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Introduction.

The present paper is the third part of the series [8] with the
same title.

In section 13, we shall treat the stable homotopy of some com-

plexes using the relations of Yamamoto [9]. The results (Theorem

13.5) of section 13 will be applied to obtain our main result Theorem

14.1 which states, briefly, the existence of unstable elements of
the fourth type: r  1m S2 , S 2 T * 0  and S 2 21 =O . As a  conse-
quence, we shall have a generalization çTheorem 14.2) o f Theorem

12.5 (with a minor correction) for meta-stable groups. Theorem 14.1
also implies the existence of new generators 6 : ( 1 < i < p - 2 )  and
a; (1 <  j <  p -1 )  which together with cr'", cE,2_„ (1 < t < p-1 ), g - s „

ceif3 , (2 <  <  p - 1 )  and X.4 - 1  g ive  a system of generators of the p-
primary components of the k-stem groups e , for 2p2 (p -1 )-1<k
< 2 (p 2 +p)(p-1) — 5. Our proof is independent of algebraic theory of
the stable groups as in [3] , [5] . Moreover, for the above range of k,
the unstable groups 7r2,„,i+ k(S 2 ' 1 : p) are determined in Theorem 15.2.
For the cases k=2p 2 (p -1 )—  3, —2P2 (p-1) —2, the unstable groups
are computed (Theorem 15.1) by dividing into two possibilities: (I )

= 0, (II) a i g*O . (Th e  case  (II) is negative by author's recent
note in Proc. Japan Acad. 13 (1967), 839-842.) It is remarkable
that in the case (I) and p=3 the relations `1=ozie ri and ■37=0 hold
(Proposition 15.6).
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1 3 .  Stable mod p homotopy o f  a  special complex.

We shall discuss stable homotopy of a complex of a special kind,
a  model of which is the complex K (m , k ) of Proposition 3.6 for m

(mod p).
We shall use the notations in section 4.
According to Yamamoto [9] , we define generators

iecs)E 1 7
p ) ,  1< s < p -1

by the following rule.

(13. 1). (i). The functional reduced power operation 2 ;  for a
representative f :  1 T + 2 ( P- 1 ) - 1 —)- Y

2

N of 0 ( 1 ) has the coefficient 1 for
the orientation of the to p  cell o f  y ;N-1 -zp(p-1)-1.

(ii) . 19(s) <Ow, a, 19( -1)> for 2  < s  < p —i.

(iii). a0(0= [3( ,) a  0  fo r  1< s <  p -2  and for s = p -1 ,  p>3.

The first condition will be used as follows. Let g :Y 2p"—›-X be a

map inducing trivial homomorphism of H * ( ;  Z p ) and satisfying g o f

O. Let Cg =  X U C Y "  be a mapping cone of g and 7: r " (P - l)

-->C, a  coextension of f and let C7=C,1JC Y r 2P( P- i) be a mapping

cone of 7  Let a E H2 N  (C7 ;  Z p ) and b E H 2 N"P( P- 1 )  (C7; Z p ) be given

by the natural orientations of the cells. Th en

9 »a  b ,  and 2Pda=

b y  the Adem relation 4 2 P -2 P d -2 P - 1 4 2 1 a n d  gla = O .  I f  we
change f by a representative of the element a in (4.2), then we have

2 1 da = b E H 2 " 2(P- 1 ) +1 (C7; Zp).

Yamamoto has also proved the followings.

(13. 2). P7r*19(,) * 0 ,  s o  w e  ca n  ch o o s e  a  generator fi, o f

(74(sp+-1)(p-1)-2: such that fi, =i*n * fi(s)1  <  s  <  p-1.

(13. 3), (j). a(313 (,) =,e(s)ace fo r  1< s <  p -2  and for s = p -1 ,  p > 3.

( i i ) .  I f  p > 3, then fi(,)fi(,) = 0 fo r  s+ t < p -1  and
s - 1  

i9o)E <a, fo r  2 < s <  p— i
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In  [9] , he has no proof o f the second relation of ( i i )  for the
—1case s= p — 1, but the relation s 

9(,) E  <Q (s-1), (1), a> is obtained

for 2 <s < p — 1. Consider the formula OE <<a, 2-> 8, e> ( - 1)" ga

<a, <13, r, a> , e> + (— 1 ) d e g "  <a, iS, <r, a , e>> for e = a , = 8= 0(l), r= e(p-3).
Then we have

13 (P-1) <&P-2), (1)., a> — <CE, b'(P-2)> <CC, 
0 1 t01 ,

where 0 E4p 2 - 4 ) (P - 1 ) - 2 (  1 TP Y P )  =  {aP2 - 5 8a3} . Since a0 = 0 and a(aP 2 - 5 8a8)

*0 , we have 0 = 0 . This shows that (13.3) (ii) is true for s=P —1.
For p= 3, his methods prove only

(13. 3)'. R(1).90)=- 0 mod {8oz (l13w)% 0(2)a 0  mod {R(1)(8Q0)) 21
and  a80(2) -= (3( 2 )8 a  m o d  {((V(1)) 3, (5 '0) 8 ) 3 } •

The following list of independent Zp-bases of 4 (1 7p; 17 ,,) is given
in  [9] .

(13. 4). a, c, at, a 1 , a t - '8a, a 1- 1 8 a  fo r  1 < t <  p2 —1 ;  ( I3(1)a)
(* ( i)a) ' , ([3(l)8) ''/3( , a ((i)a)r 0(. )8 m1(0(1)0'13(,)1 acra0(I)073( , ),
a(*(1)4Y79(s)(1, aera(0,6)rficoa fo r  0 < r , 1 <  s  and r+ p — 1 ; and

(Q(1)6) P - 1 0(1), (8R(l)) P  (0(l).5) P  8(00)a)P
We denote by

K „ (k )=- Y ;U C 1 '; 4 2 ( ' - ' ) - l U••• UC 17 "p+ 2 (k - 1 ) ( P- 1 ) - 1

a  complex satisfying the following condition.

(13. 5). For 1 <k ' <k , K „( k ')  i s  a subcom plex  o f  If „(k )  and K„
(le + 1 ) — K„(k')UCY  "7 2"(P- 1 )- 1 -  i s  a  m a p p in g  c o n e  of a  m ap  h e:

)  s u c h  t h a t  fo r th e  p ro jection  7re_i : K „(k /)
--.17 "p+2 ( " - 1 ) ( P- 1 ) =K „(k ')/ K „(k ' —1 ) the composition ne_lohe rep resen ts
Li • 8a— (le —1) • a 8  74p _3 ( 17p; Y p).

By Propositions 3.6, 4.5, we may consider that

(13 . 5 ).' K ( m ,k ) =K 2 „,( k )  i f  m 0  (mod p )  and k ( p - 1 )
<mp — 1.

Now, we assume the existence of a complex K„(P4- 2) and compute
stable groups 7CS (  Y ; f n (k ) ) ,  k  <  p+ 2. W e denote by (k )
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-->K „ (k +  j) the inclusion. We shall use the following homotopy exact
sequences:

h.* k*
(13• 6). Tr.7-2k(0 —1) fl( Y  P ; Y P ) re- (Y ;+';K „(k ))— >T cS (Y ;K„(k+ 1 ) )

k* hk *— >71. —21KP —1)( 1 7 P; " r s  1 7 "» .-1 ;

By (13.5) and  (4.6), w e  have nh_i*k k *(e)= (k• 8a—  (k -1)a8)ez r

=k((r +1)(yratt— r • a - +18) — (k -1 )  ( r  (trace— (r —1 )(e + 1-8) =  (k+ r)aracE

— (k+ r —1)cr.' 18 and r5_1*12,* (ar - 1 8 a)= (k+  r —1)a - 1 8adoz= (k +  r -1 )
a:r8a:3. Thus

(13. 7). 7r,_"1/, * (a r )= (k + r )ca a — (k + r-1 ),e +1 a,
7r„_i* h,* (a'a) = (k+r)ceda8,

nk-i*h4*(a r - l acc) = (k+r-1 )a ra tra  an d  74,11,* (ty— lace(3) =0.

Lemma 13.1. (i). ( y 2 -1)-2 ; K ,( p) Z p  generatedn s ;+ p (p  

by i,* ( (i )a )  and  ii * (8 (0 ).

( i i ) .  7 ,s ( y  ;+ 2 p ( p - 1 ) - 1 ;  I f „ (p ) ) , z,+z,,H -Zp generated by 1* (ce - 1

8a ), i 1* C90 ) )  and  12,* (c).

P ro o f .  B y  (13.7), 7-c, * h, * ( a P ') = a P '+ '8  an d  nk_i * h, * ( a " - lda)

= —ap- k 8a for 1<k <p — 1. In the exact sequences (13.6) for i = 2p
( p —1) —1, =2p( p -1 )  —2, th ese  e lem en ts p la y  a  sim ilar role as
unstable elements o f  th e  first type, and we can cancell them . It
remains j3 ô, 8 1 9 (i) , 8 a 3  and ct:P- lea, l3(1), ad= np_i * ht * (e). Then it is su-
fficient to prove that atya is  n o t a  n-p_i * -image. A s s u m e  th a t 8a8

=np_i * ( d ) ,  and consider a  mapping cone Cd o f  d .  Then we have .T1

...TP- 1 H - 1 (C d ; Z p ) * 0 ,  b u t this contradicts to th e  Adem relation
2P - 1 = 0 .  Thus 8 a8  is  n o t a  r 5_1*-image ( it  must be cancelled with
df3( , ) d  as in  Lemma 10.2).

Lemma 13.2. There exists an element of
K „ (2 )) such that

771* (7 ;(1 )) —  [3(1 ) .

ns( y >72(p-F1)(p-1)-1 ;

Then we have
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, S( y ”p -F2(p+1xp- 1)- 2 ; p)), zp+ zp+ Z p generated by
ii*(cval3(l)), i2*(730.13) and hp* (a8),

r c s ( y  ; +2(P+1)(P-1 )-1 . K
,  p) ) Z+  zp+zp generated by

ii* (a P + 1 6) , i2*( Z ) )  and 11 (0).

