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Introduction.

The present paper is the third part of the series [8] with the
same title.

In section 13, we shall treat the stable homotopy of some com-
plexes using the relations of Yamamoto [9]. The results (Theorem
13.5) of section 13 will be applied to obtain our main result Theorem
14.1 which states, briefly, the existence of unstable elements of
the fourth type: r& Im S?, S*;y#0 and S**%=0. As a conse-
‘quence, we shall have a generalization (Theorem 14.2) of Theorem
12.5 (with a minor correction) for meta-stable groups. Theorem 14.1
also implies the existence of new generators ¢ (1<i<p—2) and
(1< j< p—1) which together with a2, ap,, A<t p—1), Rk,
af°B.(2<s<p—1) and @*' give a system of generators of the p-
primary components of the k-stem groups =7 for 2p*(p—1)—-1<k
<2(p*+p)(p—1) —5. Our proof is independent of algebraic theory of
the stable groups as in [3], [5]. Moreover, for the above range of &,
the urstable groups mom.1.+(S**': p) are determined in Theorem 15.2.
For the cases k=2p*(p—1) —3, =2p*(p—1) —2, the unstable groups
are computed (Theorem 15.1) by dividing into two possibilities: (I)
a5f=0, (II) ayft#0. (The case (II) is negative by author’s recent
note in Proc. Japan Acad. 13 (1967), 839-842.) It is remarkable
that in the case (I) and p=3 the relations fi=ay:; and g¥=0 hold
(Proposition 15.6).
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13. Stable mod p homotopy of a special complex.

We shall discuss stable homotopy of a complex of a special kind,
a model of which is the complex K(m, k) of Proposition 3.6 for m
=0 (mod p).

We shall use the notations in section 4.

According to Yamamoto [9], we define generators

B(S)en;(sﬁ+s—l)(ﬂ—l)—l(Y); Yp)’ 1gs£ p_]-
by the following rule.
(13.1). (i). The functional reduced power operation P: for a

representative f: YO DIUSYW of 5. has the coefficient 1 for
the orientation of the top cell of Y N+,

@Gi). B EXLBw» a, By for 2<s< p—1.
(iii). aBy=Pwa=0 for 1<s< p—2 and for s=p—1, p=>3.
The first condition will be used as follows. Let g:Y%—X be a
map inducing trivial homomorphism of H*( ; Z,) and satisfying go f
=~0. Let C,=XUCY?" be a mapping cone of g and }'V: Yy
—C, a coextension of f and let C;=C,JCY }¥*“™ be a mapping
cone of 7 Let a€B*(C;; Z,) and be H*#¢D((Cs; Z,) be given
by the natural orientations of the cells. Then
Prq=>b, and P?da= 4b
by the Adem relation A4P?—P?A4=P"'4P* and P'a=0. If we
change f by a representative of the element « in (4.2), then we have
glAa:bEHZN'PZ(p—l)'H (C?; Zp)-
Yamamoto has also proved the followings.
(13.2). it*mefy#0, so we can choose a generator B. of
(A3spas-no-n-2: P)~=Z, such that B, =*mBy  1<s<p—1.
(13.3), (i). adBy=Bwoa for 1<s< p—2 and for s=p—1, p>3.
(ii). If p=3, then B Bir=0 for s+t< p—1 and
S_._

- 31 Bes E<a, B, By for 2<s< p—1
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In [9], he has no proof of the second relation of (ii) for the

s—1

case s=p—1, but the relation — Besr € {Bes—1y, By, &) 1s obtained

for 2<<s<< p—1. Consider the formula 0{{a, B, 1), 8, ey + (—1)***

e, <B, 7,0), e+ (—1)***E a, B, (7,8, e)) for e=a, f=08=Pu), r="PRur-»-
Then we have

Bir-1 E {Bes-2, Bay, @) =<a, By, Bs-2) +<a, 0, ),

where 0 En5 - 505-1y-2( Y53 Y,) = {a%ad}. Since af =0 and a(a’* 0ad)
#0, we have §=0. This shows that (13.3) (ii) is true for s=p—1.
For p=3, his methods prove only

(13.3)".  BwyB3ay=0 mod {0a(8B>)’0}, aBery=Bwa=0 mod {Bu(68u>)*}
and adfer=PBmbax mod {(8w)°, (Ba)®.
The following list of independent Z,-bases of ni(Y,; Y,) is given
in [9].
(13.4). 4, ¢, o), a9, a Va, a0ad for 1<t p*—1; (Buwd) B,
8(Bw0) Ber, (Byd) Berd, 0(Bnyd) Berd, ad(Byd) B, 0ad(Bayd) By
ad(Bay®) Besyd, 0ad(Byd) Bed for 0<r, 1<s and r+s< p—1; and

(Bay®)?* By, (BBay)?, (Baxd)?, 6(Buwyd)’.
We denote by

K, (k) = Y;U C Y;+2(ﬁ—1)-1 U---yc Y;+2(k-1xp-1>—1

a complex satisfying the following condition.
(13.5). For 1<K <<k, K,(B) is a subcomplex of K,(k) and K,
(F+1D)=K,(F)UCY ;**¥¢ 01 {s a mapping cone of a map hy:
Yoot K (B') such that for the projection =y_: K,(F)
=Y e e =K (k)/K,(K—1) the composition x,_oh, represents
kK -da— (K —1)-ad€n, (Y,;Y,).

By Propositions 3.6, 4.5, we may consider that
(13.5).) K(m, k) =K,., (k) if m=0 (mod p) and k(p—1)

<mp—1.

Now, we assume the existence of a complex K,(p+2) and compute

stable groups #°(Y;*'; K,(k)), k<<p+2. We dznote by i,:K,(k)
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—K,(k+7) the inclusion. We shall use the following homotopy exact

sequences:
(13.6). nonn( Yy V) B2 (Vi K, () 25n (Y 5 K. (R +1))
Pas

WL INING A AL ST ¢y ey

By (13.5) and (4.6), we have n,_hs(a’) = (k-da— (k—1)ad)a’
=k((r+Dada—r-a*'0) —(k—1) (r-a’da— (r—1)a’*6) = (k+7)a’
—(k+7—1)a*0 and n, s (@ 0a) = (k+7r—1)a 0ada= (k+7r—1)
a’dad. Thus

(13.7). mehin(a’)=(k+7)a’da— (k+7r—1)a™"s,
Txtux(a”0) = (k+ r)a’dad,
Txhix (a7 0a) = (k+7 —1)a’dad and m,_1shus (a0 0ad) =0.

Lemma 13.1. (i). #°(Y ;™% K. (p))=Z,+Z, generated
by i (Brd) and irs(8Bay)-

(i). (Y=ot K (p))=~Z,+Z,+Z, generated by i(a’?
0a), tix(By) and hyx (o).

Proof. By (13.7), mshi(a®™)=a’ and m_xhs(a”*0a)
= —a’"a for 1<<k<{p—1. In the exact sequences (13.6) for i=2p
(p—1)—1, =2p(p—1)—2, these elements play a similar role as
unstable elements of the first type, and we can cancell them. It
remains B¢yd, 0By, dad and o’ '0a, Bay ad=m,_1xh;x(¢). Then it is su-
fficient to prove that dad is not a =, ,.-image. Assume that dad
=n, 1x(d), and consider a mapping core C, of d. Then we have &
FrrH(C,; Z,)#0, but this contradicts to the Adem relation &'
Pr'=(0. Thus dad is not a m,_4-image (it must be cancelled with
0Bawyd as in Lemma 10.2).

Lemma 13.2. There exists an element ’ﬁ(,) of w°( Y -1,
K.(2)) such that

T (Ea)) =Bw-

Then we have
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S (Y rrxre-v=2s K ( p\==Z,+ Z,+ Z, generated by
s (@dBer), dax(Bd) and hos(ad),

(Y oot K (p\)==Z,+ Z,+ 7, generated by
i1x(a?*1), in(Ba) and hp(a).

