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1. Introduction

The classical lemma of Koebe [7] for bounded holomorphic
functions in the unit disk D states that if f tends to zero on a
sequence of arcs in D which approach a subarc of the boundary C
of D then f must be identically zero. Generalizations of this lemma
have succeeded in lifting the hypothesis that f be bounded. For
example, Bagemihl and Seidel [2, Theorem 1] showed that Koebe’s
lemma still holds if f is a normal meromorphic function in D, while
G. R. Mac Lane [10, Theorem 13] showed that the result is still
true for holomorphic functions of his class 4. At one or two
instances in our paper there are points of contact with arguments
used by Bagemihl and Seidel and by Mac Lane in the above cited
papers and we acknowledge this.

A variant of Koebe’'s lemma was proved recently by I V.
Gavrilov [5, Theorem 1] who showed that if f is a normal
holomorphic function in D for which

1

1.0) log| f (7e'®) | S—W )

0<r<<l, =0,

* This research was conducted while the author was on sabbatical leave from
the Pennsylvania State Univ. U.S. A. as a Fulbright-Hays Lecturer in Mathematics
at Tsing Hua Univ. in Taiwan, China.
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on some radius 7e’®, then f must be identically zero. We can view

this as Koebe-type result, in that, if 7,: 7e', 1——111-grg1—L

n+l’
then we have that a normal function f which tends to zero on the

sequence of arcs {r,}, with order prescribed in (1.0), must be
identically zero. Notice that the requirement of Koebe’s lemma
which demands that the arcs 7, approach a subarc of C has been
weakened while the condition that f merely tend to zero on 7, has
been strengthened to |f(2)]|<exp(— )'€), z€y,, n=1,2, ---.

Gavrilov points out that one can replace the condition that f
be normal by the assumption that f have angular limit at e,
Several other theorems are given by Gavrilov in this paper which
are similar in spirit to the one mentioned above. This paper
presents generalizations (and in some cases improvements as well)
of the theorems in Gavrilov’s article which in the sequel we refer
to as G.

Our aim is to allow a greater variety of sequences of arcs than
Koebe arcs and to determine under what conditions f tending to zero
on these sequences imply that f is identically zero. So we are
confronted with two problems: (1) what restrictions should we
impose on the arcs, and (2), what is the proper order for f on
these sequences. It is fairly clear that some restrictions on the arcs
are necessary. Let B(z, {a,}) be a Blaschke product with 0<<a,
<<a,,1—1; and let u(r), 0<<r<<1, be any positive monotonically
decreasing function. We can certainly determine a sequence of disk

D(a,, r,)={zeD|z—a,|<r.}, n=12, -,
such that for z& D(a,, 7.),
|B(z, {a.}) |1 <u(la.]), n=1,2,--.

So, if {y.} is any sequence of arcs with 7, < D(a,, 7,), then
B(z, {a,}) tends to zero on 7, faster than x(|a.|).
A clue to the proper order for f on 7y, is given by the bounded

z+1). If we take
z2—1

holomorphic function f(2)= exp(
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1-2 _1 19 ...
a.1) e 1 . <x<1 7 n=1,2, -;
then

1.2) |f(z)|gexp(—1—_1]z—|), 2, n=1,2, -

So we must impose the condition that f tend to O on 7, with order
more severe than (1.2). We gather these notions in precise form.

2. Preparations and terminology

The non-Euclidean hyperbolic metric in D is of use to us and
so let

|1—ab|+]a—b]

= , a, beD.
1—ab|—la—b] °

o(a, b) = log

For SCD let
HD(S) =sup{o(a,b)}, a beS.
So HD(S) is the hyperbolic diameter of S.

Definition 1. Let {y.} be a sequence of Jordan arcs in D satisfy-
ing
B,) lgmianl =7,—1, n—oo;
2 2EYy

(2.0) _
B 0<lim HD(y,) <lim HD(7,)<oo.

n-»co

We call such a sequence of arcs {r., a positive hyperbolic
diameter sequence, heveafter, a PHD sequence.

A sequence of Jordan arcs {y,} in D-not necessarily a PHD
sequence-has certain parameters associated with it. Let

R,=max|z|, n=1,2,--.

ZEYy

and let 7, be defined as in B, of (2.0). Let E, be the closed
circular sector of |z|<{R, of minimum angle opening a, containing
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r.. To avoid unnecessary complications we always assume there is
such an angle a, and that «,<<n for any sequence {r,}. (For a
PHD sequence necessarily a,—0, n—>o0.) Thus E, is of the form

(2.1) E,: 0<|z|<R, 0,<argz<60,+a, 0<0,<2r, n=1,2, -,

The quadruple (R,,7,,0. a,) are the parameters associated with
1. For any given sequence {y,} Wwith associated parameters
{(R,, 7., 0., a)}, and any fixed 0 <<a<2r, a,<a, all #, define for
7’l=1, 2, ee,

(2.2) F®:0<|z]| <R.; 0n—<—a—2—a"><argz<0n+ ata.

So F* is the circular sector of |z|<CR, of opening a which con-
tains the interior of E, in a symmetric fashion. Lastly set, for
7’l=1, 2, .-,

@. 1 1. _(g_i> <£ a,.>
2.3) L0: g <lz|<g5rs 0.—(T— 5 )<argz<o,+(F+5).

Then L™ is a wedge-shaped domain of opening % symmetric about

the line bisecting the angle a,. See Fig. 1 for the various domains.

Fig. 1.
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We will use the notation E, F{ and L{® exclusively in section 3
as defined here and always relative to a given sequence {r,}. It is

trivial but important to note that because 7,<<1, L™ is always con-
1
_2—)
which it is associated and regardless of our choice of a.

tained within the disk |z|<C all n, regardless of the sequence to

Now a PHD sequence can be characterized by the behavior of
its associated parameters. To this end let us call a sequence of
Jordan arcs {y,} in D with associated parameters {(R,, 7., 6,, @,)} a
radial-like sequence if

) 0<limp(R,, 7,)<limp(R,, 7,)<oo;
(2. 4) n->o0 n-»oo
i) lim o(R,e%, R,eit) <oo;

or an arc-like sequence if

D limp(R,, 7,)=0

(2.5) S
i) 0<<limp(R,e?, R,e )< lim p(R,e*, R,e®*») oo,

n-»oo

(If 7, is the segment of the radius 7e'® defined by 1—%grg1—-1—,

n
-as in (1.1)- then {y,} is a radial-like sequence; while if {r,} is the

arc of |z| =1—% defined by ﬂogargzg00+—:7 an easy calculation

shows that this {r,} is an arc-like sequence-hence the nomenclature
for each family.)

Proposition 1. A sequence of Jordan arcs {y,} in D is a PHD
sequence if and only if it satisfies B, of (2.0) and each sub-
sequence contains either a radial-like subsequence or an arc-like
subsequence (or both).

Proof. The demonstration of this proposition is elementary but
tedious. We sketch the proof. Let {r.} have parameters {(R,, 7,
6. «,)}. The geometry of the situation gives
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(2.6) HD ()< o(7,, R.) +o(R.e, R, '),

On the other hand because of our definition of E, in (2.1), and
because of the property of the hyperbolic distance

@2.7 HD(y.)>p(r., R,).
Since

(2.8)  p(R.e", Rt p(r,e%", v,e°) +20(r., R,),
then
2.9 HD(7,)=> p(7,e"%*», 7,e")

>p(R,e", R, ) —2o(r,, R,).

The inequalities obtained in (2.6), (2.7) and (2.9) in various
combinations prove Proposition 1. Let {y.} be a PHD sequence and
{r. be any subsequence. If limp(7,, R,)>>0 then (2.7) and (2.9)

k—>oo

show that it is a radial-like subsequence. If limp(7,, R,)=0 then

ko0

the subsequence for which this limit holds is an arc-like subsequence
by virtue of (2.6) and (2.9). Conversely assume {r,} is not a
PHD sequence then there is a subsequence such that either
lim HD(y,)=0; or else lim HD(3,)=oco. In the first case (2.7)
says {r.,} cannot contain a radial-like subsequence, and (2.9) shows
it cannot contain an arc-like sequence either. In the second case
(2.6) shows that it cannot contain either an arc-like or a radial-like
subsequence.

