=D(G)

there exists &, €D such that ah,—Gh,—au—Gu. Let Ra=g e~Udt,
0

then R, is a bounded operator and hence,

h,=R.(ah,—Gh,)— Ry(au—Gu) =u

and also
Gh,=a-h,— (ah,—Gh,)— au— (au—Gu) =Gu,

proving that G is the smallest closed extension of G|,.

In order to prove (al—G)(D) is dense, it is sufficient to show
that, for every continuous linear functional L on B such that
L(au—Gu)=0 for every u€D, L is identically 0. Assume,
therefore

Llau—Gu)=a-L(u) —L(Gu)=0, for every u<D. Since
U,(D)c D, we have

aL(Us) — L(GUx) =aL(U) —L<s _ dit U,u>2”
. _d _
~aL(Ua) — & LU =0,

Hence L(Uu) =C-e* for some constant C. But |L(Uu) | <|[L|||| U]
< K'’e? and, since B<<a, we must have C=0. Therefore L(U,u)=0
for every ¢ and, in particular, L(#)=0 for every u&D. Since D
is dense in B, this implies L=0. qg.e.d.

§3. The case of diffusion processes

In §2, we have shown that, for a given non-negative strongly
continuous semi-group 7, on C(S) and a given non-negative con-
tinuous function ¢(x) on S, the solution of the equation:

OVt A — gt
—op — A=l
w=f, fEC*(S),

defines a ¥-semi-group. We shall show that the corresponding

(3.1)

24) s—d/dt stands for strong derivative.
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C. B-process is a diffusion process, i.e., almcst all sample functions

are continuous in the topology of &. Unforturately, we can not
prove this fact without certain restrictions on 7, and os; the

conclusion seems to be true in general, however.

Theorem 3.1. We assume that there exists a dense subset D
of C(S) such that DcD(A) and for every fED, there exist
constants K>0 and a>>0 such that

@ DLl I T —er<K 2
for all sufficiently small t. Then, the C. B-process corresponding
to the equation (3.1) is a diffusion process.
Proof. For f€C(S), define ¢ successively by
() =T, f(x)

(3.3) '
Vi (2) =T, f(x) — S T As(pi=?)% () ds.

If we choose £, such that
4t,C* () [l 111,
where we set (osup IT])\V1=C(,), then, since
@I < CO) U1+ ol sup iz ),
we have, by induction, that

sup [ <) £ 11+ tllal-4C ) | £
<CA I FII+1£11 =21 £ICCE)

for every n=1, 2, ---.
Since (for t<t,)

2 = SCCE ol | o2 e

<aC(t) - [olll £ I = el s,



Continuous state branching processes 159

we have

(3.4) sup [y — o< KE
0st<ty n!

where

KE=4Co)llalll 1.

From now on, we fix geDNCH(S5).® For f=i-g, we define
Y (%) =4 (x2; 2) by (3.3). Then clearly, " (x; 2) is a polynomial
in 12 and by (3.4), we have, for some #,>0* and ¢>0, that

sup g -5 D) = (-5 D=0,

A 1+
Hence 4~ (x; 1) =+r,(x; 2g) is analytic in [A]<{1+e€. Set
Yo (x; D) —2-g(x) =t[4Ag(x) — Vo (x)g*(x)] +t-H(t, x; ),

then for fixed ¢t [0, {,) and xS, H(¢, x; 2) is analytic in 4 and

(3.5) ant,-;a)ngH O T s

| LEB =8 o gg||+ |1 Ttovi s ds—ro g

A g T ]
+H%Sﬁ1xf¢ga—f¢gﬂd4[

K- £+ C(te) sup [l -, — Fag?ll + /H(%S;s“ds

< K'-t%

since o i, —2%-0- g3 <LC- Wy, —2-g||<C'-t.  Clearly, K'=K'(2)
is bounded in [1]|<{1+e€. Now,

H(t, x: x)=:§x"-an(t, x),
where
2T
a,(t, x) =LS H(t, x; e®)e"°ds.
27 Jo

25) Ci(S)={f: continuous on S and 0<f <1}
26) Clearly, this o can be taken common to all g&DNCi(S).
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Hence, by (3.5),
(3.6) sup la,(t, x) | < K"-1%, n=1,2, -