P ro o f .   S in c e  n.k_i*h4* (ce - k + 1 )  =  c e " -Fiact a n d  nk_i* 11,* (a 1 8)

= a P
-

H
- 18 a8 , by (1 3 .7 ) , these elements are cancelled in the exact se-

quences ( 1 3 .6 )  fo r  i= 2  (  p+ 1) ( p -1) —1, =2 (p+1) (p-1) — 2.

Then it remains a8R(1), M(1), a8ad = p_ i * h t * ( a 8 )  and a P + 1 8, R(1),

a8 a= p _ i* h p * (a)  (and also 8a8R (08 if p = 3 ).  W e  have also, by (13 .5 ),

(1 3 .1 ) and (13.3), hi*(aQ(1)) —8eraP(1), hi*(&1)(3)=ace&i)4= 0 and h i* ((1 ))

=8ce 9(1)— 0 (hi* (dad R(08 ) h ie ri* h 2 * ( 2
1  80(,) ,3) — 0  i f  p  = 3 ) .  Then the

lemma follows from the exactness o f (13 .6). q .  e .  d.
Denote by

Ca y ; + 2 p ( p - 1 ) - 2  u  ŒC y ,;,1- 2(p+1)(p- 1)- 2

the mapping cone o f (a  representative of) ci. Let

y 7,1-2p(p-i)-2, c «  and  no :  C OE--> Y; 4 - 2 05 -vixp- 1 ) - 1

o.

be the inclusion and the projection respectively.

Lemma 1 3 . 3 .  There exists an element o f ns(C a ; r p - 1 )

such that

iO ( R L I ) ) R(i) •

Then we have

ns(C a ; K „( p ) ) , Z p +Z p  generated by ii*(alio)) 
a n d  it:i2*( L ) •

P ro o f .  From Lemmas 13.1, 13.2, we obtain the following Puppe's

exact sequence:
a* 7r:

{ i1*(aP - 1  aa) , 1i*(R (1)) hp*(e)} — { i1*(e + 1 6 ) ,  i 2 * ( ( i ) ) ,  hp*(.2)} - -

a*

n s (C a : K „(1, ) ) - - - *{ii*(3(1)6),i1*(80(1))) - - {i1*(œ8P(1)),i2*(Rci)a), h p*(cea)} -
By use of (4 .6 ), (1 3 .1 ) and (13 .3 ), we have ce*(ii*(cEP- 1 8a)) = ii* (a P

-
18a2)

= 2 . i i * ( a P 8a) —  i 1,, (a 8 )  = — i1*(aP+ 1 a )  a* (i1* (1(1))) = ii*(R (i)a) = 0,
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a* (hp*  (e ) )  = h p*  (a) ,  a* (i1* (Ro)a) ) = (f3(1)(k) = il* ( aaRo)) and
ex* (ii*(al3(1)))= ii*(8(30)a) = O. T h u s  w e  have a short exact sequence

O  {i2*(0 )) }- - - rS (Ca; K , (p )) fi1 * (8■9(0 ) } - 0.

Since ce* (R()) =0, th e  existence of Q(1) fo llow s. Then i : ( i i * ( 8 0 ) ) )

= i i * (8 ( i :0 ) ) )= i i * (8 1 3 ( i ) ) .  
S in c e  P(ii*(8i90))) = i1*(( P ) T0))) =0, the

above short sequence splits, q. e. d.
Note that 7rs(Ce, ;  X )  i s  a Zp-module since irs(C a ; C a ) , Zp.

Let a1 E1P+2 1 ) - 1 (K „(k ); Z p) be a generator given by the na-
tural orientations of the cells in K „(k ) . Then it follows from (13.5)
(see  the proof of Proposition 4.5)

(13 .8). 2 1 a1 —  (i+1)a,„ and 2' z ia,=i • da,, f o r  0 <i<k .

By Corollary 8.4, the following relations hold in K (1 p , p +2 ):

2 1 a0 = —( 1P (  P  1 )  l a p =  (1+1)ap,

--(P PP ) 
dap =1. dah

1 ( — 1)

ap+ i -1. ap+ i ,

( ( l p + 1 ) ( p - 1 ) ) A
aap+i— l • Jap4-1

So, in the following, we add the following condition to K „( p+ 2).

(13. 9). 9 » a 0 = (1+1)a p, 2° 4,2 0 =1. d ap , g'Pai = l. a 1 a n d  2° Ja i

=l• 4a + 1 .

Now consider the attaching map

hp+1: r72(p+ixp - 1)- 1_,K ,(13+1)=K ,.(P)U„pCY ;+2P(P - 1)- 1.

S in ce  w e  are considering stable groups, w e m ay assume that n is
sufficiently large.

Then the existence of such a map hp+ 1 satisfying (13.5) is equi-
valent to h ( & )  =0 , and hp+ ,  can be chosen, in it s  homotopy class,
as a coextension of Sa, i.e., hp+ i  maps the lower cone C_Y

2 ( p + 1 ) ( p - 1 ) - 2

y  ;+ 2 (p -F  1 )(p -1 )-2in to  K „(  p )  and m aps the upper cone C +b y  the com-

2° ai = — 1 ) - 1 )

2 » 4 a 0 =

( ( 1  p + i ) (  p -
p

9»4a 1 =
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position of the canonical extension (cone) : C+ Y;+ 2 ( P+1 ) ( P- 1 ) - 2  —›
c y7,-F2p(p-i)-1 o f  8ce and the characteristic map c y ;-1-2p(p-1)-1

K ,( p +1 ) . Consider the mapping cone

C s a —  y  ;+2,p(p-1)- 1 u  aa c  y  ; -F2cp.+1)(p-i)-2

of 8 a ,  and define a map

h :C -->K „(  p)

by putting h  Y "-1=hp and by extending over C
by h ,,IC _Y  V - 2 ( p + 1 ) ( p - 1 ) - 2  identifying C Yp with C._ Y. W e also define
a map

D : Ccc= y np +2p0-1)-2 u a c  y ;+z(p+00-1)-2 C 6a.

•by putting DI 
y ; + 2 , 6 c p

- 1 )
- 2

 6 —i o n  and extending over C Y n p - 1 - 2 ( p + 1 ) ( p - 1 ) - 2

identically. C learly, for the projection i t ' : C '7 2 (P+1 )(P-1 )-1 , we have

(1 3 . 1 0 ) . n 'o D  =

Proposition 1 3 . 4 .  ( i ) .  K „( p +2 )  is  the m apping cone of the
m ap h:C 8 — .K „(p), u p  to  hom otopy  equivalence, and (— hp,)on' is
.hom otopic to  ipoh.

< W . hoD  represents (1+1)ii*(M0)) —1. i21:7r: (io )) E n s (Ca.; If •(1)))•

P ro o f .  The proof o f  ( i )  i s  d irectfo rw ards (see Chapter 1 of
[ 5 ] ) .  Put

b1=i,*(aR(2)) and b2=i2*7r: ( o ))= 7r:i2*(Z ))

and consider mapping cones

Cp1 =K „( p)u,,c(c a ), c1 2 —K„(p)u2 2C(C„) and
C,,,D=K„( p)uh„,c(ca).

Let d, E l l n + 2 P ( ' ) - 1 (C b ,;Z p ), d2 H"+2 P( P- 1 ) - 1 (C12 ; Z p) and d I l ' -'2 P(P- 1 )- 1

<Ch op; Z p )  b e  g iv en  b y  the bottom cell of C ( C ) ,  then  {d1, 4d1,
dg'A d i }  is  a  Zp-basis of H * (Cp,; Zp)/H * (K„( P ) ;  Zp) and so

for d ,  and d .  By the remark after (1 3 .1 ) , we have

gPa o = d d i ,  gPda0=g3Pai-9Pzia1= 0  in C 1 1
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and 2Pao = g» dap= 0 , gPai =  zld,, 4g"4c12 in C, 2 . By Lem m a
13.3, there exists integers x , y  such that hoD represents x- y • d,..
Then we can easily construct a map

f :  C h op—. Cp,U Cb2 =  K. (  p)Ub,C(COUb 2C(Ca)

such that f IK ”( p) = identity and f *(d1)= x • d, f *(d2)= y • d .  By the
naturality of 9 j "  w e  have

g ) Pao = x • Lid and 2Pa i = y • gidcl.

On the other hand, identifying K„( p + 2 )  with C,, b y  ( i ) ,  we
obtain a map

g: C,,,, , C,=K „( p+2)

such that gl K„( p) = identity and g *(ap)= Ad, g *(4a„) = 0, g '(ap + i )
= — g3 1 4 d ,  g*(da„+ ,) = —  z igidd, where the sign  is caused of the
same reason as in the proof of Proposition 4.5. It follows then from
( 1 3 .9 )  t h a t  ..T2ao =g*(2Pa o ) =g * (( 1+1 )ap )=(1 +1 )z id  and 2Pap
= g * (g ) Pai ) =g * ( l- a ,,) = — 1 .9 ) 1 z1d . Thus x = /+ 1 ,  — 1 (mod p),
and h o D  represents (l-k  1)b,— 1 • b2. q. e. d.

The main purpose of this section is to prove the following

Theorem 1 3 .5 .  Let 2 < s  <  p -1 an d  K ,( p+ 2 )  satisfy (13 .5)
and (13 . 9 ). Then the following relation holds in 7rS (1 7 ; + 2 ( ' P + s — " ( " ) - 2

K „( p+1)):

1 
hp,*(& , _ 0 ) =  s  (1-+-s)ii* W s0.

