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§ 1 .  Introduction and statement o f result

We consider some mixed problems for fourth order hyperbolic
equations. Let S be a smooth and compact hypersurface in R" (n > 2 )
and D be the interior or exterior o f S. Let

(E) L u +  B u —  a
a
t4  4 +  ( ai + az + a)  6

6
; 2 + a 3 a i )u+ B  (x, t ,  , D)u

f(x , t )

Here ak (k =1, 2, 3) are the following operators :

a,— a ( a k  (x ) a )+  b k (x, D).

ak,,,(x) ak ,,(x)
are real,

a„,,,(x)$,6 ; _>a I 2, (o>o)
i j

for every (x, E) S2 X /2" (k  = 1, 2, 3). B  denotes an arbitrary third
order differential operator. bk a r e  first order operators. Let us

assume that all coefficients are sufficiently differentiable and bounded
in S l or in 12 X (0 , .0 ). Recently S. Mizohata treated mixed problems
for the equations of the form

m n2

L
(  

8" + c.(x)a(x, D))+
f =3. t2
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c ,(x )>c ,,(x ) , c ,(x )>0

Let us consider the case m = 2 .  The above equation has the form

6 4 62
+  (c1(x)+c2(x))a  2  +c 1 c2 a2 + (operator o f third order).
61.4 at 

Now it is not difficult to see that this operator can be considered as

a special case of (E), by putting a i =lc i a, a, — (1 - 1)c i a+(1 - 7 -
1 )c,a

1and a3 =  i c ,a , 1  being a constant less than 1  chosen closely to 1.

In other words the operators a„ ci 2 and a3 are obtained by the multi-
plication o f some functions to the operator a.

We consider a generalization o f this case. Roughly speaking we
are going to assume some relations among the operators ak only at
the boundary. However we don't assume any relation among them
in 2 . M oreover, as we shall see later, the hypothesis (H )  imposed
below is sufficient for the treatment of our problems. Our method
is fairly different from that of [1] . Let us denote the Sobolev space
IP ( 2 )  simply by HP, and its norm by ii .11,, and denote the closure
of .g )(2 ) in  H 1 b y  A-1 2 . Let us consider the subspaces D(a k)  o f H '
defined by

D(a k ) =  { u  113 n g ;  akuG2YL.2} (k = 1 ,  2, 3).

Namely, u G 1 -1 3 belongs to D(a k )  means that not only u  itself
but also ak u  vanish at the boundary. We assume that

(H ) D (a1)=D (a3)=D (a3).

Our boundary conditions are followings:

Case I. u18=0 a1uls=0

Case II. (  a
a
n i  -I-a(s))u  1 s—

O, (
a  + (Ks+ ,  ui s= o, where8n,

0 „ a (1.2)—  E  a " ( x ) c o s ( v ,  x i ) , ( 1 ) ;  outer unit normal),an, ii . a X i

and a ( s )  is  a smooth complex-valued function defined on S.
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A t first we consider the case where B = 0 .  Put

aa ' u a ' a(1.3)u o = u , u,— u, u,— + u,— u+ (a l + a2) u.
at at2 at3 at

Then the equation (E )  with B = 0 is reduced to

(1. 4) d
d t  

U= AU + F(t),

where U, = i(u o (t), u i (0 , u 2 (t), uo (t)), F(t)=' (0 ,0 ,0 , f  (0), and

0 1 0
—a10 1

0
0

(1.5) A =
0  — a, 0 1
0 0 — ao 0

Conversely i f  U, satisfies (1. 4), then the first component u o (x, t) of

Ut satisfies (E )  with B =- 0. Using the notation below :

N = 1 1 2  ;  ( 4 7 + o)ul s =0}

we introduce two Hilbert spaces according to Case I  and Case II:

(1. 6) D (a)  X 112 n 2  x gbx  L '

St2=  H 3 n Nx Nx 11 1 x L 2 .

These spaces are closed subspaces o f H' x  H' x  H 1 x L 2 equipped

with the canonical norm

(1. 7) !!U 112 = Ili/4112
3 + j!u311,

According to Cases I  and II, we take the definition domains o f A  as
follows:

(1.8)D ( A ) , =  1 1 4 n D(a,) x D(a,) x H' n .012x 01.2
D(A ),—  N(a,) x H' n Nx N x  H 1 , where

(1.9)N ( a 1 ) = { u : 114 n N , a,ue

For the convenience we prepare another norm defined below for
U  D (A ), (i =1, 2) :
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(1. 10)I I  U P D ( A ) , ljuoitl+II ttiH+ i!u2H+ itui II
Using these notations we can show the fact that D (A ), and D(A)2
are dense in Sti. and ,g12 respectively. In fact 212, II 2 f-1212 and N
are evidently dense in L 2 ,  2 '  and H 1 respective ly . In view of the

regularity theorem on elliptic boundary problems, a1 + sI is  a bijection
for a sufficiently large positive constant s, from H 3 n N  onto H ', or

from 112 n gD onto P .  Remark that D(a,)= { u n gi2; (ai+ sI)u
G  g i

L 2} and that N (a,)= { E  1 -14 n N ; ( a i+ s I ) u  N}. Then it follows
that D (a 1 )  is dense in 112 ng1,2 and N (a,)  is dense in H3 n N , from
the fact that .012 and N  are dense in L 2 and in H ' respectively.

Therefore to the evolution equation (1. 4) we can apply the Hille-
Yosida's theorem. Then considering the energy inequality, we can use

the successive approximation method to the equation (E). Thus we
can arrive a t the following result:

F o r an y  f ( t )  i n  8 ( 1 - ') "  a n d  an y  in it ial d ata (u (x , 0),
aa 2 a3u(x, 0 ) , u(x, 0), u(x, 0 ) )  in  D ( A ) ,  (i =1 o r  2 ) ,  thereat at2 at'

ex ists  a u n iq u e  so lu t io n  o f  th e  equation ( E ) ,  satisf y ing the
boundary  conditions ( I )  o r  (II). T h e  so lu tio n  U (t)=(u (x ,t) ,
8 8 '  

81- 2
u(x , t), u (x , t), (x , t) )  is  in  el(A ) n e (D (A )), (Theat at3

o re m  1 ) . Moreover when we assum e the compatibility conditions
on  the  in itial data and  the  regularity  o f  f ( t ) ,  then the solution
has th e  sam e regularity  as th e  in itial d ata, (Theorem  2).

