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Let % be an algebraically closed field of positive characteristic
p, X a proper integral k-scheme of finite type and G be a com-
mutative affine k-group scheme. For a k-prescheme 7, the isomor-
phism classes of principal fibre spaces Y over X; with group G
form an abelian group with the well-known multiplication. We shall
denote this abelian group by PH(G, X/k)(T). Then the functor
T~—PH(G, X/k)(T) is a contravariant functor from the category
of k-preschemes (Sch/k) to the category of abelian groups (Ab).
The associated sheaf of PH(G, X/k) with respect to the (fpgc)-
topology of (Sch/k) is denoted by PH(G, X/k).

If G is the multiplicative group G,., PH(G,,, X/k) coincides with
the Picard functor Pie(X/k) of X, and Pie(X/k) is representable
by a commutative k-group scheme, locally of finite type over k.

The purpose of this paper is to study the representability of
the functor PH(G, X/k) for an arbitrary commutative affine k-group
scheme of finite type. If G is the additive group G., PH(G., X/k)
is representable by Lie(Pie(X/k)) which is isomorphic to a direct
product of G,. If G is a simple finite k-group scheme (i.e. G=a;,
s, (Z/pZL), and (Z/qZ),; q: prime, (p,q)=1), PH(G, X/k) is

*) This article was presented as a doctoral thesis to the Faculty of Science.
Kyoto University.



2 Masayoshi Miyanishi

representable by Ker(Lie(Pic(X/k))—LLie(Pic(X/k))) if G=a,,
J(Pic(X/k)) if G=uy,, Ker(Lie(Pic(X/k))F;igLie(Pic(X/k))) if
G=(Z/pZ), and ,(Pic(X/k)) if G=(Z/qZ),, where F is the
endomorphism of Lie(Pie(X/k)) induced from the Frobenius
endomorphism of G, (cf. Chapter I, Theorem 1.6).

In general, PH(G, X/k) is representable by a commutative k-
group scheme, locally of finite type over &, if (1) G is a connected
commutative algebraic k-group scheme, smooth over £ and if (2) G is
a commutative finite k-group scheme (cf. Chapter IV, Theorem 4.7).

These results are applied to make a calculation of the fun-
damental group F.(X) of X (cf. Chapter III), and to obtain some
results on an abelian scheme (i.e. when X is an abelian scheme)
(cf. Chapter II).

In this paper, we shall use freely the terminology and the
rotations of A. Grotherdieck. For the references, see EGA, FGA,
€GA, SGAD, SGAA arnd GB (cf. Bibliography). For an abelian
group M (resp. an algebraic group G), we denote by ,M (resp.
.G) the kernel of the multiplication by # on M (resp. G), where #n
is a positive integer. The set of natural numbers is denoted by N

or Z*.
Contents
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Chapter II.  On the generalized Weil-Barsotti formula.
Chapter 1II. On the fundamental group.

Chapter IV. On the representability of PH-functor.

Chapter 1. On the PH-functor

1. Topology. In the following, we shall use freely the defini-
tions and the results on Grothendieck topology, for which we refer
to [SGAA], [MA] and [SGAD]™,

*) See Bibliography [2], [1] and [3].
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Roughly speaking, “the open coverings” on a prescheme S in
the serse of (fpqc)-topology (resp. (fppf)-topology, étale topology
are generated by two kinds of families of morphisms:

(1) surjective families of open immersions from affine open sets
into S,
(2) finite surjective families of flat morphisms (resp. flat morphisms

of finite presentation, étale morphisms).
Then a set-valued contravariant functor F on the category of S-
preschemes (Sch/S) is called a (fpgc)-sheaf (resp. (fppf)-sheaf,
étale sheaf) if it satisfies the conditions:
(a) for a surjective family of open imme:siors {U,—U} the
sequence

F(U)—=T F(U) 2PV, x Us)
is exact.
(b) fer any (fpgc)-morphism (resp. (fppf)-morphism, étale surjec-
tive morphism) 7T'— T, the sequence,
F(T)->F(T"hZF(T'xT"H

is exact. !

The topologies on (Sch/S) are ordered as follows:

(can) > (fpac) > (fppf) >(ét) >(Zar), where one reads the left one
is finer than the right one and where (can) means the coarsest
topology with which arbitrary prescheme is a sheaf. Therefore, we
have the relation of inclusions, (Sch) C (fpqc-sheaf) C (fppf-sheaf)
C (étale sheaf) C (Zariski sheaf).

Next we shall quote elementary results on the sheafication of
a presheaf on a site C whose topology is defined by a pretopology,
(cf. SGAA, Exp. I). Let F be a presheaf on €. Then the
serarated presheaf associated with F' is defined by

LF(X) =lim Ker(IlF(Xq :IQHBF(Xw;XB))
(Xa>X1€](X)
where J(X) is the set of all coverings in C with the target X. LF
possesses the following property; for a covering {Ts—7T} of C, we

have,
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LF(T) C——»I\er(HLF(Ts)“’HLF(TaX Ty).

selusion
The sheaf associated with a presheaf F is defined as L*F=L(LF).
We can also define L*F in one step as follows:

L*F(X)=lim Ker(Il F(X. )—’HF(X ><XB)—>I'IF(Xasv))

(Xa87, Xa X,Sq87, sa)EIZ(X)

where J*(X) is composed by sets of coverings {XaiX } aad
{Xasys—a>”X XXB} for each(a, §). We denote L* by a and call it a
sheafi:ation furctor. a is an exact functor, more generally, a
commutes with finite projective limits and inductive limits.

2. Cohomology. Let C be a site, C~ be the topos formed by
sheaves on C and A be a sheaf of commutative rings with unit on
C. For two sheaves F, G of A-modules on C (resp. for a sheaf of
sets E on (), a cohomology

Ext4(C™; F, G) (resp. H*(C™/E, F)) or simply

Exty(F, G) (resp. H*(E, F))
is defined as the ¢-th right derived functor of the functor
F~—Hom,(F, G) (resp. by H'(E, F)=Ext4(4:, F)). Also, for F,
G and E as above, we define a ¢-th local cohomology

Exty(F, G) (resp. H'(E, F))

as the ¢-th right derived functor of tie functor F-—-—Hom,(F, G)
(resp. by H'(E, F)=Exti(A:, F)).
Let X be an object of C, and put

Exti(C"/X; F, G)=H"(C"/X, Hom,(F, G)).

If we denote by Ext4(C~/X; F, G) the g-th right derived functor
of the functor F——Ext},(C”/X; F, G), we have by SGAA, Exp. V,
Prop. 4.1, a spectral sequence functorial in F, G and X,

(1) E{*=H,(C"/X; Exti(F,G))=Ext}*'(C"/X; F,G).

The sheaf Exty(F, G) is identified with the sheaf associated with
the presheaf X——Ext4i(C~/X; F, G).
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Moreover, if we replace F by Ar, we have a spectral sequence
functorial in F, E and X.

(2)  EX=H/(C/X; H(E, F))=Exti"(C"/X; Az, F).

Let u: (C, A)—(C’, A") te a morphism of ringed sites. Suppose
that the topologies of € and C’ are defired by pretopologies, the
finite fibre products are representable in C and C’ and that # com-
mutes with the finite fibre products. Let F be a sheaf of A’-modules
on C' and X be an object of C. Then by SGAA, Exp. V, Cor. 5.3,
we have a spectral sequence functorial in F and X,

(3)  EX=H(C"/X; Rus(F)=H"""/u(X), F),

where Rus is the g-th right derived functor of the functor of direct
image us: C'a—Cx.

Moreover, if G is a sheaf of A-mcdules on C, then by Prop. 5.5,
ibid., we have a spectral sequerce functorial in F and G,

(4) E*=Exti(C™; G, Rus(F))=Exti*(C'™; u*(G), F)

where #° is the functor of inverse image u°: Ci—C'a.

In the following sections, we shall apply the above cohomology

and spectral theories to the case where C is the (fpqc)-site (resp.
(fppf)-site, étale site, Zariski site) (Sch/S), A=Z: corstant ring
of integers, F, G are commutative group preschemes over S and
E=Xis a S-prescheme. Then we denote Exty(F, G), H'(E, F),
Exty(F,G) H'(E, F) by Ext{_.,(F,G),, Hi, (X, F), Exti_,,(F,G),,,
H;, ((X/S), F) (resp. Exté,(F, G),, HYW(X, F) Exti . (F, G),,
H, ((X/S), F), Exti_,.(F, G):, -++).
Firally, we remark that H{ (X, F)=H'(X,,, F.), HL(X, F)
=H'(X,,, F,) ard H! (X, F)=H‘(X.., F.) where tke right term of
each equality is the cokomology group calculated on thke site X,,,
Xy, X, (cf. SGAA, Exp. VII ard Exp. VI, §7, Cor. 3.9).

3. Definition of PH-functor. Let %2 te a field, S be a
locally ncetherian k-prescheme, X Ee a S-prescteme, of finite tyre
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over S and G be a k-group scheme of finite type. We define a
contravariant functor PH(G, X/S) of (Sch/S) concerning a triple
(G, X, S) by

T (8ch/S)~—PH(G, X/S)(T) =
isomorphism classes of principal fibre space |
= | Y over XT=X>S< T with group G whose -
| canonical projection is (fppf)
Such a fibre space is a representable one of principal fibre sheaves
with the base space X; and with group G in the sense of
(fpgc)-topology on (Seh/S) and is, sometimes, expressed by a

sequence

GXxY—=Y—X, (cf. SGA, Exp. XI).
b2 ?