Now, if t<t,,
E, {e7xr0} =exp(—S«1n(x: Dv(dx))

and this is analytic in |A|<1+4+e€. Hence all moments of (u, g)
exist. In particular, this implies that,

3.7 sup E, {m(§)"<ee,  m=1,2, .
We have, finally,
E, (exp[—2{(trss, &) — (&, £)}1)

= Eu(exp{~{ n(dx) [yu(x; D-2g1))

~SE[CD G -1p)m@n]]

n=0

=SB tudg —s0g' ) + Batat, D) aan) ]
~Sor,
then, as is easily seen by (3.6) and (3.7), we have
b= —t- E{Sam, x)#,(dx)]-i- 0t =0 (1),

Thus,
E {[(aess, & — (ua, )14 =410,=0(t"*)

if 0<{¢t+s<t,, where O(#'**) is independent of s. By Kolmogorov’s
theorem (cf. Neveu [15]), this implies that

P,{(u, g is continuous in € [0, {,]} =1.

Since C;(S)MD is dense in Cy(S), this implies that

P, {4, is continuous in € [0, £,]} =1

and hence, by the Markov property,
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P.{p, is continuous in f€ [0, o)} =1,

i.e., u is a diffusion process.

Example. Let S=k\", one point compactification of R" and T,

be the strongly continuous semi-group on C (I?”) defined by
B8 TS =g, exp( —E2 ) f(ay
: ‘ @rt)" Iz 2t ’

Let ¢ be a positive constant, then the condition of Theorem 3.1 is
satisfied: if we take D=C~ (1?"): { fEC(I,?\”); all of its derivatives
EC(I/?\")}, (3.2) is clearly satisfied. Note also that A is the

smallest closed extension of %A on C"“(ﬁ"). Hence, there is a

unique diffusion C. B-process X= (#,, P,) on & such that

Eu(exp(— (u, D) =exp(— . (xs Hudn)
where +r,(x; f) is the solution of

o,
e~ A=,
(3.9

‘l’ozf .
One interesting property of these diffusion processes is the following:
We have shown, in the proof of Theorem 3.1, that, for every
f€C(S), the solution of (3.9) exists uniquely for sufficiently small
time-interval [0, #,]. If f=Aag, the solution »(¢; 2) =+ (¢; 2g) is
analytic in |4| <1+ € for sufficiently small [0, /,]. It is easy to see
that

E.(exp[(m, D) =exp(|_o.(x; u(dx), te[0,4],
where
e(x; 8)=—4(x; —2).

¢: is the solution of
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—%%=A¢,+o-:p?,
(3.10)
»=g.
Hence, by Fujita's result (4] (cf. also Nagésawa-Sirao,[14]), :
(i) if n=1, for every non-negative g€C(R") such that {g>0}
has an interior point,

(3.11) | Es {exp(u, £)}

blows up in a finite time, i.e., (3.11) cannot be finite for all
te [0, o),
(ii) - if n>>3, for every >0 there exists 6>0 such that, for-all
geC(RY) satisfying 0<g(x)<8 2ry) ¥exp(— |x]%/2r), (3.11) s
finite for all t€ [0, o). Furthermore,“

log [Es, fexp [, £)1}] SM2e(r+ )] exp| =5 ZE ] vee10,00)

for some positive constant M.

The behavior of (3.11) for the critical case #—=2 is not known.

§4. A limit them;ém

Consider the following branching process (cf. Harris [5], Chap.
III, §1.6): an object at x&R" has the probability p, of having £k
children (k=0,1,2, ---); assume that each child, irndependently of
others, has a bfobability distribution s(dy) for being in x+dy. Let
Z.(dx) be the number of objects in dx in the m-th generation.
Z,(dx) defines a discrete-time Markov process whose state spéce is
the set of all non-negative, integer-valued measures. We shall céll
this process the (F, o)-process, where F(s) =§_‘6. pis*, since it is
uniquely determined by F and o. o

Now, consider a sequence of (F, ¢)-processes; {Z{(dx), ﬁ,‘f”,
pn€I: (F,,6,)-process, m=1,2, ---, where Jl is the set of all
non-negative, integer-valued measures: '
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1
4.1) 32={,u=§6,i; X, ERY}.