We now define the order of f on a sequence of Jordan arcs

{rat.

Definition 2. Let f be defined in D taking values in the extended
plane W. Let {y.} be a sequence of Jordan arcs in D, {A.} a
sequence of positive numbers and s=>0. We say f has s-exponen-
tial order {A.} on {r.} if
—A

[f(2)] gexDm )

2E€E v, n=12, .-,
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For example, in this terminology Koebe’'s lemma now reads: Let
{y.} be a sequence of Jordan arcs with associate parameters
{(R,, ¥, 0., a,)} such that a bounded holomorphic f has o-exronen-
tial order {A,} on {r.}. If l,.iEa”>0 and A,—>oco, n—>oo, then f

is identically zero.

Definition 3. Let SCD and 0<<r<1. For a complex-valued
Sfunction defined in D set
H(r, f, S) =max(sup log| f(2)], 1)

Jz[<r

If r=1 we omit mention of this variable and merely write
M(f, S); and if S=D we also abbreviate as M(r,f). There is
no great significarce is this somewhat unusual definition. It merely
insures that (7, f, S)>>1, so it does not happen that (7, f, S)
—0, as »—1, which is a convenience for us.

Definition 4. A simple continuous curve y=v(t), 0<t<<1, lying
in D is said to be a boundary path if lirplr(t)l =1; and a boun-
dary path at -=C if linlx r()=r.

One further convention we adopt. Mecst of the arguments used
in this work involve a limiting process, and we are not interested
in the first N, terms. Rather than keeping a score of the various
indices we sometimes use the phrase relative to some sequence
“such and such a property holds eventually for the sequence” to
replace “there is an integer NN, such that the property is true for
all members of the sequence with index greater than N,.” As long

as we use this phrase only finitely often and are otherwise reasonably
careful no problem arises.

3. Two known results needed for main theorem

We now state two known results, one rather trivial, the other
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not so trivial, which are the cornerstones of our theory. The first
is the observation by the author [14, Lemma 1], and also by Lappan
[8, Lemma 2], concerning the hyperbolic geometry. We give it here
in a slightly revised form.

Lemma A. Let a bsD. Set ola b)=op; K(p)=i_~l' t(a, b)

e*+1’
_la=b] . _la—b] K(p)
1— ld] s dnd t(b, a) = 1_ Ib, . We then have m<t(a, b)

2K (p)

<1——K(5; and the same inequality holds also for t(b, a).

This factorization of the Euclidean distance between @ and b
gives a simple connection, useful for both computation and intuition,
between the Euclidean and non-Euclidean hyperbolic distance. We
use this lemma to give an estimate which will be useful in the
next two sections. With the notation as given in the lemma we

have

1—K(p) t(a, b) 2(1+ K(p))
GO SATRGY b~ 1=K

So that, if {z,} and {z,} are two sequences in D with

lim p(2,, 2,) < A<<oo,

n-»oco

1—x d 1+x

172 and 3—-, (3.0) becomes

taking note of the properties of

for »n sufficiently large

1-K(A) t(z,, z, 20+ KA) .
ST KA ~1ziz) ~ 1-K(A)

3.1 o<

To put it somewhat differently if {z,} and {z.} are two sequences
with lim|z,| =lim|z,] =1, and lim p(z,, z,)<<co, then (1—|z,|) and

n=>c0

(1—1z;]) have the same order as #—>co. If, in addition,
0<<lim p(2,, 2.), then |2z,—2z,| and (1—]z,|) also have the same order.

n->00

We use these facts frequently. When there is no need to indicate
the dependence on z, and z, we write ¢(z,, 2,) (and £(z,, 2,)) simply
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as t,.

We have listed the elementary result. We now give the more
profound result-a form of the Schmidt-Milloux inequality. We state
the result in somewhat limited form sufficient for our needs. For a
more general statement see, for example, Tsuji [17, p. 306]. If
is a boundary path at a point t=C we define w(z, y, D—7) to be
the harmonic measure at z of y relative to D—r.

Theorem A. Let y be a boundary path at a point =C. If
min|z|=a then for z&D—v,
zeY

A-a)(A-12%)
16 '

w(z, v, D—y)> 2 arcsin
1

This formulation is obtained from the usual form in which ¢=0
by the routine device of mapping D onto D by a linear transforma-
tion which takes r onto a boundary path with a=0 and using the
conformal invariance of the harmonic measure. Some obvious
estimates then produce the above inequality.

4. Main Theorem

Suppose the following situation exists. We have a function f
holomorphic in D; a given PHD sequence {y,}; and a value
a, 0<<a<<2r, such that F®DE, n=1,2, ---, where these domains
are relative to {r,} and are as defined in (2.1) and (2.2).

Theorem 1. Let f be holomorphic in D such that for some finite
value w,, f-w, has l-exponential order {A.} on a PHD sequence
{ray. If

(4.0) lim FLFD

n->oo0 ud

then f is identically w,.
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Remark. We now see in what direction we have moved from the
classical Koebe’s lemma by lifting the restriction that the angles
@, associated with y, be uniformly bounded away from 0 and by
increasing the requirement that f merely tend to O on 7,.

Proof. Since M(f, F®) and M(f—w, F*) have the same order
of growth we can assume, without loss of generality, that w,=0.
We suprose (4.0) holds and let {n,} be the sequence such that
(4-1) {im M(f, FP —~0

We divide the prcof into two cases according as to whetker {r.}
contairs a radial-like subsequence or an arc-like subsequerce.

Case i) {y.} contains a radial-like subsequence.
Let this sutsequence by {r.,} and let j=n,. Then (4.1) is

(4.2) lim AL F2) o
Je i

Let {(R; 7, 6;a;)} be the rarameters associated with {r,}.
Furthermore, we can assume that y; meets the circle |z| =R, only
at the point R, and meets |z| =7; only at 7,6/, and that these
are the end points of the curve y,. (It is clear we can find a subarc
of y; that satisfies the above condition. Certainly f has the same
exronential order on this subarc as on j;. These subarcs so chosen
for each j have the same parameters {(R; 7;,)} and so are also a
radial-like sequence. If 6; and «; are altered then of course so is
E,. However we do not need nor use the fact that this new subarc
may not meet the left and right boundaries of E; but use only that
this new subarc is contained in the original E, as described above.
So we retain the sets E; and F{¥ as defined for the sequence
{Tj})-

Our technique here-and in case (ii)-is to use the two constant
theorem of the brothers Nevanlinna [11, p. 42] to estimate the value
of f on the domain F{ and in particular on the subdomain L{*.
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To this end let w(z, y;, F{”—¢,) be the harmonic measure at z of
y; relative to F{®—y, The two constant theorem gives for
z2e F(a)_‘)‘j

@3 loglf@| <oy, F—r)(740)

l—rj
+ Q-0 7, F° —r)) ML, Fi®),

where the estimate of f on 7; follows from the fact that for z&€7y,,
1—|z]<1—7,

Our efforts are now bent toward estimating the harmonic measure
for ze L. Consequently map F{* onto the unit disk D,: |w|<<1,
by the conformal map

i_( 1+h,~(§)_)2

4.4 () =w(hy () = —— 1L
z+<1—h;(z)_>

with

@5 m@=(LgE)" poa-Le e jor

If |w;(r;e®")| =a;, let +} be the subarc of w;(y,) which connects
|w| =a; to |w| =1, and lies, except for endpoints, in a;<<|w|<<1.
By Carleman’s principle of Gebeitserweiterung [11, p. 64] we have
for zeD,—w;(+,)

(4.6) o(w, w;(r;), D.—w,G))=w(w, vf, Do—17).

Theorem A reveals

(11—
4.7 o(w, 7'?‘,Dw—r}k)2g arcsin - lwllg A-a) )
T

By the conformal invariance of the harmonic measure (4.6) and
(4.7) allow us to write, for z€ F{® —y,,

— : 2 _ . 29 |2
48 0 P —p)=2 arcsin A1 0@OAlwGe)]),

To further estimate the right side of (4.8) we now restrict z& L®.
First note
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(4.9) |w;(L$) | < B, <1,

where B, is independent of j. (Simply observe that after applying
z,=h;(z) the image of L{® is, for all j, contained in a set of the
form z;: %<argzl<%n; <%>wa<lz1l<<%>ﬂla; and the remaining
action of w;(z) is holomorphic and independent of j and «.)