We shall given two proofs, the first one covers the case p>  3 and2
the second one does the case s = 2 .  First of all w e show

—Lemma 13.6. There exists a  coextension &,_1 ) G7rs(17 ;+2(P+- 1 )--
( P- 1 ) - 1 ;  Ca )  of  [30 - 1 ) such that (R ) Rno* ( s — i )  and

hp+1*(130=o)= { —  (1+1)ii*(00))+ (  )1 W,(1)„

=  (1 +1)11*(0'0)4o-1)) + 1 . 12*(Rei)° (-1))

P r o o f .  B y  (1 3 . 1 ) , 4 (,_1)=0, hence ". "(,_1) e x is t s .  B y  (13. 10)
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and Proposition 13.4, we have

— hp+1*(P0-1)) — — hp+14.044 0 - 1)) — — hp+I*74D*(Z-.1)) — ifi*h*D* as-1))

= {(/+1)11 , ( i -9(1)) —/' (12*7r.. 30.>) °7-3(s-i)

=- (1+ 1)11*(9(l)° -1 -1)) — 1 ' 12*(19 49c,-1))•

Pro o f  o f  Theorem 13.5 f o r P> 3. < 19(1), oz, Qo- i)> = lim (
—

{G)(1),ceA s_ i)} by definition. To consider the coextension R0-1) for fixed

n ,  we must take the sign  ( —1)" since S730 _1 ) i s  a  coextension of

- ,S _1 ) . Then from Proposition 1.7 o f  [6] , w e h av e  R R

—<Om, a, 0( .-1)›. Similarly, from Proposition 1.8 and (3. 5) o f [6] , we
—

- have Q(1)
°
Q(,--1) OW, 0(-1)> D ii*(a °<(1:, i3 , 0 ( S -1)›). Then it fo-

llows from (13. 1) and (13. 3)

mod Ow°Gi+ G2 0 [3 (•--1)

19(1)°Q(s-1)=--
s - 1

ii*(a19()) mod i i *  (aa)0G, + ii*G40f30_1)

where G i = 7 r ( s _ i ) ( p + i ) ( p — i ) ( Y p ;
 Y p )  generated by a ( P+ 1 ) ( s- 1 ) , G2= 7rZcp+o(p-i)

( Y p ;  Y p )  generated by (0 + 1 ,  G3 = 74.(sP+s-2)(P-1)-1( Y; 1 7, )  generated by
.asP+ ' - 2 8  and asP+ s- 3 8cr, and r=...- =  7 4 (P + 1 )(P -1 )-1  generated by aP+18 and teP8a.
.13(1)0a( ' -

1 ) ( P+ 1 ) =a"+ 1 00( s _1 ) =-  (aParx)013
(
- 1 ) =  0  and ozP+1 80 &_ 1.) -= P Ocs _1 ) 8 a =-  0

b y  (13. 1) and (1 3 . 3 ). B y (4. 6), i i * (8a)(ZP+'6 and i i * (8ce)a 38ce

a re  some multiples of i i * ( a ' s - 26a8 ) which are in the ni * h,* -image by
(1 3 . 7 ). Thus all the indeterminacy vanishes, and

s - 1  •  , „
(1)°19(s-1)=- — Rco and - -19(1)°19cs-1)=--l i * o 1 - 7 ( s »  •

'Then, by Lemma 13.6 we have

hp-F1*(0(s-i))= ( 1 + 1 )ii*(819(s))
1 ( s - 1 )

i1*(800))

—  1s ) i i * ( M c , ) ) . q. e. d.

For the case p = 3, (13. 3) is not valid, but s =2 in the case. We
shall g ive a  proof for the case s =2 without use of the relation (13.3).

Lemma 13.7. i  ( 7r.1' "2* 3(1), °, (1) —  :2* ° Z )  is a  m u ltip le  of

.and
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ii*(8R(2)) in 1)).

P ro o f .  First compute the group r s  ( n ( 2 P+ 1 ) ( P- 1 ) - 2  ; K „( p)) as in
Lemma 13.1. Then the iw image is generated by i i * ( M (2,) ) and ii,*(813(2)a)-

and possibly by i2 * (7r (8a(8 (3 ( l ) ) 28 )  if  p = 3 .  B u t th e  last element

*  s W (1 ) ,  r -
) R

(1 )can be cancelled since n Wi*h2*( 0)) 2(3) =2. ace(M0 :2 ()) 2a. Thus 2 

= X • ii*( 6 i3(2)) ±Y • ii*(j3(2)8) for some integers x, y. Since igo) = 0, we

have by (13.1) and (13. 3)', Y • ii*(cE8 ,e (2)) = Y • ii*( (2)(3) — x • ii*(aig(2)a)
0 mod 0 (p > 3) or mod ii*{(69(1)) 3, (Q(1)a) 3 } (p=3).  T he possibility

to killing a.8,9 (2) b y  i 1, i s  h i * (& 2 )) and if p =3 h2*(8a(a■3(l)) 2 )
a n d  h2* (a:a ([3(l)(3) 2 ) • B u t ,  h i * ( 1 9 ( 2 ) ) = a 1 f3(2) = 0

 m o d  (8[9(l)) 3 , acca

n2* , P3* (.2) and ce pa.) 772*h344( &1)) • Thus i l * ( m 3 ( 2 ) )  0 ,  and we
2

have y = 0  (mod p ) .  Then the lemma is proved.

P ro o f  o f  T heorem  13.5 fo r  s  = 2 .  P u t  bi=ii*(aig(l)), b2

= ( j ( l)) atd let f :  „ (  p) be a  representative of x • bi-HY b2.
Consider the mapping cone c f =if„(p)u f C(Ca) of f . As is seen in
the proof of Proposition 13.4, we have

D a o = x • Jci and .TPczi  = y • 2 1 4d.

First consider th e  c a se  x = 1 ,  y =  0  and  assum e that f*,8(l)
,

=  ( 190)°Q0)) = 0. Then there exists a coextension g  y ,;w2p+i)(p-i)-1

C f  of & .  In the mapping cone C g of g, we have 2P2 12P a0 *0  and
gP.T Pgla o = gPgPa i = 0. But this contradicts to Adem relation

(*) g)P (2g' l - ç P P  g A ) = 9 1 (29P2 P  ±  9 2 ' 2 g )1 P' )

s i n c e  ( 2 . T 2 ° ± 5
1-.2,--2gng,i , a 0  _) 0 (cf . the proof of Theorem 10.8). Thus

( 0) 0 R-o)) — (2)) *O. (T h is proves also that ( 2 )  — [
3

(1)
°

; ( 1 )

is an independent generator.)
—

By Lemma 13.7, we can put b2oR(1)=z•b1o(i) for some integer z.
By putting x =  — z and  y = 1 , we have in C„ that g'PE'l.g'Pao = —z-u
an d  gPg'P.g"a o = —u  fo r some generator u  of H " 2 (2 P+ 1 ) ( P- 1 ) (Cp; Zp).

1Then by use of ( * )  we have (2z —1)u =0 and z  = (mod p ) .  It
2
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follows from Lemma 13.6

hp+1*(o-i))= {— (i+l)bi+ 1. b2} {— (1+1) +  2
1  } bi0730.)

1 — 1  = (1+ 2)ii.*( — (V0).Rm) (i+2)/1*(at9(2))•2 2

This completes the proof of Theorem 13.5.

1 4 .  Unstable elements of the fourth type.

We shall prove the following theorem which generalizes Theorem
10.8.

Theorem 1 4 . 1 .  A s s u m e  1 >1  a n d  2 <s <p - 1 .  Then there
exists elements

Tp )
and r ' n202+2(sp+sxp-i)(QP+2P+1: p)

such that

H ( 2 ) 2-=x •( /+s)•  F (j9,(2432 –1)) f o r some integer x%0 (mod p)

s 2P r = P * / , =Rs_1(2(1P+ p  i ) p + i )  and S 2 P+2 r=0.

In the proof of Theorem 12.5, we have used Theorem 1 0 .8 .  So,
Theorem 12.5 is not valid when s 0 (mod p ), and we have

Correction to Theorem 12 .5 . The last condition "2 < r < p –1 -

in  ( i i i ) ,  ( iv ),  ( y )  o f  Theorem 12.5 should be read

"as < r <  t-1 " ,

where a,. =2  if  s% 0  (mod p )  and a,=-1 if  s-=- 0  (mod p).

Assume that l+  s 0 (mod p )  and 1 > 1 ,  and denote the element
r  o f Theorem 14.1 by

u4(i, =  r  f l -2/p+i÷k(S  ' 1 : p), k =2 ( (/ + s)P+ s —1) ( p - 1 )  —3.

Since H ( 2 ) u4(1, Qs) x(1+ s) ,(24,2 –1) = x (1 + s) • QIP ( )  * 0  in the
notation of (6 .3 ) , u,(/, ) * O .  Consider the exact sequences

P*
n2,,,+2A-k(S 2m+1 : P ) H ± , •2)7-c 2 „ — i + k ( Q r  :  ) - 7 , 2„,, ,k (S ' 1 :13 )---7=2.-..k(S 2 '+' :P)
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for m  ip+ 1, + 2, • • •, i p +  p .  The groups 7 r z . - i+ k ( q :  p )  are ge-
nerated by Q- (a ' ( , . ) p+ s _„,_,) and additionally by Q1P+1 (ceA 2)  if p =3 ,
s = 2. These elements are I-1( 2 ) -im ages by Theorems 5.2, 5.1. It fol-
lows that the above S 2 are monomorphisms. Thus we have

( 1 4 .1 ) .  A ssume l + s 0  (mod p ) , 1 > 1  and 2 < s < p - 1 ,  then up to
non-zero coefficients,

H ( 2 ) (u4(1 ,iss))=Q 1P (S 's), P•u4(1, 490=0, S  4 + 2  (U4 i e j  =0

and p * Q̀P+P- 1 ( , ) = S
2 P(u 4(1, iss)) *0,

hence u 4 (l, i3..) is  an unstable element of the f ourth  type.
The cokernel of the above S 2 is  a subgroup of 7r2m-2i-le (Ci22 " '  I  p )

which vanishes fo r  m =ip.-1, • • • , ip+ p — 1 and generated by e P + P

for m = i p + p .  By Theorem 12.5 or more precisely by Theorem

10.6, p*C2/P+P(a1 1) =  S 2 ' - 2  (K3 (/, )  * 0 .  Thus the above S 2 are
isomorphisms. It follows

(14. 2). Under the assumption o f (14 . 1 ), S 2 (ti 4 ( 1 ,0 ,) )  generates
a direct summand

(14 ( m , k ) o f  7r2.+1+2(S : p ) , k  — 2 ((l + s)p + s  — 1 )(p -1 )  —3,

isomorphic to Z p for  0 < j  < P  and j .