For each m=1, 2, ---, let &™ be

1
(4.2) e = fn={,1=71’725,,; x.ER"}

1
m

and define a continuous-time stochastic process {u{™” (dx), P{"} on
& by

4.3) A (dx) = Z i (d),
Pr=PR, ne&™.

Now, let {u,, P.} be the diffusion C. B-process discussed in Example
of §3, ie., S —R* and #. is a C. B-process defined by

Eu(exp[— (u, D =exp(—{w(xs Hautan),
where r,(x; f) is the solution of
%‘7’;_'=A‘l’:—p°«lr?”)

(4.4)
Yy = f

We shall assume that F, and ¢, satisfy the following conditions:

4.5 m| LfG+ 9 —f (©)]on(d)>5df (@)

ray
uniformly when m—oo, for every f€C~(R"),

— —ulm =_u___ . uz _]__)
4.6) log(Fa(e™) =% —p. 1 o L)

where p>>0 is a constant and o(1/m?*) is uniform in # &< [u,, u.] for

AN
27) A is the smallest closed extension of %A on C*(R®). p is a positive con-

stant.
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every 0<<u,<<u,.™

Theorem 4.1. Under the assumptions (4.5) and (4.6), finite
dimensional distributions of {u™, P’} converge to those of
{n.,, Ps)} for every xER" when m— oo.

Proof. Let & =& {4} CSand C"=C,(&™) = {F(x); con-
tinuwous on &™ and F(4)=0}. Let P,: C=C,(&)—C", be the

restriction operator;

(P.F)=F|__(w.

Let T(u, di) be the probability kernel on &™ x&™ defined by

Vi T a0 (P @
—exp(—m| ¥ (x: Hudn), n#4
T("')(A, dl) :3(4)<d1.),

4.7

where

4.8 v =—togF({ exp| - L fix+9 nian).
It is easy to verify that, for k=1, 2, .-+,
PL”’[pE?il),medllu,; té—%—]z T, di), as. .

Now, we shall apply Trotter’s result (cf. Kato [9], IX, §3, Kurtz
[10]); if there exists a core D of 4™ such that

4.9) | AP, F—P,AF| cn—>0 (m—o0), for all FED,

where

28) (4.5) and (4.6) are satisfied, e.g., if om(dy)=c(vVm-dy), m=1,2, -, where
a(dy) is a probability measure on R? such that Snnx"xla-(dx)=8;j and Su.x"a-(dx)
=0, and Fn(s)=F(s), m=1,2, ---, where F’'(1)=1 and 0<<F"'(1)/2=p<oo.

29) A is the infinitesimal generator of the semi-group of (x:¢, P.) acting on
CECO(@).
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(4.10) AP —m(T™—T)
then, A
(4.11) lim sup | T P,F— P,T.F|cn=0

m-»e0 0<s <t
for every F & C, where
(4.12) T = (T™)tm

and T. is the semi-group of (u, P.) acting on C,(&). We shall
verify (4.9). Let D be the linear hull of {p,(x); fEC'(RHN
C“(f!\”)}, then, by Theorem 2.4 and Remark, D is a core of A.
Also,

o, =2 Lo £1(0) =L 4f(x) |uan).

Let ﬂ=»};gaﬁe@<m>, then if FECH(R)NC-(RY),
) _ S My _ 1<
AP, () = m{exp(— 24 (x; 1)) —exp( — L% 7))}

where
W3 )= —logFu( | exp| =L fCx+y) Jpudy)

By (4.5) and (4.6),

Sn.exp[— lwf(x+y):|am(dy)

_ 1 1 1 ., 1
=1 f@) e A ) s ) o L)

and hence

VO ) = S+ L F 40 o 1) o L),

N\
where o(1/m?) is uniform in x= K™, Therefore,
| AP, (1) — Aps (1) | =

30) T is the operator given by the kernel T (u, dA).
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33 £ mexp( 2| | 34D — o720 |

) B AL ]

gK‘e—(”m)(<o(1)I_+_].;<_1_)2e('/"‘2"‘>
m m ’

m

where K and c¢ are positive constants and e=inf f(x)>0. Hence,
1ER"®

sup
]

| A" P (1) — Ap,(1) | =0 when m—co, proving (4.9). Now the

convergence of finite-dimensional distributions follows from (4.11)

by a standard argument. g.e.d.

By changing the conditions on F, and o,, various different limit

theorems may be obtained.
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