A tedious but simple calculation gives

— 017y | 2 M)wm][ (7 277/oc:|
(4.10) 1—|w,(re )]2[1m< Rj ) (R,.> .

Remembering that ;?j 2% we can estimate that

7 .20 >1rla < 7. >7rla . (0(/_77‘)71_ (1 >Tl’/ac< a'~)
4.11 = ) =F ~ W7 = —=),
(.10 I R, g) = =\g) U

As we have noted before, for a PHD sequence a;—0, j— oo, so

that eventually ﬁg% and (4.11) becomes eventually
o

rjei(9§/_wj) 7l <l>w1a+1
(4.12) Im(——Rj ) =3

The second factor on the right side of (4.10) is estimated by

applying the mean-value theorem to f(x)=2x""'*. Since er—;—,

R’;‘_ﬂla_’,ivrla 27_[( 1 >27r/oc—1 .
(4.13) —R";—"/T—Zj o> (Rj=7) .
3mla—
Setting Ka=l<%) 1, (4.10), (4.12), and (4.13) together give
o
that
(4.14) 1—|w;(7;e) [* = Ko (R;— 7).

Since arcsint>>¢, >0, (4.8), (4.9) and (4.14) transform (4.3) to

4.15)  logl f() | < C BT ay+ uCr E),

K.
8n

for ze LY, C,= (1—B%), and j sufficiently large.
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From here it is but a short trip to the desired conclusion. If
we refer to Lemma A (and the remarks thereafter) the fact that
{r;} is a radial-like sequence then implies eventually

(4. 16) (R,—?‘,)Z(l—i’,)to, to>0.

So (4.15) and (4.16) give for z€ L{®, j sufficiently large,

@
(4.17) log|f(2)] ﬁ—A,-(Cato—"%—({a.I;’—)) .
Now (4.2) implies A,—+ oo, j—>+oco, so that we have for any
sequence {z;}, z&L{”, that f(z;)—0, j—oco. Since there exists a
subsequence {j.; such that L tends to a domain of the form

1 1. g a
I<]Z]<§, 6, 4<argz<ﬁo+4

cally zero on this limit domain unless f is zero on all of D this

; and since f cannot be identi-

completes the proof of case (i)

Case ii). {r.} contains an arc-like subsequence.
Let this subsequence be {r,} and again set »,=j so that we

have

(4.18) 1im%@l —0.

j»oo i

We again modify the arcs 7; slightly in that we select a subarc of
r; so that this subarc meets argz=6; only at 7?, and meets
arg 2=60,+a; only at 7;e™®*) where these points are the endpoints
of the subarc. As in case (i) we retain the notation 7; for these
subarcs which are readily seen to be an arc-like sequence if we but
refer to (2.9) which is valid for these subarcs. We also retain the
sets E; and F{* defined for the original sequence {y;}. Keep in
mind that y; now may not meet |z|=7; or |z| =R, but this is of
no consequence.

Let ¢ be the rectilinear segment from 7e®s to R, and ¢%
the rectilinear segment from 7;e'®**? to R;e*®***? (One or both of
these segments may reduce to a point.)
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Let G be the domain bounded by the radial segments bound-
ing F{”; the two arcs of |z|=R; from these rays to the rays
bounding E;; the segments ¢ and ¢{; and y;, Let L{* be defined
as in (2.3). For these various domains see Fig. 2.

Our procedure is basically the same as in case (i). We use
harmonic measure to estimate f on L{® by the two constant
theorem. Then we estimate the harmonic measure. Let (2, 7, G'*)
be the harmonic measure at 2 of y; relative to G{*. The two con-
stant theorem gives for ze G C F{®, and r}=min|z|, 2E7,,
419)  loglf(D) <oz 7, G~ sy )

A-7p
+ A=z 1; GP)M(S, Fi®).

We now estimate from below w(z, r;, G$*°), in particular for ze L{®.

Carleman’s Gebeitserweiterung gives us the estimate
(4‘ 20) (D(z, TJUQ?)UQE’”, Gg‘a))zw(Z, sjy F§a)),

where s; is the arc of |z| =R, bounding E,. Because of the addi-
tivity of the harmonic measure,
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(4.21) (271, G =0z s, Fi¥)—w(z g7, Gi*) —w(z q7, G).
Suppose there was a positive constant C, such that for z&L{®,
(4' 22) w(z» si» F§a))2CO‘(1—Ri);

and further we could show for z&€ L{® that eventually both

(2, ¢, G¥) <+ Ce1-Rp;

(4.23)
o(z, 4, GI) < “(1 R).

If (4.22) and (4.23) were combined with (4.21) the result would
be that eventually, z& L{®

(4.29) o(z 7, GV = “(1 R).

If we again harken to Lemma A, because {r;} is arc-like, then
eventually (1—7}) <(1—R;)t, t,<<oo, and so (4.19) would become
eventually, on account of (4.24).

(4.25) 10glf(2)|£———( A)+J%(f Fi®), ze L§®,

which is (essentially) the same as in case (i), (4.17) and we could
again conclude that f=0. So our proof will be complete if we
demonstrate (4.22) and (4. 23), and this we do in the following two

lemmas.

Lemma 1. Let {r;} be an arc-like sequence with the situation of
case (ii) of the proof of Theorem 1 prevailing. Then there
exists a positive constant C., depending only on a, such that if
ze L,

w(z, s, F*)>C,(1—-R)).

Proof. First map F{® onto the upper half disk D.: (Jw|<1)
(Imw>0) by w=h;(z), where this function is defined as in (4.5).
As we noted in case (i), k;(L{®) is contained in a set of the form
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%<argw<%n, <%>"/a<lw|<<%>ﬂa; and A,;(s;) is the arc of
|w| =1 symmetric about the imaginary axis subtending an angle at
the origin of % radians. By the conformal invariance of the
harmonic measure, with 4;(s;) =s;

(4. 26) w(z,s;, F{*)=w(h;(2), s;, D.).

The harmonic function w(w, s;, D,) can be continued by reflection
across the real axis to all of D,, and this extended function, which
we denote by wjf(w), is given by the usual representation

wy (re)
Ty T
(4.27) :ig 1-7'dy -1 S 1—-7%dy
2 1+7’ —2rcos(f—¢) 27 J1+72—27cos(6—¢) °
A simple change of variables reduces (4.27) to
%(u_“az’) : y
* (ppi®) 1—7’ 47 cos(b—¢)de
@.28) o) =2 e o ey T T s o))
2(1 “
@ 1) .
For weh;(L{), <§> <|w|<(2> , and so, if we put

-GG
)T

then (4.28) gives the estimate for we h;(L{®),

1(“&)
(4.29) wfw)>K. Scos(ﬁ o) do=2K, sinf sm(? )
Hex
= (%)

Of course, a;>>|R;e"— R,e®**?|>(1—R;)t,, 0<<t,< oo, where this
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last inequality follows from Lemma A and the arc-like property of
{r;}. Gathering all the constants as Ca=—2— Ii“ t,, (4.29) together

V2
with (4.26) give for ze L{®
(4.30) 0(z, r;, F{*)>C,(1-R)),

which is the desired inequality.

Lemma 2. Let o(z, ¢, G¥) and o(z, ¢, G*) be defined as in
case (ii) of the proof of Theorem 1. Then given any number
€>0 there is an integer J=](e¢) such that for all zeL{®, j=>],
o(z, ¢, Gi)<e(1-R));
o(z,¢?, G¥)<e(1—R)).

Proof. We consider first ¢§°. By the Gebeitserweiterung, for ze G§
and D;:|z|<<R, we have

(4.31) 0(z, g, G®)<w(z, 45", Dx,).

The harmonic measure on the right can be found in explicit form.