Then the canonical projection p is evidently a (fppf)-morphism.
PH(G, X/S) is not, in general, a (fpqc)-sheaf of (Sch/S). In fact,
if X=S, an element Y of PH(G, S/S)(T), T<(Sch/S) is
trivialized by passing to PH(G, S/S)(Y), where Y—T is the
canonical projection of Y. The associated sheaf of PH(G, X/S) in
the sense of (fpgc)-topology is denoted by PH(G, X/S) and is said
a PH-functor concerning a triple (G, X, S).

Let 0—G;—->G,—~G,—0 be an exact sequence of k-group
schemes (i.e. G, is invariant in G, and G, is the quotient of G, by
G,). Then by SGA, Exp. XI, we have an exact sequence,

0—-G,(X7)—G.(Xr) —>Gy(X)—>PH(G,, X/S)(T)—
—PH(G., X/S)(T)—PH(Gs, X/S)(T), for T€(Sch/S).

Then by operating the sheafication functor a, we have an exact

sequence,
0—Homs(X, G, s)—Homs(X, G, o) >Homs(X, Gy 5)—
—PH(G,, X/S)—>PH(G,, X/S)—PH(G,, X/S),
where Homs(X, G,,s)

2)
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is the (fpqc)-sheaf associated with the presheaf T~~—Hom;(X, G, r)
etc.. Suppose now that G is commutative and consider H;,(Xr, G),
H,(X:, G), H.. (Xr, G) and Hi.. (X, G), T=(Sch/S).

Those groups are identified with the éech-cohomologies calculated in
the corresponding sites on (Sch/S). Then, the usual argument
shows that those groups are the abelian groups of isomorphism
classes of principal fibre sheaves on X, with group G in the
corresponding sites on (Sch/S), (cf. SGAA, Exp. VII). When G is

affine, we have the next result.
Lemma 1.1. (1) If T is quasi-compact, we have
H;, (X7, G)=H,(Xr, G)=PH(G, X/S)(T).

These equalities hold for a non-commutative affine group G
if H,,(Xy, G)(resp. Hy( Xy, G)) is the set of isomorphism classes
of principal fibre sheaves of the base X; with group G in the
(fpqc)-site (resp. (fppf)-site) (Sch/S).

(2) (¢f. GBu, (11.7)). Suppose, moreover, that G is smooth over
k. Then we have

HZI(XTv G) = HgL(XT) G),

in particular, Hy (X, G)=H}.(X:, G).
(3) If G is special in the sense of J.-P. Serre [17], for T as
in the assertion (1), we have

Hit(XT) G) = ;ﬂr(XTy G)'

Proof. First, note that under the assumption on 7, an arbitrary
(fpgc)-(resp. (fppf)-) covering {U,—Xr} of X, is dominated by a
finer covering f: X'—X where f is a (fpqc) (resp. (fppf))-morphism.
Then the proof of (1) is done with the argument of [14], III,
(17.4). For the proofs of (2) and (3), the readers are sent to the
references.

For any S-prescheme, PH(G, X/S)(T) is an abelian group if
G is affine and commutative. In fact, let Y;, Y, be elements of
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PH(G, X/S)(T). Let F be a sheaf theoretic sum of Y, and Y,
in H,,(X, G). Then F admits a (fpgc)-local section (Y,X YZ)X>§X
(X, 4y)—F. Hence, the argument of Lemma 1.1, (1) shows that
F is representable.

Therefore, PH(G, X/S) is a (fpqc)-atelian sheaf included in
an (fpcc)-abelian sheaf H}, (G, X/S). Now we have the following

result.

Lemma 1.2. (1) If G is a commutative affine group scheme
of finite type over k, then PH(G, X/S)=H). (X, G).
(2) For an arbitrary k-group scheme G, PH(G, S/S) =0.
(3) If X is affine over S, PH(G,, X/S)=0.
(4) If S=Spec(k), F: the field and X 1is finite over k,
PH(G,, X/k)=0.

Proof. For T&(Sch/S), cover T by affine open sets {U,}.
Then a commutative diagram

0—-PH(G, X/S)(T)-11PH(G, X/S) (Ua)ZI}SPH(G,X/S) (UM Us

! [
| : o

| l
0—~H;,(X/S, 6) (T)—I1H;,(X/S,G) (U)Z L H;,(X/S, G) (Ue N Us)

shows that PH(G, X/S)(T)=18.,(X/S, G, T) if this equality holds
for serarated quasi-comract sets. If T is so, this can be proved as
follows;
L(FI.{G, X/S)HX(T)
= lim Ker(PE(G, X/S)(T") = FE(G, X/SH(T'xT))

T/ >T
fpqe

= lim Ker(H(Xr, G) = By (Xrier, G)
Srmmal, oy
f py:

= L(H)(T), wtere H is a functor T=(Sch/S)—~—
H(T)=H,(X;,G). Note that in the right hand term of the
fiist equality, T’;< T’ is quasi-compact. Thke same calculation
shows that PH(G, X/S)(T)=L1*(PH(G, X/S))(T)= L*H(T)
=H/.(X/S,G)(T). Hence follows (1). (2) is put here for
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memory. For (3), it is enough to see that PH(G,, X/S)(U)=0
for affine scheme U=Spec(R). Then, since PH(G., X/S)(U)
=PH(G,, X;,/U)(U), the result is easily proved by Serre’s theorem,
(cf. EGA, 1II, (1.3.1)). (4) was essentially proved in [13], with
supplementary use of Serre’s theorem. So, we omit the proof.
g.ed.
We shall give now an example of PH(G, X/S). If G=G,,
PH(G,, X/S) is the Picard functor of X over S, (cf. FGA, #°232).
If G=G,, note that PH(G,, X/S)(T)=H'(Xr, Ox,), if T is quasi-
comrpact.
Let O_>G1_‘)G2i63'—)0 be an exact sequencz of commutative
affine group schemes of finite type over k2  Then, a sejuence of
abelian sheaves on the (fpqc)-(resp. (fppf)-)site (Sch/S),

b
0— Gl,s_>Gz,s —S>G:s,s_> 0

is exact, because p is a (fppf)-morphism. Corsider an exact
sequence of cohomologies of Xr-sections.
OﬁGI(XT) _’Gzcxr) -—)G:S(XT) _’HKXT, G1) -)H}(XT Gz) g
*H%(XT, Gs) (_’ H?(Xh Gl)_—) )» i:pq or pl
This sequence coincides with the sesquence 1), if T is quasi-compact.
Consider, also, an exact sequence of local cohomologies of X-sactiors.
0—Homs(X, G,) > Hom;s(X, G,) - Homs( X, G,) - H(X, G) —
—-Hi(X, G,) - HI(X, G))(—Hi(X, G)—-), i=pq or pl.

This sequence coincides with sequence 2) if 7=pg.

4, Connection between the global cohomologies and the
local cokomologies. From now on, we put the following assump-
tion (C) on X, unless explicitly mentioned;

(C) X has a section s over S, (i.e. f-s=ids), and satisfies
(f1)x(Ox,)=0r for every T=(Sch/S).
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The latter condition will be satisfied by the Kiinneth formula if (1)
f is proper, S is the spectrum of the field 2 and T'(X, Ox)=k, or
(2) f is flat, proper and whose fibres are separable (cf. EGA, IV,
(4.6.2)) and f4(Ox)=0s.

First, we shall prove:

Lemma 1.3. Let T be a quasi-compact S-prescheme and G
be a commutative affine k-group scheme of finite type. Then,
(1) Hi(Xr, G)=HI(X/S, G)(T)XHIT, G) (direct product),
t=pq, pl.

(2) H,(X/S, G)(TH)=H,(X/S, G)(T)=PH(G, X/S)(T)
= L(PH(G, X/S))(T).

Proof. By virtue of the spectral theory (2) of §2, we have a

spectral sequence,
Ef*=H}, (T, Hi,(X/S, G)=H)(Xr, G).
The exact sequence of terms of low degree is
0—H;,(T, Homs( X, G))—H}, (X7, G)— H'(T, H},(X/S, G)).
Put H a functor T<(Sch/S)'~—H),(Xr, G). Then, taking

account of the quasi-compactness of 7T, LH(T) is calculated as
follows:

LH(T) =lim Ker(H(T’):;H(T'>T< AD))

T'->T
fpqe

=lim Ker(PH(G, X/S)(T")ZPH(G, X/S)(T'>T< T)

T'>T
Ipqe

=L(PH(G, X/S)H(T".
However, it is not difficult from the (fpqc)-descent theory for affine
schemes that the canonical morphism Hj;,(X;, G)—LH(T) is surjec-
tive. Since the canonical morphism LH(T)—L*H(T) is injective,
we have an exact sequence from the above exact sequence

I¥
0—-H;,(T,G) <*__’ H,(Xr, G)—=LH(T)—0
sk
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where one note that Homs(X, G) =G by the assumption (C). The
sequence splits. Let T'57T be a (fpgc)-morphism. Then, there

exists sections $;: T'— Xy, Sprr: =T'x T'— X; and commutes
T

the following diagram,

b1 x

XT”___; XT’
b2 x

A
TST” St/ ie. pix Srr=Sr-pi,

b i=1, 2,

T'—/ T
D2

where p,, p. are the canonical projections of 7" to T'. Since T':
T" are quasi-compact, we have the following commutative diagram:

1t
0—H;,(T, G) == H,(Xr,G) — LH(T) —0

al ;; a~l LH(a)l
0—H;, (7", G) "*JH},.,(XT', G)— LH(T')—0
P?l l P ;* pi‘ﬁxup?::x LH(p)) l lLH(pz)
0—H,(T", ) =H,(Xr,G)—LH(T")—0
s

where the lines are exact and the columns are exact in the middle

terms, without the right column. Then the diagram chasing shows

that the right column is also exact, i.e. LH(T)=L*H(T).

