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§1. Introduction and statement of result

We consider some mixed problems for fourth order hyperbolic
equations. Let S be a smooth and compact hypersurface in R* (n>>2)
and 2 be the interior or exterior of S. Let
(E) Lu+Bu= (66# +(a1+az+a3) +a3a1>u+B< , gt ,D)u

=f(x, 1)

Here a.(k=1,2,3) are the following operators:

(1.1) ak_—;] z (a,, FORS >+b (x, D).

ak,ij(x) = ak‘ji<x)
are real,

Sa,,(0)88,>0]5]%  (5>0)

for every (x,8)e2xXR" (k=1,2,3). B denotes an arbitrary third
order differential operator. b, are first order operators. Let us
assume that all coefficients are sufficiently differentiable and bounded
in 2 or in 2% (0, o). Recently S. Mizohata treated mixed problems
for the equations of the form

L— H(a

2 +aals, D)>+B2m .
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c:(x)>c1(x), c.(x)>0 (1=1,-+,m)
Let us consider the case m=2. The above equation has the form

4 2
% +(ci(x) +e(x ))daitz— +c¢,c.a*+ (operator of third order).

Now it is not difficult to see that this operator can be considered as
a special case of (E), by putting a,=Ic,a, .= —1)c,a+ <1—%>cga

and a3=—ll~cga, ! being a constant less than 1 chosen closely to 1.

In other words the operators a,, a. and a; are obtained by the multi-
plication of some functions to the operator a.

We consider a generalization of this case. Roughly speaking we
are going to assume some relations among the operators a, only at
the boundary. However we don’'t assume any relation among them
in 2. Moreover, as we shall see later, the hypothesis (H) imposed
below is sufficient for the treatment of our problems. Our method
is fairly different from that of [1]. Let us denote the Sobolev space
H’(2) simply by H’, and its norm by || .||, and denote the closure
of () in H' by Q.. Let us consider the subspaces D(a,) of H*
defined by

D(a,) ={ue H*N9%:; a,us D2y (k=1,2,3).

Namely, u< H® belongs to D(a.) means that not only u itself
but also a,u# vanish at the boundary. We assume that

(H) D(a,) =D(a,) = D(as).
Our boundary conditions are followings:

Case L. u|ls=0 a,uls=0

) _ 0 _
Case IIL <—8—h—l—+a(s)>u|s—0, ((,ml +a(s))alu|s—0, where

(1.2) 8 =Z,d~..<,~(x)cos(v, x;)- a—, (v; outer unit normal),
671,, ij 8x,~

and ¢(s) is a smooth complex-valued function defined on S.
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At first we consider the case where B=0. Put

_ou
ot*

3
—+ a U, U;= a_

1.3) wu,=u, u1=—@— o

6t u’ uz

u+ (a,+ a,) %u
Then the equation (E) with B=0 is reduced to
(1.4 4 U=AU+F®),

where U, ="(u:(8), u:(8), u(8), us(2)), F(£)='(0,0,0, f(£)), and

0 1 0 O
(1-5) A —-a 0 1 0
0 —a. 0 1
0 0 —a O

Conversely if U, satisfies (1.4), then the first component #,(x, ) of
U, satisfies (E) with B=0. Using the notation below:

N= {ueHz; <——§——+o‘>u|s=0},
on

1
we introduce two Hilbert spaces according to Case I and Case II:
(1.6) Ii=D(a) X H*N D2 X D2 X L*
Ho=H*NNXNx H' XL
These spaces are closed subspaces of H®X H*x H'X L* equipped
with the canonical norm
a7 [T = lletoll3+ llotallz + foeal3+ l[aaa]lG.

According to Cases I and II, we take the definition domains of A as

follows:

(1.8) D(A),=H*ND(a,) xD(a,) X H*N D2 X D=
D(A),=N(a,) X HA N NXx Nx H', where

a.9 N(a)=1{u: ucs H*NN, a,us N}.

For the convenience we prepare another norm defined below for

UeD(A4), (i=1,2):
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(1.10) (U Bcas = l|ttoll 34 | 201134 || ohol[54- (2413 .

Using these notations we can show the fact that D(A); and D(A).
are dense in #, and 4, respectively. In fact 9}, H*NDi: and N
are evidently dense in L? 9. and H' respectively. In view of the
regularity theorem on elliptic boundary problems, @+ sl is a bijection
for a sufficiently large positive constant s, from H*N N onto H', or
from H*N D:: onto L. Remark that D(a,) = {uc H*ND'; (a,+sDDu
€ D}2} and that N(a,) ={us H*NN; (a,+s)usN}. Then it follows
that D(a,) is dense in H*N J}» and N(a,) is dense in H*N N, from
the fact that 9j: and N are dense in L* and in H' respectively.

Therefore to the evolution equation (1.4) we can apply the Hille-
Yosida’s theorem. Then considering the energy inequality, we can use
the successive approximation methed to the equation (E). Thus we
can arrive at the following result:

For any f(t) in 6"(L2) Y oand any initial data (u(x, 0),

u(x 0), 6t2 —u(x,0), at“ —u(x,0)) in D(A); (=1 or 2), there
exzsts a unique solution of the equation (E), satisfying the
boundary condztwns (I) or (II). The solution U(t)=(u(x,t),

u(x 1), 01,” —u(x,t), at“ —(x, 1)) is in EXHINEN(D(A),), (The
orem 1). Moreover when we assume the compatibility conditions
on the initial data and the regularity of f(t), then the solution
has the same regularity as the initial data, (Theorem 2).