The above discussion for S '  valids for the case 1+ s 0 (mod p).
Then it follows from Theorem 14.1

( 1 4 .  3 ) .  A ssum e l+s--=-0  (mod p ) ,  / and 2 < s <  p — 1, Put
k = 2 ( ( l + s ) p + s  — 1) ( p —1) —3.

( j  ). 5 2i 71.2,p+1+k (S
 2 1 P + 1 :

7 r 2 , - , 2 ; + 1 + k  (S 2 1 P + 2 j+ 1  p )  is  an isomor-
phism  fo r j =  1, 2, • • p.

(ii). P*(Q 1P+ P+ 1  (igs-1)) E S 2°+ 2  (7r2ip_i+k(S
 2 /

P - 1  :13 )).
(iii). I f  there ex ists an element r  o f  7r2ip+i+k(S 21P ': p )  such

that H  (2 )r = Q1Pt h e n  5 2P+2 (r)  * 0 .

We define U4 (m, k) =0 i f  it is not the case of ( 1 4 .  2 ) .  Then

Theorem 12 .5  (corrected) is generalized as follows.

Theorem 14.2. A ssum e th at  k 2p2( p —1) , —1, — 2,-3
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(mod 2 p 2 ( p - 1 ) )  and k - 2 r ( p - 1 )  — 2 ,-3 ,-4  (mod 2p2(p-1))
f o r 1 < r  < p - 1 .  Then the groupp )  is isomorphic to

4
(7r: p )+ E U ;(m , k )  for m >  2

k
p

+  4
2  -p 2 + p .

The proof of the theorem is similar to that of Theorem 12.5.
Now, consider Theorem 14.1. The proof is quite easy if 1 is su-

fficiently large and is done by use of Proposition 3.6 and Theorem
1 3 .5 . In order to prove Theorem 14.1 for smaller value of 1, we pre-
pare the following lemmas.

L em m a 14 .3 . 1,?t Q be a 3-.;;onnected space, aE H 2 - 1 (Q:
an d  le t  K  be a  fin ite CW -complex having a s tru c tu re  as  in
Theorem 1.1. A ssum e that the natural map A (a)OZ [da]— .H*
(Q; Zp) is isomorphic f o r deg < N  and monomorphic f o r deg< N
and that a  map g : 17 —.Q induces an epim orphism  of  H * (; Z ) .
Then g * : 7u(SK; Y ) --->n(S K ; Q ) is onto i f  dim K < N - 2 ,  and
g *  maps the im age of S : n(K ; Y ' ' ) -->n(SK; Yr) one-to-one into
7r(S K ; Q) i f  dim K <N —  3. In  particular, this assertion holds
f o r  Q=122 *Q !'"', 2m >k + 3, r =m p — k -1  and f or N - 2 p r- 2=2p
(mp—k —1) —2.

P ro o f .  By mapping cyinlder arguments, we may assume that
g  i s  the inclusion. F=.2(Q, S 2 - 1 )  i s  a fibre of a fibering .2(Q;
S Q )— )-Q , where S 2 - 1  i s  a deformation retract of 2 (Q ; 5 2 - 1 , Q).
Consider the spectral sequence {En associated w ith the fibering;
E :=H *(Q ; Z ,,)O H *(F; Z p) and E  = H *(S  "'; Z p) = A ( a ) .  Then
it  is  v e r if ie d  th a t  H *(F; Z i,) = A ( a ')  fo r deg< N - 2 ,  d 2 ,(10(1)
= J a 0 1 .  Let Z  be the mapping cylindre of a map S r'— ..3 2 - 1  o f
degree p ,  7T0 =Z /S 1 the shrinking map, and put g o - - gono :
(Z ; S 2 - 1 , S ( Y  ; S  2 - 1  ,*) ( Q ;  5 2 - 1 , * ) .  Consider the follow-
ing commutative diagram of fiberings:

S (Z ; r  1)

1.9g, flg o

SlS 2 , - 1 S 2 Q s?( Q, S 2 - 1 ) = F.
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The natural map S  r i  X  1 " Z  defines an inclusion S  r'— .12(Z; S 2- 1 ,
S 2or- i)  which is a  homotopy equivalence, since S z r - 1  i s  a deformation
retract o f  Z .  I t  is  e a s ily  s e e n  th a t  (2goIS 20- 1 ) * a * O .  Then it
follows from (1.8) that (S lgo)*: 7r1 (S2(Z; S r1 ) )  r ( S 2  (Q , S  ' 1 ))
is  a Cp-isomorphism for i <N  —2 and a Cp-epimorphism for i <N  —2.
T he sam e is true fo r (S2g0)*: r,(9(Z , S"0 - 1 ) ) - - '•7r,(QQ) b y  th e  five
lemma fo r the homotopy exact sequences associated with the above
d iagram . T hen , by Theorem 1.2, w e have th at (S2g0)*: 7r(K; S2(Z,

S ( K  ;  1 2 Q )  is one-to-one i f  dim K  < N  —3 and  onto i f  dim
K  <  N - 2 .  Since (flg o) * ---  (S2g) * 0(S2770) * : (K : S 2(Z , S  r9) — z (K ;
S217 2;)-->n(K ; s2Q ) a n d  since (S2 g) *  is equ ivalen t to  g * ,  w e have
that g *  is  o n to  i f  dim K < N - 2 .  N ext it is easily seen that the
canonical inclusion io* : Y ' ' - -  Y '  i s  homotopic to the composition
o f  m a p s :  Y 2pr- '—. S2 (Z, S S2 Y 2pr . T h e n ,  i f  dim K <  N -3
(,S 2 g ) *  m aps io* (7 r (K ; Y 2pr' ) )  one-to-one into n(K ; s2Q), so by (1.2),
g *  m aps S (7 7 (K ; Y r 9 )  one-to-one into 7r(SK; Q).

T h e  space Qr-i_32(22s2"2-1-1, S 2171-1) •  s  (4m— 4)-connected, so
.(22 V - 1  is 3-connected since 2m> k+ 3. Then s22 'q " —  = Q  satisfies
th e  assumption for r  m p — k - 1  and N  =2pr —2 by C orollary 2.4

and Lemma 2.5.

Lemma 1 4 .4 .  Let K  be a finite CW -complex and r > 2 .  Then
S - :7r(SK; Y zpr)— .7rs(K; 11 . 2,- - 1 )  is an  epim orphism  i f  dim K <2 p r
—4, and it maps S ( r( K ; Y r 1 ) )  m onom orphically  i f  dim K <2 p r
—5.

P ro o f . Let n be sufficiently large. S : 7 1 - ( S K ;  17 r) , n(S"+1 K ;
Y : 2 ' )  is equivalent to the homomorphism g * :7r(SK; Y  ( S K ;
S2"17 '72 ` )  induced by th e  canonical inclusion g :  Y;;---> S2 Y "p' .  Put
Q = S2" Y  '  ,  an d  consider th e  m ap S 2 g o : S2(Z, S 20r - 1 ) —>• SA 2  o f th e
previous proof. Then it is sufficient to prove that (S2 go) * : 7c,(S2(Z,

S r - 1 ))—.7r,(S2Q) is an isomorphism for i <2 p r —5 and an epimorphism

for i < 2pr —4. The homomorphism 2 g o) *  is equivalent to the com-
position S"on-o* in  th e  following commutative diagram:
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77,+1 (Z, S 2(r- 1 ) 7C,„ (  Y 2, )
Is. isn

7.r.- +1 CS "Z,SZ)+2 - 1 ) s n i t 'û:  „+ +1( Y ;
2 '

) .

S 'no* is  an  isomorphism since n is la rg e . T h e  S "  of the left-side is

an isomorphism for i <2Pr —5 and an epimorphism for i <2pr —4 by

(2.8) and the five lemma as in  the proof of Theorem 2.2. q. e. d.
A s an  ap p lica tio n , we generalize Proposition 3.6 to the meta-

stable case.

Proposition 1 4 .5 .  A s s u m e l<k <m p -1  and put t=m p— k -1.
Then exists a complex K (m ,k ) satisfy ing the following conditions.

(i). K (m ,k )=S 2 'K ' fo r  some complex K ',  so we may write

k )= fo r j < t .

(ii). K (m ,1 )=1 7 " - 2  and K (m ,k ) is  a mapping cone

K (m , k )= r,""'U  ,C (S  K (m  +1, k -1 ))

of a m ap h =S "h ', h': S - 2 '- - 3 K (m +1 ,k -1 ) - ->Y ;' 2t 2,  w here K (m
+ 1 ,k - 1 )  has been given inductively.

(iii). There ex ists a  m ap G0 : K (m ,k )-->Qr - ' such that Gt:
H*(Qm - '; Zp) , H *(K (m ,k ); Z p )  is  an epim orphism  and the fol-
low ing diagram  is homotopy commutative:

5 - 3 K(m +1, k Y P ' i l f ( m ,  k ) r .,5 - 2 K(m +1, k - 1)

16(23 G k-1 i G i G0 s.22Gk-1

1 2 3 Q r-+21- ± * (gn •
1( 5 1 , 7 - 1  - - - > Q 2 Q 227-1• •

P ro o f .  The case k =1  is obvious (Lemma 2.5). Assume that
K (m +1,k - 1 )=S 2 ( i+P+1 ) K "  a n d  G 0 _ 1 : K (m +1, k  — 1) have
been given. Choose a map G i  = g :Y  r - 2

— . ( e - 1 o f  Lemma 2.5 and
consider th e  induced map y zt - 2 9 2 t Q r Since dim

S - 21 - 3K  (m +1, k - 1) =2 (m +1) p —2+2 (k —2) ( p —1) —2t-3= 2kp
—2p +1<2kp— 4= 2p (mp — t —1) — 4, w e have by Lemma 14.3 that
there exists a  m ap h': S - 2 '- 3 1f (m +1,k -1)— >Y 2,7P- 2 t- 2  such that
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St(c/0523 Gh _i )  i s  homotopic to 122 tG1oh'. Then the commutativity of
the left-side square of (iii) follows. K (m , k ) is defined by (ii), and
( i )  is obvious. T he map 52G 1 an d  th e  above homotopy define a
map of C(S  - 3 K (rn +1, k -1 ))  into Q i  which extends ioG i oh . Then
G , is defined  by th is map, and (iii) is proved a s  in  the proof of
Theorem 3.1.