Let j be fixed. Remembering that ¢{V: »e';, »;<# <R;, and putting
—i6; — 7 /R

w,=f(@ =055 wa= fu(w) = AR and £i(2) = . (F(),

we find, after some elementary calculations,

@ _2 . A-1f(2)) _1-1f:(2)]
(4.32) w(z,qj,DR,)—;arcsm T=fo(2)] gll—fa(z)l ,

where the determination of the square root is 1/ —%=é . It is
easy to find the image of L{® by f;. Observe first that we have

(4.33) e flwi<k};

and if we construe this disk as a non-Euclidean disk of radius

1053 with center O then f,(fi(L{*)) 1is contained in the non-

Euclidean disk about —7#j/R; with the same non-Euclidean radius
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log 3
2
so also does f3(L{®). This means that we can determine a J, so

that for z€ L{® and j>],,

(because f, is a linear map). Since —7;/R;—~—1, as j—oo,

(4.30) 11-£@1=3 .
Then (4.32) becomes for z€ L{® and j >,
@38) o D<ZA-1£@D.

It is straightforward to estimate for z& L{®

(4.36) 1—1f:(2)|<1—|fs(2)]*= (Ri— 2] (Ri— (r)®)

| Rj—e*izr;|*

< 8(R;—r13).
Since {r;} is an arc-like sequence and 7;<7;<R;, Lemma A gives
(4.37) (R;—7;)=1Q—R)t;, t;—0, j—oo.
Thus given €0 choose J.(¢)>>], so that for j > ];,

3e
(4.38) t; gw .

Then (4.31), (4.32), (4.35), (4.36), (4.37) and (4.38) all join
together to reveal that for z€ L{®, j > J.(e),

o(z, g, G)<e(1—R)).

Since the proof with ¢$” replaced by ¢ is identical (with 7] replac-

ing 77) the lemma is proved; and the demonstration of Theorem 1
has been completed.

Condition (4.1) of Theorem 1 cannot be relaxed to allow the
z+1
z2—1
introduction, is bounded in D, and has 1-exponential order {1} on
the PHD sequence {r,} defined by (1.1). As we also noted in the

introduction, given any positive sequence {A,} there is a non-PHD

limit to be positive. The function f(z)=exp( ), given in the

sequence of arcs {r.}, and a bounded function which has 1-exponen-
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tial order {A4.}, on {r.}. So the PHD property cannot be omitted.
There are various corollaries inherent in Theorem 1. We men-

tion a few.

Corollary 1. Suppose r is a boundary path in D and f is
holomorphic in D such that for some finite value w,, and some
positive function A(r), 0<r<<1

—A(r)

(4.39) IOg]f(z)—wolgm» zEy, |z|l=7.
If

o M )

L TR
then f=uw,.

Proof. Let {R,}} be a sequence, O<<R,<R,;;<<1, R,—1, k—oo,
for which

. MR, )
(4. 40) }2}3 AR 0.
It is fairly obvious that for R, sufficiently close to 1 we may con-
struct a sequence of Jordan arcs {y. in D, satisfying, for some
sequence {7},

i) 7:.Cr, all k;
(4.41) i) {3} has associated parameters {(R;, 7:, 0, ay)};
iii) {7} is a PHD sequence.

(For example, choose a sequence {r,}, 0<<7,<<R,, so that

0<£n o(7s, Rk)gfiﬁl— o(7y, Ry)<<oo.

k=>o0

Let y, be a subarc of y contained in the annulus 7,<<|z|<CR, except
for one endpoint on |z|=R, and the other on |z|=7,. This is
possible for large k. If {y,} is a PHD sequence all is well. If
not, this sequence is too wide, i.e., does not satisfy (i) of (2.4)
because the limit superior is +oo. But then we select subarcs i,
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r# S1, with the same endpoint on |z| =R, such that {y#} is now
a PHD sequence.)
By (4.39) for ze7,

log|f(2) —w,| < — A(R.)

-z’

or f—w, has 1-exponential order {A(R,)} on {7,}. For any suitable
a=>0 define F{® relative to {y,;}. We then have

ML, Fi) < MRy, 1.
From (4.40) and the above
M, Fi®) _

lim =———252* 2 =0.

koo A(Ry)

Theorem 1 is now operative so f=uw,.

Corollary 2. Let y be a boundary path in D and suppose for
some €0 there is a positive constant Ac¢ so that for zey

(4.42) log | (2) —ts] <~ bsree
If
(4.43) Tim ) oo
- log 1—7
then f=uw,.

Proof. As usual we suppose (4.43) holds and select a sequence
{R,} so that
T MR, )

lim
Rip—>1 log < 1 >
1 - Rk

As in the proof of Corollary 1 define a sequence of Jordan arcs {y}
satisfying (4.41). Because of (4.42) and the PHD property, for
some 0<f, <<oo, and zE7,,

=K <<oo.

—1 Ag
A—lz) A-lz]

1 —Ae

(4.44) loglf(2) —w,| < 1—]z] A—r)F
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1 —Ae

ST AR

_ _ : I }
So we have f—uw, has 1-exponential order { [A—RILIC on {rg.

In order to satisfy the nypothesis of Theorem 1 we need to calculate
for some suitable F{* that

{im MCf, FE2)(A—R)€

< lim(M) (1—R)€ log

1
1_Rk

k—>oco

log 1R
=0.

Therefore f=w,.

A slight generalization of Koebe’s lemma is possible if we use
the techniques of the proof of Theorem 1, case (ii), together with
Lemma 1.

Definition 5. The sequence {y.} of Jordan arcs in D with asso-
ciated parameters {(R,, 7., 0., a,)} is said to be Koebe sequence
if

i) limr,=1;

n->e0

i) lima,>0.

n-»e0

Given such a Koebe sequence {y,} certainly we can select a
sequence of subarcs {yr,} such that y.Cy,; and such that 7, meets
the line arg z=#, and the line arg z2=6,+a, only at its endpoints,
7. and 7, e’®** respectively. Consequently {y,} is again a Koebe
sequence and we shall assume, in fact, that any Koebe sequence has
this form. Therefore we can let T, be the triangular-like domain
in D bounded by the line segments arg z2=46, and arg z2=6,+a,
and the arc 7,.

Theorem 2. Let f be holomorphic in D and let {r,} be a Koebe
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sequence in D such that for some finite value w,, f—w, hus
0-exponential order {A,} on (). If T, is the domain defined
above and ‘

(4. 46) lim :9},4(2 T g

then f=w,.

Proof. We may assume w,=0 and if (4.46) holds there is a
sequence {#;} such that

(4.47) lim M T g

i—>o0 n;

Let n,=j and suprose{(R,, 7;, 0;, a;)} are the associated parameters
of {y;}. In close connection with (2.3) and assuming that

4 ,-2% , define

3(1,’

(4.48) Lj:%<|z|<1214; 0,4 Y <arg z<<6,+ .

4

The two constant theorem says that for z T;
(4.49) loglf(D <oz 15 T (—AD) + A —0(z 15 TOIM(S, T).
By the Geteitserweiterung for z€ T;
(4.50) 0z, 1, TH>w(z, s;, V),
where V; is
0<<|z|<<R;; 6,<<argz<<0;+a;,
and s; is
lz| =R;; 0;<<argz<<6,+a;.

We now estimate w(z, s;, V), z&L;, for a fixed but arbitrary
j7 by using Lemma 1. In this lemma put a=a; (which is allowed
by (2.2)). With this choice of a, FF{* is V,; and L\ is L,. The
inequality (4.29) of Lemma 1 reproduces here with K,=K,;, and
using (4.26), as
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4.51) oz s, V,)272§—Ka,, zel,. j=1,2 .

Since lim a;>0, then

e

(4.52) lim Ko, = K,>0,

Tes

-G )N

K.,= ( ( >:_> , 7=1,2, .

Hence (4.50), (4.51) and (4.52) reduce (4.49) to

where

(4.53) log|f(2)|<2K.(—A)+H(f, T)) = —A,.[zzco _é”%]
for j sufficiently large and z&L;. But we are now in the situation
of (4.25) (or 4.17). We have essentially the same estimate in
(4.53) as in (4.25); (4.47) is the same as (4.18) and the defini-
tion of L; in (4.48) together with the fact {y;} is a Koebe sequence
allows us to select a “limit domain” of the L,’s which is an open
subset of D.