The author wishes to express his thanks to Professor S. Mizohata
for his helpful suggestions and encouragement. The author thanks
Professors M. Yamaguti and S. Matsuura for their useful conversations.

§ 2 .  Some lemmas

In this section we show some lemmas concerning uniformly elliptic
operators of second order in D. Lemma 1, 2 and 4  are used in order

1 )  f ( t ) E e ( H )  means that f  ( t )  i s  p times continuously differentiable in  t
with values in H . (p = 0, 1 , 2 , • ••)
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to  show the positivity o f th e h e rm itia n  forms defined in  the next
section. Lemma 2 , 5  and 6  are necessary for a priori estim ates. At
first we introduce the following local transformations near the bound-
ary, attached to the uniformly elliptic operator

ax, ax,
a= — a,,(x ) ) +  (first order operator).88  

Take an open finite covering {S2,} o f S , satisfying the following
conditions, where S2, are open sets in R .  I n  each Dip, th ere  ex ists
an integer k  ( 1 < k < n )  such that cos(?), x,,) # 0  and S  is represented
by x k =*p(x l, • •, x ,  •  •  • ,  x,i). Then in each ,Q,, n  S  we have

1  1  J(s)= - E au (x)cos(v , x1) cos(, x 5 ) > 8 > 0 ,cos(,m J i i

where I m  is given below , and SES2pn S .  Consider the following
transformation:

m i ( x + •••, 4_1+ 4-1, Ifrp, • •• , y ,
M

(2.1)j # k

*p(4+ 4, • • • , 4_ 4 + 4_1, x 41+ 4 ÷ i, • ,  x +  x )

m k (x 1 +  4 , • •• , 4 _ 1 +  4 _1 , 4+1, • •• , .4 )
m l Y

where m ,(x )=Ea(x ) cos(?), x ,), m l  =E n e  ,,=1

= • • • 4 )  E ,S2,5 n S.

Jacobian  o f (2 . 1 )  is sufficiently close to J( s )  in  the place where y
is sufficiently small. Take a new finite covering {0 ),} o f S  which is
a refinement o f  {122 }.  For x°

E0411 S  the local transformation  (2 .1 )
maps co,, fl ,-.C2 one to one onto E. E  denotes the intersection of some
neighbourhood of the origin and the upper half space {(x', y) :
Then S  is transform ed to y  = 0  and the co n o rm a l directions of a
correspond to  the outer normal directions on { (x ',  y), y =0 }  n E.
For every s  on S , let r ( s )  be the radius of maximum sphere with
center s  contained in  one o f {04}. Then S  being compact we can
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choose a positive number 8 satisfying 8 <r( s )  for every s  on S .  In

the neighbourhood r =  {x; dis(S , x)< A -}  of S, the sufficiently smooth2
function y =0 (x )  is determined uniquely independent of the choice
o f  k. In  fac t the meaning o f 0 (x )  i s  the distance from x  to  S
measured along the straight line issued from S  with conormal direction.

Using 0 (x )  we define the following smooth positive function in
r  attached to the uniformly elliptic operator a:

(2 .2) ao ao 
a ( x ) = a1(x) ax, ax ,.

Now we state the lemma concerning the decomposition of a.

Lemma 1. A ssum e that a  satisf ies (1 . 1), then a  is w ritten
in  .6  in  the following form

(2.3) a = n* (x, D)n(x, D) — E t,(x, D).3 f (x, D)

+ (first order term).

Here t, and s, are f irst order operators and  tangential on S . T he
operator n(x , D ) has the following form :

(2 .4) " )n(x, D)— 
 C ( x )

   E a  ( x ) (  aoa  (x)Va (x )

w here C(x ) is a  C- -function tak ing the v alue 1  in  some neigh-
bourhood o f  S  in  r, an d  vanishing outside o f  r. Therefore we
can consider n(x, D) as an operator with smooth coefficients defined
in S-2. n*(x, D ) is  the f orm al adjoint operator o f  n(x, D).

Definition. We say that a first order differential operator t(x , D)

is  ta n g e n t ia l a t  the boundary S ,  i f  t(x , D )=E c a,(x) +d(x )ax,
satisfies E  c(x )  cos(, x ,) = 0  for a ll XE S .  Then we have the follow-,
ing  relation :

(2.5) (t(x , D)u, v ) (u, t* (x , D)v  (x )) for a ll u, v E H1.
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Proof  o f  Lemma 1. Consider the local transformations of type
(2 . 1 ) . Put

0  D =(  a  a  
\ax ,' ax ,' ' ax„

a 8 8a a  
8x;+ 1 "  a x '  0 y  ) '

\ A---(a, ; (x )).

(2 .5) D'—

  

Let the

(2. 6)

Then we have

(2 .7)

where

inverse of (2. 1) be as follows.

j  x ;=* ; (x), j * k

1 y= 0(x)

0 1 )  
D' =TD',

—  agrio  =   a(1)
" i =1,•••,n.ax i 

1
D=

Therefore 'D ='D 'tT + operator o f smooth coefficient of zero order,
and tD A D =tirT A T D '+ first order operator, hold. B y  local trans-
formation (2. 1), — a takes the form

o2 a  a (2. 8) — "a= ci(x', y) + 2 E , y)o y  2 ax; ay
+ (first order term),

where c i(x ', y )=Z a i i (x)  8 0  8 0
i f a X i  ax,

ao  aw, c,, (x', y)= E  ap ,,(x) (i k)8 x  ax

c3 0 (x', y) = E af .( x ) ar,  ari
int a X 1  a X n j

8 8 
"ax ; ax";

(i, j k )

And sim ilarly n(x, D ) becomes the following form : (Let k  be n.)

