
J. Math. Kyoto Univ.
8-3 (1968) 417-464

Behavior of holomorphic functions in the
unit disk on arcs of positive

hyperbolic diameter

By

D. C. RUNG*)

(Communicated by Professor Kusunoki, August 14, 1968)

1. Introduction

T h e classical lemma o f Koebe [7 ] fo r bounded holomorphic
functions in  the un it disk D states th at i f  f  tends to  zero on a
sequence of arcs in D which approach a  subarc of the boundary C
of D then f  must be identically zero. Generalizations of this lemma
have succeeded in  lifting  the hypothesis that f  be bounded. For
example, Bagemihl and Seidel [2, Theorem 1 ] showed that Koebe's
lemma still holds if f  is a normal meromorphic function in D, while
G. R. Mac Lane [10, Theorem 13] showed that th e  resu lt is still
tru e  fo r holomorphic functions o f h is  c lass A . A t  o n e  o r  two
instances in our paper there are points of contact w ith  arguments
used by Bagemihl and Seidel and by Mac Lane in  th e  above cited
papers and we acknowledge this.

A  v a r ia n t o f  Koebe's lem m a w as proved recently by I. V.
Gavrilov [5, Theorem 1 ]  w ho show ed that i f  f  i s  a normal
holomorphic function in  D for which

(1.0)l o g  I f  (re.) I <  1 0 r < 1 ,  E > 0 ,(1 — r ) 1 +E

*) This research was conducted while the author was on sabbatical leave from
the Pennsylvania State Univ. U. S. A. as a Fulbright-Hays Lecturer in  Mathematics
at Tsing Hua Univ. in Taiwan, China.
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on some radius re' o, then f  must be identically z e ro . We can view
1  th is as Koebe-type result, in  that, if  r„ :

1

<r<1 —n n+1
then we have that a normal function f  which tends to zero on the
sequence o f  a rc s  {r, },  with order prescribed i n  ( 1 . 0 ) ,  m ust be
identically zero. N o t ic e  th a t th e  requirement o f  K o eb e 's  lemma
which demands that the arcs r „  approach a  su b a rc  o f  C  has been
weakened while the condition that f  merely tend to zero on r„  has
been strengthened to I f (z ) I <exp ( — (n ) '€ ) , z E r„ n =1 , 2, • • • .

Gavrilov points out that one can  replace the condition that f
b e  normal b y  th e  assumption that f  have an g u la r  lim it a t e4 o.
Several other theorems are given by G avrilov in  this paper which
a r e  sim ilar in  sp ir it  t o  th e  o n e  m entioned above. T h is  paper
presents generalizations (and in  some cases improvements as well)
of the theorems in  Gavrilov's article which in  th e  sequel we refer
to as g.

Our aim  is to allow a  greater variety of sequences of arcs than
Koebe arcs and to determine under what conditions f  tending to zero
on  these sequences imply that f  is identically zero. So  w e are
confronted with two problems: ( 1 )  w hat restrictions should we
im pose on the arcs, and ( 2 ) ,  w h a t is  th e  proper order for f  on
these sequences. It is fairly clear that some restrictions on the arcs
are necessary. L e t B (z , { a„} ) b e  a  Blaschke product with 0 <a„
<a„, 1 --->1; and  le t p ( r) ,  0 <r < 1 ,  b e  an y  positive monotonically
decreasing function. We can certainly determine a  sequence of disk

D (a„,r„)= { z E D Ilz — a„1<r„} , n=1,2 , ,

such that for z  D (a„,r,),

B(z, {a„} )1 < a„l) , n = 1 ,  2, • • • .

S o , if {r „ } is  a n y  s e q u e n c e  o f  a r c s  w ith  r„ D (a„, r„), then
B(z, {a„})  tends to zero on T .  faster than ,u(I

A  clue to the proper order for f  on r„  is given by the bounded
holomorphic function f (z )— exp (   z  + 1  ). If we takez — 1
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(1. 1)r . : 1 - - < x < 1 - 1 ,  n = 1 , 2 , — ;

then

(1.2)I f ( z ) l < e x p ( —  1
1z1  ), zE  r„, n=1, 2, •-•.

So we must impose the condition that f  tend to 0 on r„ with order
more severe than (1. 2 ) .  We gather these notions in precise form.

2. Preparations and terminology

The non-Euclidean hyperbolic metric in  D  is of use to  us and
so let

1 11—ab-Fa — b p(a,b) —g
2 1°- 11— abl— la— bl'

For Sg D  let

HD(S )= sup {p(a,b)} ,

So H D (S )  is the hyperbolic diameter of S.

Definition 1. L e t {r„} be a sequence of  Jordan arcs in D satisfy-
ing

B O  —

1 
< min I = n---> 00 ;

2 =Er.
(2.0)

B 2 ) 0 <lim  HD(r.)‹ lim  HD(r.)< cx  D •
n

W e call such a  sequence o f  a rc s  
{ r„ }

 a  p o s i t iv e  hyperbolic
diameter sequence, hereafter, a  PHD sequence.

A  sequence of Jo rdan  arcs {r„}  i n  D-not necessarily a  PHD
sequence-has certain parameters associated with it. L e t

m a x iz I ,  n=1, 2, - .

and  let r ,  be defined a s  in  B ,  o f  (2. 0). Let E .  b e  th e  closed
circular sector o f I z R„ of minimum angle opening er„ containing



420 D. C. Rung

r„. To avoid unnecessary complications we always assume there is
such an angle a „ and that a„ <n . for any sequence {r„}. (For a
PHD sequence necessarily a>, - . 0 ,  n ----> co.) T h u s  E„ is of the form

(2.1) E „: 0  <I zl <R„, o„<arg z <e„+ ce„, 0  < 0„< 27r, n = 1 , 2 , --.

The quadruple (R„, r„, e„, a„) are the parameters associated with
r„• F o r  any given sequence {r„} with associated parameters
{(R„, r,„ 0„, a„)} , and any fixed 0 < a < 2 7 c , a „ < a ,  a ll n , define for
n=1, 2, •-• ,

(2.2) F :  0 < l z i  <R „; B „-( '  -
2

a '  ) < a rg z < 0  ±
' 2

So F;:x )  is  the circular sector o f  I z 1 </?„ of opening a which con-
tains the interior o f  E „ in  a  symmetric fashion. Lastly set, for
n=1, 2, • • • ,

1 1(2.3) / :  - <-4- r,, z I <  2  r „ ; 0 „ - ( a
4 -   a

2" ) < argz< 6 „+  (` : +   a
2" ).

Then /:„") is a wedge-shaped domain of opening P±. symmetric about
2

the line bisecting the angle ce„. See Fig. 1  for the various domains.

F ig . 1.
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W e will use the notation E„, F ,',OE) an d  L;,". ) exclusively  in section 3
as defined here and always relative to a  given sequence {y,}. It is
trivial but important to note that because r,, <1, 1,G` ) is always con-

tained within the d is k  z j <  ,  a ll n, regardless of the sequence to

which it is associated and regardless of our choice of a.

Now a  PH D  sequence can be characterized by the behavior of
its associated param eters. To this en d  le t u s  c a ll a  sequence of
Jordan arcs {r„} i n  D  with associated parameters {(R„, r„, 0 , a„)} a
radial-like sequence if

i) 0 <lim p(R„, r„)<lim p(R„, r„)<00;
(2. 4) n -->

ii) lim p(R„e'^, R„e 9 ) <00 ;

n . c o

or an arc-like sequence if

i) lim p(R„, r „)= 0
11—>co

(2. 5)
ii) O < lim p(R„ei 9 ,̂ R„e".+OE0 ) <lim p(Rei°., R „ei( 0 .+a )) < C X ) .

1(If 2-„ is  the segment of the radius re'°0 defined by 1 — r  < 1  —

-a s  in  (1. 1)- then {2,-,} is  a  radial-like sequence; while i f  {r„} is  the

arc o f I z  = 1 —  1 defined by 00 < arg z <0 0 +
1  a n  easy calculation

shows th a t th is  {r„} is  a n  arc-like sequence-hence the nomenclature
for each family.)

Proposition 1. A  sequence of Jordan arcs { n }  in  D  i s  a PHD
sequence if and o n ly  i f  it  satis f ie s  B ,  o f  (2. 0) and each sub-
sequence contains either a radial-like subsequence o r  a n  arc-like
subsequence (or both).

P ro o f .  T h e demonstration o f th is  proposition is elem entary but
tedious. W e sketch the proof. L e t  {2-„I have parameters {(R„, r„
0

 m, a , ) } .  T h e  geometry of the situation gives
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(2. 6) HD(r„)<p(r„, R„)+ p(R„e' 9 ^, R„e".Ia")).

O n the other hand because o f our definition o f E „ in  (2 . 1 ) , and
because of the property of the hyperbolic distance

(2. 7) HDEr„)> p(r „, R„).

Since

(2. 8) p(R„e`' ,, , R „ e '.^ ) )< p ( r  ( °.+OE.), r „e' 9 .) +2p(r„, R„),

then

(2. 9) HD ( r . ) › - p(r „e°.^ ) , r„e`e-)

>p(R„e' 9 ., R„e°-+ao) — 2p(r „, R„).

The inequalities obtained in  ( 2 .  6 ) ,  ( 2 .  7 )  and ( 2 .  9 )  in  various
combinations prove Proposition 1. Let {7-„} be a  PH D  sequence and

{r.,} be any subsequence. I f  lim p(r„„ R„,)> 0 then (2.7) and (2.9)

show that it is a radial-like subsequence. I f  lirn p(r„„ R„,) = 0  then

the subsequence for which this limit holds is an arc-like subsequence
by virtue o f  (2 .  6 )  and (2. 9). Conversely assume {7-„} is  n o t a
P H D  sequence then there is a  subsequence such that either
lim HD(r„ ) =0 ; or else lim HD(7-„,) =00. In  the first case (2 .7 )
k—>c.

says {r} cannot contain a radial-like subsequence, and (2 . 9 ) shows
it cannot contain an arc-like sequence either. In  the second case
(2 . 6) shows that it cannot contain either an arc-like or a radial-like
subsequence.