The author wishes to express his thanks to Professor S. Mizohata
for his helpful suggestions and encouragement. The author thanks

Professors M. Yamaguti and S. Matsuura for their useful conversations.

§2. Some lemmas

In this section we show some lemmas concerning uniformly elliptic

operators of second order in 2. Lemma 1, 2 and 4 are used in order

1) f(@)Ee&t(H) means that f(¢) is p times continuously differentiable in ¢
with values in H. (»p=0,1,2, )
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to show the positivity of the hermitian forms defined in the next
section. Lemma 2, 5 and 6 are necessary for a priori estimates. At
first we intrcduce the following local transformations near the bound-
ary, attached to the uniformly elliptic operator

_ < 0 - 0
a Z} ox, (a,,(x) ox, )—I—(ﬁrst order operator).

Take an open finite covering {2,} of S, satisfying the following
conditions, where £, are open sets in R". In each £,, there exists
an integer & (1<k<n) such that cos(y, x,) %0 and S is represented
by xy=vr,(X1, -+, X4o1, X41, =+, X,). Then in each £2,NS we have

J(s) E_c%—(i,ﬁ lTi’ll ZJ‘, a;;(x) cos(y, x;) cos(y, x,)=>>06=0,

where |m| is given below, and s€&,NS. Consider the following

transformation:

0 /_mj(xll‘i‘xloy cty x,’._1+x2_1, Yrp, Xir+ x2+1, vy x;+x2)
Xi—X;=X; Y,
| m|
2.1 YEY

xla:"!f'P(x{_'_ x?, ety x;-1+ Xi_1, xllz+1+ x2+1, ceey X+ %0

~ m( XA, e, X X1, s, Kkt Xia, tt, X+ X
| m|

Y,
where 7,(x) =S a,,(x) cos(v, ), |m|*=m?,
i i=1

x°=(a -, xD)E2,NS.

Jacobian of (2.1) is sufficiently close to J(s) in the place where y
is sufficiently small. Take a new finite covering {o,} of S which is
a refinement of {2,}. For x°€w,N S the local transformation (2.1)
maps 0. N2 one to one onto S). 3 denotes the intersection of some
neighbourhood of the origin and the upper half space {(x’, y): y>0}.
Then S is transformed to y=0 and the conormal directions of @
correspond to the outer normal directions on {(«/, y), y=0}N>.
For every s on S, let 7(s) be the radius of maximum sphere with
center s contained in one of {w,). Then S being compact we can
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choose a positive number & satisfying 6<r(s) for every s on S. In
the neighbourhood I'= {x; dis(S, x)<%} of S, the sufficiently smooth
function y=0(x) is determined uniquely independent of the choice

of k. In fact the meaning of @(x) is the distance from x to S
measured along the straight line issued from S with conormal direction.

Using @(x) we define the following smooth positive function in
I" attached to the uniformly elliptic operator a:

@.2) a(x)=Sa,(x) 202

Now we state the lemma concerning the decomposition of a.
Lemma 1. Assume that a satisfies (1.1), then a is written
in Q in the following form
(2.3) a=n*(x, D)n(x, D)~ >3 t,(x, D)s;(x, D)
+ (first order term).

Heve t; and s; are first order operators and tangential on S. The
operator n(x, D) has the following form:

_ ) ¢ _ 09 0
.49 n(x, D) 0] ,Zja‘f(x)( ox; OC)) ox;’

where C(x) is a C~-function taking the value 1 in some neigh-
bourhood of S in I, and vanishing outside of I. Therefore we
can consider n(x, D) as an operator with smooth coefficients defined
in . n*(x, D) is the formal adjoint operator of n(x, D).

Definition. We say that a first order differential operator #(x, D)
is tangential at the boundary S, if #(x, D) =i;‘,c,~(x)ai%+d(x)
satisfies >3c;(x) cos(y, ;) =0 for all x&S. Then we have the follow-
ing relati({)n:

(2.5) (t(x, D)u, v) = (u, t*(x, Dyv(x)) for all u,ve H.
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Proof of Lemma 1. Consider the local transformations of type

(2.1). Put
‘p='(9 9 .. 3
1D_ <6x1’ ox,’ ax,,>’
(2.5) ’D'='<i e 09 0 i)
0x,’ 0xi 0xi.,’ T 0x, 0y /)
VA= (a;(x)).

Let the inverse of (2.1) be as follows.

L=, (%), i +k
2.6) {x ¥r; () j#

y=0(x)

Then we have

10,
@.7 D= (1[1-;,- )D/.: TD',
E¢”
_ Oy _ oo ; F—1 .
where v,= ox. 0, o, j#k i=1, - n.

Therefore ‘D='D"*T+ operator of smooth coefficient of zero order,
and '‘DAD='D"TATD’+first order operator, hold. By local trans-
formation (2.1), —a takes the form

0

(2.8) —a=c 2‘. s,,ax A

+(ﬁrst order term),

;oo 60 60
where c,(x,y)—Za.,(x)ax ox, =a(x),
e, ) =S au(x) G- (%)

!