(2 .9) R(.e, y, D')—  C ( x )   Ic i(x ',y ) a + En - 1  c,
"
(x ' y )  a   tV a ( X ) aY •
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By (2 . 8 ) and (2 . 9 ) , we can see that the conormal directions of a
are transformed also to the conormal directions of

On the other hand, from (2 . 1 ) we have

a "  m •  a
—  — E .Oy Imi 8x,

Considering that

   

6 (160  12

8x;  ' \I 6x I Ox)
( a 0   ) 2)

n(x, D)—  C ( x )  

, (a ) I ax

holds on S, we can see

c2 1 (x ', 0) z=1, • • • , n —1.

By (2 . 8 ) and (2 . 9 )  we can write à in the following form :

(2. 10) a =  (x ', y, D ')ii(x ', y, D') — Et .,(x', y, D,r)s,(x', y, Dr
, )

+ (first order term).

Consider the family of local transformations of type (2 . 1 ) such
that the union of the corresponding {04} covers S , and take a suitable
partition of unity E772,(x ) = 1  on I f  th e  s u p p o r t  o f  72, contains a
part of boundary, the local form o f a72.

2, is

(2. 11) ii;;; =72; n* (x', y, D')n(x', y, D')
— (t , (x ',  y, D, , )7 )(s (x ', y, 1.) , )77,) + (first order)

For 72,(x) in g  (S 2 ) , a(x )  are products o f tangential operators

on S .  Summation o f (2 . 11 ) gives (2 . 3 ) in some neighbourhood of

S. (q. e. d.)

R e m a rk . Let nh (x, D )  be the operator n(x, D )  corresponding
—80 to the operator ah ,  then at the boundary S, using cos(v,x,) — 8x,

/I0a0x I we have the following relation :

(2. 12) ,
0( E  a k , i  (X ) C O S (V , x , )  c o s( ,  X  j ) ) 1 1 2  nk(x, D ), on S.

onk

The following lemma concerning the relation between a, is  just a
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characterization o f hypothesis (H ).

Lemma 2. A ssum e (H ), then w e have

1)
a

- 19,(x)  a   o n  S ,  w here ,9,(x)—  a i( x )   .  a i ( X )  (i=1 , 2 ,3)an, an, ozi(x)
are  a ( X )  corresponding to the o p erato r a,. 131(x )  are defined in  r.
2) I f  u belongs to II' n o L 2  (a 1 —,9,(x)a1) u  belong to 21-z (i 2, 3).

P ro o f .  W e fix the local transformation (2.1) corresponding to
a,. After this transformation, a, and a, take the following forms

(2.13)

u-i a aa+2 E b „(x +c ,(x ',y) ,, aa i (x '  , y ) 
a y 2 x ,  a y ) 

O yy
+t,(x ', y, D')

n2 n-2 a a a
a2---ct(x ', +2Eb21(x', +y) a y 2 3 1 )

t2 (X I , y, D ),

c 2 ( x ' ,  y )  

8yay

where b11 (x ',0 ) and t k (x', y, (k  =1, 2 ) d o  not contain a
Oy

, ao, ax 80x,y) means Em u  „  .  Here 0 ,  i s  0  which comes from a,
u ox , ox ,

( i= 1  o r  2 ) .  Then let us prove the following facts:

(2.14) b21 (X l , ---="0

(2.15) C2(XI, 0) °2 Ci(X', 0).
al

(2.14) means that the conormal directions of a, and a, are same.

Therefore the local transformations (2.1) corresponding to a, and a,
are same ones. So we have 01=0 2 and a;=‘e 2 . Thus we obtain 1).
B y (2.14) and (2.15), we can see 2 ) .  Now let's prove (2 .14 ) and

(2.15) in the following two steps.
(1 )  First step (localization). Assume that tc H 3 satisfies ru=ra i u
= 0  in co n S . (co is one of fo41 and r  is  the trace operator.) Then
we are going to prove that fo r  any compact set K  in  co n  S ,  there
exists a function ui c  defined in such that in some neighbour-
hood o f K , and UK, aiu K  belong to g b .  Consider the map (2.1)
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and we can assume that S is a hyperplane y= 0  and a, has the form
(2. 13).

T ake the following C- -function AJ(x i )  in  x'-space defined as

follows :
qp(x') =1  in some neighbourhood of K , k (x ') = 0  in some neigh-

bourhood o f C(0) n S ) .  Put g = a,*(x')u, then the support of rg  is
in tonS— K.

1 V K g  q p (x l)u
2r 1 (x ' y

satisfies ra ivK  rvic =0, and the support of vK is  in 0) x R1 ( y ) .  Take
a  C-  function ço(y ) taking value 1 in  a  small neighbourhood o f 0
and vanishing outside o f some neighbourhood of 0 . By inverse trans-
formation of ço(y)vK, one can yield a function UK which satisfies the
desired conditions.

(2 ) Second step. For ak in  (2. 13), let us put

ri - 1

d— ' Y ) a 2 —  ( E d i , ( x ' ,  3 1 )
8 x

 + d2(x' , Y)) a
cei (X ' , Y) ,

+ d,(x' , y, D

8da (x' , y, Dr ')  does not contain . From the assumption (H) anday
First step, rdu =0 must hold for the function u satisfying ra i u= ru
—O.

Now consider
ci(x ', 0 ) u — 2 1 (x',

Then rdu= d2(x' , 0 )= 0  follows from ru = raiu = 0. Take

, b2 ( x ' 0) 2x, y 0) y ,

then we have rdu= d,,(x' , 0 )= 0 .  Thus (2. 14) and (2. 15) follow.
(q. e. d.)

Now we explain the common method in the proofs o f Lemmas
3 - 6 .  We use the local transformations of type (2. 1) and  a suitable



Fourth order hyperbolic equations 295

partition of unity E v ;= 1  on Si corresponding to the covering {04}
of S .  Then the proofs o f Lemma 3 - 6  are reduced to those of in
the domain E and for function u with small support satisfying some
conditions on y =O . Let us rewrite (x', y ) by (x1, •••, x„_1, y ) .  In the
proofs ( • , • ) and  II .!! mean (-, • )L2m  a n d  jj • IlL2(/), respectively and

lip means ii (19=1, 2, 3).