Proof. Since m_whix(@™) =’ 0a and ik (@®76)
=a’*"5ad, by (13.7), these elements are cancelled in the exact se-
quences (13.6) for i=2(p+1) (p—1)—1, =2(p+1) (p—-1)—2.
Then it remains adfBa) 0Bay Bwyd, adad=rm, 1xh.x(ad) and a8, B,
ado=my_13h5(a) (and also dadByyd if p=3). We have also, by (13.5),
(13.1) and (13.3), h:1x(8Bay) =dadBuy, Mix(Byd) =b6aBwd =0 and A (Bay)
= 8= (hay (0Bd) = Prsishon —5-28o8) =0 if p=3). Then the

lemma follows from the exactness of (13.6). q. e d.
Denote by

Ca — Y ;+2p(p—1)—2u aC Y ;+2(p+1)(p—1)—2
the mapping cone of (a representative of) a. Let
fo: Y0025 Co and  mp: Cp— Y, Hoetne-ot
be the inclusion ard the projection respectively.

Lemma 13.3. There exists an element Bu, of n°5(Co; YY)
such that

i (Buy) = Bey-
Then we have
75(Co; K.(D))~Z,+Z, generated by iw(5pe) and miioe(fun)-
Proof. From Lemmas 13.1, 13.2, we obtain the following Puppe’s
exact sequence:

firs(a?02), (B, hm(} > tise(@0), iex (B, em(a)}

X

o . . .~
7(Ca: K, (9))— {1:15(Bcyd), 115 (0B»)} i’ {115 (adBe), toxc(Byd), Bps(ad)} .
By use of (4.6), (13.1) and (13.3), we have o*(i1x(a’*%0a)) =i15(a’0a%)
= z'il*(ﬂlpﬁd) - i,* (‘1“15) = il* (dp+15), a* (il* (ﬁ(l))) = il*(ﬁ(l)a) =0,
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a* (hpge () ) = hpse (@), o (g (Bard) ) = G (Bayda) = i1 (adBw) and
&*(114(0By) ) =11x(0Bawyax) =0. Thus we have a short exact sequence

0= {i0x (Be)} —o 75 (Co Ko ( )~ (s (380y)} —0.

Since a*(8ay) =0, the existence of By, follows. Then i (414(38w))
=i1*(5(i:§(1))) =1x(8Bwy). Since p(il*(5§(1>)) =115(( p'ﬁ)l?(l))) =0, the
above short sequence splits. q. e. d.
Note that z°(C,; X ) is a Z,module since n°(C.; Co)=~=Z,.
Let a,e H™*¢ (K, (k); Z,) be a generator given by the na-
tural orientations of the cells in K,(k). Then it follows from (13.5)
(see the proof of Proposition 4.5)

(13.8). Pa,=(t+1)ai,, and P'da;=i- da;,, for 0<i<k.
By Corollary 8.4, the following relations hold in K(lp, p+2):

gpa(): _<lp( p;].) _1>aﬁ= (l+1)aﬁa
& sa= (P8 D)ta, 1.,
g (¢PTD(p=D 1

>ap+1 =l-ay.,
P fay= — (Uf’“;( p_1)>Aa,+1=l-Aam

So, in the following, we add the following condition to K,( p+2).
(13.9). P?ay= (I+1)a, Pda,=1-4da, Pa=1-a,, and P’ da,
= l * Aap+1.

Now consider the attaching map

Bos: YooK (p41)=K,(p) U, CY e,

Since we are considering stable groups, we may assume that n is
sufficiently large.

Then the existence of such a map #,,, satisfying (13.5) is equi-
valent to /,4(da) =0, and %,,,; can be chosen, in its homotopy class,
as a coextension of da, f.e., h,,, maps the lower cone C_Y jt¥e+D(e-1-2
into K,( p) and maps the upper cone C,Y ;¥#+D0»~D"2 Ly the com-
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position of the canonical extension (cone) : C, Y ,;H¢e-n=2
CY #0601 of sa and the characteristic map : CY ;¢! —

K,(p+1). Consider the mapping cone

Csa =Y ;+2ﬁ(p-1)—1 U 5aC Y Z+2(p+1)(ﬁ-1)—2
-of da, and define a map

h:Cse—K, (D)

by putting &| Y ;¢ '=}, and by extending over CY ;¢de-i-2
by M| C_Y jr¥ete-0-2 jdentifying CY, with C_Y,. We also define
a map

D . Ca — Y ;+2p(p—1)—2 U aC Y ;+2(ﬁ+1)(p—1)—2 —> Cﬁa
by putting D] Y ;*?¢ P 2=5=jox and extending over CY jtxrtd0r-1-2
identically. Clearly, for the projection z’: Cs— Y 12D~ D-1 we have
(13.10). #’oD=n,.

Proposition 13.4. (i). K.(p+2) is the mapping cone of the
map h:Cse—K,(p), up to homotopy equivalence, and (—h,,,)on’ is
homotopic to i,0h.

(ii). koD represents (I+1)iw(88w) — I fust (Bevy) E7°(Ca; K, (5)).

Proof. The proof of (i) is directforwards (see Chapter 1 of
15]). Pat

bl = im(tﬁu)) and b2: iz*ﬂ(f (E(l)) = 77(’).‘1'2*(5(1))
.and consider mapping cones
Ch:Kn(p)Ublc(COl)v Cbz=Kﬂ(p)szc(Ca) and
C],QD: K,,( p) U/,oDC(Ca).

Let d,€ H007(C.,; Z,), i€ H*0(C,,; Z,) and d & Hr -
(Ci.0; Z,) be given by the bottom cell of C(C.), then {d,, 4d,,
P'ad,, 4P 4d,} is a Zybasis of H*(Cy,; Z,)/H*(K,(p); Z,) and so
for d. and d. By the remark after (13.1), we have

g:‘pao:Adh gDpAaOZQDpalzg)pAalzo in Ch



108 Hirosi Toda

and Q’a():gjpljao:O, g:pa1=@ldd2, -CZJﬁAaIZAg-)lAdZ in sz. By Lemma
13.3, there exists integers x, ¥ such that ZeD represents x-d,+y-d,-
Then we can easily construct a map

f: C],aD'—>Cb1UCb2= Kn( P) Ublc(ca)szc(CaJ
such that f| K,( p) =identity and f*(d,)=x-d, f*(d,)=y-d. By the
naturality of &, we have
Pray=x-4d and Pta,=y-F'4d.
On the other hand, identifying K,( p+2) with C, by (i), we:
obtain a map
g: C;,uv"’Ch:Kn( P+2)
such that g|K,(p)=identity and g *(a,)=4d, g *(4a,) =0, g *(@p1)
=—P'U4d, g*(da,,,)=—4P'4d, where the sign is caused of the
same reason as in the proof of Proposition 4.5. It follows then from.
(13.9) that Pa,=g*(P?ay)=g*((I+1)a,)=(+1)4d and P’a,
=g¥(Pa,)=g*(-a,,,)=—1-P'4d. Thus x=I[+1, y=—I (mod p),
and koD represents (I+1)b,—1-b,. - q.ed.
The main purpose of this section is to prove the following
Theorem 13.5. Let2<s<<p—1and K,(p+2) saiisfy (13.5)
and (13.9). Then the following relation holds in z°( Y jrart—v-D-2,
K.(p+1)):

Iy (Beoen) == (1 8)ine (96c)-

We shall given two proofs, the first one covers the case p > 3 and!
the second one does the case s=2. First of all we show
Lemma 13.6. There exists a coextension B Ens(Y [Hss+sb_
@01 G of By Such that nO*(Es_1>)=B<s-1) and
Bpsis(Bees) = {— I+ 115 (88cxy) +1 + sl (Ber)} B>
= — (I4+1) 15 (38cy°Bes—n) + I+ 124 (BiyBes-n) -

Proof. By (13.1), aB,»=0, hence E(,_l) exists. By (13.10)
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and Proposition 13.4, we have

— Iprin(Bern) = = Prsaston(Bis) = = haass D(Bes-12) = i D (Bee-nr)

= {(+ 1w (3B — - ot (B)) B

= (14 1i(38er°Bes-) — e (B Bes-n)-
Proof of Theorem 13.5 for p=>3. <{Buy,a, Bu—ny=lm(—1)""
{Bayna,Bi-1»y by definition. To consider the coextension f}z_l) for fixed
-, we must take the sign (—1)" since SE(S_I) is a coextension of