811’ 3!”'

i (X, ) = Zaxm(x) G, j=k)

And similarly #(x, D) becomes the following form: (Let k be n.)

2.9 al«d,y, D/):VC;fox)j {cl(x y)—+”£—‘,cz.(x y) }
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By (2.8) and (2.9), we can see that the conormal directions of a

are transformed also to the conormal directions of a.
On the other hand, from (2.1) we have
o __Sm D

ay T m| ox,
Considering that

”("’D)_I/Cafga)> B (l |‘ (

holds on S, we can see

)

CZi(x/y O)EO, i=]—, ccey 1’2—1.
By (2.8) and (2.9) we can write @ in the following form:
(2.10)  a=a*(',y, D), y, D) —Xt,(«', y, D.)s;(x', y, D.r)
+ (first order term).

Consider the family of local transformations of type (2.1) such
that the union of the corresponding {w,} covers S, and take a suitable
partition of unity 3172(x)=1 on 2. If the support of »; contains a
part of boundary, the local form of ay; is
(2.11)  agi=9n*(x’, 3, DIn(x',y, D)

—S(t (', y, D)y (s(x, y, D.")y;) + (first order)
/

For »,(x) in D(2), ay;(x) are products of tangential operators
on S. Summation of (2.11) gives (2.3) in some neighbourhoocd of

S. (q.e.d.)
Remark. Let #,(x, D) be the operator n(x, D) corresponding
to the operator a,, then at the boundary S, using cos(v,x;) = _gf

we have the following relation:

I3

(2.12) bai=(2‘.ak (%) cos(y, x;) cos(y, x;))*n,(x, D), on S.

The following lemma concerning the relation between a; is just a
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characterization of hypothesis (H).

Lemma 2. Assume (H), then we have

S )= E Ly e
1) on, i on S, where B.(x) OB a;(x) (1=1,2,3)
are a(x) corresponding to the operator a;. B.(x) are defined in T.

2) If u belongs to H*N Diz, (a;—B:(x)a)u belong to Di- (=2, 3).

Pfoof. We fix the local transformation (2.1) corresponding to
a,. After this transformation, @, and a. take the following forms

[—a;—al(x y) +2'2b1.(x y) ay ¢ (&, y)

(2 13) +t1(x)y» D’)

2§

L—az as (%, y) +e.(o, y)

y
+t2(x :y; D,),

where b,;(x’,0)=0, and ¢,(x’,y,D.) (k=1,2) do not contain %

as;(x,y) means Zaz,, gm‘ 20‘. Here 0; is ® which comes from «;
(=1 or 2). Then let us prove the following facts:

(2.14) b (x',0)=0

(2.15) e, 0) =22.0,(x/,0).

(2.14) means that the conormal directions of @, and a, are same.
Therefore the local transformations (2.1) corresponding to @, and a.
are same ones. So we have 0,=@0, and a;=a,. Thus we obtain 1).
By (2.14) and (2.15), we can see 2). Now let’s prove (2.14) and
(2.15) in the following two steps.

(1) First step (localization). Assume that ue H?® satisfies yu=qrau
=0 in wNS. (v is one of {w,} and 7y is the trace operator.) Then
we are going to prove that for any compact set K in oNS, there
exists a function ux defined in 2 such that #x=w% in some neighbour-
hood of K, and ux, a,ux belong to Di:. Consider the map (2.1)
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and we can assume that S is a hyperplane =0 and @, has the form
(2.13).

Take the following C=-function +(x’) in x’-space defined as
follows:
¥r(2)=1 in some neighbourhood of K, ¢»(x’)=0 in some neigh-

bourhood of C(wNS). Put g=a,y-(x")u, then the support of rg is
in oNS—K.

Vg Zal(x,’y)y r&+v(xDu

satisfies y@,vx=10x=0, and the support of v is in w X R'(y). Take
a C= function ¢(y) taking value 1 in a small neighbourhood of 0
and vanishing outside of some neighbourhood of 0. By inverse trans-
formation of ¢(¥y)vk, one can yield a function #x which satisfies the
desired conditions.

(2) Second step. For a, in (2.13), let us put

_a(x,y) ("“1 ()9 / )ﬁ_
d (¥, ) a,—a. Zdlj(x ) o +d.(x', y) oy
+d3(x,’y; Dx')-

ds(x’,y, D,/) does not contain % From the assumption (H) and

First step, yd#=0 must hold for the function # satisfying ra.u=u
=0.

Now consider

cl(x,r O)

— _ _YI\A » V] a2
“ 2a1(x/, O)y +y’

Then rdu=d,(x’,0)=0 follows from r#=ra,u=0. Take

bau(2,0) .

a(x,0) 77

U=x1y—

then we have ydu=d,;(x’,0)=0. Thus (2.14) and (2.15) follow.
(q.e.d.)