We now define the order o f f  on  a  sequence of Jordan arcs

Definition 2. Let f  be defined in D tak ing values in the extended
plane W . Let {r„} be a sequence of Jordan arc s  in  D , {A„} a
sequence of positive num bers and s> 0 .  W e say f  has s-exponen-
tial ord er {A„} on {r .} i f

f (z)I <exp , E r „, n=1, 2, • • • .
( 1 - 1 z p s
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For example, in  this term inology Koebe's lemma now reads: Let

{r„} b e  a  sequence of Jordan arcs with associate parameters
{(R„, r„, „, a „ ) }  such that a bounded holomorphic f  has o-exponen-
tial order {A„} on { r } .  I f  lim a n >  0  and A„—).00, then f

n-oce

is identically zero.

Definition 3. L e t  S g D  and O < r < L  F o r  a  complex-valued
function defined in D set

a(r , f, S)=max(sup logf(z)! , 1)zEs1=1<,

I f  r = 1  we om it m ention of th is  variable and merely write
M (f ,  S ) ;  and if S = D  we also abbreviate as 3 ,1 (r ,  f ) .  There is
no great significance is this somewhat unusual definition. It merely
insures that „91(r, f, S )>1,  so it does not happen that a ( r ,  f ,  S )

as r 1, which is a convenience for us.

Definition 4. A simple continuous curve r= 7( t ) ,  0 < t < 1 ,  lying
in  D  is said to be a boundary Path if  l im  ( t )  = 1 ; and a boun-

t

dary path at rE  C i f  lim y (t ) = r.
t

One further convention we adopt. Most of the arguments used
in this work involve a limiting process, and w e are not interested
in the first N o term s. Rather than keeping a score of the various
indices we sometimes use the phrase relative to some sequence
"such and such a  property holds eventually for the sequence" to
replace "there is an integer N , such that the property is true for
all members of the sequence with index greater than N o ." As long
as we use this phrase only finitely often and are otherwise reasonably
careful no problem arises.

3. Two known results needed for m ain theorem

We now state two known results, one rather trivial, the other
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not so trivial, which are the cornerstones of our theory. T he first
is the observation by the author [14, Lemma 1] , and also by Lappan
[8, Lemma 2], concerning the hyperbolic geometry. We give it here
in  a  slightly revised form.

Lemma A .  Let a, bE D .  Set p(a,b)= p; K (p)—   e
e :: + t ( a ,  b )

I a —biI a —61 and t(b, a) — W e then have  K ( P)   < t ( a ,b )1-1a1 1-1b1 i+K (p)
2K (p) < ; and the sam e inequality  holds also fo r  t(b, a).1— K(p)

This factorization o f th e  Euclidean distance between a  and b
gives a simple connection, useful for both computation and intuition,
between th e  Euclidean and non-Euclidean hyperbolic d istance. We
use this lemma to give a n  estimate which will be useful in the
next two sections. With the notation as given in  th e  lemma we
have

(3. 0) 1 — K (p )   <  t (a, b)  <  2 (1 + K(p)) 
2 (1 + K (p)) t(b, a)1 — K ( p )  •

So that, i f  {z„} and  {z } a r e  two sequences in  D  with

lim p(z„, z )< A < co  ,

1—x1 + x taking note of the properties of and  (3 . 0) becomes
1+ x 1—x

for n  sufficiently large

(3. 1) 0 < 1—  K (A )  < " 't(z  .4 ) 2(1+ K (A))  < 0 0

,2(1+ K (A )) t(z „, z„) 1— K(A)

To put it somewhat differently i f  {z„} an d  { z }  a re  two sequences
with lim I z„ = lim141 =1, a n d  lim p(z„, z )<Do, then (1— z„ I ) and

n—>co n • c o

(1— I z",I ) h a v e  th e  same order as . If, in  ad d itio n ,
0 < lim p(z„, z), then z„—  z and (1 — I z„1) also have the same order.

We use these facts frequently. When there is no  need to indicate
the dependence on z„ and 4  we write t(z„, 4 )  (and t(4,, z„)) simply
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as t,.
We have listed the elem entary result. W e now give the more

profound result-a form of the Schmidt-Milloux inequality. W e state
the result in  somewhat limited form sufficient for our needs. For a
more general statement see, fo r exam ple, Tsuji [17, p. 3 0 6 1 .  I f  r
is  a  boundary path at a po in t r C we define co (Z , y ,  D— r) to be
the harmonic measure at z  of r  relative to D—r.

Theorem A .  L e t  r  b e  a  b o u n d ary  p ath  at a p o in t  r E C .  I f
min z1 =a then f o r z E D - 2-,
z

(1— .2 2 )(1 —  I z ! ' )  w(z, r, arcsinit1 6

This formulation is obtained from the usual form in which a= 0
by the routine device of mapping D  onto D  by a  linear transforma-
tion which takes r onto a  boundary path with a = 0  and  using the
conformal in v a r ian ce  o f th e  harmonic measure. Some obvious
estimates then produce the above inequality.

4. M ain Theorem

Suppose the following situation ex is ts . W e  h a v e  a  function f
holomorphic i n  D ; a  g iv en  P H D  sequence {r„} ; and  a  va lue
a, 0 <ct < 27, such that Yv .E„, n=1, 2, •  ,  where these domains
are relative to  {r„} an d  are  as defined in  (2. 1) and (2. 2).

Theorem 1. Let f  be holomorphic in D such that f o r some finite
value wo,  f - w0 has 1-ex ponential order {A „} o n  a  PHD sequence
{T.}. I f

(4.0) li m  ' 91( f ' F (
" O E ) )   —0 ,A„

then f  is identically ?IA,.
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R em ark. We now see in what direction we have moved from the
classical Koebe's lemma by lifting the restriction that the angles
a„ associated with r„ be uniformly bounded away from 0 and by
increasing the requirement that f  merely tend to 0 on r„
Proof . S ince a ( f , F )  and a ( f - w0, F )  have the same order
o f  growth we can assume, without loss o f generality, that wo = O.
We suppose (4. 0) holds and let {n,} be the sequence such that

(4.1) lim f F ;,V ) 
k

We divide the prcof into two cases according as to whether {r}
contains a radial-like subsequence or an arc-like subsequence.

Case i) { r „ , , }  contains a  radial-like subsequence.
Let this suLsequence by {r„,,} and let j= n k i . Then (4.1) is

(4.2) 1.,5(f, F r )lim A,

Let { (R ,, r,,  a , ) }  b e  th e  parameters associated with {r,).
Furthermore, we can assume that r, meets the circle 1z1 =R , only
at the point R .,e''; and meets j z  = r, only at r ,e '; ',  and that these
are the end points of the curve n .  (It is clear we can find a subarc
of r ,  that satisfies the above condition. Certainly f  has the same
exponential order on this subarc as on r ,. These subarcs so chosen
for each j  have the same parameters {(R,, r,)} and so are also a
radial-like sequence. If 0, and a ,  are altered then of course so is
E ,.  However we do not need nor use the fact that this new subarc
may not meet the left and right boundaries o f E, but use only that
this new subarc is contained in the original E, as described above.
So we retain the sets E , and F r  a s  defined for th e  sequence

{n}).
Our technique here-and in case (ii)-is to use the two constant

theorem of the brothers Nevanlinna [11, p. 42] to estimate the value

of f  on the domain F r  and in particular on  the subdomain L r .
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To this end let co(z, r,, —r,) b e  th e  harmonic measure at z  of
Ti r e la t iv e  t o  F;(' ) —r,. T h e  tw o  constant theorem  gives for

F C a )

(4.3) log f (z) I <0)(z, Ti, PT' )
 — ri)(

+ (1-40(z , ri ,P1x ) —Ti ))<31(f, Fr ) ,
where the estimate of f  on Ti follows from the fact that for
1-1z1<1—r,.

Our efforts are now bent toward estimating the harmonic measure
for zELG` ) . Consequently map F O E ) onto the unit disk D .: Iw l<1,
by the conformal map

i _ (  1+1/,(z ) ) 2

(4.4)w , ( z )  = u;(h,(z)) = —1/;(z) )  
i + (  1+12,(z)

\1-11,(z )
with

v, —0„ (a.
 2  

`'')  , j =1, 2, • • • .( 4 . 5 ) h i ( z ) —

(
e z   r O E

'

I f  12x,(rfei6 ;')1 = ai ,  le t r7 b e  the subarc of w ( T )  which connects
wi = a  to  w J  =1, and  lies, except fo r endpoints, in  ai <  w l<  1.

By Carleman's principle of Gebeitserweiterung [11, p. 64 ] we have
for zED,,— w,(n)

(4. 6) co(w, wi(n), 1),. — iv i(n))>-_a)(w, r*,

Theorem A  reveals
2 .n (1 --1w1 2 )(1 —a") (4.7)c o  (w, r7,D„, — arcsi

16

B y  th e  conformal invariance of the harmonic measure (4. 6) and
(4. 7) allow us to write, for zE 1T ) —

(1— I wi(z) 1 2 ) (1 —  I wi(rie i g ;') (4. 8) co (z, — n ) ? -
2  

arcsin
7r 16

To further estimate the right side of (4. 8) we now restrict z E L .
First note
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(4. 9) (L r) l< B  <1  ,

where B o is independent of j. (Simply observe that after applying
z i =h ; (z )  the image of L5a) is , fo r  all j ,  contained in a set of the

irfa

form z, : < a r g  z ,< -3— 17c; Tric'< lz , <  —1
;  and the remaining

4 4 8 2
action of w 1 (z )  is holomorphic and independent of j  and a.)