—SB.-1y. Then from Proposition 1.7 of [6], we have E130E5_1>E
— By a, Bi-1y. Similarly, from Proposition 1.8 and (3.5) of [6], we

‘have E(I)OB(.:—I)E — 1140, Bery, Bee-n>) D tax(8oCa, By, Bei-ny?).  Then it fo-
llows from (13.1) and (13.3)

Bas*Be-1=—Bw mod By°Gi+ G081

-and ’B\El)oﬁ(s—l)":— -3 ; 1 11%(0Bcsr) mod i (8a) 0Gs+ i1 GyoB-1y

‘where G;=r3.n0io-n(Y,; Y,) generated by a“*V¢™, G,= mipuno-n
(Y,; Y,) generated by a’*', Gy=rnicps0-n-1(Ys; Y,) generated by
a7 and @t %a, and Gi=n,.n0--1 generated by «’*'6 and a’da.
Bayoat P =g*08 = (a’da)B.-n=0 and a’*'§of.1y=a’B-nda=0
by (13.1) and (13.3). By (4.6), ix(da)a”* % and i4(da)a* %
.are some multiples of 7,4(a****%0ad) which are in the m4/.-image by
(13.7). Thus all the indeterminacy vanishes, and

s—1

BroBe-n=—Bc and BoBe = — 115 (0Bcs») -
‘Then, by Lemma 13.6 we have
oo Be) = (1 1ion(08) =L 1) i1 080
— U+ )i (3. a. e d.

For the case p=3, (13. 3) is not valid, but s=2 in the case. We
shall give a proof for the case s=2 without use of the relation (13.3).

Lemma 13.7. 7.4(Be) 08 = tosrd (Beo) °Bay is a multiple of
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i15x(0Be) tn K,(p).

Proof. First compute the group »°( Y j®#™¢0-2. K ( p)) as in
Lemma 13.1. Then the i,y-image is generated by ¢,x(8B¢)) and 7,5(08xy0)
and possibly by Zu(nis (0a(08m)?0) if p=3. But the last element

can be cancelled since mit,5 ((06c1y)%0) =2-0a(0Bay)*0. Thus iZ*(E(l))ﬁ(l).
=%113(0Bw) ~ ¥ ix(Beyd) for some integers x,y. Since fua=0, we
have by (13.1) and (13. 3)/, ¥+ 114 (adBe)) = t1x(Beyd)a= — X+ 115 (3Bra)
=0 mod 0 (p=>3) or mod 7.4 {(38x))?, (Buyd)®} (p=3). The possibility
to Killing adfe by i is Misw(Be) and if p=3 hyw(8a(8B8m)?)

and (a6 (Bayd)®). But, 7h4(Bey) =0afe=0 med (68w)°, dad

; Taxchax (8) and adBuy= —moslsx(By). Thus 74 (adBey) #0, and we

have y=0 (mod p). Then the lemma is proved.

Proof of Theorem 135 for s=2. Put b=i(08w), b

=z'2*7r5"(7§(1)) ard let f: C,—K,( p) be a representative of x-b,+y-b,.
Consider the mapping cone C,=K,( p) U,C(C,) of f. As is seen in
the proof of Proposition 13.4, we have

Pray=x-Ad and Pra,=y-P'Ad.

First consider the case x=1, y=0 and assume that fyBu.

=11 (6_3_(,)0}5(1)) =0. Then there exists a coextension g: Y ,jresDe-D-1_
C; of Bw. In the mapping cone C, of g, we have L*P'P* q,+0 and.
PrPrPiag,=P*Frq,=0. But this contradicts to Adem relation

@) PP PP — PrPY) =T (2P FHEPPT)

since (2% + F# 2L P )a,=0 (cf. the proof of Theorem 10.8). Thus
Uik (3§(l)°f3va)): —i15(Be») #0.  (This proves also that e = _E1)°E1)-

is an independent generator.)

By Lemma 13.7, we can put b205(1)=z-blo§(1) for some integer z.
By putting x=—2z and y=1, we have in C, that P*P ' Pra,=—z-u
and P*P*Pay=—u for some generator u of H "™ D(C.: Z,).

Then by use of (*) we have (2z2—1)#=0 and zz%(mod p). It
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follows from Lemma 13.6

n(Bo) = 1= (14 Db+ 18 oo = (= U+ 1) + -5 3o
— LU+ 2D~ 0BoBi) =5~ (1+ 2)ie (3600).

This completes the proof of Theorem 13.5.

14. Unstable elements of the fourth type.

We shali prove the following theorem which generalizes Theorem
10.8.

Theorem 14.1. Assume [>>1 and 2<s< p—1. Then there
exists elements
7 E maptraceprs-nor-n-2 (S P)
and 7 E Mgt acesrao-n (71 p)
such that
H®y=x-(I+s)-I'(B,(2Ip*—1)) for some integer x%*0 (mod p)
S*r=p.y, I/ =8,..2(p+p+1)p+1) and S**r=0.
In the proof of Theorem 12.5, we have used Theorem 10.8. So,
Theorem 12.5 is not valid when s=0 (mod p), and we have
Correction to Theorem 12.5. The last condition “2<r<< p—1"
in (iii), (iv), (v) of Theorem 12.5 should be read
“a.<r<<p-—17,
where a,=2 if s#£0 (mod p) and a.=1 if s=0 (mod p).
Assume that /+s%#0 (mod p) and />>1, and denote the element
r of Theorem 14.1 by
us(l, B.) =1 Emaprann (S p), k=2((U+$)p+s—1)(p—1)—3.
Since H®u,(l,8,) =x(l+s)-I'38,2Ip*—1)=x(l+5s)-Q"*(B,) #0 in the

notation of (6.3), u,(/, 3,) #0. Consider the exact sequences

2m+1 H(Z) 2m—1 p* 2m—1 sz 2m+1
ﬂ2m+2+k(s P) ’_’ﬂzm—uk(Qz P) _)7T2m—l+lz(s :p)_’ﬂ2m+1+k<s 1?)
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for m=Ip+1, Ip+2, -, Ip+p. The groups mm_1.,(Qi" *: p) are ge-
nerated by @"(a’uiops—m1) and additionally by Q'**'(aypi) if p=3,
s=2. These elements are H®-images by Theorems 5.2,5.1. It fol-
lows that the above S? are monomorphisms. Thus we have

(14.1). Assume [+s%0 (mod p), {>>1 and 2<s<p—1, then up to
non-zero coefficients,

H®(u,(1,))=Q"(B.), p-u(l, 3)=0, S**(us(], 8.)) =0
and p@7*(8,-) =S *(u(l, B.)) #0,
hence u,(l, B,) is an unstable element of the fourth type.

The cokernel of the above S? is a subgroup of o (@3~ 1: p)
which vanishes for m=Ip+1, - [p+p—1 and generated by Q**
(@1f,_1) for m=Ip+p. By Theorem 12.5 or more precisely by Theorem
10.6, p*@”***(asf.1) = S**(#;(l, B:B.-)) #0. Thus the above S? are
isomorphisms. It follows
(14.2). Under the assumption of (14.1), S¥(us(l, B,)) generates
a direct summand

U, &) 0f mawsra(S™: ), k=2(U+)p+s-1)(p—1) =3,
isomorphic to Z, for 0<j<p and m=Ip+j.

The above discussion for S? valids for the case [4+s=0 (mod p).
Then it follows from Theorem 14.1
(14.3). Assume l+s=0 (mod p), I>1 and 2<s<p—1, Put
E=2((U+s)p+s—1)(p—1)-3.

(1), S¥: s (S )= Marpsojs1an (S p) is an isomor-
phism for j=1,2, .-, p.

(i).  pu(@7*(B.1)) €S (ratp-10u (S 71 p)).

(iii). If there exists an element y Of mopr1a(S¥**: p) such
that H®y=Q"(B,), then S**"(y)#O0.

We define U,(m, k) =0 if it is not the case of (14.2). Then
Theorem 12.5 (corrected) is generalized as follows.