Lemma 3. Let a l ,  a, be uniform ly  elliptic operators. T hen
there ex ist positive constants 8 and r  such that

(2 .1 6 ) Re(aiu, a2 u)+ riluli 2 811uN

for 112 n 21,2 or fo r u& {tee H 2 : ( a
a
n 2 -  a(S ))211s=0}.

P ro o f .  Consider the local transformations of type (2 . 1 )  corres-
ponding to a , .  It suffices to prove the following inequality for the

8 functions u satisfying u  = 0  o r  (
8 y  

+ c (x ))u l = 0 , c (x ) being a
= 0 y =  0

smooth function determined by d ( s )  and (22 ,3 (x ):
n —1 n —1

(2 .1 7 ) I= R e ((g + 2 E b 1 1 D,,Dy + E c 1 1 3 Dy i Dy i )u,

(M+ E c2,,D„1D, j )u)1.2(1) aliugol)—rliuN, where
i i

1  (   81  a Dy =  + c (x )) (j=1 , 2, n-1 ).i ay 27ti 8xy

W e can  assume th a t the coefficients are constants in (2 .1 5 ) ,

taking account of the fact that the oscillations of the coefficients are
sm all. Then by G reen 's formula and each boundary condition we
have

n - 1 n -1

(2.18) Re ( E , R e (c i„D „D y  u, Dx ,Dy u)
n —1 n - 1

(2. 19) Re ( g ,  u, E c 2 1 1 1-
1 1)„,u) =Re E  (c.,„;D y u,D,,D y u),

i j

w here w e have used  th e  following notation ; fo r b i- lin e a r  forms
A[u,vi, B[u,vi defined on some subspaces of H 1 , A B  means that
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I A [u , u] — B [u, u] I <ell ufl + r iluN holds for arbitrally sm all positive
€ w hen r  is  su ffic ien tly  la rg e . Putting

(2 .20)1 4 1  g.u1 2 dxdy l 2 E b „ D , , D y u gudx dy
n -1

- F E C i „ D x 31 ) , , u  D,,D,u dxdy,
i j

n -1
(2 .21) . 1 2 = E

kl

±  2 b 11 Dy u c2 ,,,D„D,,udxdy

n -1

+ cioD,,D„u c 2 ,,,D„D,,udxdy,

th e n  w e  have / -= R e h+  Re h .  Consider the Fourier transformation
w ith  respect t o  (x 1, • •., x ,) and Plancherel's equality , then w e can

see

(2. 22) h =  {19-x(gu) 12 + x(Dyu)g x (g u )
n -1

+E ,(Dyu))(E,9 .,(D,,u))} clEdy
i j

From  the ellip tic ity  of a 1 , the following inequality holds

n -1 n -1
(2 .23)R e { Ir l2 + 2 E b ii2 j- -E c iip li; ii} :> a { ir i2 + E I2 J1 2 }

for com plex num bers r ,  2 ,  (i=1, • • °, n -1 ) .
B y  (2. 22)., (2. 23) w e have

( 2 .2 4 )  R e  ./.,> q u)jz dEdy x(D,,u) I 2 d$ dy}

>  417r au112,-elun.
In the sim ilar w ay w e have

(2 . 2 5 )  Re ./2> a (c 2 ,,,E k E ,) {1 (Dy u) I 2 + I $, 9" (u ) I 2 } cl$cly
k,1

\ 2 n -1

\ 47r1 u
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From (2. 24) and (2. 25) we obtain (2 .1 7 )  for another 8 > 0 . (q .e .d .)

Remark. Lemma 3  holds f o r  u E  lu E I-1 2 ; ( a  +  a   (s)8n ay
a+0(s))ui =01, where (s )  means a tangential derivative smoothly
8r

depending on sE  S , and  6n  is the normal derivative.O
Because (2 .1 8 )  and ( 2 .1 9 )  hold for the functions u  satisfying

(

a+ E , , , ( x )   a   +c ( x ) ) a l  = 0 .  In fact for u satisfying (D y + t(x,ay ax, ,=0
D))u I = 0  we have the following relations:

y = 0

Re(c„; D„D„u, M u) =Re(c„;  D„ D„ u, Dy (D,+ t(x , D)u)
—Re(c„;  D„D„ u, Dy t(x, D)u)

u, D„D y u)+R e(c„ ; D„D y u, D„t(x, D)u)
—R e(c,„ D,Du, D y t (x , D)u)

D„D y u, D„D y u)+ {Re(D y t(x, D)u, c„;  D „ u )
—Re(c„; D„D„u, D y t(x, D)u)}

=Re (c„;  Dx ,D.„ u, D„D,,u).

With respect to (2 .1 9 ) , the same argument can be used.
Such a type of inequality as in  Lemma 3  has never been men-

tioned before. It would be interesting to use that inequality in another
case without the assumption (H).

Lemma 4. Under the assum ption (H )  we hav e the following
inequality

(2.26) R eE (a ,o (x ) a
a
x, a,u, 4, a3u)> N811u —  riluH

f o r uE D(a i )  o r f o r ttE 1-13 n N.

P ro o f .  Since II 4  f1 D (a i )  and N (a i )  are dense in  D(a i )  and
n N  respectively, it suffices to prove (2 . 26) fo r PP n D (ai)  or

N (a i ) .  Now let us introduce the similar notation to that of Lemma 3:

(2. 27)A B  means A [u, u] —B [u, u] I <ei!ull + rliuN .
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ak(k =1, 2,3) have the following forms in E :

(2.28)— a k = a , , ( x , y )   y)  a  a ay' ' ax , ay
a 

+Ec •   d + • • •'k ''' 
aa  

+ k(x)ax , ax ;a y  

where b,,,(x, 0) 0 because of the assumption (H).
Boundary conditions u  = a,u I  = 0  are equivalent to u I  =

y=0 y=0
aand u  — + d(x))  a  u = 0 ,  d (x )  being a  smooth function.

y =o a y a y  y=0
a Another boundary condition is  (

a y  
+c(x))u I = O . In each case, we

y=0
have the following, assuming er,(x, y)= ---=- 1 and using the above notation;