A  tedious but simple calculation gives

"'a r ;  )2

(4. 10) 1 —  w i (r i e r )  2>  Pm ( R ; R

1Remembering that  r w e  c a n  e s t i m a t e  t h a tR ,  2

a '
\
-
2  /

V (1 —( 4 . 1 1 )  I m  
(  r i e ; 'i(' -'1

>sini )   V i a r ; ( 0 7  — 7 7  ) 7 7 (  1 i a

*

A s  w e have noted before, fo r  a  PHD  sequence a,---> 0 , j  co, so

that eventually 
a

'
  < -

1  
and (4 . 11 ) becomes eventually

a 2

(4 .12 ) T m  
)7T/"-,_ ( 1 )

7 / a + 1

 —

2R

The second factor on the right side o f  (4 . 1 0 )  is estimated by

applying th e  mean-value theorem to f (x )  = x 2 . Since  r • > - - ,2  '

R rla  r2' 1  )

(R r ;) .
27r/a-1

(4.13)> I  
R ,7 1 - 1 a a  2

Setting K a = ,  (4 . 1 0 ), (4 . 1 2 ), and (4 . 1 3 ) together give
a  2

that

(4. 14)1 —  I  w,(r i e T ) 12 > Ka(R, —  r i) •

Since arcsin t >  t , t > 0 , (4 . 8 ) , (4 . 9 )  and (4 . 14) transform (4.3) to

(4.15) log I f (z)!<CŒ ( R 1  r  ')   (— A,)+ c2 (  f , E r ) ,1—r ,

for z.L,'," ) , Ca=  K Œ (1— B ) , and j  sufficiently large.
87c
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From here it is but a short trip to  the desired conclusion. If

we refer to Lemma A (and the remarks thereafter) the fact that

{r,} is a radial-like sequence then implies eventually

(4. 16) (R — r,)> (1  — r,) to , to > 0 .

So (4. 15) and (4. 16) give for z E  L r ,  j  sufficiently large,

(4. 17) log f(z) 1 <— A,(Cato-
5 J 1 ( f P » ) )

A ; )  •

Now (4.2) implies A i —.+00, so that we have for any
sequence {z} , z E L (f ),  that f(z,)—.0, Since there exists a
subsequence { j,,,} such that LZ ) tends to  a  domain o f the form
1  <  z  <  1  00 

4 2  '
< arg z <00 H1  ;  and since f  cannot be identi-

cally zero on this limit domain unless f  is  zero on a ll o f  D  this
completes the proof of case (i)

Case ii). {r ,}  contains an arc-like subsequence.
Let this subsequence be {r„, ;} and again set n 0 , =j

have

(4.18) . f  P a ) )  — 0 .

We again modify the arcs r ,  slightly in that we select a subarc of

r ; so that th is subarc  meets arg z = 0 ,  only at and meets
arg z=0 1 +ce, only at r7e1(6)," , ) , where these points are the endpoints
of the su b a rc . As in case ( i )  we retain the notation 2-, fo r these
subarcs which are readily seen to be an arc-like sequence if we but
refer to (2 . 9) which is valid for these subarcs. We also retain the
sets E , and F r  defined for the original sequence {r,} • Keep in
mind that r ,  now may not meet J z =  r ,  or j  z  J =  R , b u t  this is of
no consequence.

Let q;' ) be the rectilinear segment from r;e '̀, t o  R i e , ,  and q;')

the rectilinear segment from t o  R,e'" ,+", )  (One or both of
these segments may reduce to a point.)

so that we
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Let C,a )  b e  the domain bounded by the radial segments bound-
i n g  F ;  t h e  two arcs of I z R , from these rays to the rays
bounding E ,; the segments q” and q r ) ;  and r i . Let L5")  be defined
as in (2. 3). For these various domains see Fig. 2.

Fig. 2.

Our procedure is basically the same as in case (i) . We use
harmonic measure to estimate f  on  L ; O E )  b y  th e  tw o  constant
theorem. Then we estimate the harmonic measure. Let co (z, r i , G )

be the harmonic measure at z of r, relative to G;OE). The two con-
stant theorem gives for z E G ;O E )  I T ° ,  and )1' = min IzI, zE

(4.19) log I f (z)i < a)(z, r „  G )(—   (1
A

 rl n )

+ (1-0)(2, n, G ) ) ,2 ( f ,  F ; c ( ) ).

We now estimate from below w (z, r„ Gja ) ), in particular for zE
Carleman's Gebeitserweiterung gives us the estimate

(4. 20) (0(z, riUq5" U q52 ), Q O E ))>  0 ) ( z ,  s i , F (i ") ) ,

where s ;  is  the arc of I z I = R. bounding E. Because o f the addi-
tiv ity  of the harmonic measure,
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(4. 21) 0)(z, r i , G ) w ( z ,  s F;OE) ) — w(z, , C,a) ) — w(z, q? ) , G r).

Suppose there was a positive constant C Œ  such that for z E  L r,

(4.22)0 ) ( z ,  s „  F )C „ (1 — R , ) ;

and further we could show for zED," )  that eventually both

(0(z, q; , Gr) <  C
4a. (1 — Ri ) ;

(4. 23)
0)(z, e ) , Gr) C.

4" ( 1  R,).

I f  (4. 22) and (4. 23) were combined with (4. 21) the result would
be that eventually, zG L;' )

(4.24) C,co(z,r i , C ) (1-12i).2

I f  we again harken to Lemma A , because {n} is arc-like, then
eventually (1 — rn <(1— Ri)to, to<oo, and so (4.19) would become
eventually, on account o f (4. 24).

COE 1  (4.25) log I f (z) I <  ( —  A  + a (f; Fr), z E Lr,2  to

which is (essentially) the same as in case (i), (4. 17) and we could
again conclude that f = 0 .  So our proof will be complete i f  we
demonstrate (4. 22) and (4. 23), and this we do in the following two
lemmas.

Lem m a 1. Let { r ,} be an arc-like sequence with the situation of
case (ii) o f th e  proo f  o f  Theorem  1  prevailing. T h e n  th e re
ex ists a positive constant C a ,  depending only  on a ,  such  th at i f
z E L r ,

w(z, s , , F (f ) ) > C a (1—R ; ).

P ro o f . First map F;a )  on to  the upper half disk 13 .: (w 1<1 )
(Im w > 0) by w =h,(z ), where this function is defined as in (4. 5).
As we noted in case ( i) ,  h ,(L ,r)  is contained in a set of the form
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arg tv < 4
3  r  (

8

1 Yr i a .<1 W I <(-1-171OE ; and h ( s )  i s  the arc of
4 ' 2
W I =1 symmetric about the imaginary axis subtending an angle at

the origin of  r a j  radians. B y  the conformal invariance of the
a

harmonic measure, with h,(s,)= .3,

(4.26)0 ) ( 2 ,  .35 ,  F;OE) )= 09(h 5 (z), .3,, D ).

The harmonic function w (w, s, D O can be continued by reflection
across the real axis to  a ll of D ,  and this extended function, which
we denote by 24' (w), is given by the usual representation

w7(re' 9 )

-7;-  ( 1 + ) 3÷ 9̀.« )
(4.27)1 1 - 1 4 4 —1 1— r 2 d(9

29-c 1 +  r2 —2r cos (0  — ço) 2n 1+ r 2 —2r cos (0 —ço) •
10 - 1L ) (1- )

A simple change of variables reduces (4. 27) to

(i+i! )
1— r2 C 4r cos (0 — ço) 4  (4. 28) w7 (re') — 27r ,) (1+ r2 —2r cos(0 —)) (1+ r 2 +2r cos(0 —  )).

- 1 0

For h i(L r ), ( 1

8  Y
IG ' t o< < (

1  ) f a

2 , and so, if we put

Ka=  2 (
1

—
(

)2
)

(18YOE

7r(1+ (-1 ) 71a ) 4

2

> o ,

then (4. 28) gives the estimate for wE h r,(1. ),

1i _r(i+63)

(4. 29) (w )> cos(61 —(9) 4 =  2Ka sin0 aa ;  

+ 0 -

2   K  

1/ 2 \  a  )

Of course, cei >  I R 3 e j 9 i —Ri e"ei+ai) 1 (1— R.i) to, 0  <  <00 , where this
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last inequality follows from Lemma A and the arc-like property of
a{n } . Gathering all the constants as Ca  —  2 to, (4. 29) together

V f .  

K

 a
with (4. 26) give for zE Di ")

(4. 30) 0)(z, r,, F ja ) ) >C ,,(1 —

which is the desired inequality.

Lemma 2. Let (0(z,q;' ) , Q )  a n d  (0 (z ,e ,G r )  be defined as in
case (ii) of the proof  o f  Theorem 1. T hen given any  num ber
E> 0  there is an integer J=J(E ) such that fo r  all z E L ,  j > J ,

(0(z, q;1 ) , C i a) ) < E (1 — R ,) ;

(0(z, q;'), Gr)<((1---R,).

Proof . W e consider first e )
• B y  the Gebeitserweiterung, for zGGV

and DR:!z!<R , we have

(4. 31) (0(z, q.
(
; ' ) , C )< (0 (z, q .

(,1 ) ,DR ; ).

The harmonic measure on the right can be found in explicit form.
Let j  be fixed. Remembering that e :  re% r; < r < R , ,  and putting
w i  f i ( z )   ; f 2 ( w i )  w1 —r,/R., ; and f 3 (z )= f 2 ( f i (z )),R, 1— wi r,/R,
we find, after some elementary calculations,

(4. 32) 0)(z, q5'), DR.) =  - 2 -  arcsin (1—( z )  ) 1 -  1 1 .3(z)1 
11 — f 3(z) 11 — f 3 (z)

1 i where the determination of the square root is — 
4  2  •  

It is

easy to find the image of Di a) by f 3 . Observe first that we have

(4. 33) f i(L 5 " ))g { lw l< -1 };

and if we construe this disk a s  a  non-Euclidean disk of radius
log 3 with center 0  then f 2 ( f 1 ( L ) )  is contained in  the non-2
Euclidean disk about —r,'/R, with the same non-Euclidean radius
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log 3 (because f 2  i s  a  linear m ap). S ince — r;/R; --> — 1 , as2
so also does f 3 (L;(4 ) ). T h is means that we can determine a  J ,  so
that for zEL,;" )  and j j , ,

(4.34) I 1 —f3 (z) .

Then (4. 32) becomes for z  Di ")  and j .fi ,

(4. 35) co(z, q.S1 ) , D R i ) <4 (1_ (z)1).

It is straightforward to estimate for z e

_(4. 36) 1  —  f3(z) I <1— f 3(z ) (R—  z  2 )(R , -  (6 0
I R,—

< 8 (R ., —  .

Since {n} is  an arc-like sequence and r i <r;<R J , Lemma A  gives

(4. 37) 0 ,  j 00.