Theorem 14.2. Assume that k>2p*(p—1), kE—1, —2, —3
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(mod 2p*( p—1)) and k—2r(p—1)%=—2,—3,—4 (mod 2p*°( p—1))
for 1<r<<p—1. Then the group mom1.,(S***: p) is isomorphic to
k+4
2p—2
The proof of the theorem is similar to that of Theorem 12.5.
Now, consider Theorem 14.1. The proof is quite easy if /is su-
fficiently large and is done by use of Proposition 3.6 and Theorem

(s p)+gU,.(m, B for m> 4 p,

13.5. In order to prove Theorem 14.1 for smaller value of /, we pre-

pare the following lemmas.

Lemma 14.3. L2t Q be a 3-connected space, ac H* ' (Q; Z,),
and let K be a finite CW-complex having a structure as in
Theorem 1.1. Assume that the natural map 4(a)QRZ,[da)—H*
(Q; Z,) is isomorphic for deg <<N and monomorphic for deg << N
and that a map g: Yi—Q induces an epimorphism of H*(; Z,).
Then gy: n(SK; Y2¥)—>=(SK; Q) is onto if dim K< N—2, and
g% maps the image of S: n(K; Y¥ )—n(SK; YY) one-to-one into
=(SK; Q) if dim K< N—3. In particular, this assertion holds
for Q=0*Q"", 2m>k+3, r=mp—k—1 and for N=2pr—2=2p
(mp—Fk—1)—2.

Proof. By mapping cyinlder arguments, we may assume that
g is the inclusion. F=2(Q,S*™*) is a fibre of a fibering 2(Q;
S¥ 1 @)—Q, where S¥ ! is a deformation retract of 2(Q; S¥7, Q).
Consider the spectral sequence {E }} associated with the fibering;
E¥Y=H*Q; Z,QH*(F; Z,) and EX=H*(S**; Z,)=4(a). Then
it is verified that H*(F; Z,)=4(a’) for deg<<N—-2, d,,(1Qa’)
=4a@1. Let Z be the mapping cylindre of a map S¥ '—= S of
degree p, mp: Z—Y 3 =Z/S¥* the shrinking map, and put g,=gon,:
(Z; 8¥ 1, Sy H—>(YZ; S x)—>(Q; S¥ %, ). Consider the follow-
ing commutative diagram of fiberings:

0S¥ 10(Z, S¥—>0(Z; S, ST
“ .ng .ng
.QS =1 _y gQ __9 Q(Q, S 27-1) — F.
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The natural map S¥*x [—Z defines an inclusion S '—=2(Z; S¥ 7,
S¥™ which is a homotopy equivalence, since S** is a deformation
retract of Z. It is easily seen that (2g,/S¥ ")*a+#0. Then it
follows from (1.8) that (2gy)x: m:(2(Z; S¥ 7, Sy ™)) -7, (2(Q, S¥ ™))
is a C,isomorphism for < N—2 and a C,epimorphism for i < N—2.
The same is true for (2g0)x: m:(2(Z, ST ™)) —n(2Q) by the five
lemma for the homotopy exact sequences associated with the above
diagram. Then, by Theorem 1.2, we have that (2g0)x: n(K; 2(Z,
S ) —x(K; £6) is one-to-one if dim K< N—3 and onto if dim
K< N—-2. Sirce (2g)sx= (2g)xe(@n)s: n (K; 2(Z,S7 ™)) —=(K;
2Y3)—n(K; 2Q) arnd since (2g)s: is equivalent to g, we have
that g4 is onto if dim K< N—2. Next it is easily seen that the
canonical inclusion Zp: Y3 '—>Y?% is homotopic to the composition
of maps: Yi '-@(Z Sy "H—Y%¥ Then, if dim K< N-3
(28)x maps iw(x(K; Y¥ ™)) one-to-one into =(K; 2@), so by (1.2),
g4 maps S(z(K; Y¥™)) one-to-one into #(SK; @).

The space Q¥ '=02(Q*S** S* ') is (4m—4)-connected, so
2*Q ' is 3-connected since 2m>k+3. Then £*Q}"'=Q satisfies
the assumption for r=mp—k—1 and N=2pr—2 by Corollary 2.4
and Lemma 2.5.

Lemma 14.4. Let K be a finite C W-complex and r>2. Then
S=:n(SK; Y)—==(K; Y¥") is an epimorphism if dim K<2pr
—4, and it maps S(=z(K; Y¥")) monomorphically if dim K<2pr
—5.

Proof. Let n be sufficiently large. S":z(SK; Y?)—z(S""K;
Y 3**) is equivalent to the homomorphism g4:7(SK;Y ?)—=(SK;
£2"Y ;**) induced by the canonical inclusion g: Y;y—02"Y ;*”. Put
Q=YY% and consider the map 2g,: 2(Z, S¥ ™) —>02Q of the
previous proof. Then it is sufficient to prove that (2g,): = (2(Z,
S¥ 1) —x,(2Q) is an isomorphism for i< 2pr —5 and an epimorphism
for 1<{2pr—4. The homomorphism (2g,)s is equivalent to the com-
position S ”omy in the following commutative diagram:
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i (Z, ST 5w (YY)
Sn N

S"ﬂ'o*

Tntisl (S "Z, S '(')Hr—l) - 7'-'n+-‘+1( Y;”r)-

S "7 is an isomorphism since n is large. The S of the left-side is

an isomorphism for {<2pr —5 and an epimorphism for i <{2p» —4 by

(2.8) and the five lemma as in the proof of Theorem 2.2. q. e. d.
As an application, we generalize Propcsition 3.6 to the meta-

stable case.

Proposition 14.5. Assume 1 <k<<mp—1 and put t=mp—Fk—1.
Then exists a complex K(m, k) satisfying the following conditions.

(i). K(@m,k)=S*K’ for some complex K’, so we may write
SHK(m, k) =S**K’ for j<t.

(i). K(m, 1))=Y and K(m, k) is a mapping cone
K(im, k)y=Y3"*U,C(S?K(m+1,k—1))

of a map h=S*W,W: S **K(m+1,k—1)—->Y "% where K(m
+1,k—1) has been given inductively.

(iii). There exists a map G,: K(m, R)— Q3" * such that G*:
H*(Q' Zy)—>H*(K(m, k); Z,) is an epimorphism and the fol-
lowing diagram is homotopy commutative:

S=K(m+1, k—1)~ Y K (m, ) 2> S K (m+1, k1)
|erc. loo o |wenm
d i J

205 — QT —QnTT — 2 Qut.

Proof. The case k=1 is obvious (Lemma 2.5). Assume that
Kim+1,k—1)=S**"**VK"” and G,,: K(m+1, k—1)— Q%) have
been given. Choose a map G,=g:Y " ?—> @' of Lemma 2.5 and
consider the induced map &£*G,: Y ¥ *—@*Q%*. Since dim
S#3K (m+1, k—1) =2(m+1)p—2+2(k—2) (p—1) —2t—3=2kp
—2p+1<2kp—4=2p(mp—t—1) —4, we have by Lemma 14.3 that
there exists a map #': S™?*K(m+1,k—1)—-Y %% such that
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2*(do2°G,_,) is homotopic to £*G,oh’. Then the commutativity of
the left-side square of (iii) follows. K(m, k) is defined by (ii), and
(i) is obvious. The map £'G,., and the above homotopy define a
map of C(S K (m+1, k—1)) into @3 ~* which extends 70G,ok. Then
G, is defined by this map, and (iii) is proved as in the proof of
Theorem 3.1.

Lemma 14.6. Let K and L be finite CW-complexes, f:
L—Y? a map and C,= Y3y UCL the mapping cone of f. IfS=:
#(K; L)—>#°(K; L) is onto and if dim K <2p(r+1)—5, then S=:
z(S*K; S*C))—=°(SK; C,) is onto.

In particular, if n<2(mp—j—1)p—5 and j<<mp—k—1 then

S=:n(Y,;:S™K(m, k))—=*(Y3*¥; K(m,k))
is onto for the complex K(m, k) of Proposition14.5 A1<k<<mp—1).