(2. 29) Re(a2a1u, a aiu,  a  a,u)ay ay
a a 

ReE (cw(x,
a
 a l u , a2u)==j1-1-jr2.

if x, f t . ;

Here we can assume that the coefficients are constants as before.
Then the proof of

(2 .30) Re(a2a1u, a3 u) 8Ilug — rliuN

is reduced to that of Lemma 3. In fact

(2. 31) u) d  ula
a u , a,  aa  y a y ay 2 rl 

 a  ul
2 ay

2

 

follows in the first case: (  a
a
y   + d(x))  a

a
y   u yl  o= 0 .  In the second case

(2.32)J i - = - R e ( a i (   a
a
y   +c(x))u, a

a
y   + c(x ))u)

all(a
a
y   +c(x ))A 2

2 - 4 ( a
a
y   + c(x))7411:

holds. For 12, following the same process of argument as in Lemma
3 , we have

j',..>8q fi
 

12
a X i 2

(2.34)
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From (2 . 31), (2 . 32) and (2 . 34), (2 . 30) follows. Thus we have

(2. 35) Re (a 2 a1 u, a3 u)0(c)-allullL2(a)— rh uII2L 2 (Q )  •

This inequality means (2. 26) for uE H 4 n D(a 1 )  or uE N (a i )  (q.e.d.)

Lemma 5. Under the assumption (H ) there exists a positive
constant C such that

(2. 36)I  (a 1 u1 , a2 u2 ) — (a2 u1 , a1tt2) I <CIlu11121171211

for u„ thE N or u„ u 2 .1 -12 n

Proof. H e re  w e  use the following notation :

B  m ean s A[u 1 , u2 ] — B[ui, u2] <Quill 2 U2111 •

(1) For u i  1-1 4 n D ( a, ) and u 2 e  1/2 n .012, we have

(a i u„ a2u2)= u2)-=(ata2u1, u2) =  (a 2 u1 ,

Considering the fact that 1-14 n D(a 1 )  is  dense in H 2 n 212, w e have
(2.36) for u2 E H 2 n
(2) L e t  u s  prove (2 . 3 6 ) fo r  1,11 E 111 n N  an d  u2 E N .  For the

functions u, and u2 satisfying (  a
a
y   + c(x ))u,1 = 0 ( i= 1 ,  2), we have

y=0

(2.37)
( n2

" a a
ay2a x ,  a x k u 2 1̀ 2(1)

. ( (   aay   +c(x ))( ,c ( x ) ) u „ a
a
x ,  a

a
xk u2)

+ c ( x ) ) aaxi ( aay   ,c ( x ) ) u „ aa, u2)

( aay   + c(x ))u„  ay+  c(x))u2)

a=  (( a y   + c (x ) )  a
a

  

a  u„ (x , axkH - c ( x ) ) u )

(a  aa 2
u  u2),ax , ax k  1 '  ay'

and in the same way,
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(238 ) "
n 2 a  a  u2). (  a   a  u„ u2).. u„(ay 2a x ,  ay ax, ay ay'

From (2. 37) an d  (2. 38), (2. 36) follows fo r  tl i E  H 3 n N , u 2 E N.
This completes the proof of Lemma 5.

Lemma 6. Under the assumption (H ) there ex ists a positive
constant C such that

(2. 39) (alui, a2a3u0) — (a2u1, a1a3u0) I <C1114111211u0113

fo r  uo G 1-14 n D(a,), uiE D(ct i ) , or uo G N(a,) , u,E H 3 n N.

P ro o f . For U0 E  114 n D (a ,), u iE  D (a i), (2. 39) follows immedi-
ately from Lemma 5 .  Here we use the notation ; A B i f  A[u„ u 2 ]
—  B [ui, u2] I <Cl1u111211u0113 holds. In order to apply Lemma 2 (ii), we
decompose a3 a s  follows :

(2.40)a 3 =  0 3 ( x )  ai+ (a3— 3(x)ai),

where 133 ( x )  i s  a  smooth function obtained by the prolongation of
a 3 (X ), defined in  T .  For u0E N(ai) and u 1 G  H 3 n N , using Lemma
ce i (X )
5 we have

(2. 41) (aiu„ a2(03(x) aim)) — (a2u1, a1(93(x)a1u0))
193(x)a2(a3u0)) — (a2u1, 93(x)a1(a1u0)) 0,

and by Lemma 2  (ii), the following relations hold :

(2. 42) aa2y, u „  ax, ax,, ,93(x)a,)uo)

= aay  4, ( aay + c ( x ) ) u „  aax„ (a3— 3(x)ai)u)

( ( a y   +c(x))u„aa

. (

a a  u„  a  (a3 _ a (x )a i ) ( a +  c (x ))u )ax, ax„ 8y 8y
6 2a  a  u„ 

a y 2

 (a 3 — 03 (x )a i )u,),\ &lc; ax, 

ax„(a3— G'3(x)ai)(  aay  +c(x ))uo)
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(2. 43) ( u
a

  a 
\ ry , a x ,  a y  (a3-193(x)a0u0)

( a a „, a2
ay ”- a y , (a3— Qo(x)ai)uo)ax1

fo r  i, k=1, •-•, n— 1.

From (2. 41), (2. 42) and (2. 43), we obtain (2. 39). (q. e. d.)

§ 3 .  Evolution equation and a priori estimate

We introduce the following hermitian form in ,g11 defined by

(3.1)( U ,  V) A . = E i(a 2  „ ( x )  a
aX,

 aim), 
aX,

a  ao vo )

+(a2,,,(x)  a
a
x ) aouo,  o

a
x  aivo)} + r (u o , vo )

+ {(a2u1, aov + (aou„ a2v1) + r(ui, v1)}

+ 12 (a3,1,(x)  aax, axu2,  a   v ,)+r(u,, v2)} +2(u 3, 3),

f o r  U= (u o , u„ uo, uo), V = (vo, v1, v2, vo)E

where r  is  a positive constant.