Since L*'H=PH(G, X/S), we have LH(T)=PH(G, X/S)(T). For

the casz of H}(X/S, G), the proof is the same. q.e.d.
Next, we shall prove

Lemma 1.4. Let T be a quasi-compact S-prescheme and G
be a commutative affine smooth k-group scheme of finite type.
Then we have (1) Lie(PH(G, X/S))(T)=PH(Lie(G), X/S)(T),
(2) Lie(Hi(X/S, G))(T)=Hi(X/S, Lie(G))(T), i=pq, pl.

For the definition of Lie-functor of a group functor, see SGAD,
Exp. I

Proof. We have an exact sequence of k-group schemes
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‘ ?
0—Lie(G)— G == G—0, G'=T(G/k)
e

which splits by the unit section of G-group G'. Since G is smooth
over k, Lie(G), hence G', are also smcoth over 2 Then, we have
the following exact seguences of aktelian skeaves of (frqc)-(and
(fppf)-) site (Sch/S),
0—PH(Lie(G), X/S) —PH(G', X/S) —=PH(G, X/S)—0
0— H,(X/S, Lie(G)) — H,(X/S, G') = H,(X/S, G)—0.
We shall prove row, H,(X;, G')=H,(X,,, G). Since G and G’ are
smooth over k, we have oniy to prove Hi.(Xr, G')=H!(X,,, G) by
virtue of Lemma 1.1. By the spectral theory (3) of §2, we have a
spectral sequence, F'=H! (X1, B (7,..)x(G))=HX(X,,, G), where
7, is the canonical projection I,=Spec(k[t]/(#*))—Spec(k). Then,
since =, induces an equivalence on the étale sites (S8eh/S) and
(Seh/Is), (cf. SGAA, Exp. VIII, Th. 1.1), we know R‘(7.:)(G)
=0, if g>0. Hence, Hi.(X7, (m.00)x(G)) =HL(X;, G)=H.(X,,, G).
Sirce T is quasi-compact,
Lie(PH(G, X/S))(T)=Ker(PH(G, X/S)(I;)>PH(G, X/S)(T))
= Ker (H}/(X.,, G)/Hy(I;, G)~Hy(Xs, G)/Hu(T, 6))
= Ker(H}(X,,, G)—H,(Xr, G))/Ker(H,,(Ir, G)—=H,(T, G))
=H},(X;, Lie(G))/H,/(T, Lie(G))=PHLie(G), X/S)(T).

The process of calculation will be clear without explanatiors.
q.e.d.

Corollaryl1.5. If T is locally noetherian, we have
(1) Lie(PH(G, X/S))(T)=PH(Lie(G), X/S)(T),
in particular Lie(PH(G., X/S))(T)=PH(G,, X/S)(T).
(2) PH(Z/nZ, X/S)(T)=Ker(PH(G., X/S)(T)Z
SPH(Gn, X/S)(T)),
if nis prime to the characteristic p of the field k.
If p is positive,
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PH(Z/pZ, X/S)(T)=Ker(PH(G., X/S)(T) =%
—PH(G., X/S)(T)),
where F is the p-power operation of p-Lie algebra PH(G., X/S)(T)
of which structure is induced from the Frobenius endomorphism
on G,, ¢f. SGAD, Exp. VII
PH(y,, X/S)(T)=XKer(PH(G.,, X/S)(T)%P» PH(G., X/S)(T)).
PH(a,, X/S)(T)=Ker(PH(G., X/S)(T)—F»PH(G,,, X/S)(T)).

Proof. If 7 islocally noetheriaa, T is covered by quasi-compact
open sets {U,} such that U, Us is also quasi-compact, (cf. EGA,
1V, (1.2.8)). Thea (1) is proved as follows;

PH(Lie(G), X/S)(T)=Ker(ITPHE(Lie(G), X/S)(U)=
STPH(Lie(6), X/S)(UaUs) =Ke=(ILie(PH(G, X/S)) (U=
Z({I‘gLie(PH(G, X/S))(U.NUs))=Lie(PH(G, X/S))(T),
where one note that Lie(PH(G, X/S)) is a'so a (fpgc)-sheaf on
(Seh/S). The assertion (2) is easy to prove. q.e.d.

Under these preparations, we can state

Theorem 1.6. Let X, S bz as above. If the Picard pres-
cheme Pic(X/S) exists and is locally of finite type over S, the
contravariant functors PH(G,, X/S), PH(Z/nZ, X/S). PH(Z/pZ,
X/S), PH(u,, X/S) and PH(a,, X/S) restricted to the category
of locally noetherian S-preschemes, are representable and satisfies
the relations on the above-mentioned category,

PH(G,, X/S) = Lie(Pic(X/S)), PH(Z/nZ, X/S)=, (Pic(X/S)),
PH(Z/pZ, X/S)=Ker(Lie(Pic(X/S)) "-¥ Lie (Pic(X/S))),
PH(y,, X/S)=,(Pic(X/S)), and

PH(a,, X/S) = Ker(Lie(Pic(X/S))—>Lie(Pie(X/S))).

Proof. Trivial.

Corollary 1.7. Suppose T is quasi-compact. Then,
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(1) Lie(Pie(X/S))(T)=H'(Xr, Ox,;)/EN(T, Or); if T is an affine
scheme (=Spec(A4)), Lie(Pic(X/S))(A)=H'(Xa, Ox,). The socle
of the nilpotent part P(H'(Xa, Ox,)) of the Fitting decomposi-
tion of p-Lie algebra H'(X., Ox,) is equal to PH(a,, X/S)(A).
If k is a field which contains (p-1)-th primitive root of unity,
then PH(Z/pZ, X/k)(k) is equal to (Z/pZ)" where N is equal
to the k-dimension of the semi-simple part® of the Fitting
decomposition of H'(X, Oy).

(2) (Pie(X/SH)H)(T)=H\(Xr, Z/nZ)/H:(T, Z/nZ). Especially if
kis separably algebraically closed, ,(Pic(X/S))(k)=H.(X, Z/nZ).
»(Pic(X/S)(T)=H}, (X7, 1) /By (T, p1,). Especially if k is perfect,
»(Pie(X/S)) (k) =H,,(X, u,). Here, we are limited to the cases
where Spec(A) and Spec(k) are S-preschemes.

Proof. Easy. Note that the statement does not require
Pic(X/S) to be locally of finite type over S. q.e.d.

The Picard prescheme is representable by a group scheme locally
of finite type over S, if (1) f: X—S is projective, flat and the
geometric fibres of f are integral (=reduced and irreducible), or if
(2) S=Srec(k) and f is proper (cf. FGA n°232 and n°236 and
[11]).

We shall treat in Chapter 4 the problem of the representability
of a (fpqc)-sheaf PH(G, X/S).

Appendix to Chapter I.
In Lemma 1.1, Lemma 1. 3, Lemma 1. 4, Corollary 1. 5, Theorem

1.6 and Corollary 1.7, we have used the quasi-compactness of a S-
prescheme 7. But this assumption is not essential and can be

removed, if we note the following fact.

Lemma. Let G, X and S be as in Lemma 1.1. Then

*) According to the terminology of J. Dieudonné [193., it cocrresponds to the
core of p-Lie algebra H!(X4. Ox,).
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PH(G, X/S)(T)=H,,(Xr, G), for arbitrary S-prescheme T.

Proof. Let F be a (fpqc)-principal fibre sheaf over X; with
group G and U= {U,} be a covering of T by affine open sets U..
Then by Lemma 1.1, the restriction F, of F on Xy, is represen-
table by a prescheme Y, over Xy,. Suppose U, Uas>x¢. Then the
restriction Fo|U.NUs of F, on U,MNUg is r1epresentable by
Y.|U.NUs. Analogously, Fs| U, Usis representable by Y| UsN
Us. Hence there exists a Xy,u,-isomorphism ¢us: Yol UsNUs—
Ys|U.NUs such that ¢ayees=¢er for a B, 3 such that
U.NUsN Uy ¢. Therefore {Y,} defines a principal fibre space Y
over X; with group G which represerts F. q.e.d.

Therefore for G=G., a,, 1y, Z/pZ, Z/nZ: n N, PH(G, X/S)
is representable on the category (Sch/S) if Pie(X/S) exists.

Chapter II. On the generalized Weil-Barsotti formula

In this chapter, we shall assume that S is a locally noetherian
prescheme, and X is a projective abelian scheme over S, (cf. [14]).
Then f: X—S satisfies the assumption (C) of chapter I. Let G be
a commutative affine k-group scheme of finite type. We shall define
a contravariant functor with respect to a triple (G, X, S) which
corresponds to PH-functor; for a S-prescheme T, let Extr_,,(X;, Gr)
be a set of isomorphism classes of Yoneda extensiors of commutative
T-groups

0—Gr->¥-LoX,—0
where p is a (fpqc)-morphism, (cf. [12], III, §17). Then, by the
(fpqc)-descent theory for affine morphisms, Extr_,(X;, G;) is an
abelian group, and for an exact sequence of commutative affine k-

group schemes of finite type 0—G,—G,—~G;—0, we have an exact
sequence,

1) 0—G(T)—G(T)—Gy(T) —>Extr_,(Xr, Gi1)—
—Extr_, (X7, Gz,r) —Extr_,, (X7, Ga,T)-
The (fpqc)-sheaf associated wiht the presheaf T——Ext;, (X7, Gr)
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on (Sch/S) is denoted by Exts (X, G). Then for the sequence
0—G,—G,—»G,—0, we have an exact secquence of (fpqc)-abeliaa
sheaves,

2) 0—Ext, (X, G)—Ext, (X, G)—Extr_ (X, Gy).