Thus given E >  0  choose L (E )> / , so that for j2 ,

(4.38) 36 t ;  < .
16

Then (4 . 31 ), (4 . 32 ), (4 . 35 ), (4 . 36 ), (4 . 37 ) an d  (4 . 3 8 ) all join
together to reveal that for z  D,Œ) ,  j J,(E),

0)(z, q;", Gr)<E(1— R,).

Since the proof with q(»  replaced by q 2 ) is identical (with replac-
ing r , )  the lemma is proved ;  and the demonstration o f  Theorem 1
has been completed.

Condition (4 . 1 ) of Theorem 1  cannot be relaxed to allow the

lim it to be positive. T he function f (z ) =  exp  
z +  1 

 ) ,  given in thez— 1
introduction, is bounded in  D, and  has 1-exponential order {1} on
the PHD sequence {r„} defined by ( 1 .  1 ) .  As we also noted in the
introduction, given any positive sequence {A„} th ere  is  a  non-PHD
sequence of arcs {r„},  and a bounded function which has 1-exponen-
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tial order {A„}, on  {r„} . So the PHD property cannot be omitted.

There are various corollaries inherent in Theorem 1. We men-

tion a few.

Corollary 1. Suppose r  is  a  boundary path in  D  a n d  f  is
holom orphic in  D  such that fo r some finite value wo ,  and some
positive function A (r), 0 r< 1

— A (r) (4 . 39) log I f (z )— w o!<(1 )  '  Z E  r , IzI r.— lz 1  
I f

lim  3̀ 1 ( r ' f )   —0 ,A (r)
then f =w o .

P ro o f. L e t {Rh} be a  sequence, O<Rk ‹  Rk+, <1 ,  R 0 —.1, k---,....,
for which

(4. 40) l i r i l '91(R0 ' f
 )A i  . . ,,,, ..\

k->.. ill.,11-0 )

It is fairly obvious that for R , sufficiently close to 1 we may con-
struct a  sequence of Jordan arcs {r,} in  D, satisfying, fo r some
sequence {r 0 },

i) rk g r, all k;

(4. 41) i i )  { r o }  has associated parameters {(R 0 , r0 , 0
 1 ,  ( 4 ) }

iii) { r o }  is a PHD sequence.

(For example, choose a sequence {r0}, 0 <r0 <R0, so that

0 < lim p (rk , R k)<lim  P ( r
 k , R 0)<°°.

Let To be a subarc of y contained in the annulus r, < I z I < R 0 except
for one endpoint on 121 = R ,  and the other o n  I z I = r0 . This is
possible for large k. I f  {r o } i s  a  PH D  sequence all is w ell. If
not, this sequence is too wide, i.e., does not satisfy (ii) of (2. 4)
because the limit superior is + 00. But then we select subarcs rt,
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r: grk ,  with the same endpoint on I z R 0  such that { r:}  is now
a PHD sequence.)

By (4.39) for  z e Tk

loglf(z)— wol<—  A (R k ) 
1— izI

or f —w, has 1-exponential order {A(Rk)} o n {ra•
a > 0  define Ffr

a )  relative to  { T o } .  We then have

a ( f , Ficc)) < a ( R k ,  f ) .

From (4. 40) and the above

5 1 (f,  F (k") )
k->.= A(R 0 )

Theorem 1 is now operative so f= W 0 .

For any suitable

Corollary 2. L e t r  be a  boundary path in D and suppose for
some 0> 0  there is a positive constant A, so that fo r  ZEr

(4.42)

If

(4.43)

then f —w,

loglf(z)—w, — A ,!<  (1 - 1z1) 1 +E  •

 3 1 ( r,  f )  liM < C K )1  log 1 — r

P ro o f. As usual we suppose (4 . 43) holds and select a sequence
{R 0 } so that

• 1 (R 0 , f) 
1  1   \

R 0 - 1  1 ° g )

As in the proof of Corollary 1 define a sequence of Jordan arcs {r,}
satisfying (4 . 4 1 ). Because o f  (4 . 42) and the PH D  property, for
some 0 < t 0 <00, and zE

— 1  A, 1 —A, (4.44) log If(z)—w <
(1 - 1zI) (1 -1zD e— 1 z I  ( 1 — rk ) c
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1 — A €  
z I [(1 — R0)t0] c •

AE So we have f —  w0 has 1-exponential order
[ ( 1 - - R0) to] 

}  o n  frol

In order to satisfy the hypothesis of Theorem 1 we need to calculate
for some suitable F l a  that

lim n(f, R " ) )(1 — R0)E

< H m  
/  a ( R k ,  f ) ) ( 1 - R k ) E l° g  1 — Rklog  

=0.

Therefore f=w o .
A  slight generalization o f Koebe's lem m a is possible if w e use

the techniques of the proof o f  Theorem 1, case ( i i ) ,  together with
Lemma 1.

Definition 5. The sequence {r„) of Jordan arc s  in  D  with asso-
ciated param eters {(R„,r„,e„, a j }  is  s aid  to  b e  Koebe sequence
if

i) lim r „=1;

ii) lim a„ > 0  .

Given such a  Koebe sequence {r„}  c e rta in ly  w e  can  select a

sequence o f subarcs {r} such that r g r „ ;  and such  that r  m eets
the line arg z=0 „ and the line arg Z=61, - Fa, only at its endpoints,
r,çe'^ and r,','e'")+a, )  respectively. Consequently {y } is again a Koebe
sequence and we shall assume, in fact, that any Koebe sequence has
this fo rm . Therefore we can le t T , b e  the triangular-like domain
in  D  bounded by the l in e  segments arg z = 0 „  and arg z=0„--Pce,

and the arc r„.

1 - R 0

Theorem 2. Let f be holomorphic in D and let {r„} b e  a Koebe
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sequence in  D  such that f o r  some finite value we , f  —we has
0-exponential order {A ,,}  on { r } .  I f  T e is  the domain defined
above and

(4.46)

then f  =w 0 .

3 1 (f , T„)lim—  0  ,
n-o•oo A„

P ro o f. W e m ay assume w 0 =0 a n d  if  (4. 46) holds there is a
sequence { n ,}  such that

(4.47) 54(f , T„,) _ o •

Let n i = j and suppose {(R ,, r J , 0,, a , ) }  are the associated parameters
of { r , } . I n  c l o s e  connection  w ith  (2 . 3 ) a n d  assum ing that

1 ,  define

(4. 48) L,:  r4i < I zi , 3a;  .  OH_
2

(Ki
4 < a r g Z < O r r  4  •' 

The two constant theorem says that for zE T,

(4 . 49) log I f  (z) I <0)(z , n, T X —  A ,)+ (1 - 0)(z, y, T 0 ) -91( f,

B y the Gebeitserweiterung for 2E T,

(4. 50) 03(z, y„ T ,)> 0 )(z , s,,

where V ;  is

0 < I z  <R J ; 0, <arg z

and s  is

z  =1 :6 ; 0 ,<arg z <0 ,+a,.

We now estimate w(z, s„ Z E  L,, f o r  a  fixed but arbitrary
j  by using Lemma 1. In th is lem m a put a = a ,  (which is allowed
b y  (2 . 2 )). With this choice of cr, F'," ) i s  V , and L(,a) i s  L , .  The
inequality (4. 29) of Lemma 1  reproduces here w ith K a =K „,, and
using (4. 26), as



K

2 (1 — )(-1-) r
OE, 2 8

4
74 1 ± ( W )

,  j 1, 2, • • • .

Holomorphic functions in the unit disk 439

2  (4. 51)w (2 , s„ _ z L1 . j= 1, 2, •••.

Since lirn >  0 ,  then

(4.52)l i m  K a ,—Ko>0 ,

where

Hence (4 . 50), (4 . 51) and (4 . 52) reduce (4 . 49 ) to

( 4 .  5 3 )  log I f (z )I<2K 0(—  A ,)+1(f ,T ,)-- — 4 2 K 0 —a ( f it i
T 1 ) 1,

for j  sufficiently large and z E  L , .  But we are now in the situation
of (4 . 2 5 )  (o r  4. 17). W e have essentially th e  same estimate in
(4 . 53) as  in  (4 . 25) ; (4 . 47) is the same a s  (4 . 18) and the defini-

tion of L , in  (4 . 48) together with the fact {n} is a Koebe sequence
allows us to select a "lim it domain" of the L i 's  which is an open
subset of D.

Of course if f  is bounded in  D  then Theorem 2  is precisely
K oebe 's lemma. We could replace T ,  b y  f ';"i  fo r  any a, >a
= lim a, ,  in  the statement of the theorem to obtain a formulation
for the original unaltered K oebe sequence which is in the spirit of
Theorem 1.

5. Similar theorems in the small

The above group of results demand that we h ave an  estimate
on the growth of the maximum modulus of f  on  fairly large sub-
domains of D, that is, on the sets {F r } which impinge on  I z I = 1

on a subarc-at least a  subsequence of the {F 5 }  does. To obtain
generalizations of the theorems in  g  we need do little more.
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The proof of case (i) o f Theorem 1  contains all the necessary
estimates and all that is required is to change our point of view.
We now consider a  PHD sequence {Ti} where each n  is contained
in  a domain of the form F (

.,a) only this time we suppose that r ,  is
contained in F r  w ith  the exception of one endpoint which is at
th e  o r ig in . Then tilt  th e  F ;a )  s o  th a t  the vertex (and con-
sequently the n 's) approaches C and we have the situation of the
theorems in g .  We are not being entirely accurate. Actually we
find it more convenient to use domains bounded by arcs of circles
rather than triangular domains. Let us proceed to the details.

For a complex number a and real values 0 <R <00 , 0<0<27r,
0 < < 7 r ,  first put a '= a + R e , then let C, and C , be the distinct
circles of the same radius, each of which meets a and a' and which
meet at a with angle a. I f  L  is the perpendicular bisector of the
line segment from a to a' then F(a, R, 0, tv) will denote the domain

bounded by C 1  C 2  and L, and which contains the point a +  e 1 9 .
4

We shall be concerned with sequences o f  such domains {F(a„, R„,
0„, et„)}. In  the sequel we restrict {R„} a n d  {a„} to  be constant

sequences which allows somewhat less complicated statements for

the results.