Of course if f is tounded in D then Theorem 2 is precisely
Koebe’'s lemma. We could replace T, by F{*’ for any ay>a
=lim a;, in the statement of the theorem to obtain a formulation
for the original unaitered Koebe sequence which is in the spirit of

Theorem 1.

5. Similar theorems in the small

The above group of results demand that we have an estimate
on the growth of the maximum modulus of f on fairly large sub-
domains of D, that is, on the sets {F{*} which impinge on |z|=1
on a subarc-at least a subsequence of the {F{®} does. To obtain
generalizations of the theorems in & we need do little more.
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The proof of case (i) of Theorem 1 contains all the necessary
estimates and all that is required is to change our point of view.
We now consider a PHD sequence {y,} where each 7; is contained
in a domain of the form F{® only this time we suppose that y; is
contained in F® with the exception of one endpoint which is at
the origin. Then tilt the F{ so that the vertex (and con-
sequently the 7;’s) approaches C and we have the situation of the
theorems in &. We are not being entirely accurate. Actually we
find it more convenient to use domains bounded by arcs of circles
rather than triangular domains. Let us proceed to the details.

For a complex number @ and real values 0<<R <Too, 0<{0<<2x,
0<<a<<m, first put @ =a+Re”?, then let C, and C, be the distinct
circles of the same radius, each of which meets @ and & and which
meet at ¢ with angle . If L is the perpendicular bisector of the
line segment from a to @’ then F(a, R, 0, «) will denote the domain

bounded by C,, C, and L, and which contains the point @+ %e“’.

We shall be concerned with sequences of such domains {F(a., R,,
0., a,)}. In the sequel we restrict {R,} and {a,} to be constant
sequences which allows somewhat less complicated statements for
the results.

Definition 6. Let {r,} be a sequence of Jordan arcs in D and
{F(a,, R, 0., a)} a sequence of domains as defined above. We say
that {y.} travels in {F(a., R, 0,, a)} if

i) F(a.,, R,06,, o) <D, all n;

ii) For some value ¢=>0
(5.0) r.CF(a,, R, 6,, a—¢), all n,
except for one endpoint which coincides with a,.

Note that {,} may travel in many different sequences {F(a,,
R, 6, a)}.
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Theorem 3. Let {y.} be a PHD sequence in D which travels in
{F(a,, R, 0,, a)=F}. Suppose f is holomorphic in D and f—w,

has = -exponential order {A,} on {r,} for some finite w,. If
[24

(5.1) lim i“f_;qli(ﬂﬂ

Hn->»c0 n

y

then f=w,.

Proof. We suppose (5.1) holds (and again assume w,=0). Extract
a subsequence #;=j such that

@)
(5.2) limL}Fl:&
Let
(5.3) r;=min|z|, z€y, j=1,2, -

With this value 7; we can write

(5.4) loglf(z)|<——Ai__

1-rp=

’ ZE?’;, j:1,2,"‘.

We now choose a point b,&v; so that
(5.5 THDG)<o(e, b)<HDG), j=1,2,.

This is clearly possible else y; is contained in the non-Euclidean disk
about @; of radius %HD(r,-) which implies HD(rj)g%HD(Tj), a
complete absurdity.

We now invoke the two constant theorem to give for z€ F{® —;,
on account of (5.4),

(5.6) loglf(2)|<w(z 7y, F® —m(———“*‘lfl)
A—7)=
+(1-a(z, 1) F© — 1)) HCS, ),

We proceed just as we did in case (i) of the proof of Theorem
1 after we obtained (4.3). The notation at this point is identical
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with case (i). Carry F{® onto D, by
5.7 wi(2) =w(h;(2)),

where w is defined in (4.4) but now

(5.8) h,(z)=e-f<ﬂ-%>(—z:—”f->, d—a,+Re®, j—1,2, .

Gl

If L(a):%<|w|<l; %<argw<?iTa, then set
(5.9) L= (L), j=1,2, .

We must again estimate w(z, y;, Fi® —y,) for z& L{”. Because 7;,—1
eventually L{® C F{® —4;, and we assume this to be the case for all
7

Let yF be the subarc of wj(y;) which connects |w|=|w}(d,)]
to |w|=1 and lies, except for endrpoints, in this annulus. The
Gebietserweiterung produces for we D, —wj(y,), and j=1,2, ---.

(5.100  w(w, wf (&), D.—wifGII=o0(w, rf, De—1r}).
Observe that by our construction of L{®, there is a B, such that
(5.11) lwF(L™) | < B,<<1, all j.

Precisely as in obtaining (4.7) and (4.8) we again obtain by use
of Theorem A, the conformal invariance of the harmonic measure,
and (5.10) and (5.11), that

A—=BDA— wr®) ]9
16

(5.12) w(z y;, F¥ —77)2% arcsin
for ze L{*.

The key estimate (4.10) converts in the present situation to

o
a]

Unlike case (i) the last term in brackets in (5.13) contributes

b,—a,
;

b;—a;

(5.13) 1—|w}(b,)|*>Im [(g) e"'(““%‘)]z‘ [1 -

not at all to the order estimate because p(a;, b;)<K, implies

|b;—a;|—0, j—oo, which in turn implies, because lb,—a}|2§,
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2l 1

b;—(l; 2_
2 ’

G101 |

j sufficiently large.

The first term is crucial. By considering the geometry of F{® (ﬁrst

R—a;
4

transform it by < )e_"("_'(‘;’)>, it is easy to see that, setting

j

. ;i — A —ien=%
]
i %

bi—a; \ -in-%\™* | bi—a;l \" <_¢f7r
(5.15) Im((m;—>e 2 ) 2<—R——> sin - )

|6, —a;] \"* e
2<—R > sin o

Tte last estimate (and value €) is obtained from the definition of
{y;} travelling in {F{®}. According to our definition of b; in (5.5),
Lemma A obtains and so eventually

(5.16) la;—b;| =1~ la;1)ty, t,>0.

2\ R 20
(5.14), (5.15), (5.16), and the property of arcsin

Tl
With Ka'e:l<l"—> sinZ& | (5.12) is now because of (5.13),

1- B}
16

61D (a3, F© )22 (1B )K= D™, 26 L,
T
and j sufficiently large.

Our last step is to notice because {y;} is a PHD sequence
(5.18) 1—|a;|>=A—7)t, t,>0, all j.
And so (5.6) is affected by (5.17) and (5.18) and becomes
2
1 gBl )tlﬂlaKa.E >O ’

T

eventually for z& L{®, after setting Ca,€=<

logf(2) | <—A,Coe+M(f, F®) = _A’[C“-f_ﬂ%m:l.

J
Because of (5.2) lim f(z;) =0, z;€L{™. Since the L{® have a
oo

“limit domain” of similar form in D then f is identically zero on
this limit domain and so must be zero throughout D. This com-
pletes the proof.
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The theorem is reasonably sharp. Consider the function f(z)

1+2 \2
— ¢ (D). and let 5. 1—3gxg1—l (defined in (1.1)) which

is a PHD sequence. If we choose F,= F( 711, ;,7:, %), n=1,
2, -, (i.e. domains symmetric about the real axis of opening %)

then clearly {r.} travels in {F,}. It is easily calculated that

i) M(f, F)=1, all n;

i) logl f(2)| <5

2, all n.

( )2 ’
Hence f has 2-exponential order {1} on the PHD sequence {r,} but

lim —ﬂ(fl’ F)~o.

n->» 00 n

Note that for any ¢>0 f has (2—¢) exponential order {n¢} on {r.},
and since

lim

n->oc0

ML F)
nE

we cannot reduce the -~ -exponential order required in the theorem
o

(or for that matter decrease the angle of opening «).