Now we explain the common method in the proofs of Lemmas
3~6. We use the local transformations of type (2.1) and a suitable
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partition of unity S}72=1 on 2 corresponding to the covering {w.}
of S. Then the proofs of Lemma 3~6 are reduced to those of in
the domain > and for function # with small support satisfying some
conditions on y=0. Let us rewrite (x’,y) by (x4, ***, X,_1, ¥). In the
proofs (-, ) and |/-| mean (-, -)ixs and | -|i2s, respectively and
[l-l, means |-, ze (P=1,2,3).

Lemma 3. Let a,, a. be uniformly elliptic operators. Then
there exist positive constants 6 and r such that

(2-16) Re(a,u, a;u) + 7| |ul* >0l ulf3
for ue H*N D)2 or for ues {MEH2:<%+O'(3))M|3:O}.

Pyoof. Consider the local transformations of type (2.1) corres-
ponding to a@.,. It suffices to prove the following inequality for the

functions # satisfying #| =0 or (%—I—c(x))ul 0=0, c(x) being a
y=0 y=

smooth function determined by ¢(s) and a.;(x):
n—-1 n-1
2.17) I=Re((D;+2Xb:;D.,D,+>ic¢y;; D, D, )u,
n—1
(D5+33¢u; D, Dx,)“)!-’(z)25”u”;L’(z) —rllul;, where

Y =1 0 (iq9.. 4
D= (Zte®) D=l (=1,2,.n-D.

We can assume that the coefficients are constants in (2.15),
taking account of the fact that the oscillations of the coefficients are
small. Then by Green’s formula and each boundary condition we
have

n—1 n—1

(2.18) RE(Z Ciij Dx,-iju; DEM)EZ Re(c¢y; D, D, u, DxiD!u>

n—1 n—1
(2. 19) Re(Df%, Zcziijijju)EReZ(CZx‘li;DJu) ijDJu))
where we have used the following notation; for bi-linear forms
Alu,v], Blu,v] defined on some subspaces of H!, A=B means that
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| Alu, u] —B[u, u] | <e|ul3+rllzll; holds for arbitrally small positive
¢ when 7 is sufficiently large. Putting

n—1

(2.20) Ilzgg]Dﬁul2dxdy+8822blfD,‘DyuD_htdxdy
n ZSSC D.,D,u D.,D,udxdy,

n=1

@21 L=S {Sgc%,p,kpy uD, Dyudxdy
+ ggéiblf D..Dyu ¢, D..D., udxdy
+\\Sew 0.0 DD aray,

then we have I=Rel,+Rel,. Consider the Fourier transformation

with respect to (x4, -+, x,_;) and Plancherel’s equality, then we can
see

22 1=\{ue.mwleSe @ 0,0% D
+ S0 (6F.(D, 1) G F.(Du))) dedy
From the ellipticity of @,, the following inequality holds
(2.23) Re{]rl2+ZHiilbl;/I;?;"Ichl,-,l;}j}zB{]r]2+ZI/I,~[2}

for complex numbers 7, 1, (=1, .-+, n—1).
By (2.22), (2.23) we have

(2.24) Re Ilza{gg |F (D) |* dedy+ SS"ZTIG,'&Z(DM) | Zdedy}

1 0
271:‘*“5;“

"=l

In the similar way we have
n—1 n—1
2.25) Rel=o\{(Seused 19.0,01+ E1eF.0) 1% dedy

=(4) %

ai,. u“j —rlluli.
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From (2.24) and (2.25) we obtain (2.17) for another 6>0. (qg.e.d.)

Remark. Lemma 3 holds for u& {MEH”; (—@——I— ai(s)
T

on

+o(s))ul =0}, where al(s) means a tangential derivative smoothly
s T

depending on s S, and aa_n is the normal derivative.

Because (2.18) and (2.19) hold for the functions # satisfying

n—

1
<i+ ai(x)i+c(x)>u| =0. In fact for u satisfying (D,+#(x,
ay i ax, y=0

D))u]y_O:O we have the following relations:
Re(¢yi; D., D, ;u, Diu) =Re(c.;; D, D.,u, D,(D,+t(x, D)u)
—Re(cy; D.,D.;u, D,t(x, D)u)
=Re(c¢;D.,D,u, D,,D,u)+Re(cy; D,;D,u, D, t(x, D)u)
—Re(¢yi; D.,D.,u, D,t(x, D)u)
=Re(c.;;D,,D,u, D,,D,u)+ {Re(D,t(x, D)u, c.;; D,,D,,u)
—Re(c¢y; D.,D.;u, D,t(x, D)u)}
=Re(¢y;;D.,D,u, D,,D,u).
With respect to (2.19), the same argument can be used.
Such a type of inequality as in Lemma 3 has never been men-

tioned before. It would be interesting to use that inequality in another
case without the assumption (H).

Lemma 4. Under the assumption (H) we have the following
inequality

(2.26) Reij(azij(x)%alu; %as 74)26”“”%— 7’”“”§

for ue D(a,) or for u H*N N.
Proof. Since H*ND(a,) and N(a,) are dense in D(a,) and

H*N N respectively, it suffices to prove (2.26) for H*ND(a,) or
N(a,). Now let us introduce the similar notation to that of Lemma 3:

2.27) A=B means |Alu,u] —Blu,u) | <e|uli+r|«|]:.
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a,(k=1,2, 3) have the following forms in >1:
(2.28) —a=aly, y) +22b~,(x y) ay
n=1
*chua lc( )—_T

where b,;(x,0)=0 because of the assumption (H).