Definition 6. L e t  {r„} be a sequence of Jordan arcs in D and
{F(a„, R, 0„, a)} a sequence of domains as defined above. We say
that {r„} travels in  {F(a„, R, 0„, a )}  if

i) F(a„, R, 0„, a) g. D, all n;

ii) For some value E > 0

(5. 0) r„ F(a„ , R, 0„, ce—E), all n,

except for one endpoint which coincides with a„.

Note that {r„} may travel in  many different sequences {F(a„,
R, 0„, (70} .
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Theorem 3. L e t { r ,j be a PHD sequence in  D  which travels in
{F(a„, R, 0,,, a ) --=F}  . S uppose f  is holomorphic in D and f— w0

has -71- -exponential order {AO on {7-.} f o r  some finite wo . I f
a

(5. 1)l i m  ' 9 4 ( f  ' F  —o,A„
then f = w o .

P ro o f. We suppose (5 . 1 ) holds (and again assume wo =  0 ) . Extract
a subsequence n ,= j such that

(5 .2 )

Let

lim a ( f ' F )   —0 .
J.- A,

(5 .3 ) ri= min zE j = 1,

W ith this value r  we can write

2, • • • .

(5.4)l o g j f ( z ) l< , z E r,, j = 1, 2, •••
(1 —

We now choose a point b ,E y ; so that

1(5.5)—
4  

HD(n)<P(a,, b,) <H D (r,) , :1=1, 2, •

This is clearly possible else 2-, is contained in the non-Euclidean disk

about a, of radius —1 HD(n)4
which implies H D (n)<1H D (7- 5) ,  a

complete absurdity.
We now invoke the two constant theorem to give for z E F (,,a) — ri,

on account o f (5 . 4 ),

(5.6)l o g  If (z ) I <w (z , r,, F a )  — r,)( —
\(1— r,).7

+ (1-0)(z , r,, F',œ )F ( .7")).

We proceed just as we did in case ( i )  of the proof o f Theorem
1  after we obtained (4 . 3 ). The notation a t  th is  point is identical
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with case (i). Carry F r  on to  Dw by

(5. 7) (z) = w(h i (z)),

where w is defined in (4. 4) but now

(5.8)h ( z )  = cioT- 1 ) (
z —

j = 1 ,  2, • • • . a';

1 a aI f  L (a)

"•• <  Iw 1< — • — < a rgw <
3

'

 then set
-i 2  ' 4 4  

(5.9)L r  = h 1 ( L r ) ,  j = 1 2, • • • .

We must again estimate 0)(z, n, F  —ri ) for zE L (f ) .  Because r
eventually L . ") OEF1a) — n, and we assume this to be the case for all
j.

Let be the subarc of w7 ( n ) which connects lw  =  w7(bi ) I
to I w I =1 and lies, except for endçoints, in  this annulus. The
Gebietserweiterung produces for wE Dw — ul(n), and j= 1, 2, • • • .

(5. 1 0 ) ix* ,  w7(ri), (r7))> co(w, 3-1̀,

Observe that by our construction of L r ,  there is a B, such that

(5. 11) (L (f)) B 1 < 1 ,  all j.

Precisely as in obtaining (4 . 7 ) and (4. 8) we again obtain by use
of Theorem A, the conformal invariance of the harmonic measure,
and (5. 10) and (5. 11), that

(5 . 12 ) co (z,ri, arcsin
ir

(1 — B i) (1 — 124 (bj )1 2) 
16

for ze L,;" .

The key estimate (4. 10) converts in the present situation to

(5 .1 3 ) 1— 14 (b i)1 2? Im [( 1)e 'T  [1  —

 

2 7 ib., a,

 

Unlike case ( i )  the last term in  brackets in  (5. 13) contributes
n o t  a t  a ll to  the order estimate because p(a„b,)<K 0 implies

0, 0.0, which in  turn implies, because I
2  '
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(5. 14) 1 b,— a,
b,— a;

271a 1 •
'  

j  sufficiently large.

  

The first term is crucial. By considering the geometry o f F r  (first
a, OE-.)transform it by z—   ) e )

2 ,  it is easy to see that, setting

i5o b j —  a pi e b,—

(5. 15) Im  ( (

b — a  ) (1 bl 
R

r œ sin ç a fir

i ; a

> (  b i — ail  y l œ  •  n€sin  .R 2a

The last estimate (and value E) is obtained from the definition of
{Ti} travelling in  {F (.;") } . According to our definition of b  in (5. 5),
Lemma A  obtains and so eventually

(5.16)t 0 > 0

W ith KOE,E = ( y l a— sin  27:  , (5 . 1 2 ) is now because of (5. 13),

(5. 14), (5. 15), (5. 16), and the property of arcsin

2 (  1 Bi  4 a. Ea.y r i a ,  z E L ; a ) ,(5. 17) w (z, T i,— 1 6  )

and j  sufficiently large.
Our last step is to notice because {r ,} is a  PHD sequence

(5. 18) 1 — 1(2,1 (1 — r,)ti, t 1 > 0 , a l l  j.
And so (5. 6) is affected by (5. 17) and (5. 18) and becomes

eventually for zE L r, after setting C f  —  1 —
87:51>  0  ,

leg lf(z)I —A,C„, E + f , F r )  = — `31(i (.7 a ) )   1.

Because of (5. 2) lirn f (z )  =0, z, E L r .  Since the L,;") have a

"limit domain" of similar form in  D  then f  is identically zero on
this limit domain and so must be zero throughout D .  This com-
pletes the proof.
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The theorem is reasonably sharp. Consider the function f (z )
( 1+z

2=e )  and let y„ : 1 — —
n

< x < 1 - -
1  

(defined in ( 1 .  1 ) )  which

is  a  PH D  sequence. I f  we choose F„.F (1—  —
1  

' 2 
-
"

n=1,n —
1

2  '
2, ••• , (i.e. domains symmetric about the re a l ax is  o f opening Z-)

2
then clearly {y ,} trav e ls  in {F,} . It is easily calcu lated  that

n ( f ,F „ ) =  1 ,  a ll n;

ii)  log I f  (z ) I (1—r
1

) 2 '  z E r  „  ,  a ll n.

Hence f  has 2-exponential order {1 } on the PHD sequence {r„} but

lim  -91( f  F ")   >0  .

Note that for any €>0  f  has (2— e) exponential order {nE} on

and since

li m  '3 4 ( f  ' F ")   —0 ,n€

we cannot reduce the -exponential order required in  th e  theorem
a

(or for that matter decrease the angle of opening a) .

n 2

n=1 ,2 , ••• , and set B(z, {a„})  equal to the Blaschke product whose
zeroes are a t z =a„, n=1 ,2 , ••• , we can certainly find a  sequence of

1 1Jordan arcs { r „ }  o f th e form  1— < x < 1 such that f  hask„ n2

2-exponential order { n}  on { r } .  C e r t a in ly  {r,,} trave ls  in the

domains { F (1 — n2 '  2 2
1 1  , 7r,  n  ) } and

lim n ( f , F")   —0 .

1The PHD property cannot be omitted. I f  w e le t  a„=1—

We have chosen a =  in the above examples but this is only a con-
2
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1 +v en ien ce . For arbitrary 0<ce<7r the function f (z) exp r_( z 
i_z

with a suitable choice of the root, performs the sam e ro le in the
general case as does our specific function.  A l s o  th e  Blaschke
product given above has -exp o n en tia l o rd er { n }  on the sequencea

1 of arcs { r }  r :  1  <z 1<1 — , n= 1, 2, • • • , for suitable {k}.

In Theorem 3  the angle a is restricted to  lie between 0  and 7r.
The extreme case a =  7 C  is really  the contents of Theorem 1  where
F(a„, R, „, 7r) becomes F .  T h e  other extreme case a =  0  will be
treated (albeit in a somewhat restricted form) in Theorem 5.

W e list several corollaries which arise from Theorem 3  when
we add the requirement that the {r„} approach a single point of C.
For r G C, and 0  G  <  n , let

H(r, h)= F (r, 2, O, [3),

where we choose O r so that r+2e ''' = — r that is , H(r, i s  the
hypercyclic  domain at the point r  of opening h.

Corollary 3 .  L e t  {r.} be a  PHD sequence trav e lling  in  {F(a„,R,
0„, a ) }  such that f o r some 0 < i3<7r, eventually

(5 .19 ) F(a„, R, 0„, a) g H(r ,

I f  f  is  holomorphic in  D  an d , f o r some finite wo , f— w0 has

-exponential order {A„} on { r „ }  ,  then

(5. 20) 'fin f , IS)) _
A„

implies f

P r o o f .  The hypothesis (and some elementary geometry) demands
that eventually

(5.21)F = F ( a „ , R , 0 „ , t y ) ç { I z I < I a „ I } .

So (5 . 1 9 ) , (5 . 2 0 )  and (5 . 2 1 ) combine to give
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, F )  urn —o,
11— >m A,

which validates the hypothesis of Theorem 3.

There are several different types of sequences which satisfy
( 5 .  1 9 ) .  Suppose r  is  a boundary component of H ( r,* ) .  Let fr„) be
a PH D  sequence with r„ g r , a ll n .  Consider any hypercyclic  domain
H (r, 3 )  containing { y , } ,  th a t is, qp <  0 .  Then for suitable choice of
R  and {0„}

(5. 22) i) {r„} travels in  {F(a„, R, e„ j)} , n = 1 ,  2, • • • ;

ii) F(a„, R, 0„, 0) _Ç H(D, 0), eventually.

This is  a rather obvious geometric fa c t. In  fact r  need not be a
circular segment but merely a boundary path at r that is sufficiently
smooth in that it should make the angle q p  a t  r  w ith  the radius.
We organize these observations in

Corollary 4 .  L e t { r „ }  be a  PHD  sequence ly ing on  a  boundary

path  r a t  r E C ,  and m ak ing angle *, < * < , kr , at  r  w ith the

radius to  r. Let f  be holomorphic in D and suppose for some 0,

21,fr , I < 4 9 < n , and som e f inite wo, f— w0 has-7 - -exponential order

{A„} on 
{ r„ } . I f

lim  acia„1, f  , 1 1 6", 19) )  0  ,
n—>eo A„

w here la„l =maxizl, zEr„, n= 1, 2, • • • , then f =wo

P ro o f .  According to the above remarks as summarized in  (5. 22)

we may choose a = 0  in Corollary 3  and the full hypothesis o f this
corollary is satisfied.