In the case II we use the hermitian form of the following type;

(3.2)( U ,  V) = [uo, vo] + {(a2u1, aovi) + (aou„ a2v1)+ r(u2, v1)}

2 ( a 3  i j ( X ) (
a + 6  j ) U 2  ,  ( - 1 2 )  r(u2, v2)}a

ax ;a x ,
+2(u 3 , y 3 ) .

By the analogy to Case I it would be natural to take the following
hermitian form f o r  [u o , y 0 ], u s in g  the decomposition o f a2 in  view
o f Lemma 1:

( (n 2 + Oulu., (n2+ a) a3v0) + ((n2+ a) aouo, (u2+ a) 0)
+ (t 2 ., ai uo , s2 1 a3 v0 )+ E (s 2 1 a3 u0 , t2 1 a1v0 )+  r (uo, vo).

However for this form the calculus by integration by parts concerning
(A U, U ) A .,+  (U , A U ) A .2 does not work well. For boundary integrals
can not be estimated by C I !  U , ( .  Taking account of the fact that
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(a,—  ,a,)(n 2 + p )u , a n d  (n,— p)ai u ,  v an ish  a t th e  boundary for
uo G N(a i )  in view of Lemma 2, we introduce the following hermitian
form :

(3. 3) [uo, yo] ((n2+ r3 (x, D)vo)+ (r3(x, D)uo, (n2+ p)aivo)
+ E {(t2iaiuo, s 2 5 a3 v0 )+ (s 2 5 a3 u0 , t25 a1v0)} + r(uo, y 0 ),

where

(3.4)73(x , D ) = (a3- 3c1i) (n2+ P)+ (n2+ p)ai .

Here a, ( x )  (i= 1, 2, • • •, n )  and p (x ) appearing (3.2) a n d  (3. 3), are
arbitrary sufficiently smooth functions satisfying on S  the following
conditions:

(3.5)E cos(vx1)6,(x) = a ( s ) o n  S.

(E a2 ,11 cos(v, x 1) c o s ( , '0 ) 11 ' (E a, 15 cos(v, x i )cos(v, x 5 )) - 1

if
x  6 (s)= p (s), on S. (in  view of (2 .12 )  an d  Lemma 2, 1))

Then the following relations hold on S:

a a(3.6)+  E a "  cos(, x i )6;  — 3 ( + E a1 ,1 5 c o s ( , x i )8n, On,

3 ( aani + 6 )
a(3. 7) n2+ p(s) = (E a2,1; (x) cos(v, x i ) cos(,, x1 ) ) - 1 1 2 +  p ( s )

— a2, (x) cos(, x i )cos(, x1)) 1 1 2

x (E (x) cos(p, x 1) cos(, X1) Y ' (
a +

By virtue o f Lemma 3 and Lemma 4, there exists a positive
constant C such that

(3.8)  U V <  ( U, U),9 ( i < C  U112 ( i  =  1, 2) fo r U E  .

In fact, from Lemma 4 we have

Corollary. Under the same assumption as in Lemma 4, we have
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(3. 9) C aouo) + rqu0li 2>allu0liL for uoE N (al).

Therefore considering that N(a i )  is dense in H 3 n N  and using the
decomposition of a 2 , w e have

1 iluon<[uo, /4] <Ciluog for uo E. H3 n N.

Hence ( U, V) m i  (i =  1, 2) are positive hermitian forms.

Now we show the following estimate using Lemmas 5  and 6.

(3.10) (AU, U) m i + (U, A U )  » < Q U IP
for a ll UED(A ) ; ( i= 1 , 2 )

Case I. Substitute U =  (u 0 , u1 , u2 , u3 ) and A U =  (u 1 , — aim + u2,
—a2 u1 +u 3 , —ao u , )  t o  (3. 1). Let us note A B  if I A [ U, U]

— B[U, U] I U 112
 s ( i  =1, 2)

(3. 11) (  U, AU) s c i + (A U, U) . { ( a 2 i a
a
x , aiuo, a

a
x , a3 u,)

+ (a,,, ; (x)  a
a
x i ao u„ ai u ,)+ (a 2,„.(x)  a

a
x, a i ui , a

a
x , ao uo)

+ (a,,, ; (x)  a
a
x i ao ui , a

a
x aim)}

+ {(a2u1, a3(— aiu0)) + (a3uz, a2( azuo))

+ (a2(— aluo), azui) + (a3( — azuo) , a2u1)}

+ {(azuz, a3u2)+ (a o ui , a2 u2)+ (a2u2, aoi) +  (azuz azui)}

+2E {(a2,, ; (x)  a  u 2 ,  a  (  a,t11))
aX i

( a 3 , 1 j ( X )  a2u1), 4142)1

+ 2 E {(a 3,,; (x ) u2, u2)+  (a3 ,;(x ) a
a
x i u3, a

a
x , 7/2)}

if ox, oxi

+ 2 {(u„ —a3u2)+ ( — a 3 u 2 , u 3 )}

holds. Since U belongs to D(A )i,

(3. 12) ak uo , akui (k =1 ,  2, 3) and u„ (n=0, 1, 2, 3)

vanish at the boundary. Considering these properties we apply the
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Green's formula, then the boundary integrals do not appear. Now
remark the following ( 1 ) ,  ( 2 )

(1) E(a3,,,(x) u2, (— a2u1))+ (a2u2, a3u])ax;a x ,

(a2u2, a3u1)— (a 3 u2 , a 2 u1 ) = 0  (in  view o f Lemma 5),

(2) (a2,0(x) a3 u0 , (a3(— a i uo ), a 2 u] )
aXi

=-(a 2 a3 u0 , aiu])— (a3a]uo, a2u1)

=- (a 2 as u o ,  a iu i )  (tzia3UO, a2u1)----=0• (in view o f Lemma 6)

As the other couples can be estimated more easily, we obtain (3. 10).

Case II.