Oz the other hand, X, Gs are considered (fpqc)-(zesp. (fppf)-,
étale) abelian szeaves on the (fpqc)-(resp. (fopf)-, étale) site(Seh/S).
The {-ta gioba’ Ext-group aad the i-th local Ext-grous are deaoted by

Extr o, (Xr. Gr)s, Exti (X, G),(resp. Extr, (X7, Gr)u,

Exti (X, G),, Extr . (Xr, Gr)i, Exti (X, G)..).

Then we have the followirg results which corresponds to the results
of Chap. I, Lemma 1.1.

Lemma 2.1, Let G, X, S be as above and T be a quasi-
compact prescheme over S. Then,

€Y) Extr . (Xr, Gr),=Extr,(Xr, Gr)y=Extr ., (X, Gr),
@) if G is smooth over k, then

Extr_ ., (Xr, Gr)p=Extr_ (X, Gp)..
3 Exts ., (X, G)=Ext} (X, G),,.

Proof. The assertion (2) oaly needs a proof. Since an
(Yoreda) extersion Y of Extr. (X, Gr); (Y): 0—-G,— Y£>XT—>O
can be naturally considered a principal fibre space over X; with
group G in the sense of (fpqc)-topology, thus we have a homomor-
phism of abelian grougs,

z: Extr ., (X, G-)—=PH(G, X/S)(T).

The extension (Y) is the one in the sense of (fpqc)-(resp. (fppf)-,
étale) topology if and only if p is an epimorphism of (fpqc)-(resp.
(fppf)-, étale) sheaves of sets. It depends only on the image of
(Y) by n. If G is smooth over &, as PH(G, X/S)(T)=H,/(X;, G)
=H!(X,, G), the assertion (2) follows immediately. q.e.d.

For an exact sequence 0—G,—G,—G,—0, we have an exact
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sequence,
0—Gi(T)>Go( T) =Gy T)=Exts o (Xr, Gr.r) >

—Exti, (X5, Gor)i—~Extr (X, Gy 1)i(=Ext: (X7, Gir)i—0),
for i=pq, pl. This szjuence coincides with the szquence 1) if T
is quasi-compact. For the local cass, we have an exact s=jueace,

0—Ext! (X, G,),—~Extl (X, G.).—~
—Exti ., (X, G) —(Extl (X, G)i—-)

for i=pgq, pl. This sejuence coincides with the szquence 2) if

t=pg. Next, we shall state results connecting the local extension
groups with the global extension groups.

Lemma 2.2. Let G, X, S be as above and T be a quasi-
compact S-prescheme. Then, we have,
EXtZ‘—xr(X) G),(T) EEthT—xr(XTv GT):') fOV Z:pq> pl
and
Exts (X, G)(T) =Ext;,(Xr, Gr)
g].Ln.;l Ke‘:(EXtT’_g,(XT’, GT’) ._-—; EXt(T’);‘T')—gr(XT'xTT,y GT';T’))‘
Tree
Proof. We use here the spectral theory (1) of Chap. I, §2.
There exists a spectral sequence,
Eif'q= ﬁq(Ty Eth—xr(X, G)M):Exﬁ’f—gr(XTv GT)M*
The exact sequence of terms of low degree is,
0—)H;q(Ty HomS—gr(X’ G))ﬂEXt}—zr(XT) GT)M_>
_>H20(T9 EXté—er(X» G)M)'
Since (fr)x(Ox,) =O; from the hypothesis and since
Extr_.,(Xr, Gr)sp—
—>l£n) Ker(Ext}’-gr(XT'y Gr’)pq:EXt(r';r’)-u(Xr’?r’y GT'?T')M)

T'->T
forac

is surjective by virtue of the (fpqc)-descent theory for affine



18 Masayoshi Miyanishi

morphisms, we can easily get the results. The proof is the same for
the (fppf)-case. q.e.d.
The following results correspond to Lemma 1.4 of Chap. I

Lemma 2.3. Let T be a quasi-compact S-prescheme and
suppose G is smooth over k. Then we have,
Lie(Exts,, (X, G))(T) = Exts (X, Lie(G))(T)
Lie(Exts_., (X, G))(T) = Exti_.. (X, Lie(G)):(T).

for i=pq, pl.

Proof. The proof is analogous. We use the spectral theory
(4), of Chap. I, §1. Then the corresponding spectral sequence is,

Eg'quXt);--ar(XT» Rq(nk.:’l)*(G))(*’vzEXt;‘;'-x'(XlT’ GlT)é"’
where the notations of Lemma 1.4 is used. Hence,
EXt'}_g,(XT, G;‘)élgEXt;’T_g,(X[T, GIT)él-

We leave to readers the work to complete the proof. q.e.d.

Corollary 2.4. If T is locally noetherian, we have
(1) Lie(Exts, (X, G))(T)=Exts,, (X, Lie(G))(T).
In particular,
Lie(Exts_,, (X, G,))(T) = Exts_., (X, G.)(T).
(2) Exts,, (X, Z/nZ)(T)=,Exts. (X, G.))(T), if nis prime
to the characteristic p of the field k. If p is positive,

Ext, (X, Z/p2) (T) = Ker (Ext, ,,(X, G.) (T)) —%
—>Eth_gy (X) Ga) ( T))

where F is the endowmorphism induced from the Frobenius
endomorphism of G,

Ext,_,, (X, 1) (T) = ,(Ext,_,. (X, G)) (T),
and
Exts_,, (X, a,) (T)=Ker (Exto_,, (X, G.) (T)—>
—Exts,, (X, G.)(T)).
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Theorem 2.5. Let X, S be as above. Then we have,
(1) (the generalized Weil-Barsotti formula) (cf. [14], I11. §18),

Exts_., (X, G,) (T)=Pic"(X/S)(T) “—=Pic(X/S)(T)

where T is locally noetherian and Pic’(X/S) (=X': the dual
abelian scheme of X) is the comnected component of Pie(X/S)
which contains the unit of Pic(X/S).

(2) The contravariant functors of abelian groups,

Exts_,. (X, G.), Exts,, (X, G.), Exts ., (X, Z/nZ),

Exts . (X, Z/pZ), Exts_,, (X, n,) and Exts ., (X, a)
restricted to the category of locally noetherian S-preschemes are
representable and satisfy the relations on the above-mentioned
category,

Exts_., (X, G,)=X", Exts,, (X, G)=Lie(X"), Exts,, (X, Z/nZ)
=, (X", Exte.. (X, Z/pZ)=Ker(Lie(X") =% Lie(X").
Exte, (X, u)=,(X") and Exts, (X, ay)=Ker(Lie(X")—>
—Lie(X")).
(3) If G is a commutative finite k-group scheme, then

Exts_, (X, G)=PH(G, X/S)

on the above-mentioned category.

Proof. F. Qort [14] has proved that if T is a locally
noetherian S-prescheme, Extr,,(Xr, G,)=X'(T). Then it is easy
to see

Exts., (X, Gu)(T)=X"'(T).

The assertion (2) comes from Corollary 2.4. For the proof of (3),

see next corollaries. q.e.d.

Corollary 2.6. Suppose T is a noetherian prescheme. Then,
(1) Extr,, (X7, G.r)=Lie(Pic(X/S)) (T)=H'(Xr, Ox,)/H'(T, Or).
If T is affine (i.e. T=Spec(A)), Exta,, (X4, G, a)=H'(X4, Ox,).
Exta . (Xa, (Z/pZ))=PH(Z/pZ, X/S)(A)=Hi.(Xa, Z/pZ)/Hi.(4,
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Z/pZ). Exti,(Xa, (@)a)=PH(wx,, X/S)(A)=the socle® of
nilpotent part of H' (X4, Oy,).

(2 Extr ., (Xr, (Z/nZ);)=,(Pic(X/S))(T)
=H!(X,, Z/nZ)/H.(T, Z/nZ).
Extr, (Xr, (u)1r)==,(Pie(X/S)) (T)=H}(Xy, 1) /Hu (T, p).

Proof. Combine the results of Theorem 2.5 with Corollary 1.7
of Chapter I. Only note that Pie(X/S)/Pic’(X/S) has no torsion
cf. [12] and that Lie(X*)=Lie(Pic(X/S)).

Corollary 2.7. (cf. [10] and [12]). If k is an alg:braically
closed field, and X is an abelian scheme over k, we have
Ext, .. (X, G)=H},(X, G), for any commutative finite group
scheme G over k.

Proof. By virtue of Corollary 2.6, the assertion is correct for
simple commutative finite group schemes over k%, hence it is correct
for all commutative finite group schemes over k&, (cf. [10]). q.e.d.