The PHD property cannot be omitted. If we let anzl—iz,

n=1,2, -, and set B(z, {a,}) equal to the Blaschke product whose
zeroes are at z=a,, n=1,2, -, we can certainly find a sequence of

Jordan arcs {7, —;T, such that f has

2-exponential order {n} on {r,}. Certainly {y,} travels in the

. 1 1 7
domains {F(l— » o T 7)} and

lim

n->o00

ML FD _,
n

We have chosen a=% in the above examples but this is only a con-
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1—z
with a suitable choice of the root, performs the same role in the

general case as does our specific function. Also the Blaschke

venience. For arbitrary 0<<a<x the function f(z) =exp|—— <ﬂ>a_ :l,

product given above has T .exponential order {#} on the sequence
(24

of arcs {r.}, rn: 1—%gzg1—%,n=1, 2, -+, for suitable {k}.
In Theorem 3 the angle « is restricted to lie between O and .
The extreme case a=n is really the contents of Theorem 1 where
F(a,, R,6,,7) becomes F!®. The other extreme case a=0 will be
treated (albeit in a somewhat restricted form) in Theorem 5.
We list several corollaries which arise from Theorem 3 when

we add the requirement that the {y,} approach a single point of C.
For r€C, and 0<<p<<m, let

H(z, B)=F(z, 2, 6., ),
where we choose 6. so that r+2¢% = —¢ that is, H(r, 8) is the
hypercyclic domain at the point r of opening B.
Corollary 3. Let {y.} be a PHD sequence travelling in {F(a, R,
0., a)} such that for some 0<<p<<ln, eventually
(5.19) F(a., R, 6,, ) TH(z, B).

If f is holomorphic in D and, for some finite w,, f—w, has = -
[274

-exponential order {A,} on {y.}, then

(5.20) lim W(lanlyﬁ» H(w.8) _

n—»co n

implies f=uw,.

Proof. The hypothesis (and some elementary geometry) demands
that eventually

(5.21) F*»=F(a., R, 0,,a) S{|z]<|a.|}.

So (5.19), (5.20) and (5.21) combine to give
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tim HLED o,

n->co n

which validates the hypothesis of Theorem 3.

There are several different types of sequences which satisfy
(5.19). Suppose r is a boundary component of H(r, ). Let {y.} be
a PHD sequence with 7,Z7, all n. Consider any hypercyclic domain
H(z, B) containing {r,}, that is, yr<CB8. Then for suitable choice of
R and {6,}

(5.22) i) {r.} travels in {F(a, R, 0., B)}, n=1,2, ;

i) F(a., R, 0,, B) S H(z, B), eventually.
This is a rather obvious geometric fact. In fact y need not be a
circular segment but merely a boundary path at r that is sufficiently
smooth in that it should make the angle +» at r with the radius.

We organize these observations in

Corollary 4. Let {y,} be a PHD sequence lying on a boundary
path v at r=C, and making angle , —%<«[r<%, at t with the
rvadius to . Let f be holomorphic in D and suppose for some B,

2| | <<B<<w, and some finite w,, f—w, has%-exponential order
(A} on {r.}. If

fim Kl £ HE D) o

where |a,| =max|z|, z€7,, n=1,2, -+, then f=w,

Proof. According to the above remarks as summarized in (5.22)
we may choose a=pg in Corollary 3 and the full hypothesis of this
corollary is satisfied.

To obtain a somewhat more pleasing formulation of Corollary 4

we abandon the sequence {r.} and replace it by 7.

Corollary 5. Let y be a boundary path at - which makes an angle
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¥, —n/2<p<<n/2, with the vadius to v at . Suppose for some
holomorphic f, some finite value w,, some 2|4|<<p<<x, and some
positive A(r), 0<r<1,

(5.23) loglf(Z)—wolg—i(r)—,,—, zey, |zl=7.
1-1z])s
then if
3 ‘%(r) fv H(Tvﬁ)) —_
(5.24) Lim A

we have f=w,.

Remark. In particular if y-=0 this represents a direct generaliza-
tion of Theorem 2 of &, as well as an improvement.
Proof. Suppose (5.24) holds and that {R;} is sequence such that

3 ‘—%/Z(Ri’ fv H(T) B)) —
(5.25) le{g AR) =0.

Choose sequence {r;}, 0<<#,<<R;, such that 1<p(7;, R;)<<2 and
let y; be a subarc of y which is contained in 7;<|z|<R; and
satisfies 1< HD(7;)<2, all j. This is certainly possible for large
j. According to (5.23), for zEy;

—A(R)

log| f(2) —wo|< -
(1—1z|)®
so that f—w, has %-exponential order {A(R,)} on the PHD

sequence {r;} and the hypothesis of Corollary 4 is satisfied because
of (5.25).

Corollary 6. Let f be holomorphic in D and suppose for some
re€C and all 0<p<<n

(5. 26) im M [ HEB)
1
1—7r

r->1

log

Let {y,} be a PHD sequence travelling in {F(a,, R, 6,, a)}, with
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a,—t, n—>oo. If for some y>0, and finite w,, f—w, has (1+7)-
exponential order {A} on {y.} then f=w,

Remark. Certainly f satisfies (5.26) if it has finite angular limit

at . Furthermore if log|f(2)|<<— on the radius to r

1
1—1z>™"
there exists a PHD sequence satisfying the above hypothesis (by
the usual arguments) and so this represents a generalization of

Theorem 1 of &.

Remark. Contrast this corollary with Corollary 2 and note that we
can now estimate M(7, f) over a much smaller subset of D then
in Corollary 2 because of our additional restriction on the PHD
sequence {r.}.

Proof. With ¢ given by Definition 6 geometry demands that F

(a,., R,0,, a—%) be eventually contained in some H(z, 8,) (by suitably

choosing R) and further we have az——;— < B, because a,—r,
n—>oco, Because of this situation we may certainly find a sequence

of domains {F(a,, R’, 6., 1)}, Bo< B <<m, so that

i) {r.} travels in {F(a,, R', 6., B1)};

2
iii) eventually F(a., R’, 6., 8:) S H(z, B.).

(5.27) i) Gi<1+—”—;

If »,=min|z|, z€y, then

—1 A -1 A
ML, )< (A—1zD™= (A—z])" < A—Jzphr™e QA—r)"

—1 A
STz Aoy

where the last inequality follows (from (5.27 (ii)). This says that

_A—} on the PHD sequence {r.}.

has - - ; {
f has . exponential order A=y
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Because of (5.27 (i) and (iii)) the hypothesis of Corollary 3 would
be satisfied if we could show

lim M(la.l, f,H(z 8)) (A —7)"=0.

n->oc0

Since {y.} is a PHD sequence (1—7,)<(1—|a,|)t,, 0<<t,<Too, and

on account of this

lim H(|a,|, f, H(z, B))(A—r)"?

n->oo

=lim g%(lanlyfv H(T’BI)) _ n/2 __L—
m 1 (1—la.l) logl_

1 la,|
log 1121

=0.

Corollary 6 can be changed in the same spirit as Corollary 4 was
transformed to produce Corollary 5. Rather than state this as a
further corollary it is profitable to indicate that in Corollary 2 if we
replace the boundary path ; by a boundary path at r&C making

angle yr at 7, [y <%; and transform (4. 43) to lim M, [, I{(T’ £))

r—>1
1—7

log

<Coo all 0<<<<m, then we have the result.

We now take a slightly different tack. We wish to eliminate
the condition in Corollaries 3 and 4 that the boundary path 5
approach r making some angle with the radius. We can accomplish
this if we are willing to abandon both PHD notion and the estimate
on the growth of the maximum modulus in hypercyclic domains. The
proof of this result is a duplicate of the proof of Theorem 3 except
for a few revisions which we discuss. This theorem and its corollary
also represent generalizations of theorems in &.

Theorem 4. Let v be a boundary path at -=C which for some
€>0 lies in the hypercyclic domain H(z, a—¢), 0<<a—e<<a<r.
Let f be holomorphic in D and satisfy for some finite value w,

(5.28) lim (1—|z|)™*log|f(2) —w,| = —oo.

z>7
zEY
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If f is bounded in H(z, a) then f=w,.

Proof. We may as usual assume w,=0. Choose a sequence {r;},
0<r;<r;a.<<l, r;/—1, j—>oo. Let y; be the subboundary path of
y which is contained in #;<{|z|<C1 with one endpoint b; on |z]|=7,.
Then {y;} travels in {H(r, @)}, eventually, and if we set F{®
=H(r,a) we may take up our proof at (5.2) in the proof of
Theorem 3. Let A;=sup(l1—|z|)"*log|f(2)|, zEr;. Necessarily
A;— —oco, and for zey,

A;

log|f(2) lgﬁ—__-l-z—l)—,,,;; .