(3. 13) (A U, U ) s , --P ( U, A U) [u1, uo] + [uo, u]]

+ {(a2u], a3( — aiu0))+ (a3u], 422( — aiu0))

+ (a,(— aim), a3u1)+ (a3( aluo), a2u1)}

+ {(a2u1, a3u2)+ (a,u„ a2u2)+ (a2u2, a3u]) + (a3u2, a2u1)}

+2E Ka3,1; (a +d )u 2 , ( + 6, ) (  a2u1))ax;a x i

+(a3.„( 
 a  H - a , ) (  a 2 . 7 1 , ) ,  (  -  (1 ) u 2 ) }ax,

H2  {(a 3 , „ (  a
a
 +6 ,)U 2 ., (

a
 a  +x ;x ,

+(a,,, ; ( :   + 6 ; )u 3 , ( 
 a  +6 i )u 2 ) }

x ; a x ,

+2(u3, a3242) +2( — a3u2, u3)•

F ro m  U E D (A ) 2
f a   + d)u, (k  = 0  , 1 , 2), (n2(x, D) + p)aluo

oni
r 3 (x , D)u o van ish  at the boundary. Let us remark the followings:

( 1 ) a
a
x, + aax,

= (— aax, ( a3, '  a a
x , )u2 , u 3 ) +  a

ô
n 3  +  0.3 6)142T12ds

=(a3u2, u3) +i93( 4 1 + d)u2 -U3ds= (chu,, u 3 )  (see (3 . 5))
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aa  (2) (a 3 , , ( + a ,)u3, ( a x ,  + 6 1) ( —  a2u,))=(a3u2, —  a2u,)

_. -  —  (a 2 u2 , a 3 u 1 ) ( i n  view of Lemma 5)

(3) [uo, u11 -= ((n2+ p)oluo, nu4)+ (nuo, (n2+ p)olui)

+ E {(t21a1u0, s2 ; a3 u1 ) + (s21a3u0, t21a1u1)}

((n:n, + E sZ tO alu o , aotti) + ((n:n2+ Et:J.321)(73M, a4u4)
(a z a i u„ a3u1)+ (a2a3u0, alui)

a3u4)+ (a3aluo, a2u1) (in  view of Lemma 6).

Other terms can be estimated in the same w a y . Hence we have the
following a priori estimate.

Proposition 1. Fo r any U  E D (A )_  there exists a positive
number Le such that

II — A) (1 II — Q)11U jc i f o r  A I > real, (i=1, 2).

Let us show that there exists U G D (A ), such that (AI —  A) U = F
holds for any F=(f i, f 2, f 35 f l )  in  S t , .  For that purpose it suffices

to prove that there exists uE I -14 fl D(a i )  or uE N (a i )  such that

(3. 14) Au= (24 + (a i + a3+ a 3 )22 + a3 a i )u= g

holds for any g  in L 2 . I n  fact if  u  be the solution of (3. 14) for

(3.15)g  =2 3fi +2 2f2+ 2(a2+a3)f4+ 21'3+ f4

then putting

(3. 16) tio=u ,  u1 =22t, u2 =2 2u—a 1u, u 3 =2 3 u - 2(a 1 + a 2 )u,

we can see that U= (u 0,u1,u2,u3) is in D (A ), and satisfies (AI —  A )U
= F  for F  f 2 ,  fa, f 4 )  in  St, (i= 1, 2). T his is reduced to the
theory o f th e  elliptic boundary value problems containing a  real
parameter (c.f. S . Mizohata [1] ).

L et z 1 a n d  z 2 b e  th e  roots with positive imaginary parts of
A o (x o , i47H izu, A). Here A o (x, D, A) is  the principal part of A  and
x o is  on S .  I) and 77 are the conormal and the tangential vector on
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S respectively. Now we only remark that after local transformation
(2. 1) the Lopatinski's determinants are given by the following forms;

If z 1 z2

     

= 4-4 *0 in Case I

     

z1 z2 (4- 4) k  0  in Case II.

If z 1 = z2

    

=2z 1 *0 in Case I

     

=24*0 in Case II.

   

Proposition 2. There exists a positive constant o  such that
(AI—A) - 2  exists f o r  121>O and satisfies

(2/—A) - 1 11,5 ( i <  121
1_ 0( i = 1 ,  2 ) .

§ 4 .  Existence of the solution

By virtue of proposition 2, we can apply Hille-Yosida's theorem
to  (E ) w i t h  B 0 .  For given F (t )  such that F (t )  and A F (t) are
in eKso and for initial value U0 in  D (A ) 1 , the unique solution of
d U= AU+ F in e ';(D (A )) ne(gc,) is given bydt

(4 .1)U ,  = S U0 + F(s)ds,

where S, is  the semi-group with the infinitesimal generator A .  But
in  th is situation w e must assume th at A F (t) belongs to C(9/,).
In Case I, this assumption means that f ( t )  is continuous in  212.
To remove this restriction we need the energy inequality.

B etw een  U (t)= (u (t), u ( t ) ,  aat2, u (t), u ( o )  a n d  U,
(u o (t), u1 (t), u2(t), u3 (0 ), we have the following relation form (1.2)



Fourth order hyperbolic equations 307

u m = uo(t)
a u m = u,(t)at
a2 
a t ' 

u m = —a1u0 (t)+u3(t)

03  

at' u(t)=—(ai+az)u3(0-1--u3(t)
\  

U(t) belongs to D (A ) ,  if and only i f  U, belongs to D (A ), and
there exists a constant C  such that

1(4.3)U ( t ) I 1 D ( A < C i i  UtiiD(A),

For S t, and II ., the same relations hold.

Proposition 3. Assume that f ( t )  is  in e(1, 2 ) ,  then we have

(4.4)U ( t) ! ID ( A ) ,± 1 1 u(t)

<C(T)IIIU(0)IID(A),+ Ilf(0)110+ÇoIlt(0110dt}
o<t< T  (i=  1, 2),

for the solutions U (t) e? (D (A ) ; ) fl ( L1 ) of the eqution (E) with

P ro o f . Consider the estimate (3. 10) then we can see

d IlU(t)lj j e i <CIHU(t)l! j t i +11F(t)il 11.dt
By integration of this inequality it follows that

(4.5) II U(t)iim i <C ( 7') Ili U(0)lijf i + f (s)h ds} .