Chapter III. On the fundamental group

1. In this chapter, the field %k is supposed to be algebraically closed
and of positive characteristic p. ILet X be an iategral scheme of
finite type over k. In [8], we saw that covariant functors C5(k)>
G——E,(G, X)=(Ab), C/'(k)2G~—~—E,/(G, X) < (Sets) and C,(k)
SG——E,(G; X, x)=(Sets) are strictly pro-representable where
Ci(k) (resp. C;(k), C,(k)) is a category of commutative finite A-
group schemes (resp. infinitesimal k-group schemes, finite k-group
schemes) and x is a generic point of X. E,(G, X) is nothing but
PH(G, X/k)(k). Denote by F.(X), Fun(X) and F(X, x) the
pro-finite k-group schemes which pro-represent the above functors.
If F(X, x) is an projective limit l(iEG‘(X, x), where G' (X, x) are

finite £-group schemes, Fi,¢(X) is isomorphic to the projective limit

*) P(H'(X4 Ox,)).
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lim G'(X, %) of maximal infinitesimal subgroup schemes G’ (X, &) s

oitf G (X, x). The quotient F(X, x)/F..(X) is the fundamental
group of X at x in the sense of A. Grothendieck [4]. F.(X) is
isomorphic to the quotient F(X, x)/[F(X, x), F(X, x)] of F(X, x)
by its commutator subgroup [F(X, x), F(X, x)].

Now we shall calculate F.(X) for a proper integral k-scheme
X. Since k is algebraically closed, PH(G, X/k) (B)=H},(X, G)=
E.(G, X)=Hom,_;,ups (F.(X),G) for any commutative finite k-group
scheme G. F.(X) is decompcsed to a direct product of four sub-
groups F.(X),, F.(X),, F.(X), and F.(X),, corresponding to
the decompcsition of the category C5(k) into A,, X A, XA, XA,
(cf. [14]).

Then our result is

Theorem. 3.1. Let X be a proper integral k-scheme. Then,
1) F.(X), =11 Z/"mPiee
I3p

/: prime

(2) F.(X),=Z3®, where 6,(X) is the k-dimension of the semi-
simple part of p-Lie algebra Lie(Pic(X/k)) (B)=H'(X, Oy).

(3) F.(X),=(K.)"®, where 06.(X) is the k-dimension of the
semi-simple part of p-Lie algebra Lie(Pic(X/k).a) (k). For the
definition of K.., see [14]. (We shall see that ¢,(X) is equal to
0:(X) in the proof of (4)). ‘

©) FC(X),,%’li(_mD(Ker(Pic(X/k)-E;Pic(X/k)))/Z;f'(X).

The term of the" right hand side of the equality (4) is an ex-
tension of the fundamental group F(m/(é\m)“z“‘)) (ef. [9])
by an quotient of the finite group scheme D(NS°(X)) where
D(NS"(X)) is the linear dual of the connected component of the
unit of the Nevon-Severi group scheme NS'(X) (see Footnote of p.
23) of X.

Proof. (1), (2) ard (3) follows from Theorem 1.6 and
Corollary 1.7. For the proof of (4), we use the results of T. Oda
[12], p. 73 and 74.

Put P=Pic(X/k), P°=Pic’/X/k) and ,,,P=Ker(Pf:>P).
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Denote by H,(P) the dual vector space of Op./F"(Mp,.)0Os.,
(Op,., Ms,.) being the local ring of P at the unit e. H,(P) can be
considered as the hyperalgebra of P formed by invariant derivations
of height <u, (cf. [19]). Then D(,,P)=Spec(H,(P)) and
H'(X, W,.)=Hom,_;,..,.(Spec(H(P)), W..), where W,,.=,.W,,
W, being the Witt group scheme of length # and where
Spec(H(P))zli_m) Spec(H,(P)), with transition maps D(,):

D(,,.+P)—D(,.P), i, being the canonical injection 7,: ,,P—,...P.
An easy calculation shows that F.(X),=1imD(,,P)/(Z,)>*®. Note

n

AN AN
that ., P is identified with ,,P, P being the completion of P at the unit.
Consider an exact sequence,

0— P y— P—NS' (X )—0.
Then for a positive integer » large enough, we have a commutative

diagram
0 0

L

0—) pnProed — F,,P_—)NSIO<X)—'>O

lz‘m, li [ id.

0_)Fn+1P?ed—)pn+IP—)NS,0<X)—)O)

or a commutative diagram
0—) D(NSIO<X))_) D(pn-HP)—) D(rn-#lpred)-_)o
|ia |p@ [P
0— D(NS"(X))—D(,.P) —> D(,.P...) —0

l

0 0

P
Replace ,.P, ,.P.. by ,.P, ,,P.. and take projective limits. Then
we have an exact sequence,

(*)  0—D(NS"(X))—lim D(,,P)—>lim D(,,P,.;)—>0.

n n

Put N,=D(NS"(X))N(Z,)n®, Then N, is a finite abelian p-
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group. From the sequence (*), we have

0—D(NS"(X)) /Ni—lim D(,,P)/(Z)*®—lim D (. Pra)/(Z)"°=>0.

" n

This is an exact sequence of local profinite k-group schemes and
: : B0, W /(R Vo )
proves the last assertion of (4), since F(Pic’(X)ra/(Gn)"*)=

P
lim D(,,P.a)/(Z,)°*®. At the same time, we have obtained an

equality ¢,(X)=0(X). g.e.d.

Consequently, we have a formula,

FX)= Il Z{m®edm x 23005 Ko
Iap

1: pr‘imu

x ((im D(.Pie(X/k)))/(Z)™™)  o(X)=(a(X) =0.(X)).

Corollary 3.2. Let X be a proper integral k-scheme. Then,
Hj, (X, G)=Hom,_4,..,.(D(G), Pie(X/k))

for any commutative finite k-group scheme G.

PrOOf. HI(X, G)%“Hom,,_gmps<Fc(X), G) %Homk—grouﬁS(D(G)v
D(F.(X))) where D(F.(X))= 1.@ (Q,)Z)HmTeE g (Q,/ Z,)* PP

/: prime
(/G\,,.) "(“')El-)f’—ic/()m) / (6,,.) *M=]im (finite group schemes of Pic(X/k)).
Hence Hom,_g,0u. (D(G), D(F.(X)))=Hom, ;,..,,(D(G), Pie(X/k)).
q.e.d.

Remark. The formula of Corollary 3.2 is stated in [4] without
explicit proof.

2. The isomorphism of Corollary 3.2 can be given an explicit form
under the additional assumptions:

X is a proper integral k-scheme such that (i) the connected
component Pic’(X/k) of the unit in Pic(X/k) is an abelian scheme
and such that (ii) the Neron-Severi group®™ NS(X)=Pic(X/k)/

*) We can call NS'(X)=Pic(X/k)/Pic°(X/k)... the real Neron-Severi group
and distinguish it from NS(X).
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Pic'( X/k) is torsion-free.

The dual abelian variety (Pic’(X/k))* is the Albanese variety
Alb( X/E) of X. We choose a k-rational point %, of X and a
canonical morphism 7: X—Alb(X/k) such that 5»(x,) = the unit of
Alb(X/k). Let A=Alb(X/k). Consider a homomorphism »*:
H;, (4, G)—H,,(X, G), for a commutative finite k-group scheme G,
which sends BEH},(4, G) to Y=BZ<XEH},,,(X, G). Since A is an
akelian scheme, H},(A4, G) is canonically identified with Ext,,,(4, G)
(cf. Corollary 2.7).

Take an extension B in Ext, ., (4, G),

0—G—B—A—0.

Let B'=(B"),,; and N=GNB’. Then B/B'=G/N by the Snake
Lemma; see thz following commutative diagram,

G/N—>B/B’
[
0—>G B A 0
0—>N B’ 1)4 0.

The duality of Nishi-Cartier gives an extension,

0
0 .
0—>D(N)—>A'=Pic’( X/k)—>B"—>0

can.]\proj. /
D(G)
can. proj.

The composite morphism D(G) ——— D(N )-LPic"(X/k) defines an
element ¢(B) of Hom,_,(D(G), Pic’(X/k)) (we denote this map
by ¢c or simply by ¢). Then we kave

Lemma 3.3. The map ¢ BeExt, ,,(A, G)~——p(B)e
Hom,_,,(D(G), Pic’(X/k)) is an isomorphism of abelian groups.

Proof. let B, B’ be elements of Ext,,, (A4, G). LetB=:
(B, B'’=(B™),s, N=BNG and G'=B’'NG. Then they give
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two extensions,

0 N
0 N’

A 0
A 0.

B
FI

The exact sequences of local Ext-groups are, then,

( ) {O—>H0m,,_g,-<N, Gm) 'i)Extk_gr<A) Gm) _—)Eth—57<E! Gm)
0—Hom,_,,(N', G) SExt, (4, G)—Ext, . (B', G.)

The Cartier-Shatz formula and the Weil-Barsotti formula (cf. [14])
show that ¢(B)=j'n, ¢(B’')=j-n" where n (resp. =') is the
canornical projection D(G)—D(N) (resp. D(G)—D(N")).

Suppose ¢(B)=¢(B’). Then N=N’', j=j and ==='. On the
other hand, B(resp. B') is obtained by extending the group N to
G from B(resp. B').

Consider a diagram,
Ext,,, (4, N)Z5Hom, ,,(D(N), Pic'(X/k))
y J
Ext,,, (4, G)~%Hom, ,.(D(G), Pic"(X/k)).