To obtain a somewhat more pleasing formulation of Corollary 4
we abandon the sequence { r„} and replace it  b y  7. .

Corollary 5. Let r be a boundary  Path at r  which makes an angle
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—7r/2<qr<r/2, w ith the radius to  r  at  r. Suppose for some
h o lom o rp h ic  f, some finite value w o , some 2111, 1<13<7r, and some
positive A (r), 0 < r < 1 ,

(5. 2 3 ) log  f(z)—wol< A ( r ) , zGr,
(1 -1 z D i

then if

(5.24)

we have f= w 0 .

a l ( r ,  f ,  H er, _ o
A(r)

Rem ark. In particular i f  qp =0 this represents a  d ir e c t  generaliza-
tion of Theorem 2  of g , a s  well as an  improvement.
Pro o f . Suppose (5. 24) holds and that {R ,} is sequence such that

(5. 25) lim  n(Ri, f, H(r, M 
R ,-->1 A (R)

Choose sequence {ri }, 0 <  r i < R i ,  such that 1 < p(r i , R i ) < 2  and
le t  r ;  b e  a  subarc o f  r  which is contained i n  r i < lz I< R , and
satisfies 1< H D ( n ) < 2 ,  a ll j. T h is  is certainly possible for large

According to (5. 23), for Z E r ,

ilog f(z )— w ol<  - A ( R )  
(1 -1 z D i

so that f — wo h a s  1-r- -exponential order {A (R ;) }  o n  t h e  PHD

sequence { n }  and the hypothesis o f Corollary 4  is satisfied because
o f (5. 25).

Corollary 6 .  Let f  be h o lom orp h ic in D and suppose for some
.z- C and all 0 < < 7 r

n(5. 26) (r, f, 11(r, < c o

-->1l o g  
 1 -

1
r

Let {r„} be a PHD sequence travelling in {F(a,,, R, 0,,, a ) } ,  with
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a„--.r, n---, . . . .  I f  fo r  some 72 > 0 ,  and f inite wo , f —w o h a s  (1+72) -
exponential o rd e r {A } on  {rn}  then f  =w o

Remark. Certainly f  satisfies (5. 26) if it has finite angular limit
1at r. Furthermore if log I f  (z )! <— (1— ) 1+ '

on the radius to r
lz1 

there exists a  PH D  sequence satisfying the above hypothesis (by
the usual arguments) and so this represents a  generalization of
Theorem 1 of .G.

Remark. Contrast this corollary with Corollary 2 and note that we
can now estimate n (r, f )  over a much smaller subset of D  then
in  Corollary 2 because o f  our additional restriction on the PHD
sequence {2-„}.

P ro o f .  With E  given by Definition 6 geometry demands that F

(a„, R, 6s
'

„ a —  E  ) be eventually contained in some H ( r,  o)  (by suitably
 2

choosing R )  and fu rther w e have a —  < 130 because an—. r,2
n - - . . o .  Because o f  this situation we may certainly find a sequence
of domains { F(a„, R ', O, i3)} , h'o <R i <7r, so that

i) {rn} travels in  {F(a„, R', o, Ri)}

(5.27) ii) ' <1 + 17-•
Ri 2 '

iii) eventually F(a„, R ', K , ç  HO", '1.) •

If r. — min 1 z I, z r „  then

— 1 A —1 A  n ( f , r " ) <  
 (1— 1z1) 1 +" (1— 1z1)'" 2(  — 1 z 1 ) 1 +'' 1 2 (1 — r) 2

—1 A  ‹ (1— I z1) 7 1 (3( 1 — r„) ' 712

where the last inequality follows (from (5. 27 (ii)). This says that

f  has  n  -exponential order
{ (1 24 " }

on the PH D  sequence
Ri —7-X
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Because of (5 . 27 (i) and (iii)) the hypothesis o f Corollary 3 would

be satisfied i f  we could show

,H(r, ■ 92)) (1-r „) 2.

Since {r „ } is a  PH D  sequence (1 - r„)<(1— I 0 <t0 <c o , and

on account o f this

lim a(' a„I>f, H(r, ,e 1 ) ) ( 1 - r n )"

- i i m  a ( i a .  I, f ,  11(r, I i ) )  (1-1 a„l)' 12 log 1 

log 1 1  —la„1
1 -

= 0 .

Corollary 6 can be changed in the same spirit as Corollary 4  was
transformed to produce Corollary 5. Rather than state this as a

further corollary it is profitable to indicate that in Corollary 2 i f  we
replace the boundary path y b y  a  boundary path at rE C  making

- 9 1 ( r , rangle a t  1-, Rid < 1 -r and transform (4. 43) to lim f ,  1 1 ( ,  
2 ' 1  log 1- r

<0 0  all 0  < -< 7E-, then we have the result.

We now take a slightly different tack. We wish to eliminate
the condition in Corollaries 3  and  4  that th e  boundary path r

approach r  making some angle with the radius. We can accomplish
this if we are willing to abandon both PH D  notion and the estimate
on the growth of the maximum modulus in hypercyclic domains. The
proof o f this result is a duplicate of the proof o f Theorem 3 except
for a few revisions which we discuss. This theorem and its corollary
also represent generalizations of theorems in Q.

Theorem 4 .  Let r  be a  boundary path at r GC which fo r  some
€> 0  lies in the hypercyclic domain H(r, ce- €), 0 < a - € < < 7 T .

Let f  be holomorphic in D and satisfy fo r  some finite value wo

(5. 28) lim (1- I z I ) 7'  log !f (z ) —w01
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I f  f  is bounded in  H (r, a )  then f  =w o .

P ro o f. We may as usual assume wo = O. C hoose a  sequence {r,},
0 <r,<r, ,1 <1 , j— .0 0 . Let r ,  be the subboundary path of

r  which is contained in r , <  I z! < 1  with one endpoint b. I  z i=r,.
T h en  { r ,} travels in  {H (r, o ) } ,  even tu a lly , an d  if w e set
= H (r, a )  w e m ay  take  u p  o u r p ro o f a t (5 . 2 )  in  the proof of
Theorem 3. Let A i  = sup (1 — z  ) i" lo g  f ( z ) I , z  G r , . Necessarily

and for z e r,

A;log I f ( z ) l< .(1 - 1z1) l œ

So f  has IL. -exponential order { — A ,}  on  {n } a n d  (5. 2) is satisfied.
a

Clearly (5. 3) is unchanged and (5. 4) has been obtained above. We
now choose b, G r, to  b e  the endpoint b  already distinguished (of
course (5 . 5 )  is no t satisfied  fo r this choice of / O .  Let L;a) b e
defined as in (5. 9). Everything proceeds exactly the same includ-
in g  (5 . 1 4 )  (since I b,— a,1= I 7  b,1—). 0 )  u n t il w e  re a c h  (5. 16)
which depends on (5 . 5 )  which we do not h ave . In  this circums-
tance (5. 16) changes to

(5.29) lai— bil=k— bil>-(1-11);1)1(„=(1— r.,)K „,

for some K a > 0  , a l l  j ,  because r  l ie s  in  H (r, a ) .  Note that we
do not need (5 . 18 ) because of the change in (5. 16). A l l  the
estimates are now available to complete the proof and we conclude

f =wo •

Corollary 7. L e t f  be holom orphic in  D  an d  su p p o se  f o r some
boundary path 7- approaching .t- C  within some hypercyclic
domain at r,

(5.30)l i m  (1— I z I ) 1 -"log I f(z)—  w o l = — co,

f o r some finite wo ,  and some v > 0 .  Then if
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(5. 31) f, H ( r, Q))<MB<00,

all 0 < < r c ,  we have f=wo.

Pro o f . Suppose r  H (r, ,3 )  and  choose a ,  °G ig < a < i r ,  so that
also

(5.32)- L r  <1+7
a

Because of (5. 32) we can reduce (5. 30) to

(5.33) lim (1 — I z I )ia log  lf(z) — wol=
2 -7 , 7
z E Y

We are now in the situation of Theorem 4 so f= w 0 .

6. Applications to normal functions

In both Corollary 6 and 7 the condition on the growth of the
maximum modulus is satisfied if f  has angular limit at r  which in
turn is assured if f  is a normal function because f  tends to w, on
r. For the sake o f  completeness and to gather together several
ideas on normal functions which have been presented by various
authors and which are of use to  u s  we present a  d ig e st o f these
related results. It will also serve to introduce our final applications
of Theorem 3 which occur in  Theorems 5 and  6  and  which cor-
respond, as we have remarked earlier, to the extremal case a = 0 .

Definition 7. [10, p . 53] . A function f, meromorphic in  D , is
said to be a normal function if the f am ily  { f (S (z ))} ,  S (z ) any
1-1 conformal map of D  onto D, is  a normal fam ily  in the sense
of Montel.

An equivalent formulation [10, p. 55] is that f  is normal in D
if and only if

1 f '(z )1   < , z  G  D.
1+ If (z)I 21 -  1  z l
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Another equivalence was noted by Lappan [8, Theorem 3 ] who
observed that f  is  normal in D if and only if for any two sequence
{z}, { z } i n  D , p ( z „, z ) - - .0  im plies x (f ( z ), f (z ))--> 0 , n
(Here x (a, b) is  the chordal distance on the extended plane W.)

I f  r  is  a boundary path approaching r  C  within some hyper-
cyclic domain we say r  approaches r non-tangentially. Noshiro [13] ,
(and in a more general form Lehto and Virtanen [10, Theorem 2] )
proved that if a normal f  tends to a value w 0 E W on a nontangen-
tial boundary path r  a t  r  then f(z„)—>w0 f o r  any sequence {z.}
approaching r  provided it approaches r  within a hypercyclic domain,
i.e. f  has angular lim it wo a t  r. To obtain this result one need not
assume that the full fam ily { f (S (z ))1 be normal, but rather that
a subfamily be normal. As is show n in [10, p. 57] it is enough
to assume that

(6.0)_ „ f '(z )1(1— iz i) (..,< [3< 00, 0< [3< 7r.
z 1Xfi (:.a) 1+ 1f(z)1 2

We come now to Theorem 5. F irst set p(A , B ) =inf {p(z, w)} ,
w E B  and A, B c D .