Proof. Consider the following exact sequence :

1 T Sfx
#(SK; Y1) n5(SK; €)% x(SK; SL) Lo n¥(SK; Y3,

For arbitrary element « of =°(SK; C,), there exists by assumption
an element 8 of =(K; L) such that S®f=mx. Since S~( fB)
= Sfymwa=0, it follows, by Lemma 14.4, that S*f.(S%3) =S*( fxB8) =0.
As a coextension of S?3, we have an element G of n(S*K; S*C,)
such that(S%z),5=S%. Then n*(a—S“E) =ma—S~p=0. By the
exactness of the above sequence there exists an element 7 of
7*(SK; Y¥) such that i*rza—S”a By Lemma 14.4, there exists
an element & of #(S°K; Y;**) such that S®9=;. Ther we have
S*(8+ (S%)40) =S“B+isr=a, and the first half of the lemma is
proved.

By (i) of Proposition 14.5, S™U** DK (m+4¢, k—i) is defined for
0<i<k—1, and it is a mapping cone of a map S(S™V** K (m+i+1,
k—i—1))—> Yy~ 4*%0=9-2 Then by descending induction on ¢ the
first half implies that S=: = (Y% ; ST K(m+i, k—1)) —=>a (Y,
K(m+1i,k—1)) is onto for 0<i<k—1. This proves the second half
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of the lemma.

Let YU,CX be the mapping cone of a map f: X—7Y, and let
ZU,L(YU,LX) be the mapping cone of a map g: YU ,CX—Z.
The reduced join I/\ I, with the base point (0) €1, can be identified
with S*AI=CS! such that TA(1) and (1) Al correspond to the
cones of upper and lower hemi-circle respectively. Then C(CX) is
identified with C(SX), and we have
(14.4). ZUL(YULX)=(ZUyCY)U;CSX for g’=g|Y and a
coextension _7: SX—-ZU,CY of f.

For example, we have
(14.5). K(mk+1)=Y;"*U,C(S7K(m+1, k—1)) U, CY -+

=K(m, k) U,,CY jre-2r2te-,

It is directly verified

(14.6). (—f)ex: YU,CX—>SX—ZU,, CY is homotopic toion:
YU,CX-Z—ZU,, CY.

Proof of Theorem 14.1. Consider the complex K(Ip, p+2) of

Proposition 14.5. By (14.5) and (14.6) we have the following exact
and commutative diagram.

(Y STKUp+1, p+ 1)) a5 (Y; Y;)fh—m;ns( Y;:S©K(Ip+1,p))
—hx . lhpu* id

(Y5 Y3 BV K Up, p+1)n’ (Y SPKUp+1,p)),

r=2ip*—3+2(p+1)(p—1). Then it follows from the relation in

Theorem 13.5 that there exists an element ¢ of =°(Y,"; S*K(lp+1,

p+1)) for n=r+2((s—1)p+s—2)(p—1) —1=2Ip* —44+-2(sp+s
—1) (p—1) such that me& =B, and i14h6 = —%(l +8)2:5(8B»). Thus

the relation 2:¢&= —%(1 +8)8Bn+ x-a’?*%0ad follows from

(14.7). The kernel of iy is generated by o'****0ad.

For, as in the proof of Lemma 13.1, the kernel is generated by
B (a?7%8) = (s—1) " %ad and additionally when p=3 by
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N5 (a(6By)*0) = Rasrischos (— (Bd)*) =0, 15 (62 (8By)?) =0 and possibly
by 5. (6(Bwyd)?). The last element is independent since its =;4-image
is 2-0ad(Bd)*+#0. So, (14.7) is obtained.

Next we pull back B¢, to unstable range. This is done as in
the construction of a(4) in (4.7). Consider an extension g&x (Y 2****;
St u=2(sp+s—1)(p—1)—2, of the element p,(2p+3) of Lemma
11.2, and then consider a coextension ' Ex(Y%***; Y+ of Sa.
Then *ry s’ =B.(2p+5) and *r (S “F —By) =0. Since w5, (Y ,; Y,)
is generated by B¢, a?*7'8, o *0a and since F*ry(a?tT) =
¥y (@?* %) =0, we have B,,=S~(F+x-a?™ 0 (2p+5)+ y o' *0a
(2p+5)). Thus we have
(14.8). For n>=>2p+5n>2p+3 if s=1), there exists a series
of elements B,(n) Ex(Y,*2er+-DC-D-1. V' such that B,(n+1)
=S(Be(m), P*mBey(m) =B.(n) and S”By(n) =Fc. S~ (8Bcr(n+1))
=8B for 8B (n+1)=8(n+1)cp,(n).

By Lemma 14.6, there exists an element ¢ ez (Y ;'; S™K(p+1,
p+1)) such that S¢’=¢. By Lemma 14.4, S=:z(Y}; YY) - s,
(Y,; Y,) maps ImS monomorphically, since n—1=2[p>—-3+2(sp
+s—1D(p—-1) L 20p°-3+2(p*—2)(p—1)+2p—6=2 (Ip*—1) p—5.
This shows that the above relation on h4¢ implies 24, (S¢) =—1/s
(U+5)0Bcy 2Ip*—2) + x - a**6ad (21p*—2). Similarly we have ny(S¢")
=Be-n(r). Since *6(n) =0, we have, using (14.6),

Ry 1x (T By (1) ) =gyl (S &) =— il*i*h* (S £)

=L U+ )i 21~ 2) = (1 i (P 211~ 3)

=L+ )inf, 2P~ B)

for the inclusion 7,: S***cCK(lp, p+1). Now consider the following
commutative diagram:

2

S H@®
T (82’1’_1)——)71,,+2(82"+1) Z Tw_s (lep—l)ﬁ)ﬂ”_l (Szlp—1)

2p ;
S2p+2 s olpbant H(2p+2) z’:[ ) DPx R
71'n<821p—1) - 77-'n+2p+2(S prze 1) T a1 (szﬁz —’ﬂn—1<S'Ip_l)
TP* Q2P+3 Td*

Tusonse (Q§1p+2p—1) — (sz+3Q§Ip+2p+1> .
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Put 7%= g ("B, (7)), then It'=S""(*nuBc—ny(¥))=B.(2(Ip
+p+1) p+1) and H P py' =d 2"y =d gk ("B (7)) = Grusnhtpax
(T*Bee-n()) = (1/35) U+ 5) GpyrxionB.(2I* — 3) = (1/5) (I + )15 G1xi% B,
Q2Ip*—3) =x(+ )i I's.(2Ip*—1), x#0 (mod p), by Propositions 3.6,
14.5 and Lemma 2.5. Since px(x({+s)I'B.2Ip*—1)) = p H***®p,y' =0,
H®p=x(+s)I'g.2lp*—1) for some 7,. Also, since H®(p,y’
—S%p0) =0, pyr’—S*y,=S*", for some y,. Put y=y,+S?%,, then
H®r=x(+s)I'B.(2Ip—1) and S¥y=p,y .

15. The groups #,, .., (S**': p)
for 2p*(p—1) —-3<k<<2(p*+p)(p—1) —5.

The groups mam.1+(S*™*: p) are determined for 2<<2p*(p—1)—3
by Theorem 11.1. We shall determine the groups for 2p*(p—1) —2
<k<<2(p*+p)(p—1)—>5, and partially for k=2p*(p—1)—3, 2p*(p
—1)—2, by dividing into two cases:

Case (I): ap!=0,

Case (II): a,p+0.
We shall use the notation Q" (), @"(y) €=, (@ *: p) of (6.3).
Theorem 15.1. Let h=2p*(p—1)—1.

(1. Z,+2Z, for m=(s—1)p+s, s=1,2, -, p—1
and for pP—2>m> p(p—1) of case (II)
Z, for (p—2)p+p—1>m>2, m—1%0
(mod p+1),
for m=p*—2 of case (1)
and for m> p*—1 of case (II)
Zy for p*—3=m=(p—1)p of case (I)
0 for m>p*—1 of case (I).
(ii). Z,+2Z, for m=1
Zp+Z, for m=2
Zp+Z, for p>m>3
LI (Ol ) E R WA for p*—3=>m=>p+1

Tompime (S 271 p) ==
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and for m=p*—2 of case (1I)
Zy for m=p*—2 of case (1)
and for m=p*—1 of case (II)
Z, for m=p*—1 of case (1)
and for m>p* of case (II)
\0 for m=>p* of case (I).
(iit). (Z, for m=1
Tompn (S i p)~=  Z, for m=2
Zy for m>3

and S* is injective for these grvoups.