Boundary conditions ul =a ul —O are equivalent to #| =0
=0 y=0

and uly=0——-<—a}—}+d(x)>wuly=0=0, d(x) being a smooth function.

Another boundary condition is (—6%

have the following, assuming (%, ¥)=1 and using the above notation;

+c(x)>u| =0. In each case, we
y=0

(2.29) "Re(a,a,u, a; u)Lz(z,ERe<i

0
5y au, @"aa u)

+ Re%‘,(cm(x, y)aixialu, (,])ixia2 u) =Ni+/..

Here we can assume that the coefficients are constants as before.
Then the proof of
(2. 30) Re(a.a,u, asu) =8| ull3—r||u}

is reduced to that of Lemma 3. In fact

-
|55,

follows in the first case: (—6—+d(x))iul =0. In the second case
6y 8y y=0

kel e 2)o]2
(2. 31) ]1—R€<a1 ay U, as ay %)2" ay

(2.32) ]IERe(al<%+c(x)>u, aa(—a%+c(x))u)

|+ eco),

holds. For /., following the same process of argument as in Lemma

(4 ol

3, we have

(2.34) jzza"z:zlua%iu": —7lulf
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From (2.31), (2.32) and (2.34), (2.30) follows. Thus we have
(2.35) Re(a.au, ayu) 2o, =>0u|l32c0y— 71| ]| 2205 -

This inequality means (2. 26) for u H*N D(a,) or u N(a,). (q.e.d.)

Lemma 5. Under the assumption (H) there exists a positive
constant C such that

(2. 36) I (01741, azuz) - (az Uy, alu2) ]gC“uIHZ ”u2”1

fO?’ ul,uzeN or ul, uzeHan},z.

Proof. Here we use the following notation:
A=B means |A[u,, u,] — B [u,, u,) | <Cllus]2 || 4]l
(1) For uue H*ND(a,) and u,= H*N D}, we have
(auy, axu,) = (ai au,, u:) = (afa,u,, ;) = (@4, a,u,).

Considering the fact that H*ND(a,) is dense in H*N D}z, we have
(2.36) for u,, u.€ H*N D1

(2) Let us prove (2.36) for u,€ H°'NN and u,=N. For the
functions #, and u, satisfying <%+c(x)>u,~ly=o=0 (1=1, 2), we have

0’ 0o 0 )
(2.37) ( 8y2 ' ox, o, = Uz |r2s)

(<%+c<x>)(—y+c<x>> oy ™)
9 +c(x) i~I—c(x) Uy, 4 U,
8y oy 0x,

E(ai (%—I—c(x))u,, i(—aj-l—c(x)>u2>

(( telx )> 0x; axk” <6ay +c(x)>ug>

0 0 0? )
<6x B 9y* By )

IIl

llI

and in the same way,
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6, 0 0,\_(08 08, &
(2.38) <Wul 6—35,.537“2>_< ox. 3y "y, oy uz).

From (2.37) and (2.38), (2.36) follows for v, H’NN, u,=N.
This completes the proof of Lemma 5.

Lemma 6. Under the assumption (H) there exists a positive
constant C such that

(2 39) I (01741, azaauo) - (a‘zun a,asuo) |gC”u1”2 ”u0”3
for u,€ H*N D(a,), u,€D(a,), or uyoc N(a,), u,€ H°'NN.

Proof. For u,e H*'N D(a,), u.€ D(a,), (2.39) follows immedi-
ately from Lemma 5. Here we use the notation; A=B if |Alu,, u.]
— Blu,, t,] 1<Cl||ut,][2 ||#o]ls holds. In order to apply Lemma 2 (ii), we
decompose a; as follows:

(2.40) a;=ps(x)a,+ (a:—ps(x) a,),

where p;(x) is a smooth function obtained by the prolongation of
Z:E%g— defined in . For #,= N(a,) and u,= H*N N, using Lemma
5 we have
(2.41) (a1, a2 (Bs(x) att)) — (@2tts, @y (Bs(x) @:4,))

= (a:tt, Bs(x)a2(a:100)) — (@xtts, (%) @1 (@:1:)) =0,

and by Lemma 2 (ii), the following relations hold:

0’ 0 0
(2.42) <6—y;u1, 5x_,.6—x,,(a3 Ba(x)al)uo>

—_(0 08 (3
= <6y ax..(ay ”(x))““

= <i<iy + c(x))ul, 6ix,,(a“_ B:(x)ay) (%4— c(x))uo)

0
%, (as—ﬁa(x)al)uo>

W(aa—ﬁs(x)al)<% + c(x)>u0>

62
s o 2y (B BE),
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@ (Lo 20 a-p@adum)
: 8y: " ox, ay : e
0 0 0*
(ax oy - U, 53}7(03 Ba(x)d1)uo)
for i, k=1,---,n—1.
From (2.41), (2.42) and (2.43), we obtain (2. 39). (q.e.d.)