Theorem 5. Let f  be rnerom orphic in  D  and suppose f or some
rE C  satisf ies (6 . 0 ). L e t {yo}  be a  PHD  sequence travelling in
{F(a„, R , o„, a )}  , som e 0 <.st < 7r, an d  a„--.r, n—)-CXD. Fo r some

1wo E W  and some 22> 0 let f— w0 (or i f  wo = Do) have (1-H2)-ex-

ponential order { A }  o n  {r„}. If

(6. 1)u r n  p(ro , ro,i) <co,

then f = w o .

Remark. This is  a relative of Corollary 7. It is clear that in the
hypothesis of Corollary 7  we could replace (5. 31) b y  (6. 0) since
(6. 0) together w ith  (5. 30) im plies (5. 31). Hence Corollary 7
gives us information on the possible exponential order of a non-
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constant normal holomorphic f  o n  a  non-tangential boundary path
at r E C .  For an arbitray boundary path r  we can infer that for a
normal holomorphic f  if

— A*(r)logjf(z)—wo (1— "l< Izi > r " zEr wol <cx).Iz1) 

and A*(r)—>+  0 0 ,  r - 4 ,  then f =w o . To demonstrate this first recall

that Hayman showed [6 , p . 2 0 4 ]  that a ( r ,  f  ) < . Then1 — r
select any P H D  sequence { r „}, .r g r ,  n=1, 2, • • • , with associated
parameters { (R„, r„, e„, a „ ) } .  It is trivial that f —  w0 has 1—exponen-

tial order {  t °
A * ( r

'
)  

 }, 0 < to < c.), on  {r,} and so (4.0) o f  Theorem1 —R„
1 is satisfied (for suitable a )  which gives the result.

P ro o f .  By remarks made previously we have eventually fo r  some
0 < 9 0 < n , (with E given in definition 6),

(6.2)F ( a „ ,  R ,  0 „ ,  - - ).gH (T, Qo)2

I f  we show that f  has angular limit wo a t r we can invoke Corollary
6  and so this is our objective. Su ppose there is a  sequence {z„}
tending to r  with

(6 .3 ) z„ E H(r, 191), some 0 <131 < 7r;

and

(6 .4 ) lim  f(z0=w ,*w o .

For any z„ let To „ be the arc whose corresponding endpoint a , is
closest to z„, that is

(6.5)p ( z „ ,  a , ) < p ( z „ ,  a , ) ,  j =1, 2, •••.

We assert that

(6.6)l i m  p (a,, z„)<co .

Let be chosen 0 < 3 2 < n ,  so that eventually
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(6. 7) z„ G H (r, 02)

r„ H(r, ‘32).

Denote by z ' the unique point on the radius to r  closest to z  in the
hyperbolic distance. N o w  ch o o se  to„ e , / 1 ), E 1-„+1 , n=1, 2, • • • so
that

(6.8)P ( t v ,  vb.) =P (y,  r„,-1), n = 1 ,  2, • • • .

T hen (6 .  1 ) ,  (6 .  7 ) ,  ( 6 .  8 )  an d  th e  PH D  property collaborate to
produce for some suitable /14>  0 ,  that eventually

(6. 9) p(d„, a41)<p(ar,„ a„)+ p(a„, w.)+ PCIA)„, 710 +

<M 1.

Now for an y  z „ th e  corresponding z,', lies between som e a;„ and
a;„+1, and on account o f (6 . 9 ) eventually

(6. 10) Cl%) < 1111

B u t  ( 6 .  5 ) ,  ( 6 .  7 )  an d  (6 . 1 0 ) im p ly  th at fo r some 0 <  M 2‹ 00,
eventually

P(z„, ak r ) ‹p(z ,,, z„)± p(4, di„)+ p(a;„, a,,) <111,,

which verifies (6. 6).
z— a, As is customary, setting C=C„(z) —  , consider the family

1 — ak„z

{g „ (C) = f (c 1 (c)) (o r  {-1 (C 1(C ))}  if  w o  0 0 ) .  By hypothesis this

is  a normal fam ily . N o w  { C . ( r k . ) }  i s  a  PH D  sequence and each
a rc  h as o n e en d p o in t a t C = 0 . T h us th ere  is  a  subsequence of
functions {g,,,(C )} which converges to  the constant function w 0 ,
uniformly on compact subsets o f  C  < 1 .  B u t (6 . 6 )  and  the con-
tinuous convergence of {g„,} give lirn f(z„,) =11) 0 which is incompatible
w ith (6 . 4 ), and so f  has angular limit to,, a t  7. For any fixed ,e

we may assume that f  (or 1 )  is holomorphic in  H (r, ,e). Since we

also have that eventually F(a„, R , o,, — H (r, [3 ) ( fo r  a  sui-
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table choice of R )  we have that f  (or 
-j-)

 i s  holomorphic on  these

domains for large n. A  careful reading of Theorem 3  (and Theorem
1) shows that w e need  assume on ly  th at f  is  meromorphic in  D

and holomorphic in  th e  domains F(a„. R , 0„ ,  a  
- - - ) .

)  Thus we can2
indeed invoke Corollary 6 and the proof is complete.

Definition 8 . Let f  be a  continuous function from D  into W.
The sequence {z„} is said to be a normal sequence fo r  f  if the
family

- f (
" 2 . )11+ C.2„

is a normal family within some open disk about C=O. I f  {g(C)}
e " -1is a normal family in  ICI <  e2 ,+ 1  then to emphasize this fact

we sometimes write that {z„} is a normal sequence mod r  for f .

T h ere  is  a n  equivalent formulation for th is  notion which is
similar to Lappan's criteria for a normal function.

Lemma 3 . Let f  be a  m erom orphic function from  D  into W.
A  sequence {z„} is a normal sequence fo r f  if and only i f  x(f(z„),
f (4))— .0 whenever p(z„,

P ro o f. If we se t z„---  th e  lemma now reads : {z„}  i s  a1+ C:,:z>,
normal sequence for f  if and only if  I implies x ( g „( ) ,  g (0 ) )

n — .) .  But this statem ent is true if  a n d  on ly if  th e  family
{g „(C )} is continuously convergent at C=O, a n d  th is indeed  is a
necessary and sufficient condition th a t {g„(C)}  b e  norm al in  some
disk about C = O . (See e .g . [3, p . 173 if] fo r  details)

There is a  kind of uniformity that prevails for sets in  D.

Lemma 4 .  Let S g _ D . The following Propositions are equivalent
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fo r a  meromorphic function f :

A) There exists an r > 0  such that each sequence {z,},

z„GS, is a normal sequence mod r  for f ;

B) Each sequence { z,}  , z ,GS, is a normal sequence for f .

P ro o f. We need only prove B implies A . N otice that given €>O
there exists a  8 (0>  0  such that

(6 . 1 1 )  p (z , w )< 8 (e ) implies x (f (z ) , f (w ))<E , z G S , wED.

Otherwise for some E > 0 there is a pair {z,, w,}, z, ES, W „  E D with

P(z., w„) <
1

,  b u t x (f (z „), f (w „))>E , n=1, 2, • •. B ut Lemma 3

pronounces that {z„} is not a normal sequence contrary to assump-
tion.

If we select any sequence {z,}, z, ES, then we claim that

Ig "( C )  f (f++ Cz; „) — f ( L ' ( C ) ) }
8(1/4)is a normal family in  p(0, C)< ,  w h ere  (l/4) is  g iven  by2

letting e=1/4 in  (6 . 1 1 ) . If a, b are two points in this disk, setting
b„—L„(b), then by the triangular inequality both p(a„, z„)

and p(b„, z ,) are less than 8(1/4) which in  turn implies that

x (f (a.), f (bO )=x (g .(a), g„(b))< - - ,

because o f  (6. 11). B u t this means that { g„(C)}  i s  normal in

p (0, C) <  8 (1 / 4 )   , which disk is independent of the sequence {z„}.
2

Simply put, if every sequence in  S is a normal sequence for f
then for some r>  0  every sequence is a normal sequence mod r  for

f .
Suppose {z,}  is a  sequence which is not a norm al sequence for

some meromorphic f .  This means thatthe re is a subsequence {z,„} of
{z„} for which no subsequence is a norm al sequence for f .  This
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leads us to phrase.

Definition 9. A  sequence {z„} is said to be an M-sequence fo r  f
if no subsequence o f  {z„} is a normal sequence.

The classical theorem of M ontel (in generalized form ) enables

us to  observe that a  M(ontel) sequence for f  has th e  following
property when f  is meromorphic in D . Let N (z , r)= {CI p(z, C)<r}  .

Every subsequence (z,„} o f  a n  M-sequence {z„} fo r  a
meromorphic f  in  D  has th e  property that f  assumes

(6. 12) every v a lu e  in  W  infinitely often with at most two
-

possible exceptions in U N (z „„ r), and this is true for
k =1

each choice of r>  O.

Given an M-sequence we may certainly choose a  subsequence {z„,}
such that

(6. 13) I z„, Il z „ ,  ;  p ( z „ „

Gavrilov in  g  defined a  P-sequence for f  to be a sequence satisfying
(6. 12) and (6. 13), where (6. 13) must hold for the sequence itself.
We see that if  a  meromorphic f  in  D  possesses a n  M-sequence it
has a  P-sequence.

Continuing our brief résumé Anderson in [1, p . 1031 called
rEC  a normal point fo r a  meromorphic f  in  D  i f  every sequence
approaching r non-tangentially is a norm al sequence for f . The
standard arguments show that in  this case each such sequence must
be a normal sequence mod 00 for f  and so it is easily seen that 7

is a normal point for f  if and  only i f  (6. 0) holds. (See Tanaka
[16] for related results on normal sequences.)

The following theorem was proved in  limited form by Seidel
[15, Theorem 4] , more generally in  g  (Theorem 4), an d  in  its
present form was announced by Gauthier [4] . Since our statement
is somewhat different than Gauthier (we replace his] p-sequences by
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M-sequences) and because our proof is brief we present it here.