Proof. We prove the case (I), the case (II) is rather easier
and omitted. In the case (I) momi1n2(S*': D) = momsrina (S¥*: P)
=0 for stable m > p* by [4] [6]. By (2.5) and Theorem 9.3 (cf. (6.1)),
we have the following list of the generators of momirei(@" D),
1=1,2,3:

i=1; @°(0), @ (ap-), 1<t p*—1, @ (™), @B,

i=2; @ (ap), 1<t pP—1, @0 4(g,), 1<s< p—1, @'(RD),
Q (a:Bti™,

i=3; Q" (@B,n), 1<s<p—1, Q'(B), @"*(8,).

By (i) and (ii) of Theorem 5.1, H ®p, Q¢ 07 *1(g, ) =Q“ ™ (a,_,)
and H®p, Q" (™) =@*(«,50™"), up to non-zero coefficients. So, we
can neglect these elements together with the corresponding summands
(of the first type) of momsrui(S*"™: p) generated by p*é(“”"*’“'(ﬁp_s)
and p.@"(B!™"). Then, by the exactness of (1.7), we have that the
gIoup mamesn2(S**: p) has at most p* elements and that p,Q'(a_,)
=0 except just two values of . If p.Q'(ay.,) =0 for some ¢>1,
Q' (ay_) = H®y, for some 1,Emy10-1(S¥*?:p). Then by (i) of
Theorem 5.3, there exists an element y,_, such that S*,_;=p-y, and
H®  =x-Q " (ay_1y1), %0 (mod p), hence p.Q" " (ay_.1) =0.
Thus we have in the case (I)

(15.1). Q" '(a1) #0, Q" *(ar) #0, and there exists a series of
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elements 1mEmome1na (ST p) for 1< m< p*—3 such that, up to
non-zero coefficients,

Stru=p rmi for 1<m< p*—3 and H P, = Q" (ap-n)-

Then the assertion (i) for the case (I) follows from the exac-
tness of (1.7), where the cyclicity of the groups is provided by (ii}
of Theorem 10.4. Remark that
(15.2) in the case (I) a,82(2m+1)#0 for 1<m< p*—2 and it is
divisible by p for p*—p<m< p*—2.

We have seen in Theorems 7.5, 7.6 the existence of an element
#:(0, f) Emb (S p) for k=2(2p+1)(p—1) —4 satisfying
(15.3) H®%(0, ) = @' (5D, S¥*u:(0, ) = p+@*(a:8:) and S*
(0,50 =0 up to non-zero coefficients.

Put %,;(0, 52) =%,(0, 1) opi2(2(2p+1)(p—1) —1), then we have

H®u;(0, 59) =Q'(8), S**u;(0, 61) = p5Q° (aupt™)
and S**%;(0, 52) =0.

By (15.1) and the exactness of (1.7), we have that the groups
Tomsrane1 (S 2"*1: p) are gererated by 1., p«@"1(607Y), %#:(0, 52) and their
suspensions, and

(15.4). Let U,.(m, 2p*( p—1) —2) be generated by y,. for 1 <m<p*
—3 and by S¥yp_y for m=p*—3+i and i>1. Then U,(m, h—1),
h=2p*(p—1)—1, is a direct summand Of Tomi1r:1(S*:p) and
Tomerin1 (S p) /Un(m, h—1) =0 for m>p, =Z, for m=p, and=2,
or 0 generated by S**u,(0, 52) for 1<m< p—1.

Consider p4@'(aye_,) for 1<t < p*, where Q% (a,) stands for Q”(¢).
Since S~a;(3) =a,#0 we have H®a,(3) = @'(ayp_,) up to non-zero
coefficient. If p,@ (ay_,) =0, then @ (ap.,) is an H®.image, and
Theorem 5.4, (ii) implies that @ (a,_,) are H®-images for »<<s and
ay is divisible by p*'. It follows from (4.3) that s<3. Thus

p4@” () #0 and psQ'(ap_) #0 for 4 <t p*—1.

Since Momprsa1 (S p) =0 for m> p? it follows from (16.4)
that, up to non-zero coefficient, S*y:_3=px@” (0), p- S¥rr_s= Ps@” (ar),
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P roa= px@*(a), and moreover p*:r,=px@™* (ap_n_) for p<m<
p*—3. Next, by Theorem 5.3,(i), ps@Q" " (apms) = p-S2(ps@""
(Wpms))=p*7m for 1<m<_p—1 by descending induction on m.
Since y; and 7, are at most of degree p and 27 it follows py@” (as_n)
=0 for m=1,2,3. Therefore, by the exactness of (1.7), we have
obtained that the order of 7, is p* for 3<<m <p*—3, p* for m=2,
p*—2 and p for m=1, p*—1, and that S**%;(0, 52) = @’ (a:B!™*) #O0.
This together with (15.4) proves (ii) of the case (I).

We have also seen that the cokernel of S2: w1, (S* ' p)—
Toms1es (P11 p) is trivial for m>4 and isomorphic to Z, for m=1,
2,3. It is known [1] that the stable group =} contains Z, as the p-com-
ponent of the J-image. Then (iii) of the theorem follows immediately.

(The case (II) can be proved similarly, but we simply remark
that in the case (II) r,_, exists and S~y,_, generates (wi_,: p)~Z,.)

q.e.d.

Now, we describe further results. In the following, we always

assume
20 (p—1D) <k<2(p’+p)(p—1)—5.

We shall define subgroups A(m, k), B(m, k), E(m, k) U,(m, k)
and U;(m, k) of mami1(S*™*': p). First we define

J Z, generated by a;(2m+1) for
A(m, k)~ k=2i(p—1)—1, i=p*+1, .-, pP+p—1,
IO otherwise.
For 2<s<p—1, we define
Z, generated by g!7°8,(2m+1) for
k=2(p*+s—2)(p—1)+2s—4 and m>p—1,
Z, generated by a.8/7*8,(2m+1) for
B(m, k)=~ E=2(p*+s—1)(p—1)+2s—5 and m>1,
Z, generated by g{*'(2m+1) for
k=2(p*+p—1)(p—1)—4 and m>p—1,

0 otherwise.

Assuming the existsnce of elements e}, 1 <{<p—2,and e, 1 <j<p—1,
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'Z, generated by ¢;(2m+1) for
k=2(p'+10)(p—1)—3 and m=>p(p—i—1),

E(m, k)~ Z, generated by ¢;(2m+1) for
| k=2(#"+8) (p—1)—2 and m>p(p—j)+1,

I\() otherwise.

Next we define U,(m, k) to be the subgroup generated by un-
stable elements of the first type which are obtained by Theorem 5.1
and Theorem 5.2 from the known results of A(m, &) and B(m, k),
k'< k. More precisely, the generators of U,(m, k) are listed as follows:

D@ (ysiom-1) for B=2(p+0)(p—1)—2and 1< m<p*+i—2,

24Q7(0) for k=2(p*+1)(p—1)—2 and m=p*+i—1,

Q™1 (58, for k=2((r+s+m)p+s—1)(p—1)—2(r+s)
—2 and m# —1 (mod p),

PRCIETD for k=2((r+s+m)p+s—1)(p—1) —2(r+s)
—1 and m#0 (mod p),

where >0, 1<{s<p—1. Remark that some of these generators are
in the same subgroup which are independent and that H ®p,Q (5!
=@ (af), 1<m<p—1, and H®p, Q" (8) = Q" (a:8)), 1<m < p—2
are not trivial by (15.2). Then U,(m, k) will be a Z,-module having
a bases consists of the above elements of the corresponding degrees
m and k.