So f has %-exponential order {—A;} on {r;} and (5. 2) is satisfied.
Clearly (5.3) is unchanged and (5.4) has been obtained above. We
now choose b;E7; to be the endpoint b; already distinguished (of
course (5.5) is not satisfied for this choice of b;). Let L be
defined as in (5.9). Everything proceeds exactly the same includ-
ing (5.14) (since |b;—a;|=|v—b;|/—0) until we reach (5.16)
which depends on (5.5) which we do not have. In this circums-
tance (5.16) changes to

(5.29) la;—b;l =1r—b; =1~ b, ) Ka=(1—7) Ko,

for some K,>0, all j, because y lies in H(r, ). Note that we
do not need (5.18) because of the change in (5.16). All the
estimates are now available to complete the proof and we conclude

f=w,.

Corollary 7. Let f be holomorphic in D and suppose for some
boundary path y approaching =C within some hypercyclic
domain at -,

(5.30) lim (1—|z|)""log|f(2) —w,| = —oo,

zEY

for some finite w,, and some »>0. Then if
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(5.3D) M(r, f, H(z, B)) < Mp<<oo,
all 0<p<<m, we have f=uw,.

Proof. Suppose r< H(z, 8) and choose &, O0<<p<<a<Im, so that

also

(5.32) §<1+77.

Because of (5.32) we can reduce (5.30) to
(5.33) lim (1—|z|)™*log|f(2) —w,| = —co.

zEY

We are now in the situation of Theorem 4 so f=uy.

6. Applications to normal functions

In both Corollary 6 and 7 the condition on the growth of the
maximum modulus is satisfied if f has angular limit at r which in
turn is assured if f is a normal function because f tends to w, on
y. For the sake of completeness and to gather together several
ideas on normal functions which have been presented by various
authors and which are of use to us we present a digest of these
related results. It will also serve to introduce our final applications
of Theorem 3 which occur in Theorems 5 and 6 and which cor-
respond, as we have remarked earlier, to the extremal case a=0.

Definition 7. [10, p. 53]. A function f, meromorphic in D, is
said to be a normal function if the family {f(S(z))}, S(z) any
1-1 conformal map of D onto D, is a normal family in the sense
of Montel.

An equivalent formulation [10, p. 55] is that f is normal in D
if and only if

1) c,
T Fr 1=z P
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Another equivalence was noted by Lappan [8, Theorem 3] who
observed that f is normal in D if and only if for any two sequence
{z.}, {21} in D, p(z,, z.)—0 implies z(f(z,), f(z,))—0, n—>oco.
(Here x(a, b) is the chordal distance on the extended plane W.)

If v is a boundary path approaching r&C within some hyper-
cyclic domain we say 7y approaches r non-tangentially. Noshiro [13],
(and in a more general form Lehto and Virtanen [10, Theorem 2))
proved that if a normal f tends to a value w,= W on a nontangen-
tial boundary path y at r then f(z,)—w, for any sequence {z.}
approaching r provided it approaches r within a hypercyclic domain,
ie. f has angular limit w, at . To obtain this result one need not
assume that the full family {f(S(z))} be normal, but rather that
a subfamily be normal. As is shown in [10, p. 57] it is enough

to assume that

T @A —]z]) oo
(6.0) zel}g;ﬁ) EATOME <L Cp<oo, 0<Cp<m.

We come now to Theorem 5. First set o(A4, B) =inf{p(z, w)},
ze A, weB and A, BCD.

Theorem 5. Let f be meromorphic in D and suppose for some
t&C satisfies (6.0). Let {y.} be a PHD sequence travelling in
{F(a,, R, 0,, a)}, some 0<<a<m, and a,—>t, n—>oo. For some

woe W and some >0 let f—w, (or%

if wozoo> have (1+7)-ex-
ponential ovder {A} on {r.}. If
(6' 1) ﬁ p(Tn» Tn+1)<oo:

then f=uw,.

Remark. This is a relative of Corollary 7. It is clear that in the
hypothesis of Corollary 7 we could replace (5.31) by (6.0) since
(6.0) together with (5.30) implies (5.31). Hence Corollary 7
gives us information on the possible exponential order of a non-
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constant normal holomorphic f on a non-tangential boundary path
at r€C. For an arbitray boundary path y we can infer that for a
normal holomorphic f if

tog| £(2) —w| <A T L 1212, 27 [l <oe.

and A*(7)—+ oo, r—1, then f=w,. To demonstrate this first recall
that Hayman showed [6, p. 204] that M(», )< lc_‘fy. Then
select any PHD sequence {r.}, 1.C7y, #=1,2, -, with associated

parameters {(R,, 7,, 0., a,)}. It is trivial that f—w, has 1-exponen-

. toA*(7,)
tial order TR 0<<ty<<oo, on {7,; andso (4.0) of Theorem

1 is satisfied (for suitable «) which gives the result.
Proof. By remarks made previously we have eventually for some
0<<By<<m, (with e given in definition 6),

©2  Fla, R o, a—5)HG )

If we show that f has angular limit w, at r we can invoke Corollary
6 and so this is our objective. Suppose there is a sequence {z.}
tending to r with

(6.3) z,€ H(z, B1), some 0<<B; <<m;
and
(6.4) lim f(z,) =w,#*w, .

U->00

For any z, let r,, be the arc whose corresponding endpoint e, is
closest to z,, that is

(6.5) 0(z,, a,)<p(2.,a), j=1,2, .
We assert that

(6.6) lim o(a,,, 2,)<<co.

n->o00

Let 5. be chosen 0<CB,<I=, so that eventually
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(6' 7) Z,,E H(T, BZ)

T,,QHCL', 82)
Denote by 2z’ the unique point on the radius to ¢ closest to z in the
hyrerbolic distance. Now choose w,E7., W.S1., #=1,2, -+ s0
that
(6' 8) p(wm ut’n) :p(Tﬂ; Tn+1)y 7’!=1, 2: .

Tken (6.1), (6.7), (6.8) and the PHD progerty collaborate to
produce for some suitable M,>0, that eventually

(6.9) o(a,, ar)<o(a., a.)+o(a,, w,)+p(W,, W0,) + (W11, @ra1)
g M1 .

Now for any 2z, the corresponding z, lies tetween some a;, and
a1, and on account of (6.9) eventually

(6. 10) 0(z., a1,)<<M,

But (6.5), (6.7) and (6.10) imply that for some 0<CM,<Ceo,
eventually

0(z,, a,)<o(z,, 2)+o(z, @) +ola,, a,) <M,
which verifies (6.6).

As is customary, setting ¢=¢,(2) =1z;;””£, consider the family
—a,

{g.(O)=r& ") <0r {%(c;l(c))} if wo=‘oo). By hypothesis this

is a normal family. Now {¢,(y,,)} is a PHD sequence and each
arc has one endpcint at ¢=0. Thus there is a subsequence of
functions {g,,(£)} which converges to the constant function w,,
uniformly on compact subsets of |£]<C1. But (6.6) and the con-
tinuous convergence of {g,} give 1_121 f(z.,) =w, which is incompatible

with (6.4), and so f has angular limit w, at . For any fixed B

we may assume that f (or l) is holomorphic in H(z, ). Since we

f
also have that eventually F <a,,, R, 4,, a—%)gH(r, B) (for a sui-
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table choice of R) we have that f (or l) is holomorphic on these

f

domains for large #n. A careful reading of Theorem 3 (and Theorem

1) shows that we need assume only that f is meromorpkic in D

and holomorphic in the domains F (a,,, R,6,, a—é). Thus we can

indeed invoke Corollary 6 and the proof is complete.

Definition 8. Let f be a continuous function from D into W.
The sequence {z,} is said to be a normal sequence for f if the

Sfamily .
e~/ (£75)

is a normal family within some open disk about £=0. If {g.(®)}

e’ —1 . .
1 then to emphasize this fact

we sometimes write that {z.} is a normal sequence mod r for f.

is a normal family in |&]|<<

There is an equivalent formulation for this notion which is

similar to Lappan’s criteria for a normal function.