Lemma 14.6. L e t K  and L  be  f in ite  CW -com plexes, f :
L , Y r a m ap and Cf =f lrU C L  the mapping cone of f .  If  :
7r(K ; L )--.7rs(K ; L ) is onto and if dim K <2 p ( r+1 )  -5 , then
7E(S 3 K ; S 2 C1 )-.7rs(S K ; C f )  is  onto.

In particular, if n <2 (mp - j - 1)p -  5 and j < m p - k - 1  then

S - :77( Y ;;S - 2 K (m ,k ))--, 7u5 ( Y ; 4 - 2 -1 ; K (m ,k ))

is onto for the complex K (m ,k ) of Proposition 14.5 (1< k <m p  -1 ) .

P ro o f . Consider the following exact sequence :

ns (SK; 17 2 ) ns (SK; Cf ) '`  n s (S K ; S L ) sA n s ( S K ; Y r 1 ).

For arbitrary element a  o f n s(S K ; C1 ),  there exists by assumption
a n  elem ent ,9 o f  r ( K ; L )  such that s - f 3  n*a. Since S ( f )
=S f  *n*a= 0 , it follows, by Lemma 14.4, that S 2f  * (S 2 i3) = S 2 ( f * ) =0.

A s  a  coextension o f S 2 ,  w e have an element 79 of n(S 3 K ; S 2 C1 )

such that (S 2 71:)*W= S Then 7r* (a - S'5) -= 7r*ct - = O. B y  the
exactness o f th e  above sequence there exists a n  element y  of

ns(SK; r , r )  such  that 47- By Lemma 14.4, there exists
a n  element a  of n(S 3 K ; rr+ 2 )  such that S - a = r .  Then we have

S -  (F3+ (S20,0) = S - 73+ 42- = a ,  an d  th e  first h a lf o f th e  lemma is
proved.

B y ( i )  of Proposition 14.5, S - 2 ( i+ai+1 ) K ( m +  k - i )  is defined for
0  i < k - 1 ,  and it is a mapping cone of a map S (S - 2 ( i+3 K (m + i+ 1 ,

Then by descending induction on i  the
first half implies that s-: n( 17 ;- 4 1 ; S - 2 ( i + 3 1 ) K ( M  k - i ) ) - i t s ( rp + 2 i+ 2 3  ;
K ( m +i,  k - i ) )  is onto for 0 i < k  - 1 .  This proves the second half
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of the lemma.
L e t  Y U f CX be the mapping cone o f a  map f : X --).Y , and let

ZU,C( YU f C X ) b e  th e  mapping cone o f  a  map g :  Y U f CX—.Z.
The reduced join I A ' ,  w ith  the base point (0) E I , can be identified
w ith  S i A ./.= CS 1 s u c h  th a t  /A  (1 )  an d  (1) A I  correspond to the
cones of upper and lower hemi-circle respectively. Then C(CX) is
identified with C(SX ), and we have

(14. 4). ZU g C( Y UJCX ) -- - (ZU g
, CY )U7CS X  fo r  g ' = g lY  and a

coextension 7: sx,zug,cY  of f .
For example, we have

(14. 5). K (m ,k +1) = IT P - 2 U,C(S - 3 K (m + 1, k - 1 ) ) U C Y 2p" - 3 +2 *( ''' '

= K  (m, k)U kC Y 2 ; "  
2 + 2 k (t - 1 )

It is directly verified

(14. 6). (  — 7 ) 0  :  Y U SX—>ZUg, C Y  i s  homotopic to ion:
Y  U f CX--->Z--->ZU K , CY.

Proof  o f  Theorem 14.1. Consider the complex K(1p, p+2) of
Proposition 14.5. B y (14.5) and (14.6) we have the following exact
and commutative diagram.

, s ( S -3K (lp+1,p+1)) 7rs( Y ;; Y  ;) 5± P-t7cs(Y ;:S - 2 K (lp+1,p))
i h p , *l i d

( Y ; ;  Y p 2 2 h
)  ± T irs(Y  ;; K  (lp , p+1)) ,-,s( Y ; ;  s-2K (ip+1,p)),

r = 21p2 — 3 + 2 (p  +1)(p  — 1). Then it follows from  the relation in
Theorem 13.5 that there exists an element of ns(Yp."; S - 3 K (lp+1,
p + 1 ) )  fo r  n =r+2 ( ( s - 1 ) p +s  —2) (p —1) —1=24. 2 — 4+2(sp+s

— 1)(p-1) such that TC*$ =  (
3

( s - 1 )  and i i * h 1* — — (1+ s)ii*((30())• Thus

the relation h*$ — —  1 (1+ s)8,e(s) + x • cc6P+ ' - 2 aa76 follows from

(14. 7). The kernel of  i 1,, is generated by

For, as in  the proof of Lemma 13.1, the kernel is generated by
111 *  («"+- 2 .3) (s — 1) a sP÷ s- 2 8 a 3  a n d  additionally w hen p = 3  by
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h i *  (a (aRci)) 28) = hi*ri*h2*( — (R(l)(1) 2) =0, hi* Oa (8■9(1)) 2) = 0  and possibly
by 122*(a((l)6) 2). The last element is independent since its r w image
is 2.8aa(9 ( ,)8) 2 * 0 .  So, (14.7) is obtained.

Next we pu ll back &s) to unstable range. T h is is done as in
the construction of a(4 ) in (4 .7 ). Consider an extension E n  (1  7  +  "  ;

S ""),u= 2 (sP± s —1) ( p — 1) — 2, of the element (2p + 3) of Lemma
11.2, and then consider a  coextension fq/ E7r( Y 2pP+6 -" ;  Y 2,P+5)  of Sig.
Then i*Tca — ,( 2 P + 5) and i*n*  (S  Ro)) O. Since 74+1( Y P 

Y
P )

is generated by 49(0 , asP+ s-
18 , asP+s- 2 8 a  a n d  since i * n * (asP+ s- 1 6 )  =

i*7.(* (asP+ s-
28a) = 0, we have i3(,) = S asP+s-la (2p +5) + y• e e l 's - 2 8a

(2p + 5 ) ) .  Thus we have
(14. 8). F o r n >2 p +5 (n >2 p +3  i f  s=1), there ex ists a  series

j3 (n) r p +zop+s - 1)(p- 1)-1 ;o f  elements p) su c h  th at pco (n+1)
= S( ) (n)), e7r0 ( , ) (n ) = ps(n) and  S -  pco (n )  p co . S  ( a , , . ) (n+1))
—aP(o  f o r ap(o (n+1) = 8 (n+ 1) 0 [3( )(n ).

By Lemma 14.6, there exists an element S'En( S -4K (lp+1,
p + 1 ))  such that S - Ç '= .  By Lemma 14.4, S - :n ( rp ; Y r - 2 ) - - >74_2ip2+2
( 17 p ; Y p ) maps ImS monomorphically, since n-1—  21p2 — 3+2(sp
+ s —1) (p -1 )  <2 1 p 2 -3 +2 (4 0 2 -2 )  ( p — 1) +2p - 6- 2 (1p2 —1) p -5.
This shows that th e  above relation on h* $ implies h* (S —1/s
(l+s)8p (o  (2432 —2) +x • (21p2 — 2 ). Similarly we have 7r* (S E')

= [3(,_1)(r) . Since Pa (n ) = 0, we have, using (14.6),

hp+,* (i*pc_0 (r)) = r * hp+ i* i *  (S$')— —ii* i*h* (se')
—  1   (1+ s)ii*P8i3(s)(24. 2 — 2 )

1

 (/ + (i*ir*R(s)(21P2— 3 ) )

1 ( /+s ) i o* fis (21p2 — 3)

for the inclusion io : Sup2 - 3 cK(1p, p  +1 ) . Now consider the following
commutative diagram:

S2 H(2)
(S  '4+1)

7r.

S H (2P+2)
r tg + 2 P + 2 2 1 p + 2 p + 1 )

IP* D2p+3

n-4-2P+2(Q 2  P + 2 P -1 ) — > Tr„_i

(QV P  -1 ) ( s

ii* p*
(Q 1pp-,-21 ) —>n„-1 ( 5 2 1 P -1 )
Îd *

( Q 2p+3 p +215+ 1)
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P u t S22P+ 2 7/— g',(i* f i(_ i)(r)), then //= S 2 P + 6 (P7r*R(—i)(r))=i3.,_,(2(lp
+ p+1) p+1) and H , 2 0 - 2 )p* /=d 4 2 2 P+3 r'=

(i * Oc—i)(r)) (1/s) (1 + s)G p+1s,i0 0 , ( 2 1 P 2  —3)( 1 / s )  (1 + s)i* G
(21p2 — 3) = x(1+ s)i* I' ,3 (21p2 x %  0  (mod p), by Propositions 3.6,
14.5 and Lemma 2.5. Since p * ( x ( i+s ) s(21p2— l ) ) =p * H(2P+2)p*/  =0,
H ( 2 ) ro= x(1+ s) I' s (2432-1) fo r  some ro . Also, since H ( 2 P + 2 ) (P*/
—S 2Pro) 0 ,  P * r' — S 2Pro= S"+ 22-1 for some ri. Put r ro + .3 27-1, then
1/ ( 2 ) r = x (i+  s )/ ' s (21p— 1 )  and S 2Pr = P d .

1 5 .  The groups n 2 m + i + k ( S 2 ' n + 1 :  p )

for 2p2 (p —1) — 3 < k < 2 (p 2 + p) (p— 1 ) - 5 .

The groups 7r2.+1+0 (S 2 '  :  p ) are determined for k <2p2(p —1) —3
by Theorem 1 1 .1 . We shall determine the groups for 2p2(p —1) —2
< k < 2 ( p 2 +p ) ( p - 1 )  —5, and partially for k=2p2(p —1) —3, 2p2(p
—1) —2, by dividing into two cases:

Case ( I ) :  aflgf =0,

Case ( I I ) :  cei [3i*O.

We shall use the notation Q (r) , Q' (7.) E  ( Q - 1 : p ) o f (6.3).

Theorem 1 5 .1 .  Let h=2p 2 (p —1) —1.