Theorem B .  Let f be meromorphic in D and tend to  wo e W  on
a  boundary  Path  r. L e t P (r ,r )= U  N (z , r ), 0  < r  < 0 0 . Then
there ex ists a constant A, O<A<co such that

i) if O < A < 0 0  then fo r  all 0 < r < A

lim  f (z =w 0 ,z „ e  P ( T ,  r ) ,

w hile the boundary  of P (r, A ) contains an M-sequence
fo r f;

ii) if  A = 0  then r  contains an M-sequence for f;

iii) if A =00  then fo r  all 0<r <00 ,

limf(z,)=w0, z„eP (r ,r ).

P ro o f .  Suppcse every sequence o n  r  i s  a  normal sequence and
define A -- Hub { r  every sequence on r  is  a  normal sequence mod r
for f } .  Then A > 0 by Lemrra 4. If A=00, the usual arguments
for normal functions give (iii). I f  A  is  fin ite  likew ise w e have
the first p a r t o f  (i). If th e  boundary of P ( ,  A) contained only
normal sequence for f ,  because o f Lemma 4  (an d  some obvious
arguments) the definition of A  would be compromised. Thus there
is  an  M-sequence for f  on the boundary of P(r, A ) .  If A = 0  then
y  contains an M-sequence for f-again by Lemma 4.

This material enables u s  to prove th e  following improvement
of Theorem 3 of g.

Theorem 6. Le t f be meromorphic in D and let r  be a boundary
p ath  at rE  C m ak ing angle *, w ith the radius to  r

at  r. Suppose for som e 2V0 E  W we have

i) if w o is f in ite
— A , (6.14)l o g l f ( z ) — w o l <  (1—}zDs
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ii) o r if  w0 =00
A, log I f  (z ) I   zEr;(1 - 1z1)'

where A, is a positive constant depending on s  and (6 . 1 4  (i)) or
(6 . 14 (ii)) holds f o r  each O s < 0 0 .  Then either r  contains an
M-sequence or else f =  w0 .

Rem ark. Together with Corollary 1 and Corollary 5 this theorem
completes the analysis of the various s-exponential order (s>1) of
f  on non-tangential boundary paths at r  which are smooth at r.

P r c c f .  If 7 dces nct contain an M-sequence for f  Theorem B gives
that f  tends to w o w ith in  P ( r , r), 0 <  r < A ,  fo r some 0 <A <0.0 .

Thus we can find a  neighborhood V o f  r  such  that, in /3/(7-, A )
2

= P A ) (1 V, f  or 1/f is bounded. Since y makes angle lip with2
the radius we can determine a PHD sequence , r„ gr, and values
0 < a < r ,  R >  0 , 0 < 0  < 2 r ,  such that

i) {7-„} travels in  {F(a„, R, 0„, cr)}

ii) F(a„ , R, 6 , a) P ' ( y ,  A
2 .

I f  w e chocse s> -71 w e  c a n  e a s i ly  show  (b y  u s in g  t h e  samea
inequalities as were used in the proof of Corollary 6) that since f

1satisfies (6. 14) f— w , or as the case may be, has ----exponential
f a

order {A „} on  { r „ }  ,  where A.„—.00, n—.00. T hus th e  hypotheses of
Theorem 3 are satisfied and f= w 0 which completes the proof of this
theorem.

It shou ld  be noted  that th e  requirem ent that r  make some
angle Jr a t  r  can be relaxed in  that it is su ffic ien t that, fo r each
r >  0, r )  contains a  PHD sequence travelling in domains con-
tained in  P ( - ,  r ).

When Corollary 7 is combined with Theorem B we obtain
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Theorem 7. L et f  be meromorphic in  D  an d  su p p o se  f o r some
nontangential boundary  path r  a t  rE C ,  som e tv0 E W , an d  some
v > 0 , we have

i) i f  tv0 =  0 0

lim (1— I z  ) 1 "  log If(z)! = 00 ;

E

ii) i f  w, is f inite
lim (1— z 1) 1" log lf(z ) — wol

 -00 •
E

T hen e ither f  h as  a n  M-sequence w hich l i e s  o n  a  rectilinear
segm ent to  r  o r else f= w o .

P ro o f .  A s in the proof of Theorem 5 , with ) o  equal to the radius
to 7 ,  let

A = lub  Ir I every sequence on ro is a normal sequence mod r  for
f} . If A = 0  Lemma 4  reveals that To contains an  M-sequence for
f. According to th e  proof o f Theorem B  i f  0 <A  < D o  th e re  is an
M-sequence for f  on the boundary of P (r o , A ) .  I t  is  tr iv ia l that
i f  {z„} is  an  M-sequence for f  then so also is {4 }  if  p(z„,
n-->00. So there is an  M-sequence o n  a  rectilinear segm ent. If
A = CX)  then f  has angular limit w , at 7  and now (5. 31) of Corollary
7  is satisfied. Then all the hypotheses of Corollary 7  are operative
so f= w 0 .

7 . Remarks

All the result in sections 4  and 5  a re  really theorems about
subharmonic functions an d  are  valid under a  scheme we present
shortly. We need one definition.

Definition 1 0 .  I f  u  is  a  subharmonic f unction  in  D  a n d  {7, j  is
a  sequence of  Jordan arc s  in  D  w e  say  u  h as  s-order {An } on
{2- } ,  A „> 0 , s > 0 , i f
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— A „ u (z )< zGr„,
(1— izi) s

Relative to  the results in Sections 4 and 5 the following substitu-
tion rule is valid.

i) Replace " f "  b y  "u" and "holomorphic" by "subharmonic" ;

ii) Replace "f— w, has s-exponential order {A„}" by "u has s-
order {A „} ", or "log jf(z)— w o l "  b y  "u (z )"  depending on
the situation ;  also make this last change in Definition 3;

iii) Replace "f =w o "  b y  "u= —cc". (W e  ag re e  to  a llo w
u  — oo as an extremal subharmonic function to accom-
modate the language.)

That this is valid rule can be seen by an analysis of the proofs
o f Theorems 1, 2, 3 and 4. The function f  intruded twice only
into the proofs of these theorems. Initially to validate the two con-
stant theorem. (See (4. 3) case (i) of Theorem 1; (4. 19), case (ii) of

Theorem 2; (4. 44) Theorem 2 ; (5 . 6 ) Theorem 3: T h e  proof of
Theorem 4 employs the same technique as does the proof of Theorem
2 .) And finally the fact f  was identically wo on a open subset of D
was used to infer f= w 0 and this weak identity theorem is still true
for subharmonic u vis-a-vis the valve — oo. For details see e.g. [13].
The rest of the proofs, and Lemmata 1 and 2, are only concerned
with estimating certain harmonic measure. Since the corollaries are
only geometric variations of the main theorem they, too, remain
true.

The requirement that a P H D  sequence {r„} have lim HD(r.)
<  C X )  can be omitted without affecting the validity of the theorems.
If a  function f  has some exponential order on th is  more general
P H D  sequence {r „ }  we m ay certainly find a  sequence of subarcs
{r }, r .  ,  a ll n , which has lim HD(r„)< co and on which f  has

the same exponential order.
It is possible to derive more general theorems than Theorems 1
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and 3  i f  we abandon entirely the P H D  notion and characterize
sequence of arcs by  the behavior o f  their associated parameters
instead. We give now a generalization of Theorem 1 and sketch its
proof which is but a duplicate, with minor changes, of the proof of
Theorem 1. To generalize the PHD notion we need

Definition 11. A  sequence o f  Jo rd an  arc s  { r „ }  i n  D  with as-

sociated parameters { (R „,r„, 0„, a,,)} , 0 <  < 7 r ,  - <r„<1 ,  is said

to be an s-sequence, 1 < s < 0 0 ,  i f  r„---.1,n-->00, and any subsequence
o f  { n }  contains itself a subsequence {n } which satisfies either (R)
o r (A ) ;

( R )  lim (1 —ri )i - s
1 + K

IC
'  >0 , I f 3 —  

 e

e22

P

P

i

'

+ 1

1

 '  

p
l

= p(1? , r 3);;

K ; K ;( A )  lim (1 — 1— K  
— 0, and Hm ( 1  r i )l— >0 ;; 1+1C,

K;—  e 2 P ; —  1 0

e21 - '(r ei ° ei( 9 i+c̀ i)).P;+ '  

Note that when s =1 (R ) is satisfied i f  {n } is a radial-like sequence
and (A) is satisfied i f  {n } is an arc-like sequence. Lemma A  can
be used to verify th is. H ence s = 1 defines a  PH D  sequence
(although lim HD(2-„)<00, but as noted this is not serious.)

n

Theorem 1'. L et u  be a  subharm onic function in  D  which has
s - o rd e r { A „} ,  1 <s <o o , o n  th e  s-sequence {2-,}  . L e t F;,a ) be
defined as  in  (2. 2). I f , setting M (u, F ,;a)  ) sup u (z), z EF;," ) ,  we
have A „--.+00, and

lim  111(u ' P - )  0  ,A„

then u=— .0.

(7. 0)

P ro o f. We select a sequence which satisfies (7. 0) and then divide
the proof into two cases according as to whether this sequence has
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a  subsequence satisfying (R )  o r  (A ) .  These two cases correspond

exactly to cases ( i )  and ( i i )  respectively in the proof o f  Theorem

1. In  these cases (and in Lemma 1 and 2 )  the key changes are

made in accordance with the following observations. Lemma A
says that if w e  factor — r,I =(1— r,)t,=(1— r,)"(1— r,) 1 - 1,
=(1— r,)st', a n d  I r,e"9 , —ri e ( 9 )+", ) I = (1— r,)t,=(1-1-,)s (1 —r,) 1 - st,

=(1— r,)st;' then the behavior of r, and t'," is given by conditions (A)
and (R ), which behavior mirrors precisely the behavior o f the cor-

responding t ,  (and i )  in the proof of Theorem 1. A  small change
occurs in the proof of Lemma 1 where we now estimate ce., 

In Theorem 3  (and the resultant corollaries) the method of
proof does not allow us to consider, say, an arbitrary PHD sequence
approaching rE C, even non-tangentially. They must travel in the
appropriate domains. To subject the {y, } to this mode of travel is
to imply that, as viewed from the point r ,  the arcs seem quite thin.

Whether this "thinness" is necessary we do not know.
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