At first let us assume that U (t) belongs to C (,9-4) fl E (D (A ),) and
that F (t )  is in mst i ). Put

a (4. 6) u"( t)= v (t) (j =0, 1, 2, 3)at 
V ,= (v0(t), vi(t), v3(t) , v3(0)

(4. 2)
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then we have

(4.7)

(4.8)

a6 F  V, —  AV,+at at

IIV(011 .<C(T)IIIV(0)11 qa6ft ( s ) L d s } .

Consider the regularity theorem of elliptic equations, then we have

(4. 4) from (4. 5) and ( 4 .  8 ) .  In order to remove the above assump-

tion we use Friedrichs' mollifier with respect to  t. U E (t) = çoe (t)*U(t)
and FE(t) =•ço*F(t) are in  exst,) n E (D (A ), )  and in e(,91 ,) re-
spectively. So we have (4. 4) for U ( t )  and f ( t ) .  Let e  tend to

zero, then we obtain (4 . 4) fo r  U (t) and f (t ) .

Theorem 1. F o r any f ( t )  in C (L 2)  an d  any in itial data
U(0) in D (A ) 1 ,  ( E )  has the unique solution U (t) satisfying the
boundary conditions ( I )  o r (II). U (t) are  in  C(cgt,)n M D (A ),)
and energy inequality (4 . 4) holds.

P ro o f . A t first we consider the equation (E )  with B:=- 0 .  For

given f ( t )E e (D ) ,  we can choose the sequence o f functions { f ( t)}
such that

1) F ( t )  and A F ( t )  are in C K il,) , (F„(t) — (0,0,0, f„(t)),

2) II f„ (0) — f(0 )11 and f„r(t) — f '(t )ij o ds tend to  zero when

n tends to  C"'D

By virtue o f (4. 4), the limit of the solutions U ( t )  o f the equation
d U= AU+ F„ exists independently of the choice o f { f „(t)} . Denotedt

it b y  U (t), then U (t)  satisfies the boundary condition I o r  II. Next
consider the case B 0 .  Now define the sequence of functions { U(t)}
successively as fo llow s. U„(t) is the solution of

d U— AU+ F„, where F„= (0, 0, 0, —  Bu, + f), u_ 1
-= 0.dt

By (4 . 4) {U„} converges and the lim it U (t) satisfies (E ) and (4. 4).



Fourth order hyperbolic equations 309

The solution that we have constructed by successive approximation

method, is the unique solution of the equation (E ) .  In fact for two
solutions U (t) and V (t) o f  (E )  belonging to EK - 11.) ne(D (A ),),
we can apply (4. 4), then

(4.9) II U(t)— V(t)!ID( A) ,<C( T)Ço 11/3(u(s)— v(s)11 0 ds

<C ' V(s)!ID(A),ds

holds. Therefore the following inequality holds

m ax  U(s)— V(s)IID(A),<C'( T)t max II U(s) — V(s)11D(A), •

This means U(s) = V (s) for small s ,  so that U(s) = V (s) for every
s>0. (q. e. d.)

Now we introduce some notations for the convenience of discuss-
in g  the regularity o f  each solution. Corresponding to Case I  and

Case II, we denote

(4.10)
i2D(a1) n >2

D (ai)„=
i

n= 0, 1

N (a i ) n > 3
N (a i )„={ N n= 1, 2

111n = 0 .

(4. 11) Case I D ( A ) 1 , = H P '  n D ( a 1 ) p + 3  x HP "  n D ( a 1 ) p + 2

X H P +2  n D(cii)p+ix H P + 1 f l D(ai) p
C ase  II D(A ) 2 ,p= HP+4 n N (a 1 ) P+3X H P "  n N (al) p+2

x I I P + 2 n N (a,) i x H P + 1 n N (a,),,
for

D(A ),, o = D (A ) , ( i= 1, 2).

We define the norm of D (A ) 1,p as follows

(4.12) WitI(A)ip=ifuoirp+4+iluill2p„Hiu2n„+liu3n.i.

Using such a notation we can state the regularity theorem.
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Theorem 2. A ssume the f o l l o w in g  1 ), 2 ) , 3 ) ,

1) U (0 ) i s  in  D (A ),,,

2) ( f ( t) , ( t) , •  •  •  , f (P)(t))  i s  in  e;(HP x  HP- 1  x • • • x L 2)
3) (com pa tib ility  conditions) P u t  (so, v i, ç , ç03) = (24, al, u3, u3)

and w e a ssu m e

(4 . 1 3 )  v q +3 = f ( g) ( 0 )  -  (ai+a2+a3)gog+2—a3aiv0—.13 (q) ( i<q + 3),

ço,÷ 3  b e l o n g s  t o  D(a1)p-9+2 o r N(ai)p-g-F2,

T hen  the solution U ( t )  i s  in e ° (D (A )i,p ) f le (D (A )i,p - i)  ( i = 1, 2).

P r o o f .  Suppose that p > 1  and consider the equation

L v = f ' ( t)—  B '(u ), with initial data (u 1 , u2, u3, (04)

where u  means the solution of L u =f ( t ) — B ( u ) .  Since B  is a third
order operator, f '( t ) — B '( u )  is  in e (L 2 ). Put

u (t)=u 0 +5 :v (s)d s .

Then u ( t)  satisfies

(4. 14) L u +B u =f ( t ) .

From the elliptic regularity theorem it follows that U(t) is continuous
in D (A ),,,. Step by step consider the equation

(4.15)L w = f ( ' ) ( 0 - 1 3 ( " ) ( u )

with initial data (o), g9 n-Flf Ç2 .+ 2 7  V .1 - 3 ) 5  (n =2 , 3, P)•
Using the solution of (4 . 15) in the case n = P ,  w e put

C 
( t

- 1  w (s)ds.(4.16) u ( t ) + tçoi t2  ç5,2 tP-1
( p - 1 ) !  

p _ 1 +

 3 .  ( p - 1 ) !2

T hen w e  c a n  s e e  th a t u ( t )  satisfies ( 4 .1 4 )  a n d  U ( t )  i s  in

e (D (A )i,p )  n o (D (A ),., )•
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