/zp+ Z „ fo r  m =(s— l)p +s, s =1, 2, ..., p — i
and for p2-2 m > p (p -1 ) of case (II)

Zp fo r  ( p - 2 ) p + p - 1 > m 2 ,  m - 1 o 0
(mod p+1),

fo r  m =p 2 - 2  of case (I)
and for m > p 2 - 1  of case (II)

Zp 2f o r  p 2 — 3 > ( p - 1 ) p  of case (I)
0 fo r  m p 2 - 1  of case (I).

' Z p+Z p fo r  m =1
Z p+ Z p fo r  m =2
Zp3+Zp fo r p i ,n 3
Z p 3f o r  .132 - 3 m > p +1

7r 2. +1+11-2(S  2 + 1

TC +1+h -1 (S  2 ' 4 . 1  P )
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and for n i=p 2 — 2  of case (II)
Z fo r  m = p 2 - 2  of case (I)

and for m =p 2 - 1  of case (II)
Zp fo r  m = p2 —1 of case (I)

and for ni p 2 of case (II)
fo r  ni >  p2 of case (I).

(iii). (Zp fo r  m =1

7r2 „, Fi+h ( S : p) Zp2 fo r  m =2

Zp3 for n i> -3

and S 2 is  injective for these groups.

P r o o f .  W e prove the case (I ) , the case (II) is rather easier
and om itted. In  th e  c a s e  ( I )  7r2 ,1+h-2(.5 2 '4 + 1 : p) — ..2,n+1+,1(s 2 m+1 p )
= 0  for stable m > p 2 , by [41 [ 6 ] .  By (2 .5) and Theorem 9.3 (cf. (6 .1 )),

w e have the following list o f th e  generators o f 7r2.1-1+h-1(Q "' 1 :P ),
i 1, 2 ,3 :

i = 1; Q ' (c ), Qt 1<t< P2-1, Q P Q P + 1 ( g - l ) ,

2 ; Q' 1 -" t  < P 2 —1, Q - '+'+ 1 ( ) ,  1 <  <  —1, Q 1 (X )
QP (all9 r )

= 3 ; Q ( - 1 ) P + s  (cEii3p-s), 1 < s ‹ P  — 1, Q 1 (i9), Q P 2 '(191).

B y ( i )  and ( i i )  of Theorem 5.1, 1-1( 2 ) p * Os - 1 ) P+'+'(p_ s ) = as - 1 )P-h•(a i p_s )

and H ( 2 ) P*QP+1 (ker)  =Q P ( c v i f  ' )  ,  u p  to non-zero coefficients. So, we
can neglect these elements together with the corresponding summands
(of the first type) of r2.,.+1+/,— , (S. " + ' : p )  generated by P * 0 - 1 ) P+s+1 (13p_s)

and p * Q"i (t3r )  .  Then, by the exactness of (1 .7 ), we have that the
group 7r2.+1+2-2(S 2 "' I : p )  has at most p2 elements and that P*Q t (ap'2-t)
= 0  except just two values of t. I f  p * Q€ (a 2 _ ,) = 0  for some t > 1 ,

= H ( 2 ) r ,  fo r  some rtEn21+i+1-i(S 2 I+ 1  : p ) .  T hen  by ( i i )  of
Theorem 5.3, there exists an  element rt_ i such that S 2 1- :_i = p - r ,  and
H ( 2 )

7-t _i = x • Q ' - 2 ( 6 4 2 _ , + 1 ) ,  x  0  (mod p ) ,  hence p * Q - 1  ( 2_,+ i )  = 0 .

Thus we have in the case (I)

(1 5 .  1 ) .  QP2 - 1 (a )  *0 , Q P 2 - 2 ( a ; ) * 0 ,  and there exists a  series of
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elements T . p )  for 1 < m < p 2 - 3 such that, up to
non-zero coefficients,

S 2 7-„, — p•r.+1 f o r  1 < m <  p 2 - 3 and H ( "7 - = Q- ( a ;2_)

Then the assertion ( i )  for the case (I) follows from the exac-
tness of (1.7), where the cyclicity of the groups is provided by (ii)
of Theorem 10.4. Remark that

(15. 2) in the case (I) a 1  (2m +1) *0 fo r  1 < m <  p 2 -2  and it is
divisible by p  fo r  p2 -p < p2 - 2.

We have seen in  Theorems 7.5, 7.6 the existence of an element
z43 (0, E  ra+ k (S 3 :  p )  for k = 2 (2p + 1 ) (p  - 1 ) -4  satisfying

(15. 3) 1/ ( 2 ) Tt3(0, =  ' (D  S 2 P- 1 Ft3(0, P *Q P (a z ii) and S 2"- 2 Tia
(0, h) = 0  up to non-zero coefficients.

Put tit, (0, Ft3 (0, M) og' (2 (2p + 1) ( p —1) —1), then we have

H ( 2 ) -fi3(0 , g )  01 (a) S 2P-41713 (0
,  a.) =NQP(aig - ')

and S 2 2 ? 3 (0, a) =0.

B y  (15 .1 ) an d  th e  exactness o f  (1 .7 ), w e have th a t the groups
r2.+1+h-1(S :  p ) are  generated by r  „„ p* QP+i ft3(0 , 1,')  and their
suspensions, and

(15 . 4 ). Let U2 (m ,2p 2 ( p —1) —2) be generated by r „, for 1 < m < p 2

—3 and by S 2
7-,2_3 fo r  m =p 8 — 3+i and i > 1 .  Then U2 (m, h —1),

h -2 p 2 (p  -1 )  -1 , is  a direct summand o f  r2+1+7.-1(S 2 " :  p )  and
7r2.+1+2—i (S 2 ' + ' p )  U 2 (m, h - 1 ) =  0 for m> p, = Zp for m = p, and= Z ,

or 0 generated by S 2 2 a 3 (0, fo r  1 <m  <  p -1 .
Consider p *Q' (ap2_,) for 1 < t  <p 2 , where Q'2 (a0) stands for QP2 (c).

Since S'ap2 (3) --= ap2*0 we have H ( 2 ) c e p 2  ( 3 )  =  ( c r i , 2 _ , )  up to non-zero
coefficient. I f  P *Q s (L1',52 _ ,)  = 0 , then Qs (oz,,2_,) i s  a n  1/( 2 ) -image, and
Theorem 5.4, (ii) implies that Qr(a,2_,) are H ( 2 ) -images for r  < s  and
ap, i s  divisible by p - i .  It follows from (4 .3) that s< 3. Thus

P*QP2 (,) *0  and M t (trp2_,) *0 for 4 < t p2- 1.

Since 7r2 ,„„ 1 (S 2 '"' : p )  = 0  for m  p2 , it follows from (16.4)
that, up to non-zero coefficient, .34 1-,2_3 P *QP2 (e) , p • S2 r p2_3 = p*QP2-1(ai),
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P2
p * --Q p 2 -2  , a 2 ‘)  and moreover p 2  r .= p * Q" 1 (ap2 _,,_1) for p < m <

p a - 3 .  Next, by Theorem 5.3, (i ), N O "' (ap2_ ,)  =  p • S  ( p *C2'.+2
(Cy j , 2 _ . _ 2 )  =  p 2 • r„, for 1 < m <  p - 1  by descending induction on m.
Since Ti an d  Ti a re  at most of degree p  and pa, it follows P*0 - - (cep2 )

= 0  for m = 1, 2 , 3 . Therefore, by th e  exactness of (1 .7 ), we have
obtained that the order of r .  is pa for 3< m  < p 2 — 3, pa for m=2,
p2-2  and  p  for m=1, p 2 -  1, and that S 2 P - 4 i3(0, i3f) =P*q(ceiRr) *0.
This together with (15 .4 ) proves ( i i )  of the case (I).

W e have also seen that the cokernel o f S': 7r2. - 1+h(S 2 m- 1 :  p ) - - >

7r2.+1+h(S 2 '+  p )  is trivial for m >  4  and isomorphic to Zp for m=1,
2 ,3 . It is known [1 ] that the stable group 7r7, contains Zp3 as the P-com-
ponent of the J-im age. Then (iii)  of the theorem follows immediately.

(The case (II) can be proved similarly, but we simply remark
that in  the case (II) r p2_, exists and generates (n i :

q. e. d.

Now, we describe further results. In the following, we always
assume

2 p 2 ( p - 1 )< k < 2 ( p 2 + p ) ( p - 1 )  —5.

We shall define subgroups A(m, k), B(m, k), E(m, k) U,(m, k)
and U3 (rn, k) of 7r2.+1+k(S 2 ' + 1 : p ) . First we define

A(m,
Z,, generated by a, (2m + 1) for

k=2i(p —1) —1, i =pH-1, —,p2+p—i,
\ 0 otherwise.

For 2 < s < p  —1 , we define

Z p  generated by i3f - '(3, (2m + 1) for
k=2(p 2 -1- s — 2 )(p -1 )+ 2 s —4 and m P - 1 ,

Z ,  generated by er 1f3f - 73s(2m + 1 )  for
k = 2 (p 2 + s - 1 )  (p  — 1 )+ 2 s-5  and m > 1,

Z p  generated by W 1 (2m + 1) for
k = 2 ( p 2 + p -1 ) ( p - 1 )  - 4  and m > -p -1 ,

NOo t h e r w i s e .

B(m, <

Assuming the existsnce of elements e:,1 < i < p  —2, and si , 1 < j  p -1 ,
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generated by E, (2m  +1) for
k =2(p 2 + (p — 1) —3 and m >p (P— i-1 ),

E(m, Z ,  generated by ( 2 m  + l )  for
k =2(p 2 + i)(p — 1 )-2  and m >p(p— j)+1,

otherwise.