The subgroup U;(m, k) is defined by (11.7). More precisely, in
our case the generators of U;(m, k) are given as follows:

Si(us(1,87'7°8,)) for 0L i< p—2, I1>1 and 2<s<<p—I,
S%(us(1,p1*7"))  for 0<j<p—2 and 1<I< p—2;
S (us(1, gt7'°B,)) for 0<j<p—2, I>1 and 1<s<p—L
S*(u,(0, 827°B,)) for 0<j<<p—2 and 2<s< p—1.

For the case [>>1, the existence of these elements are provided by

‘Theorems 10.4, 10.7. For the case 2<s<< p—1, %;(0, 527°B,) is defined
as the composition of the element %;(0,5) of (15.3) and
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BIR.(2(2p+1)( p—_l)—l). These elements satisfy the relations
in (11.7). The existence of an element #,(0, 5,5,_;) should be proved:
in the proof of the following theorem.

Theorem 15.2. (i). The following elements exist:
e(2p(p—i—1)+1) for 1<i< p—2 satisfying
H®2p(p—i—1)+1) =" (B0,

e2p(p—7)+3)  for 1< j< p—2 satisfying
H(”e,(zp(p—j) +3) :Gﬁ(ﬁ—i)ﬂ. (8,

&1 (2p+3) for p>3 satisfying
H®e, ,(2p+3) =@ (B-0),
73(0; BIBP-I) SatiSfying H(z)ﬂs(O, BlBP—l) = Q1<BIBP—1)'

For the case p=3 there exists either &(9) with H®e(9) =@ (B.y
or &(11) with H®e,(11) =@ (ayf?).

(iD). For 2p*(p—1)<k<<2(p*+p)(p—1)—5, the group
Tamsrs (S p) IS isomorphic to the divect sum

A(m, k) +B(m, k) +E(m, k)+ U,(m, k) + U;(m, k)

except the case that p=3, (3,k)=(9,41) or=(9,42) and (9)
does not exist, whence we change E(9,42) and U,(9,41) to zero.

The following table indicates the results of x,.,(S": 3) (* indi-
cates the case (I)).

=3 | k=3 k=35 k=36 k=37
n=3 Z3+Zs Z3t+Zs Zs3 A Z3
n=5 Z3 Zs+2Zs Zs Zs Zs
n=7 Zs Zn+2Zs Za Zs3 Z3
n=9 Zs Za Za Zs+Zs Zs
n=11 Zi+2Zs Zxn Zar Z3+Zs Zs
n=13 ZF¥ or Zy+2Zs Za Za Zs+2Zs Z3
n=15 Z¥orZy+2Zs! Z§ or Zxn Zar Zs Z3
n=17 0% or Zs Z¥ or Zo Zn Z3 Zs
n>19 0% or Zs 0% or Zs Zar Zs Zs
(n:0dd) (as" (B1B2) (€D
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k=38 k=39 k=40 k=41 k=42
n=3 Z3 Zs+2Zs Z, 0 Z3+ Zs
n=>5 Zs Z3+2Zs Z3+2Zs Zs Zs
n="7 Zs Z3+Zs Z3+2Zs Zs Zs
n=9 Z3+2Zs Zs+Zi+2Zs Zs3 0% or Zs | Z¥or Zs+2Zs
n=11 Zs Zy+Zs Z3 0 Z3+Zs
n=13 Z3 Z3+Zs Zs 0 Z3+2Zs
n=15 Z3+2Zs Zs+Zs Z3+2Zs Zs Z3+Z;
n=17 Z3+2Zs Z3+Zs Zs 0 Z3+2Zs
n+19 Z3+2Zs Z3+2Z3 Zs 0 Z3+2Zs
n=21 Z3 Z3+2Zs Zs3 0 Z3+2Zs
n>23 Zs3 Z3+2Zs3 Z3 0 Zs
(n:0dd) (&r) (e10,@:18182) 89 (€2)

Before proving Theorem 15.2, we prepare some lemmas.

Lemma 15.3. (i). Let yEnr,(S*") be an element of order p,
then there exists an element a of n.,.(S*: p) such that

a€ {a;(3), P+, St} and H,(a) =IH ®(a) =x-S?%, x£0 (mod p).

(ii). Let y€#.(S*%) be an element of order p, then there
exists an element ¢ of n.s(S¥: p) such that

e {8,(2p+1), proapey, Sy and H®P =x'-I'(S*"), ¥’ #0 (mod p).

Proof. (i). By (1.10), p-tsy;y=p-y=0. By Proposition 1.7 of
[7], we choose « as the class of the composition goSf, where f:
SM—Y3¥ and g: YP"'—>S?® satisfy that zof: S*"'—Y%»-S%» and
g1 8*: §*—8°® represent Sy and a,(3) respectively. Extend the defin-
ition of H, as

H,=9"%hyo02: n(SK: S*™")=~z(SK; S¥)—n(K, S¥*)
=~ (SK; S**),
‘then the relation (i) of (2.12) holds:
H,(a°SB) = H,(a°SB), a€n(SK; S**), pen(L; K).

Let &’ be the class of f, then it is sufficient to prove that H,(a’)
=x-(Sn)*tp, for some x#0 (mod p). Let a cellular map f/: Y %—
S2 represent 24’ and consider the following diagram.
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Zmr(Y3, S ) —omp (S o i (S)
| 7 . Laseoe | s

Z"“;ﬂ'u(siy i—l) —_’ﬂzp—l(sf‘;d) _’7752/:—1(51)""’-'”2/:(83)-

The commutativity is easily obtained. The lower sequence is exact
and it is of the form Z—Z—Z, up to torsions prime to p. The
upper 0 is of degree p. Then it follows that f is of degree x%0
(mod p). Since /Jipy: mp(SL, Sio) ~m,(S%), we have h,(2a")
=x-7*(Qes,,) and the required relation follows.

(ii). As in (i), let ¢ be represented by the composition g’eS*f”’:
St Y >S%" where nof’ and g+|S**" represent Sy’ and 8, (2p+1)
respectively. We can choose g’ such that g’|S**'=S3%g, for a re-
presentative g, of 5;(2p—1). Consider £°g’: (Y¥'7% S§%'%)— (25"
S#71), where 9°g’|S¥**=g, Since B,(2p—1) is of order p* 2°g’y:
Moo (Y372 S¥ ) >y o (225", S*7') is not trivial on the p-primary
component. Thus £°g’ is homotopic to a composition hor: Y3 35—
S Q¥1=0(0°S*", S* ') such that h represents a generator of
(@' p)=Z,, namely, h represents x'-I’(ep2_;) for some x'#0
(mod p). By use of (2.6), it follows that 2°(g’eS*f")=2*(g")Sf”
represents both of H®(¢’) and x'-I'(S%/). q.e.d.

As examples of (i), we have (up to non-zero coefficients)

(15.5). (i). @1 (B) E{ai(3), e, a.(2p)} satisfies H,(a,1(3))
=a,(2p+1) (e, H®(a:(3)) =0 (a)).

(ii). There exists an element %s(0, B.5,-,) such that
H,(#:(0, 8184-1)) = BiBp-1 (20 + 1) (e, H W (0, 818500 = Q' (B18,-1))
and %30, BiBs-1) € {a:(3), Peay, B:B-1(2P)} .
As an example of (ii), we have (up to non-zero coefficients)

(15.6). There exists an element e,_,(2p+1) such that

H®, ,(2p+1)=1'3,:(2p°~1) (i.e., H®e, ,(2p+1) =@Q*(8,-1))
and 51’7—2(2?"" 1) S {Bl (2p+ 1>, Deape_s, Bps (sz— ]-)} .
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Lemma.l5.4. If p>3, then {ay, p¢, Bp1p=0." If p=>3 or if
p=3 and {ay, 3¢, By =0, then
Sw<ﬁ3(0’8139—1))50 mod alosw(ﬂs.”,(Ss: j))),
k=2(p'+p—2)(p—1)—3.