It is evidently commutative and tke vertical arrows are injective.
Then B is isomorphic to B’ if B is isomorphic to B’. Therefore,
we can assume N=G, B=B ard B'=B".

Suppose first that G can be embedded in G, (resp. G.). From
the exact sequences (*), we have

0—Homy,, (G, G.) P2 PExt, (4, G.)—Exts,.(B, G.)
0sHom. | (G, Gm)ﬁw)Extk-g,yA, G.)—Ext, ,.(B’, G)
resp.
0—Hom,_,,(G, G) ™ EV® gy (4 G.)—~Ext,..(B, G.)
LieCo(B") ()

I
O_)Homk—gr(Gy Gu) '_)Eth—gr(Ay Ga) _—)Eth—gr (B ,7 Ga)

where we shall note that we have Hom,_, (G, G,)(k)=Hom,_,,(G,
Gm}: Homl—lr (G » Ga) (k) EHomk—gr(G ) Gﬂ) ’ EXtA—gr<A ) Gm) (k) =
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Ext, .. (4,G,), Ext,,, (4, G,) (k)=Ext,,, (A4, G,) and Lie(Ext,_,, (A4,
G,)) (k)=Ext,,, (A, G.) (k). Let { be the injection of G into G,
(resp. G,). Then ¢(B) (k) (@) (resp. Lie(¢(B)) (k) (7)) is the class
of the extension which is obtained from B by extending G to G,
(resp. G,). Since ¢(B)=¢(B’), we have ¢(B) (k) (@) =¢(B") (k) (1)
and Lie(p(B)) (k) (@) =Lie(e(B"))(k)(#). On the other hand, a
morphism Ext(A4, ¢): Ext,_, (A4, G)—Ext,.. (4, G,) (resp. a mor-
phism Ext(4,:): Ext,, (A, G)—Ext, (A G,)) is injective and
¢(B) (k) (1) =Ext(4, ) (B) (resp. Lie(¢(B)) (k) (1) =Ext(4, 7)(B))
the same equality being valid for B’. Hence B is isomorphic to
B’.  Therefore ¢¢: Ext,,, (A, G)—Hom,_,(D(G), Pic®(X/k)) is
injective if G can be embedded into G, (resp. G.).

For an arbitrary commutative group scheme G, the induction
argument on the k-rank of G reduces us to the following situation:

If 0—-G,—G,—>G;—0 is an exact sequence of commutative finite
k-group schemes such that ¢ and ¢¢, are injective, then ¢¢, is also
injective. This can be observed from a commutative diagram,

0 0

! o V
0—Ext, . (4, G)—~Hom, .. (D(G)), Pic*(X/k))

Extk_j,(fl, G:)—%Hom, ,,(D(G:) ,i Pic’'(X/k))

| ® !
0—Ext,, (4, Gs)—>Hom,_.,(D(Gy), Pic*(X/k))
where the columns are exact.
Next we shall show the surjectivity of ¢s;. Let 2 be an element
of Hom, ., (D(G), Pic°(X/k)), L be the image of 2 and B be the
quotient abelian scheme of Pic’(X/k) by G:

0

1
0——>L——Pic*(X/k)—> B——0
[P,
D(G)
Dualizing the above diagram and extending the group D(L) to G,

we have a commutative diagram of extensions:
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0 0
| }

0—>D(L)— B'—> A—0
} | J

0 G B'— A—0.

Then B’€Ext,., (A, G) and ¢;(B’) =21, since (B"),.=B' ¢ is
thus surjective. q.e.d.

From the assumption (ii), Hom,_,(D(G), Pic"(X/k))=
Hom,_,,(D(G), Pic(X/k)). Define a homomorphism +r; (or simply
¥): Hom, ., (D(G), Pie(X/k))—H,, (X, G) by ¢r=7%¢":

L (A, G)SHL (X, 6)

!| [
Ext,, (4, G) —<>Hom,_.,(D(G), Pie'(X/k)).

Let Y be an element of H},(X,G). Then, by virtue of
Theorem 3 [10], the Albanese variety Alb(Y/k) is an extension
of Alb(X/k)=A by a quotient H of G:

GxZ —3Y — X

7

HxAIb(Y/E)ZAlb(Y/R)—A.
Let 2 be an element of Hom,,,(D(G), Pic°(X/k)). Then, it is
easy to see that Alb(ye(2)/k)==¢z'(2). Hence, + is injective.
The comparison of the structures of H},(X, G) and Hom,,(D(G),
Pic’(X/k)) shows that +; is an isomorphism. We have now

proved

Theorem 3.4. If X is a proper integral k-scheme such that
(z) the connected component of the unit Pic*(X/k) of Pic(X/k)
is an abelian scheme and such that (ii) the Nevon-Severi group
NS(X)=NS(X) (k) is torsion-free, then the homomorphism at-
tached to a canonical morphism v: X—Alb(X/k)

7*: Hj (Alb(X/k), G)—H, (X, G)
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is an isomorphism for an arbitrary commutative finite k-group
scheme G. In other words, any Galois covering Y of X with
group G is obtained by pulling back by u an extension in
Ext, ., (AIb(X/k), G) and the extension is obtained from an
isogeny B of Alb(X/k), (c¢f. [10]).

Remark. The condition (ii) can be removed or weakered by

restricting a group G to the category A, A,, A, or A,.

Chapter IV. On the representability of PH-functor

In this chapter, the field % is supposed to be algebraically closed
and of positive characteristic p. Let X be a proper integral scheme
of finite type over £ and G be a commutative, affine algebraic k-
group scheme of some type (cf. Lemma 4.2). The purpcse of this
chapter is to show that PH(G, X/k) is representable by a
commutative group scheme, locally of finite type over k. For this
purpose, we shall apply the representability criterion by J. P. Murre
[11]. We must verify the conditions (P,)~(P;).

We shall begin with the condition (P,).

Lemma 4. 1. If G is a commutative, affine algzbraic k-group
scheme, PH(G, X/k) satisfies the conditicn (P,).

Proof. Let C be the category consisting of k-algebras of finite
length and morphisms of k-algebras, and P be the restriction of
PH(G, X/k) on the dual of C. For the pro-representability of P, we
stall apply tke criterion by A. Grothendieck, (FGA, 195-09, Théoréme
1). The condition (i) and the case (a) of the condition (ii), are
easily verified. For the case (b) of the condition (ii). Théoréme
2 (ibid.) is available. The case (b) is as follows: Let A be an
object of C which is a local k-algebra and A—A’ be an injective
morphism of C such that the quotient module A’/A is a A-module
of length 1. Note that in this case, the diagram A—)A’ZA’(%)A’

is exact. Then the diagram
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P(A)— s P(AN== P(AQ A
T2 A
is exact. Let Y’ be an element of P(A’). By virtue of Lemma 1. 3,
«Chapter 1, we can consider Y’ as an element of H.,(X., G), ie.

‘we have a diagram,

Gx V== V'L Xy,
pr:
Put F'=p,(Oy). Then ¥’ is a quasi-coherent and flat Oy, /-Algebra
such that Spec(¥’)=Y’. Since G is affine, the operation ¢ of
G on Y’ given by a Oy, -morphism of Algebras, 4: EF’—»EF(%)@G
such that(4:Qidg) 4 = (GdesR4) 4 and (id 5'Qe) A =id g, where
Ade (resp. e) is the diagonal 4;: Oc—O:Q D¢ (resp. the augmentation
e: Os—k) attached to the multiplicati:m (resp. the unit) of G.
The elements of P(A) and P(A'QA’) are interpreted analogously.
If (YY) ==,(Y"), the descent daza with respect to the morphism
A—A’ are induced on &’ and 4. Then, by the result of A.
‘Grothendieck (Théoréme 2, ibid.), there exist a quasi-coherent

Ox,-Algebra F and a Ox,-morphism 4: F—>FXC; such that F'=FQ
& OXA

Ox, and 4'=4Q0x,. It is easy to see that Y=Spec(F) is an
element of P(AAS4 such that (Y)=Y’. The injectivity of ¢ can be
proved by an analogous argument. Thus P is strictly pro-represen-
‘table on C.

Next, let R be the local component which pro-represents P at
a rational point ¢ of P. R: is noetherian if P(l,, &) =P(e)™'(¢)
=Lie(PH(G, X/k))(k) is a k-vector space of finite length, (cf.
FGA, 195-07). On the other hand, dim,Lie(PH(G, X/k)) (k)
=dim;PH(Lie(G), X/k)(k)=dim,H' (X, Lie(G)) (cf. Chapter I).
Since X is proper over k, H'(X, G,)=H'(X, Ox) is a k-vector space
.of finite length. Therefore, since H'(X, Lie(G))=H'(X, Ox)*" for
some integer N, H'(X, Lie(G)) is also a k-vector space of finite
length. q.e.d.
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Lemma 4.2. PH(G, X/k) satisfies the condition (P, if G
is of the following type:
(1) G is a connected commutative algebraic k-group scheme,
smooth over k.
(2) G is a commutative finite k-group scheme.