Next we define U k ) to be the subgroup generated by un-
stable elements of the first type which are obtained by Theorem 5.1
and Theorem 5.2 from the known results of A (m, k ') and B (m, k'),
k'< k. M ore precisely, the generators of U1 (m, k ) are listed as follows:

p* Q"' 1 (cE;2+ ,_ , )  for k =2(p 2 + i)(p —1) —2 and I.< m <p 2 + i — 2,

P*Q"'"(c) for k =2(p 2 + i) (p —1) —2 and m =p 2 +i- 1 ,
p*Q for k=2((r + s+ rn)p+ s — 1)  (p-1)  — 2(r+s)

—2  and —1 (mod p),
p* Q—F1 ( ,) for k =2((r+s+m )p+s — 1)(p-1) — 2(r+ s)

—1 and m (mod p),

where r > 0 , 1 < s  <P - 1 . Remark that some of these generators are
in  the same subgroup which are independent and that H( 2 )p* Q ( )
=0"' (oziC , 1<m < p — 1, and H (2 ) p*Q- +1 (190 = Q' (air3 )  , i < m < p —2
are not trivial b y  ( 1 5 .2 ) .  Then Ui(m, k) will be a Zy module having
a bases consists of the above elements of the corresponding degrees
m  and k.

The subgroup U3 (m, k) is defined by ( 1 1 .7 ) .  More precisely, in
our case the generators o f U,(m, k) are given as follows:

S 2 1(u3 (1, X - - 1 - - s , ) )  for 0 < j < p —2, 1 1  and 2 < s <  p—1,
S 2 5 (u3 (1, r - L- 1 )) for 0 < j <p —2 and 1 <1 < p —2;

S 2 J(Tt3 (/, f4 - ' - ' , ) )  for 0 <j  < p — 2, 1>1 and 1 < s < p—l.
S 2 '(tit3 (0, X. - ', ) )  for 0 < j < p  — 2 and 2 <s < p

For the case the existence of these elements are provided by
Theorems 10.4, 10.7 . For the case 2 <s< p — 1, Tt 3 (0, is defined
a s  th e  c o m p o s it io n  o f  th e  elem ent Ft,(0 , 191) o f  (1 5 . 3 )  and
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[3f - 3 - 2 (3 (2 ( 2 p + 1 ) ( p - 1 ) - 1 ) .  These elements satisfy the relations.
in ( 1 1 .7 ) .  The existence of an element a 3 (0, j91.13i,_1) should be proved
in the proof of the following theorem.

Theorem 1 5 .2 . ( i) . The following elements exist:

. :(2 p (p — i-1 )+ 1 ) f o r 1 < i < p - 2  satisfy ing
H 2 ) e:(2P(p— i-1 ) +1) = QP ( P -  - 1 )  (13 1 +1)

1(2p(p — j ) +  3) f o r 1 < j  <p  —2 satisfy ing
H ( " e i (2 p (p — j )+  3) QP( P- J) +' ((3 j )

ep-1(2p + 3) f o r p > 3  satisfying
H ( "ep_ i  (2p + 3) = QP+1 (isp-i),

u3(0, Rit3p-i) satisfy ing 11( 2 )Ft3 (0, —R 0  (

For the case p = 3 there ex ists either E2(9) w ith H 2
2 (9) = (i2>

or e2 (1 1 )  w ith H 2 e2(11)

(ii). F o r 2 p 2 (p -1 )< k < 2 ( 2 + p ) (p -1 )  —5, the group
7r2.+1+k(S 2 ' 1 :P )  is isom orphic to the direct sum

A (m , k )+ B (m , k )+ E (m , k )+ U i (m , k )+ U 3 (m , k )

except the  case th at p= 3, (m , k )  =  (9 , 41 ) or= (9 , 42 ) and e2 (9>
does not ex ist, whence we change E(9, 4 2 )  and  U3 (9 ,4 1 )  to zero.

The following table indicates the results of n„+ L ( S ':  3 )  ( *  indi-
cates the case (I)).

k=33 k=34 k=35 k=36 k=37

n=3 Z3+ Z3 Z 3+  Z 3 Z3 Za Za
n=5 Z3 Z 9+  Z 3 Z9 Z3 Z3

n=7 Z3 Z27+  Z3 Z27 Z3 Z3

n=9 Z3 Z27 Z27 Z 3+  Z 3 Z3

n=11 Z 3+  Z 3 Z27 Z27 Z 3+  Z 3 Z3

n=13 Z'91' Or Za+Z3 Z27 Z27 Z 3+  Z 3 Z3

n=15 Z t Or Z 3 ± Z 3 zr Cr Z 2 7 Z27 Z3 Z3

n=17 0* or Z 3 V I  o r  Z9 Z27 Z3 Z3

n 1 9 0* o r  Z3 0* or Z3 Z27 Z3 Za
(n:odd) ( a n ($1132) (E )



Iterated suspensions 125

k =38 k=39 k =40 k=41 k=42

n=3 Z3 Z3 ± Z3 Z2 0 Z3 + Za
n=5 Z3 Z3 ± Z3 Z3 ± Z3 Z3 Z3
n=7 Z3 Z3 ± Z3 Z3 + Z3 Z3 Z3
n=9 Z3 ± Z3 Z3- F Z3+ Z3 Z3 0 *  o r  Z3 ZT or Z3+ Z3
n=11 Z3 Za+ Z3 Z3 0 Z3 + Z3

n=13 Z3 Z3 ± Z3 Z3 0 Z3 +Z3
n=15 Z3 + Z3 Z3+ Z3 Z3+Z3 Z3 Z3 + Z2
n=17 Z3+Z3 Z3+ Z3 Z3 0 Z3 + Z3
n+19 Z3 + Z3 Z3 + Z3 Za 0 Z3+Z3
n=21 Z3 Z3+ Z3 Z3 0 Z3+ Z3
n>23 Z3 Z3 + Z3 Z3 0 Z3
(n:odd) (ei) (a1o,a1s1s0 (st) (62)

Before proving Theorem 15.2, we prepare some lemmas.

Lemma 15.3. (i). Let r En,(S 4 - 1 )  be an element o f order p ,

.th e n  there ex ists an element a  o f 7r1„( S 3 : p )  such that

a E  {ai(3) , p  •  c2 p , Sr}  and .11, (a) = IH  ( 2 )  (a) -= x .3 21- x 0  (m od p ) .

(ii). L e t r'E n 1 (S 2P2 - 5 )  be an element o f order p ,  then there
"exists an element s ' o f n 1+5 (S 2P+ p )  such that

s' E  {f31 (2P+  1), p • c2p2_i, SY }  and H (" e ' x ' • f  (S Y ), x ' 0 (mod P)•

P ro o f .  (i). By (1.10), p • t2p_ir = p • r  =  O. B y  Proposition 1.7 of
[7 ], we choose a  as the class of the composition g o S f ,  where f :
S 1 --->Y 1P and g :  Y r'--->S 3 satisfy that nof: Y 2 i - - . S 2 P  and
g l S 2 P: S 2 1'--..33 represent Sr and a i(3 ) respectively. Extend the defin-
ition o f 14, as

11p= r( S K : S 2 1 ) , n (S K ; S t) - ->n (K , S t")
, n ( S K ; S " " i ) ,

then the relation ( i )  o f (2.12) holds:

Hp(aoS (3) = H ,( c ro S ) ,  ceE rc(SK  ; S 2 "' 1 ) , E r c ( L ;  K ) .

Let a' be the class o f f ,  then it is sufficient to prove that Hp(a')
=x  • (S7r) * e2p+i for some x-*-0 (mod p ) .  Let a cellular map

represent Da' and consider the following diagram.



126 H iro s i  T  o d a

a

a i(3 )*

z , n 2 p ( 172,5 s 2 p--1 )___ , 7
1

2 P  1 (  s 2p-1)

WiS2P - 0

S 2p -1 ) - 1 7r2p-1(S 2p-1) >1* r2p-i(S 2..)

*

The commutativity is easily obtained. The lower sequence is exact
and i t  is  o f th e  form Z - -Z---- Zp  up to torsions prime to p. The
upper i s  of degree p .  Then it follows that i s  of degree x
(mod p). Since h , * : 7r2,(S L , S ;-1) 7r2p(S 2cf), w e  h a v e  h , * (2a.')

x • 7r* (.(2c2p+1) and the required relation follows.

(ii). A s in  ( i ) ,  let e ' be represented by the composition g 'o S T  :

Y 2 —>S 1 , where n o ) "  and g , 1S 2 P2 - 1  represent S1' a n d  (2p +1)
respectively. We can choose g ' such that g '  I S 2 P2  = S 2g 0  fo r a  re-
presentative go of f3, (2p -1) . Consider S22g ' :  ( 1 7 21 2 - 2 ,  S 2 P2 - 3 )--->(,S22 S 2P+ 1

S 2 ' 1 ), where ,Q2 g '  S 4 2 - 3  g o .  Since i31(2P — 1) is of order p% 522  g' *:

7t2p2_2( r t  ,  S 2 ' 2 - 3 ) r2p2_2(S 2 2 S 2 P +  ,  S 2 P- 1 )  is not trivial on the p-primary
component. Thus Y e  is homotopic to a composition hoir: 1 7 2,P2 - 3 ,

S 2 P2 - 3 --->QP - 1 = s2(s2 2 S 2° " , S 2 P- 1 )  such that h  represents a  generator of
7 r 2.0 -3 (Q P - '  Z  p  namely, h  represents x '  I' (e2,2_1) for some x ' 0
(mod p ) .  By use of (2.6), it follows that  9 3 (g ' 0 .3 4f ) =  S 2 2 ( e ) 0 S f '

represents both of H ° ( ' )  an d  x '•  T (S 4 3-'). q .  e .  d.
As examples of ( i ) ,  we have (up to non-zero coefficients)

(15. 5). ( j ) .  a t i i ( 3 )  E  { 6E1(3 ) ,  Pe2p, at ( 2 p ) )  satisf ies Hp(a:+1 ( 3 ) )

=a, ( 2 P +  1 )  (i.e., H  " ) (cei-Fi ( 3 ) ) ( o z t )  ) •

(ii) . There ex ists an  element R3(0, 13149p-1) such that

H, (n3 (0, Ril3p-i))= RiRp_i (2p + 1) (i.e., H " ) rt, (0, f3ip_i)= Q 1 (Rip--i))

a n d  g3 ( 0 > E  { 6E1(3 ) ,  Pezp, 13 1i3 .6-1(2 p )} •

As an example of ( i i ) ,  we have (up to non-zero coefficients)
(15. 6). There exists an  element e', , ( 2 p  + 1 )  such that

H me;_, (2p + 1) = /',9p_1(2p2 —1) (i.e., H ( 2 ) e_2(2 p +1) = Q P  P - 1 ) )

a n d  e_ 2 (2 p + 1) E {19 1 (2 p +  1), h (2p2 -1)} •
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L em m a.15.4. I f  P > 3, th en  <a i  ,  p - i>  =  0 .) I f  p > 3 o r  if
p = 3  and <a i , 3e, '2)= 0, then

S - (tit3(0,Pip_i))=-- 0 mod a i ( 1 r 5 + 5  (S 5 : P )),

k = 2 ( f + p  —2) (p -1) —3.