Proof. {ai(7), pespss, Br1(2p+4)} is defined. For an element y
of this bracket, we have S”r&{ay, p¢, Bs1y. Thecrem 11.1 shows
that S=y=0. Thus {ai, Pe, Br_1) = a1° Tacst-ays—1-1+ Br-1° Tap2 = {1 Xap2_s}
=0 by Lemma 4.1. (This proof does not work for p=3). Since
b B (2ﬁ+ 1) =0, Szﬁ3<0; Blﬁﬁ—l) € {dl (5): D tapiz, Blﬁp—1(2p+2)} - {051(5):
Detapsn, B1(2Pp+2)} 0B,..(2p*). Then the second assertion follows
from {ay, pe, B1y =1 nye(aBcry) =0.

Lemma 15.5. If p=3 and {a,, 3¢, By #0, then we have

lay, 3¢, By =+ 52, asfi=0(i.e. the case (I)), i*nx(aBu) = £HF0,

pi= taer= talas, as, fiy, /=0,

and H®p (@ (8) = =Q(BD).

Proof. Since {ai, 3¢, By consists of a single element and belongs
to (w%: 3) which is generated by f#;, the first assertion follows. By
(13.3)’ and (4.6)

—of&ﬁ(g) = (5&2 + a’Bd) Bey=x (5&"‘ ac&) 5&5(3(1)5) E=0.

Then a,f=alas, 3¢, Boy =Lay, ar, 3)Be= —asB= —1 ¥y (a®) %1y (Bay)
=1*1. (—a’0Bx) =0. By Theorem 15.1 of the case (I)
+B=piar, 3e, By = — (B, ar, 3008 (7'524 1 3)op=0.

Next, =+gi=8:{as, 3¢, By ClasBy, 3¢, B2y and ases Eai{By, 3t, Bz Claufs,
3¢, By, and the indeterminacy is aifi°(my: 3)+ (nl: 3)op..  Since
(n3s: 3)=0, (m3;:3) is generated by a; and a,Bie:=PBxiaz=0 by
Lemma 4.1, we have +pi=as. It is known [7] that +8,={ay, a;,
ay). Thus +5i ={a;, a1, @B =alas, ay, Bi). Since ¥y (afey)
={ay, 3¢, By by Proposition 1.7 of [7], we have *my(afe) = *B6i.
Then (0a) (1*Bey) = hs(1*By) = 1468 for the attaching map %2 in

1) The proof of the relation {Bp-1, p¢, au} in (4. 13) of [6] is incomplete, since
a relation was dropped in Theorem 3.10 of [6].
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K(p,2) of Proposition 4.5. Then the last assertion follows from
Proposition 3.6 and (5.2).

Consider the subgroups A(m, k) and B(m, k) of mops1:(S¥': D)
in Theorems 11.1 and 15.2 for sufficiently large m. They are stable,
hence we denote these subgroups by

A(k), B(k)C(mi: p).

For k=2p*(p—1)—1, we put B(k)=0 and A(k)=Z, generated by
ap. For k=2p*(p—1) —2, we put A(k) =B(k)=0. For k=
2p°(p—1)—2, we put A(k)=0 and B(k)=Z, generated (formally)

by a;8.. Thea we can use the notation

Q" (1), @ (N eEn(Q: p), r€Ak)+B(k)
of (6.3), with the convension that @Q"(a;5%) =Il'a,f{(2mp—1) and
1(7"‘@1'15{) =a,fCmp+1) for 1<m<p—1.

Lemma 15.6. Let 2p*(p—1) —1< kK <<2(p*+p)(p—1)—5. If
Theorem 15.2 holds for k<k' —2p, then we have the following
exact sequence:

0— (A +B@))RZy > mamrsw (@12 1)
L Tor(AG—1)+B@i—1), Z,)—0,

i=k—2m(p—1)+2, with an exception when p=3, k=38, m=1 we
have 1Q'(ay) =a,(7) oas(10).

Proof. The exact sequence comes from (2.5). By dimensional
reasons, E(m, k) and U,(m, k) are independent. So, it is sufficient
to prove that subgroups U.(m, k), i=1,2,3, are cancelled by the
homomorphism 4: 7;.4(S***:p) —>7,.,.(S**7*: p). Again the elements
p4«Q"(¢) are independent of our computation. Then Corollaries 9. 4,
9.5, the cyclicity of U,(m, k) and (2.7) give required cancellation.
The details are left to the readers.

Proof of Theorem 15.2. The proof is done by induction on
k and based on the exact sequence (1.7):
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H® - P o S i H®
. ——)z2m—1+k<Q§ 1 p)—’ﬁzm—uk(sz ' p) —>71:2,,,+1+;,(Sz i p) e

m+l .,
.

As in the proof of Theorem 11.1, we cancell generators of 7s,.,14(S?
p) with the corresponding pair of elements in 74«(@F: p). First we
cancell the generators of U,(m, k) with the corresponding elements
N opersr (3" P) and mom_oy (@37 p) by virtue of Theorems 5.1, 5.2
and Lemma 15.6. In the case p=3, there is an exceptional element
Q" () =1""(as (7)o as(10)), which is cancelled with @ (as) since
TH®p, (Q*(a)) = +a;(7) o as(10) by Propositions 3.6, 4.5 and (5. 2).
Next consider the generators of U;(m, k). The non-triviality of these
generators are easily checked, after the cancellation of U,(m, k),
except the following two cases. Firstly, there is a pcssibility of
S?u,(1,62) =0 by a relation p@”"(B,-r) =x-u:(1, ), x2£0 (mod p).
Secondly, the non-triviality of S*™*%;(0, 5.8,-;) is obtained but the
triviality of S*7%%,(0, B:8,-.) is not known. Then except these two
cases U;(m, k) is cancelled. Next, stable subgroups A(m, k) and
B(m, k) are cancelled with the elements @' (a,), pP*<t < p*+p—2, by
(15.5), (i), and @ *(a,°7"8.), @' (B2™°8.) and @*'(B!). After these
cancellations it remains the following elements:

QTO(B,y) for 1<i<{ p—2,
QU (g) for 1< j<p—1,
@1 (313::—1) = H(Z)ﬁa(O, BlBﬁ—-l)v Q_ﬁ(alﬁﬁ—l)v

and Q' (FD) =HPu,(1, p), @7 (aupl™) with pe@* 7 (aipi™)
= SZp—4u3(1, BY).

The first elements indicate the existence of ;(2p(p—i—1)+1).
Then by (14.3), (i), p«@ " (8;) € Im S¥*=0 for 1<j<p—2.
Thus the existence of ¢;(2p(p—j)+3) is obtained for 1< 7 < p—2.
If p>3 orif p=3 and {a,, 3¢, B.)=0, then Lemma 15.4 and the above
computation show that S<%,(0, 5.5,-.) =0. Thus %(0, B:8,_;) must
be cancelled by @’ (ai8,-.). If p=3 and {as, 3¢, B> #0, Lemmas 15.4,
15.5 and the above computation show that S*%,(0, :8.) =0 mod
ae; =6t Thus p@Q°(a:8,) must give a relation between :(7) and
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S*%,(0, B18.), and %,(0, B,8.) is cancelled with @ (asf.) in this sense.
In this case we have also from the last assertion of Lemma 15.5 that
@*(8.) and @*(8) are cancelled with an unstable element p,@*(8,)
of the first type, and consequently there exists ¢, (11) wiih H ®e,(11)
= ((ayf}). Finally, to prove the existence of ¢,.,(2p+3) with
H®e, ,(2p+3)=Q"'(B,.,), for the case that p>>3 or that p=3 and
{ay, 3¢, B,y =0, it is sufficient to prove the relation H ®p,@Q**(B,,) =0,
the proof of which is similar to that of the last assertion of Lemma
15.5. This completes the proof of Theorem 15.2.

We have seen in the proof of Lemma 15.5 that, in the case (I)
and p=3, (10 equals to +a{ay, ay, 5. It follows that +pi=a;e;
={aiBs, 3¢, Loy =FLay, 3¢, L. Thus {ay, 3¢, B,)#0, and we have from
Lemma 15.5 and (13.3)’

Proposition 15.6. Let p=3. Then the case (I): a5i=0 is
equivalent to {a, 3¢, oy = + B3, whence we have H @e,(11)+#0,
aBer= * B (08w)? Bi= *awe, and [=0.

At the end of the paper, we remark

(Terimons: P) =0 in the case (I).
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