Proof. The case (1). G is decompcsed to a direct product
of a torus (G,)” and a unipotent sutgroup U. Tten, PH(G, X /k)
is isomorphic to Pie(X/k)" xPH(U, X/k). Since Pie(X/k) exists
and satisfies the condition (P,), the problem is reduced to the case
where G is unipotent. When G is unipotent, we shall proceed by
the induction on the length # of a composition series of G. If
n=1, i.e. G=G,, PH(G,, X/k) is representable, hence satisfies the

condition (P,). If n>1, we have an exact sequence,

0 G, G H 0

where H is unipotent. Assume H satisfies (P,). Let A be a
noetherian, local k-algebra which is complete and separated with
respect to the 9-adic topology (9N is the maximal ideal of A) and
let A,=A/M"** for n=0,1,2, ---. We shall denote by 6; the
canonical morphism PH(G, X/k) (A>*)—)EEPH(G’ X/k)(A,) for

"

a commutative k-group scheme G.
From the assumption on H, we have 0,: PH(H, X/k)(A)
=lim PH(H, X/k)(A,). On the other hand, the sequence

n

0—-PH(G,, X/k)—PH(G, X/k)—-PH(H, X/k)
is exact. Therefore, we have a commutative diagram with exact
lines,

0—PH(G,, X/k)(A) — PH(G, X/k)(A)—

Zlﬂc, lﬁc

0—slim PH(G., X/k) (A,)—lim PH(G, X/k) (4,)~—

*) PH(G, X/k)(A)=PH(G. X/k)(Spec A). These types of abbreviations will
be easily understood unless explicitly mentioned.
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—PH(H,;, X/k)(A)
Ilﬁﬂ
—»lig PH(H, X/k)(A,).
The diagram chasing shows that the canonical homomorphism 6; is
injective.

It remains to prove the surjectivity of .. First, note that we
have isomorphisms, PH(G, X/k)(A,)=H'(X,,, G) and PH(G,
X/k)(A)=H'(X,, G). Therefore, an element of PH(G, X/k)(A,)
corresponds to a prircipal fibre space Y, over X,, with group G. An
element of léi_rEPH(G, X/k)(A,) corresponds to a projective system

n

{Y,, ¢owr: Y,—Y, for m<mu} where Y, belongs to H'(X,,, G) and
satisfies Y,=Y.®A, for m<n. Let X,=X,,, ¥=1lim X, and

9 =lim Y,. Then ¥ is a principal fibre space over ¥ with group G.

Next: embed G into a general linear group G'=GLy (NEN) as a
closed subgroup. Then, for every #, we can construct a principal
fibre space Y,® over X, with group G’, extending the group G to
the group G’. ¢..: Y,—Y, is also extended to ¢, ,: Y,—Y, for
m<n. Then Y, and ¢,, form a projective system {Y,, ¢, .}
which is considered as an element of lim H'(X,, G"). Let ¥'=1limY,.
— s

”n n

Then ¥ is a principal fibre space over ¥ with group G’ and is
isomorphic to S2)>G<G’.

We shall show that %) is algebraizable. In other words, there
exists a principal fibre space Y’ over X, with group G’ such that
?)’EY’;G:' and YLEY’;<X”. We shall recall the fact that a
principaf fibre space oveAr a prescheme Z with group G'=GLy
corresponds to a locally free ©@,-Module of rank N. Therefore, the
projective system <{Y,, .. corresponds to a projective system
{M,, 0. .5 consisting of locally free Ox,-Modules ¥, of rank N and

*¥) Y} is denoted by Y,’.>(<;G’ according to Serre’s terminology [17]. The

existence can be proved using the (fpgc)-descent for affine morphisms, (cf. [4]).
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iscmorphisms 6, ,: (gm.) M, =M, and I corresponds to a locally
free Ox-Module lim M, of rank N. Then, there exists a coherent

Ox,-Module ! such that ¢*(H)=lim H,, where i: ¥—X is the

canonical morphism (EGA, III,, 5.1. 6) let x€X,, R"=0%. and
R=0y,. Then i*(ﬂ{),zﬂ[,@.ﬁ’ is a free R’-mcdule of rank N.
We can take a K’-basis (e, -+, ey) of *(SH). from M, such that
(e, -+, ey) defires a surjective R-homomorphism R”i)j/l,. The
kernel L of g is a R-module of finite type. Since R’ is R-flat
(EGA, I, 10.8.9), L@R’ZO. Hence, L=0 (EGA, I, 10.8.11), i.e.
M, is a free R-mcdule of rank N, (cf. Lemma (II. 4) of [11], Prop. 18
and Prop. 30 of [15]). Then, MK is lccally free of rank N. If we
take a princiral fibre space Y’ over X, with group G’ which corre-
sponds to M, Y’ is then what we wanted to algebraize ¥)’ with.
Next we shall show that ¥) is algebraizable. The proof is
analogous to that of Prop. 19 of [15]. Let E‘,:Y’ng’/G and
E=$’2§G'/G where the operation of G’ on G’/G comes from the
multiplication of G’ from the left. Then, £ is isomorphic to
Q)EG’/G and E has a section s from X which is induced from

PV x (G} cNXG’. The completion E=1im(Y,xG’/G) is iso-
G’ R G’

n

morphic to £ (an isomorphism f: l/i\'o—>E). Then l::\o has a section
so=f"'s from X. Since X is proper over k2 and E, is separated over
k, s; comes from a A-morphism s,: X.—FE, (cf. EGA, III, 5.4.1).
Let G operate on Y’ through the operation of G’. The quotient
prescheme is then isomorphic to E,. Define ¥ by Y’ >E<0(X, So).

Now, it is easy to see that lim Y, is isomorphic to ¥).
—>

The case (2). The canonical homomorphism 6,: PH(G,
X/k)(A)—1im PH(G, X/k)(A,) is injective. The proof is done by

n

the induction on the krank of G, as we have observed that
PH(G, X/k) is representable for G=a,, u,, (Z/pZ), and (Z/nZ),;
neN, (n, p)=1. Therefore, it remains to see the surjectivity of
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6:. Let A be the affine algebra of G and {Y,, ¢n..: Y.—Y, for
m<n} te a projective system cof lim PH(G, X/k)(A,). Since Y,

is affire over X,, Y, is of the form ”Spec(ff’,) for a coherent Oy,
Algebra &F,. &, is given a diagonal 4,: ¥,—9, ®E’I which defines
the ope:ation of G on Y,, and satisfies & ®A =%, and 4 ®A =4,
for m<n. Then, ETEF and hmd deﬁne a coherent @{—; Algebra

n n
AN

& witih a diagonal 2; S/?—ncf'@?[ (cf. EGA, I, 10.11.4). Then there
exists a coherent GX,,-Algebr; & with a diagonal 4: 9'—)9’(?%[ (cf.
EGA, III,, 5.1.6), aad {Z, 4} defires a princiral fibre space Y over
X, with group G such that 6,(Y)={Y,, ¢..}. q.e.d.

Remark. The condition (P,) seems t> be true for all com-
mutative, affire k-group schemes G, if we can embed such G into

GLy for some integer NN.

Lemma. 4.3. If G is a commutative, affine algebraic k-group
scheme, PH(G, X/k) satisfies the condition (P).

Proof. For the proof, we refer to SGAD, Exp. VI;, (10.16).

Lemma 4.4. Let G be as in Lemma 4.3. Then PH(G, X/k)
satisfies the conditions (P,) and (Ps).

Proof. Trivial from the definition of PH(G, X/k).

Lemma. 4.5. Let G be as in Lemma 4.3. Then PH(G, X/k)
satisfies the condition (F;).

Proof. First, note that G has a composition series whose
quotients are elementary k-group schemes (i.e. G., G., a,, u»,
(Z/pZ), and (Z/qZ),; q: a prime such that (p, g¢)=1). For these
elementary group schemes, the condition (P;) holds because
PH(G, X/k) is representable. Therefore, for the proof of our
assertion, we have only to show the following:
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Let (*x): 0—»G,—G,—G;—0 be an exact sequence of commuta-
tive, affine algebraic k-group schemes. If the condition (Ps) holds
for G; and G,, it holds for G..

The exact sequence (*) gives an exact sequence,

0—PH(G,, X/E)——PH(G,, X/k)—~PH(G,, X/k).

Let T=(Sch/k) and ¢: T—PH(X,, G/k). Then, applying the
condition (P;) to =-§, there exists a closed subscheme N(z:¢) of
T such that for every 7" (Sch/k) and every morphism «: 7'—7T,
we have n-¢-a=0 if and only if « factors through N(x-¢):

a

TW — T

N

N(z-&)

Let j be the canonical injection of N(z-£) into 7. Then
7n-£-7=0, hence £-j factors through i:

1

0—>PH(G,, X/k)——PH(G:, X /k)

Let & te the morphism N(z-£)—PH(G,, X/k) defined from
the above diagram. Then, applying the condition (Fs) to ¢, we
Lave a closed sukscteme N(¢) of N(z-&¢) such that for every
T"”e (Sch/k) and every morphism g: T”—N(x-£), we have £-5=0
if and only if B factors through N(¢).

Let T,=(Sch/k) ard y te a morphism T;—T such that &-y=0.
Since x-&-y=0, 5 factcrs through N(z-£), i.e. there exists a
morphism ¢': Ty—N(x-¢) such that y=j-. Since &-y=¢-j-y'=i-
¢.+/=0 and { is injective, ¢’-37'=0. Hence, 5’ factors through N(¢').
This shows that N(¢) exists and is isomorphic to N(¢). g.e.d.

Lemma 4.6. Let G be as in Lemma 4.2. Then, PH(G, X /k)
satisfies the condition (Pr).
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Proof. The same argument as in Lemma 4.5 reduces the
problem to the following:

Let (*): 0—>G,—G,—G;—0 be an exact sequence of commuta-
tive, affice algebraic k-group schemes. If the condition (P;) holds
for G, and if PH(G,, X/k) is representable, the condition (P.)
holds for G,.