Proof .  fai (7), Pc2p+4, 13p-1 (2p + 4)1 is defined. For an element r
o f this bracket, we have S - 2- E <al, Pc, 19P-1>. Theorem 11.1 shows
that S - 7- = 0. Thus <ai, Pe, PP-1> = ce 1 0 7-402_2)(p- i) - 1+ in-i•cf2P2-2)

=0 by Lem m a 4.1. (This proof does not work for P = 3 ) .  Since

P • (2 P +  1 )  =0, S 2
3 (0, E  {cei (5), h • C2P+2, 13119 1(2p+ 2)} D {a). (5),

p- e2p+2, 131(2 p + 2 ) o  P P -1 (
2  p2) . Then the second assertion follows

from < 1 P ' =  i * Ir*(aQ(1)) = O.

Lemma 1 5 .5 .  I f  p=3 and <a „ 3e, 132> then w e have

<ai, 3e, 132>= a i A =  0  (i.e. the case ( I ) ) ,  P7r* (ai9(2)) = A* 0,

= , a i , ,

and H (z)p*(Q3 (132)) = ± Q 2  (49D •

P ro o f .  Since <ai, 3e, Pe> consists of a single element and belongs

to (7r 0 : 3) which is generated by 4 the first assertion follows. By

(13.3)' and (4.6)

—a28,3( 2) = (6a 2 + ace) P(2)
=  X (ace+ ce8) 8048 (i3(1)(3) 2 = 0.

Then a iA =  ai<ai , 3e, 132> = <ai , 302 = — 0(219 2 =  i*7 -r*(a 2 )P2 r*((2 ))

= i*n * (— a zdf3c2 ) )  = 0 .  By Theorem 15.1 of the case (I)

± A<eti., 3c, = , 30 2  E-(ir34 : 3) 0■32= 0.

Next, ± , 3e, R2> G<ail3i, 3e, 132> and a i s'i Eai<Pi, 3e, 192>C<191,
3t, [32 > >  and the indeterminacy is aii31° (747: 3) + (4 4 :  3)0132 . S in c e

: 3) = 0 , ( 7 4 7 :  3 )  is generated by o 7 a n d  ceiP la2= 19i a a i  = 0  by

Lemma 4.1, we have + It is known [7] that ± <al, a l  ,

r i> .T h u s  - 101 =  < a i  , ai<ai S in ce  i *n.
*(c0(2))

= 3ç, b y  Proposition 1.7 o f  [7] , w e have P1c* (ap ( 2 ) ) ±13 .

T h en  ( ô a )  ( i *Q(z)) h * ( i *R(2)) ± i a  for the attaching map h  in

1 )  The proof of the relation {Sp_i, p2, a ') in (4. 13) of [6] is incomplete, since
a relation was dropped in Theorem 3.10 of [6 ].
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K ( p, 2 )  of Proposition 4.5. Then the last assertion follows from
Proposition 3.6 and (5.2).

Consider the subgroups A (m , k) and B (m , k ) of 72. ( S " + 1  p)
in Theorems 11.1 and 15.2 for sufficiently large m .  They are stable,
hence we denote these subgroups by

A (k ), B (k )c (4: P) •

For k = 2 p 2 (p -1 ) -1 , we put B (k) = 0 and A  (k) Z p3 generated by
(42. For k =2p 2 (p - 1) — 2, w e  put A  (k) = B (k) =0 . F o r  k =
2p2(p -1 )  —2, we put A (k) =0 and B(k) , Z , generated (formally)
by a i 4  Thea we can use the no tation

Q"' (r), Q' (r) 7ri (Qr .' : rE A (k )+B (k )

o f  (6 .3 ) , with the convension that Q'"(a.iM= I'cr,fif(2mp—  1 )  and

IQ' (a 2 g ) = (2mp + 1 )  for 1 < m < p -1.

Lemma 1 5 .6 . Let 2 p 2 (p -1 )-1 < k '< 2 (p 2 + p ) (p -1) - 5. I f
T heorem  15. 2 holds f o r  k < k '- 2 p ,  then w e have the follow ing
exact sequence:

0— ).(A (i)+B (i))0Z ,L : 2 1-k' (Q '" 1 : 1;)

-› Tor(A(i —1) +B ( i-1 ) ,

i=k - 2 m ( p - 1 )  + 2 , w ith an exception when p =3, k =38, m = 1  we
have IQ' = a i  (7) oas (10) .

P ro o f .  The exact sequence comes from ( 2 .5 ) .  By dimensional
reasons, E (m , k ) and IL (m , k ) are independent. So, it is sufficient
to prove that subgroups U ,(m ,k ), 1=1 ,2 ,3 , are cancelled by the
homomorphism J :  7r, + 4 (S 2 m P + 1  : p) ,  ir1 + 2 (S 2

p - 1 :  p ) .  Again the elements
p *Q "'(c) are independent o f our computation. Then Corollaries 9. 4,
9. 5, the cyclicity o f  Uz (m , k ) and (2 .7 )  give required cancellation.
The details are left to the readers.

Pro o f  o f Theorem  15. 2. The proof is done by induction on
k  and based on the exact sequence (1.7) :
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H 2 P * S 11(2)
••• p..)—>272-1+k(S2' P)--->n2,n+1+2(S 2 - H- 1 : ia)  - - •••••

As in the proof of Theorem 11.1, we cancell generators of 7r2,„4-1+k(S 2 ' + 1  :

p )  w ith  the corresponding pair of elements in 7r* (Q :: p ) .  First we
cancell the generators of U 1 (m, k )  with the corresponding elements
in r2,„+1+2(Q22""- 1 : p )  and 7C2.--2+2(QT " - 1  p )  by virtue of Theorems 5.1, 5.2

and Lemma 15.6. In the case p =  3, there is an exceptional element
Q i (cE ) = ' (a ,(7 )0  (4 (10 )), w hich  is cancelled  w ith  Q2 (ces) since
.[H ( 2 ) P*  ( q (a 8 ) )=  ±  a, (7) 0 (4(10) by Propositions 3.6, 4.5 and (5. 2).

Next consider the generators of U3 (m ,  k ) .  The non-triviality of these
generators are easily checked, after the cancellation o f  Ui (m , k ),
except the following two cases. F irstly , th ere  is  a  pcssibhity of
S 2u3 (1, a) = 0  by a relation p*Q- P+'(b'p_i)- x • u3(1, x o  (mod p ) .
Secondly, the non-triviality o f S 2 P- T t3 (0 , 1.,3p-i) is obtained but the
triv iality o f S 2 2R3(0, Qii9p-i) is not known. Then except these two
cases Us (m , k )  is cancelled. Next, stable subgroups A (m , k )  and
B(m, k )  are cancelled with the elements Qi (a t ) , P 2 < t  p2+ p  —2, by
(15. 5 ), (i), and Q P - 1 Q 1 ( 4 )  and 12 - 1  (13 ) . After these
cancellations it remains the following elements:

QP( ') - - "(,3, + i )  for 1 i <  p -2 ,

"P_
'
)+1 (j3) for 1 < j  < p  — 1,

Q1 (fi 1) = H")R3(0,

and ([41) = H 'u 3 (1 , i ) , ( a i R t 1 )  with P*Q 2 - 1 ( i)
S2P- 4u3 ( i ,

The first elements indicate the existence of e; (2P (p —  — 1) + 1).
Then by (14. 3), (ii), p * QP( P- ')'  Tm ..32 2 = 0 fo r  1 < j  <p  —2.

Thus the existence of E; (2p(p — j) +3) is obtained for 1 < j  <  p —2.
If P> 3 or if p = 3 and <a i , 3c, ,S0 =0, then Lemma 15.4 and the above
computation show th a t S - 143(0, p-i) =0 . Thus 7713(0, leil3p-i )  must
be cancelled by Q P(a iQ p-i). If p =3 and <ai  , 3e, 0, Lemmas 15.4,
15.5 and the above computation show th a t S - Ti3 (0, 0  mod
a i e;= Thus P* 0 (a i  [30  must give a relation between (4 (7 ) and
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S 41i3(0, (3102), and Tt3(0, 'GA ) is cancelled w ith 0(celQ2) in this sense.
In this case we have also from the last assertion of Lemma 15.5 that

Ce2) and (23 ( )  are cancelled with an unstable element p*(21 ( 2 )
of the first type, and consequently there exists e2 (11) wiih H 2 e2 (11)

( r a ) .  F in a lly , to  p ro ve  the existence of sp_ 1 (2 P + 3 ) with
H ( 2 ) sp_i  (2 p + 3 ) OP- (13,-,), for the case that p > 3  or that p =  3 and

<al, 3e, ,e2>= 0, i t  is sufficient to prove the relation 1-1 ( 2 )A0P + 1 ((ip_1) =0,
the proof o f which is similar to that of the last assertion of Lemma
15.5. This completes the proof o f Theorem 15.2.

We have seen in the proof o f Lemma 15.5 that, in the case (I)
and p = 3, -'1*0 equals to ±ai<ai, It follows that - Hf3i1 =ais;.

=<ai13i, 3e, 02> = M a i , 3e, )2>. Thus <ai , 3e, (32> #O, and we have from
Lemma 15.5 and (13.3)'

Proposition 15.6. L et p = 3 .  T hen th e  c ase  ( I ) : oza = 0  is
equiv alent to <a, 3 e , 2 > = w h e n c e  w e  have H 2

2 (11) #0,

Z ( 2 ) = -± aie;, and
At the end of the paper, we remark

(7rs2(p2+p)(,_1)_5: p) = 0 in the case (I).
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