§3. Evolution equation and a priori estimate

We introduce the following hermitian form in 9{, defined by

3.1) U, V)ﬂl=i}{<a2 ,,(x) oy Githo; 62:,. a3v0>

i

+ ((12 .;(x) a;y, 32; a1vo>} + 7 (o, Vo)

}

+ {(a.u,, asv,) + (agul, a,v,) +7(uy, v,)}
{22(@ ,,(x) uz, 6?0 vz) + 7 (u,, vz)} +2(us, v3)
for U= (uo, s, s, us), V=(vo, 03, Vs, v:3) EH, ,

where 7 is a positive constant.

In the case II we use the hermitian form of the following type;
3.2) (U, V) y,= ltto, 0] + {(@2tts, @501) + (@511, @201) + 7 (ths, 01)}
{22(03 ,,(x)( + a,>u2, (5%+ a,~>vz> + 7 (s, vg)}
+2(us, vs).

By the analogy to Case I it would be natural to take the following
hermitian form for [#,, v,], using the decomposition of @, in view
of Lemma 1:

((712 + P)aluo, (nz +o)asv,) + ((”2"‘ P) aythy, (M, + P)aﬂ}o)
+ 20(F;@1tho, S2;@300) + 20(S2;a50, Er;a100) + 7 (o, Vo).
J J

However for this form the calculus by integration by parts concerning
(AU, U) 4+ (U, AU) 4, does not work well. For boundary integrals
can not be estimated by C||U|%,. Taking account of the fact that
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(as—Bsa,)(ny+p)tty, and (#.+p)a,u, vanish at the boundary for
#,€ N(a,) in view of Lemma 2, we introduce the following hermitian

form:

(8.3)  [uo, 0] = (ot p)@stts, ys(x, DIvo) + (13(x, D)tto, (12 + p)@:10)
+ 2 {(t:;a:10, S2;a500) + (S50, tzjalvo)} +7(to, vo),

where
(3.4) r3(x, D) = (a;—Bsa,) (N2 +p) + Bs(n.+p)a; .

Here 4,(x) (:=1,2,---,n) and p(x) appearing (3.2) and (3. 3), are
arbitrary sufficiently smooth functions satisfying on S the following
conditions:

(3.5) >1ay,; cos(vx)o;(x) =0a(s) on S.

(2@, cos(y, x:) cos(v, £,))'"* (X as,i; cos (v, x:)cos (v, £,))7
Xo(s)=p(s), on S. (in view of (2.12) and Lemma 2, 1))

Then the following relations hold on S:

(3.6) -2 1+Sa,.; cos, xi)aj'—“Ba(%-G— S, cos(y, x,.)a,)
1

on;
—gf 0
Bs( on, + 6)

B.1) et o(8)= (S an(x) c0s(y, 2) 008, £)) -0+ o(s)
= (2 @s,i;(x) cos(v, x;)cos (v, x,))"'*

X (3301.5(x) 053, 1) <08, £) (- 0).

By virtue of Lemma 3 and Lemma 4, there exists a positive
constant C such that

(3.8)  LIUP<U U4 <CIUIF (i=1,2) for Ued,.
In fact, from Lemma 4 we have

Corollary. Under the same assumption as in Lemma 4, we have
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3.9) Cllu|5=>=Re(a.a:t;, asu,) + rlluol|*>=6uoll3, for u,& N(a,).

Therefore considering that N(a,) is dense in H*N N and using the
decomposition of a@,, we have

< [, 1) <Clltal} for e H*N N.

Hence (U, V)4, (i=1,2) are positive hermitian forms.
Now we show the following estimate using Lemmas 5 and 6.
(3.10) |(AU, U) g+ (U, AU) 41, | <CI| U
for all UeD(A); (=1,2)
Case I. Substitute U= (u,, u,, ., #;) and AU=(u:, —a,uy+u.,

—ay U+ uy, —asu,) to (3.1). Let us note A=B if |A[U, U]
—BIU, U11<CIUI,. (=1,2)

= a a -
(8.11) (U, AU) 4+ (AU, U) 4= {(dz.,a ——a:U,, 6x,~a3u1>

+<az ;;(x) ax asl,, ai d1u1>+<az ,,(x) au, 6?6 da”o)
j i [

]

+<az u(x) o AUy, - ai; alul))}

i
+ {(astty, as(—aithy)) + (@sthy, @:(— astty))
+ (az( _axuo); a3u1) + (aa( —aluo), a2ul)}
+ {(a.u,, a3u2)+ (@sths, @stts) + (@2 ths, A3t4y) + (@3, A2 %1)}

+22{(a3 (X)) =—u,, 6?:; (—a2u1)>

6x,

+<a3 (%) j( @:1h), af:)c,.uz)}

+2'Zj{<a3 ,,(x) uz, 636,- u3>+<a3 ,,(x) %, —— U, %—uz)}
+2{(us, —agu2)+(—a3u2, Us)}

holds. Since U belongs to D(A),,

(3.12)  autty, @y (k=1,2,3) and u, (n=0,1,2,3)

vanish at the boundary. Considering these properties we apply the
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Green’s formula, then the boundary integrals do not appear. Now
remark the following (1), (2)
® Z(as ,(x) Pt ai.(—azu,)>+(azug,asu1)

=(a, i, asu1)~(a3u2, a,1,)=0 (in view of Lemma 5),

B A Ry

=(a:a:%,, a;u,) — (@:0:,, Qs ;)

u;)+ (as(—au,), a,u,)

=(a.a3t,, a1tt,) — (@ a3y, a,u,)=0. (in view of Lemma 6)
As the other couples can be estimated more easily, we obtain (3. 10).