Let C be a complete, non-singular, irreducible curve in (Sch/k),
T te a finite set of closed points on C and & be a morphism from
C'=C—T into PH(G., X/k).

Consider the exact sequence,

0—PH(G,, X/k)——PH(G,, X/k)——~PH(G,, X/F).

Applying (P;) to =n-¢, n-¢ has a module 9]2=}§in with support
on 7. Let Jg; te the gereralized Jacobian of C with respect to
the module 9 and & bLe a set of systams of positive intege:s
(Ip)per such that Ir_>n, for every P€T. Introduce an order on &,
putting (/p) per > (Ip)per if and only if I,>1r for every PE€T. Take
a totally ordered subset & of ©' which is cofinal in &. The
elements of & correspond to modules with support on 7T and we
denote them by I, where « is an index defined by the total order
on & Let Jogpo bz the generalized Jacobian with respect to a
module M. Then for M of &, we have an exact sequence of

commutative algebraic groups,

0— Ko — Jogo 225 Jy— 0,

where K, is the kernel of the canonical surjection pu: Jaio—Jon.
We must clarify the algebraic structure of K,.. For this purpose,
we use the terminology of J.-P. Serre [16]. Then K, is given in
the form, K,.== Ker(Ryyxo—Rygy) = {the set of rational functions f
on C such that #, <v,(f—1)<n{® for every P T}, (cf n° 13 of
Chap. V, ibid.). For f>a, we have a commutative diagram with

exact lines,
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0 Kg Jao» Jm 0

L]

0——> K, Japce Jm 0

|

0 0

Then passing to the projective limits, we have an exact szjuence
of proalgebraic groups,
0 — lim Ka —> lim ]sm@f)—-) ]ggg — 0.
s ‘s
Let Q% be the abelian group of all divisors on C of degree 0
which have no component on 7. Since Jgy» is the quotiznt of D7
by the relation D~D'2D—D'=(f), f=1(mod M), we have the

canonical surjection p: Dy—lim Jqpo—0. The kernel of p is

[}
formed by rational functions f such that v,(f—1)>N for any

positive integer N and for all P T. Hence f is constant 1. This

means that 9% has a structure of a proalgebraic group lim Jypw@.
bl

]
Let 2 be a universal domain which contains % and let 9%(2)

be the abelian group of all divisors on C of degree 0 whose

components are 2-valued points of C’=C— 7. Then the morphism

&: C'—-PH(G,, X/k) define homomorphisms £(2): D4(2)—-PH(G,,

X/B)(2) and &(2): (lim K,) (2)—PH(G,, X/k)(2) which commute
1S

a diagram,

0—PH(G,, X/E)(2)>PH(G,, X/k) (2) SPH(G,, X/k) (@)

() le@) [&@ I
0—-(UimK)(®) — D2 —0— Jpl@
<

On the other hand, K, is isomorphic to a direct product PHTKa,p
€

»f affine algebraic groups K, r, whose elements are of the form
(R A 2?7 and whose multiplication is defined by
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(anP) AR an(%)—l) (bﬂpv "ty bn<g)—l> = (anp'l'bnpy Tty d,+b,+2 aibkr ”’)‘

k=i

If t=t¢, is a generator of the local ring Cc,of C at P, a rational
function f of 2(C) is of the form

f:a_”t'”—{—...+ao_@_alt+......; a_,, -+, Gy, a, 0.

The elements of K, , is identified to functions f of the form
f=1l+a,tr+-+ a,,;,w-lt”;’a)"

and the elements (h_m K. =K, is identified with the functions of the
form f=1+a”,t"f’—f ------ .

Let 7., be the canonical regular section of K, , into K, defined
by (@a,,, =+, @.@-1v (@, -, @2 1),0,0, -+). Put £, =6(2) la-
We shall show that &, is a regular map for every a and P&T.
Let (a.,, -, a,©_;) be a gereric point of Kup, gu=1+a,,t'7+
+ta P and (@) =P+ -+ P,—P——P, (€9%2)).
We shall clarify the map £(2) for (g.). First, note that a
morphism ¢ corresponds to a principal fibre space Y over Xo with
group G.;

G,XxY3Y— Xo.

Let X, Y, be the fibres of X and Y over P;(i=1, ---, 2n). Then
Y, is a principal fibre space over X, with group G, defined over the
field k(P;) for i=1, ---,2n. Let K,=k(a,,, -, a,_,), K=k(P,, -,
P,,), L=a rormal closure of K over K, and ®&=Gal(L/K,). We
denote X, Q@ L, Y.,®L by the same letters X;, Y.. Then

k(Pi) k(Py)

Y’ '=¢(2)((g.)) is obtained by changing the groups by a morphism
2n

GzX"‘Xcz'—’Gz (x,xn-><x2,,)-—>x1—|—---—i—x"—x,,ﬂ—"'—xzn) from
(Yix-xYy,) X (XQL, £, where X;X--XX,=X"QL
L L (Xl}:u Zqu) k L L k

and 4 is the diagonal xEX(kX)LM—%x, ey x)EXz"(kX)L.

On the other harnd, an element ¢ of & operates on the set
{Y, ---Y,,} as a rermutation. Then it is easy to see that &
operates on Y’ and that Y’ is indeed invariant with respect to this
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operation. Therefore Y’ is defined over K,, i.e. there exists a
principal fibre space Y, over Xy, with group G, such that
Y’~Y®L From the diagram (%), we see that Y, comes from
an element Z, of PH(G,, X/k)(K,) which is equal to &(2)(gs.
Since PH(G,, X/k) is representable, the map &,,: guEKupr  —
Z.€PH(G,, X/k) is a rational map which is defined everywhere.
If B>>a, the locus £s,(gs) of &(gs) in PH(G,, X/k) contains
£.»(gs). Therefore & »(gs) D& »(ga), for B> a. Therefore, there exists
an index a, such that for y >a,, we have (%) & ,(gy) =4 ,(Gu),

because m is connected. This a, depends on P. However,
since T is a finite set, we can suppose the equality (*#%) holds for
all PT. Then &,= H Eop KM:PI;ITKM_;’%PH(GI, X/k) is a
morphism of group s"hemes such that &: Ky—PH(G,, X/k) i
composite morphism Kycan—p;o Kao—>PH(G1, X /k) for every r>ao
Finally we shall note that & is not necessanly morphism of group
schemes if f<a,. Then it is easy to see that 9 is a module for
¢ with support on T. q.e.d.

Consequently, applying the representability criterion of J. P.
Murre, we have

Theorem 4.7. Let X be a proper, integral k-scheme of
finite type and G be as in Lemma 4.2. Then PH(G, X/k)
representable by a commutative k-grvoup scheme, locally of finite
type over k.

Bibliography

[1] M. Artin, Grothendieck topologies (MA), Seminor notes, Harvard University,
1962.

[2] M. Artin et A. Grothendieck, SGAA., 1963/64, Mimeographed notes of 1. H. E.
S.. Paris.

[3] M. Demazure et A. Grothendieck, SGAD., 1963/64, Fascicules. I, Ila, IIb, III,
IV. Mimeographed notes of I. H. E. S.. Paris.

[4] A. Grothendieck, SGA., 1960/61. Mimeographed notes of I. H. E. S., Paris.
[5] A. Grothendieck, Fondements de la géométrie algébrique (FGA), (extraits du
Séminaire Bourbaki 1957-1962), Paris, Secrétariat Mathématique, 1962.

[6] A. Grothendieck et J. Dieudonné, EGA, Chap. I, II, III;, IV., Publ. Math. de
I. H. E. S.



L7
8l
L9l
[10]

f11]

12}
(13]

(141
[15]

[16]
17

[18]
[19]

Commutative affine group schemes 39

A. Grothendieck, Le groupe de Brauer (GB), I, II, III, Bourbaki Seminor 290
(1965), 297 (1965) and Mimeographed note of I. H. E. S., 1966.

M. Miyanishi, On the pro-representability of a functor on the category of
finite group schemes, Jour. of Math. of Kyoto Univ., Vol. 6. 1966. pp. 31-48.
M. Miyanishi, La pro-représentabilité d’un foncteur sur la catégorie des
groupes formels artiniens, C. R. Acad. Sc. Paris, t. 262, 1966, pp. 1385-1388.
M. Miyanishi, Some remarks on a covering of an abelian variety, Jour. of
Math. of Kyoto Univ., Vol. 7, 1967, pp. 77-92.

J. P. Murre. On contravariant functors from the category of preschemes
over a field into the category of abelian groups, Publ. Math. de I. H. E. S,,
1964.

T. Oda, Abelian varieties over a perfect field and Dieudonné modules, Thesis,
Harvard Univ., 1967.

F. OQort, Sur le schéma de Picard, Bull. Soc. Math. France. t. 90. 1962, pp.
1-14.

F. Oort, Commutative group schemes. Springer Lecture notes, 1966.

J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier,
Grenoble. t. 6, 1955-56, pp. 1-42.

J.-P. Serre. Groupes algébriques et corps de classes, Hermann, Paris, 1959.
J-P. Serre. Espaces fibrés algébriques, Séminaire C. Chevalley, exposé 1,
1958.

J.-P. Serre, Groupes proalgébriques, Publ. Math. de I. H. E. S., 1960.

J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic
p>0 (II). Amer. J. Math., Vol. 77, 1955, pp.218-244.

Kyoto UNIVERSITY