Case II.
(8.13) (AU, U) 4,+ (U, AU) g4, = [ws, o] + [tto, t1:]
+ {(astts, as(—a,1ty)) + (asthy, a;(—a:tty))
+ (a.(—au,), asuy) + (as(—a,uo), @, u,)}
+ {(@tty, astts) + (@sty, G2 tt,) + (@2 Uz, Qstty) + (@sths, A U)}

T O L P R
(o & o) (& o)
apl(onlf oo (o))
ol o (2o

_|_2(u3, *a;;uz) +2(—dgu2, u;;).

0
on,
ys(x, D)u, vanish at the boundary. Let us remark the followings:

€ <a3,,~,~<aixj+a,~>ug, (aijci-l-ﬂi)ua)

E( ai (a;; ij ax.>u2, ug)_'_S(aia +Bgo‘>ugﬁ3ds

=(ast,, Us) + 833<

From UecD(A),, ( +a>u,, (k=0, 1, 2), (na(x, D)+ p)astus

n +a>u217t3ds=(a3u2, us) (see (3.5))
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2) (as_,-,( 0 +a,>u2, (%—l—o,-)(—amJ)s(amb —a,iy)

=— (@22, a3u1) (in view of Lemma 5)

(3 [oto, ;] = ((n2+ p)@:tho, 73%1) + (rstho, (M2t ) @1211)
+ 2 {(t2;a11t0, S25a30,) + (S2;@500, E2;G10,)}
7

=((nfn.+ Zsits) antho, @sus) + (0, + 208558,,) sy, artt)

=(a:a:t,, asu,) + (@:asu,, a:t,)

=(a,a:u,, asu,) + (a;a,u,, a,u,) (in view of Lemma 6).
Other terms can be estimated in the same way. Hence we have the

following a priori estimate.

Proposition 1. For any U D(A),, there exists a positive
number B such that

(GI=A)Ull g =Cl2l =B Ull g, for |4|>B, 4 real, (i=1,2).

Let us show that there exists U= D(A), such that W [—A)U=F
holds for any F=(fi, f., fs, fu) in H;. For that purpose it suffices
to prove that there exists uc H*N D(a,) or u= N(a,) such that

(3.14) Au= Q'+ (a1 +a;+a) P+ a.a,)u=g
holds for any g in L% In fact if # be the solution of (3.14) for
(3.15) g=2fi+ 2+ Ma+a) fi+2fs+ fu,
then putting
(3.16) Uo=1U, U =AU, Us=U—a U, Uy;=1u—21(a,+ a)u,
we can see that U= (u,, u,, #,, u;) is in D(A); and satisfies (1[—A)U
=F for F=(fy, fo, f5, fu) in H; ({=1,2). This is reduced to the
theory of the elliptic boundary value problems containing a real
parameter (c.f. S. Mizohata [1]).

Let z, and 2z, be the roots with positive imaginary parts of

Ay(xo,ip+1i2v,2). Here A,(x, D,2) is the principal part of A and
%o is on S. v and » are the conormal and the tangential vector on
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S respectively. Now we only remark that after local transformation
(2.1) the Lopatinski’s determinants are given by the following forms:

If 2,%2,
1 1 , .
—2ix0 in Case I
2z
2z
e =2,2,(2}—2)) %0 in Case IL
P+
If Z1=22
1 0 .
) =22,#0 in Case I
2i 2z,
Sl PPV in Case II
=2z in Case IIL
23 322 '

Proposition 2. There exists a positive constant B such that
I—A)™? exists for |A|>B and satisfies

1 GI— A)] gy, < (i=1,2).

1
1Al -8

§4. Existence of the solution

By virtue of proposition 2, we can apply Hille-Yosida’s theorem
to (E) with B=0. For given F(¢) such that F(¢) and AF(t) are
in E)(4;) and for initial value U, in D(A),, the unique solution of

c;’it U=AU+F in EUD(A),) NEI(H,) is given by

4.1) U,=S,U,+ Ss F(s)ds,

where S, is the semi-group with the infinitesimal generator 4. But
in this situation we must assume that AF(¢) belongs to EY(H,).
In Case I, this assumption means that f(¢#) is continuous in Dj.

To remove this restriction we need the energy inequality
Between U(t) = (u(t) Duw), Taw, I, u(t)) and U,
= (e (), u: (1), u. (), us(1)), we have the following relation form (1.2)
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u(t) =u,(t)
0 —
Wu(t) =u,(t)
(4.2) g.;_u(t) = — @y () + us (1)
Fat:_u(t) =—(ai+a)u: () +us(t)

U(t) belongs to D(A),, if and only if U, belongs to D(A); and
there exists a constant C such that

.3) -1 Ul N U oo <Cll Uil oo
For ; and ||-]| 4, the same relations hold.
Proposition 3. Assume that f(t) is in EWLY), then we have
64
@D Ut | T
0

<CD U w170+ (177D ot}
0<t<T (i=1,2),

for the solutions U(t) € EY(D(A)) NEI(H;) of the eqution (E) with
B=0.

Proof. Consider the estimate (3.10) then we can see
U@ <O U g IF O -
By integration of this inequality it follows that
@5 IO =CD VO] g+ {17 ds].

At first let us assume that U(#) belongs to &i(9) NEI(D(A),) and
that F(¢) is in & (H;). Put

(4.6) —éat—ui(t)zv,.(t) (7=0,1,2,3)
Vi=(0o(1), v:(2), v(t), v:(2))
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then we have

4.7) _%IA:AV,Jr%’;
(4.8) OIPEetNOTPERY ST 2D

Consider the regularity theorem of elliptic equations, then we have
(4.4) from (4.5) and (4.8). In order to remove the above assump-
tion we use Friedrichs’ mollifier with respect to ¢t. Us(¢) =¢:(t)*U(t)
and Fe(t) =¢exF(t) are in E/(I)NEN(D(A),) and in EI(H;) re-
spectively. So we have (4.4) for Ues(¢) and fe(?). Let ¢ tend to
zero, then we obtain (4.4) for U(t) and f(?).

Theorem 1. For any f(t) in E/(L*) and any initial data
U) in D(A):, (E) has the unique solution U(t) satisfying the
boundary conditions (1) or (II). U(t) are in E1(I) NEN(D(A),)
and energy inequality (4.4) holds.

Proof. At first we consider the equation (E) with B=0. For
given f()e&i(L?*), we can choose the sequence of functions {f,(¢)}
such that

1) F,(¢t) and AF,(t) are in £{(YL), (F,(t)=(0,0,0, f.(t)),
2) |If.(0)—f(0)]| and S:Ilf,,’(t) —f'()|lods tend to zero when

#n tends to oo.

By virtue of (4.4), the limit of the solutions U,(#) of the equation

70’;— U= AU+ F, exists independently of the choice of {f,(#)}. Denote

it by U(¢), then U(¢) satisfies the boundary condition I or II. Next
consider the case B=0. Now define the sequence of functions {U,(#)}
successively as follows. U,(#) is the solution of

dit U=AU+F., where F,=(0,0,0, — Bu, 1+f), #_,=0.

By (4.4) {U,} converges and the limit U(?¢) satisfies (E) and (4. 4).
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The solution that we have constructed by successive approximation
method, is the unique solution of the equation (E). In fact for two
solutions U(#) and V(#) of (E) belonging to &1(9,) NEND(A),),
we can apply (4.4), then

@9 U= VOlon<C D\ 1B~ 0()ods
<C' (DU~ V() s
holds. Therefore the following inequality holds
max | U(s) = V() loem<C' (T max | U() = VS) locor.

This means U(s)= V(s) for small s, so that U(s)= V(s) for every
s=>0. (q.e.d.)

Now we introduce some notations for the convenience of discuss-
ing the regularity of each solution. Corresponding to Case I and

Case II, we denote

D(a,) n>2

(4.10) D(al),,={g)iz #—0, 1
N(a,) n>3

N(a,).={N n=1, 2
H* n=0.

(4.11) Case I  D(A).,=H"ND(a)pms X H* N D(ay)ps2

X H** N D(a,) s X H* N D(ay),
Case I D(A).,=H*"NN(a)ss X H* N N(a1) s
X H** N N(a) X H**N N(a,),,
for p>0.
D(A),,=D(A4); (=1,2).
We define the norm of D(A);, as follows
(4.12) ([ Ullocar,= Nstoll34a+ llttall5as+ [l26all3+ l[2ts][30 -

Using such a notation we can state the regularity theorem.
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Theorem 2. Assume the following 1), 2), 3),

1) U(Q0) is in D(A),,

2) (@), f'@), -, fP)) is in EI(H' X H' X - X L?)

3) (compatibility conditions) Put (¢, @1, ¢z, ¢3) = (tto, Uy, Us, U3)
and we assume

(4.13)  @us=f0) — (a1t @2+ @3) o2 — Asa:0,— B (¢, i<<q+3),
@ers belongs 10 D(@1)s_qs2 07 N(@1)p-gsz, p=>q=>0.
Then the solution U(t) is in EX(D(A):,) NED(A); ,.) (G=1,2).

Proof. Suppose that p>>1 and consider the equation
Ly=f'(t)— B’(u), with initial data (u,, %, #s, ¢s),
where # means the solution of Lu=f(¢t)— B(u). Since B is a third
order operator, f/(¢t)—B’(u#) is in &/(L?). Put
t
u(t) =uo+g v(s)ds.
0

Then u(t) satisfies \
(4.14) Lu-+ Bu=f(t).

From the elliptic regularity theorem it follows that U(#) is continuous
in D(A);.:. Step by step consider the equation

(4.15) Lw=f"(t)—B"(u)

With initial data (¢,,, Dni1y Pni2y (/7»:4—3): (n=2’ 3) °t% p)'
Using the solution of (4.15) in the case n=p, we put

t t(f—g)r?
(P—l)!"”"_'_&, Ep—sl))! w(s)ds.

Then we can see that u(f) satisfies (4.14) and U(?) is in
END(A)i,») NED(A); p1).

2
(4.16)  u(t) =po+to:+ t2¢2+---+



]
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