Lemma 3. Let f be a meromorphic function from D into W.
A sequence {z.} is a normal sequence for f if and only if x(f(z.),
f(2,))—0 whenever o(z,, z,)—0, n—oo,

&+ 2,
1+¢.2,
normal sequence for f if and only if [¢;|—0 implies x(g.(¢"), £.(0))
—(0, n—oo. But this statement is true if and only if the family

Proof. If we set z,= the lemma now reads: {z,} is a

{g.(&)} is continuously convergent at &=0, and this indeed is a
necessary and sufficient condition that {g,(£)} be normal in some
disk about £=0. (See e.g. [3, p. 173 ff] for details)

There is a kind of uniformity that prevails for sets in D.

Lemma 4. Let SCD. The following propositions are equivalent
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for a meromorphic function f:

A) There exists an r=>0 such that each sequence {z,},
2,8, is a normal sequence mod r for f;

B) Each sequence {z.}, z.€S, is a normal sequence for f.

Proof. We need only prove B implies A. Notice that given ¢>>0
there exists a d(e¢)>>0 such that

(6.11) o(z, w)<<d(e) implies 2(f(2), f(w))<<e, z€S, weD.
Otherwise for some ¢>0 there is a pair {z,, w,}, z,€S, w,€D with
oz, w) <, but 2(f(2), f(w))=e n=1,2 . But Lemma 3
pronounces that {z,} is not a normal sequence contrary to assump-
tion.

If we select any sequence {z,}, z,.ES‘, then we claim that

{e.0 —r(£2) s

, where 6(1/4) is given by

is a normal family in (0, C)<_6(12/4)

letting e=1/4 in (6.11). If a, b are two points in this disk, setting
a,=L,(a), b,=L,(b), then by the triangular inequality both p(a,, z,)
and p(b,, z,) are less than 6(1/4) which in turn implies that

K(f(@), (6)) = (@), £.(B))<,

because of (6.11). But this means that {g,(¢)} is normal in

0(0,8) <ﬂ2/4—), which disk is independent of the sequence {z,}.

Simply put, if every sequence in S is a normal sequence for f
then for some >0 every sequence is a normal sequence mod 7 for
f.

Suppose {z,} is a sequence which is not a normal sequence for
some meromorphic f. This means thatthe re is a subsequence {z,,} of
{z,} for which no subsequence is a normal sequence for f. This
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leads us to phrase.

Definition 9. A sequence {z,} is said to be an M-sequence for f
if no subsequence of {z.} is a normal sequence.

The classical theorem of Montel (in generalized form) enables
us to observe that a M(ontel) sequence for f has the following
property when f is meromorphic in D. Let N(z,7)={C|o(z, &) <<7}.

Every subsequence {z,} of an M-sequence {z,} for a
meromorphic f in D has the property that f assumes
(6.12) every value in W infinitely often with at most two

possible exceptions in U N(z,,, 7), and this is true for
k=1

each choice of »>0.

Given an M-sequence we may certainly choose a subsequence {z,,}
such that

(6.13) 12,1 <] 2., 15 0(24,, 24,,,) =00, k—>0o,

Gavrilov in & defined a P-sequence for f to be a sequence satisfying
(6.12) and (6.13), where (6.13) must hold for the sequence itself.
We see that if a meromorphic f in D possesses an M-sequence it
has a P-sequence.

Continuing our brief résumé Anderson in [1, p. 103] called
r€C a normal point for a meromorphic f in D if every sequence
approaching r non-tangentially is a normal sequence for f. The
standard arguments show that in this case each such sequence must
be a normal sequence mod oo for f and so it is easily seen that <
is a normal point for f if and only if (6.0) holds. (See Tanaka
[16] for related results on normal sequences.)

The following theorem was proved in limited form by Seidel
[15, Theorem 4], more generally in & (Theorem 4), and in its
present form was announced by Gauthier [4]. Since our statement
is somewhat different than Gauthier (we replace his, p-sequences by
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M-sequences) and because our proof is brief we present it here.

Theorem B. Let f be meromorphic in D and tend to w, s W on
a boundary path y. Let P(y,7)=UN(z,7), 0<<r<<oo. Then
H=

there exists a constant A, 0<< A<oo such that

i) if 0<<A<<oo then for all 0<r<<A
limf(z,) =w,, |z.|—1, z,€P(,7),
while the boundary of P(y, A) contains an M-sequence
for f;
ii) if A=0 then y contains an M-sequence for f;
iii) if A=oco then for all 0<<r<<eo,

lim f(z,) =w,, |2,|—1, 2z,€ P (s, 7).

Proof. Suprcse every sequence on y is a normal sequence and
defire A=1ub {»| every sequence on 7 is a normal sequence mod 7
for f}. Then A>0 by Lemma 4. If A=oc, the usual arguments
for normal functions give (iii). If A is finite likewise we have
the first part of (i). If the boundary of P(y, A) contained only
normal sequence for f, because of Lemma 4 (and some obvious
arguments) the definition of A would be compromised. Thus there
is an M-sequerce for f on the boundary of P(y, A). If A=0 then
7 contains an M-sequence for f-again by Lemma 4.

This material enables us to prove the following improvement
of Theorem 3 of &.

Theorem 6. Let f be mervomorphic in D and let y be a boundary

%<m}r<%, with the radius to

at =. Suppose for some w,s W we have

path at -=C making angle », —

i) if w, is finite
_As .
(6.14) lOglf(z>_wolgm, FASH
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i) or if wy=o0

log|f(2) > 4.

-1z’

where A, is a positive constant depending on s and (6.14 (i)) or
(6.14(@i)) holds for each 0<s<Coo. Then either y contains an
M:-sequence or else f=w,.

Z€7r;

Remark. Together with Corollary 1 and Corollary 5 this theorem
completes the analysis of the various s-exponential order (s>1) of
f on non-tangential boundary paths at r which are smooth at =.

Prcof. If y dces nct contain an M-sequence for f Theorem B gives
that f tends to w, within P(y,7), 0<<r<<A, for some 0<<A<Tco.

Thus we can find a neighborhocd V of t such that, in P’ <7~, %)

=P<r, %)ﬂ V, f or 1/f is bounded. Since y makes angle 4 with

the radius we can determine a PHD sequence {r.}, .S7, and values
0<<a<<w, R>0, 0<<6,<2r, such that

1) {y. travels in {F(a,, R, 6,, a)}
i) F(a, R 06, a)C P’(;‘, %) .

If we chocse s>T we can easily show (by wusing the same
(24

inequalities as were used in the proof of Corollary 6) that since f
satisfies (6.14) f—uw, or %,

order {A,} on {r,}, where A,—co, n—>oo. Thus the hypotheses of

T .
as the case may be, has = -exponential
&

Theorem 3 are satisfied and f=w, which completes the proof of this
theorem.

It should ke noted that the requirement that ; make some
angle 4~ at ¢ can ke relaxed in that it is sufficient that, for each
r>0, P(y, ) contains a PHD sequence travelling in domains con-
tained in P(y, 7).

When Corollary 7 is combined with Theorem B we obtain
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Theorem 7. Let f be meromorphic in D and suppose for some
nontangential boundary path y at =C, some w,= W, and some
»>0, we have

i) if wy=o0

lim (1—1z[)*"log|f(2)| =co;

2T
zEY

it) if w, is finite
lim (1—|z[)""log|f(2) —w,| = —oo.
iy

Then either f has an M-sequence which lies on a rectilinear
segment to © or else f=w,.

Proof. As in the proof of Theorem 5, with y, equal to the radius
to 1, let

A=1lub {r| every sequence on y, is a normal sequence mod 7 for
f}. If A=0 Lemma 4 reveals that 7, contains an M-sequence for
f. According to the proof of Theorem B if 0<CA<Ceco there is an
M-sequence for f on the boundary of P(»,, A). It is trivial that
if {z,} is an M-sequence for f then so also is {z,} if p(z,, z.)—0,
n—>oo, So there is an M-sequence on a rectilinear segment. If
A=oco then f has angular limit w, at r and now (5. 31) of Corollary
7 is satisfied. Then all the hypotheses of Corollary 7 are operative
SO f=1w,.

7. Remarks

All the result in sections 4 and 5 are really theorems about
subharmonic functions and are valid under a scheme we present
shortly. We need one definition.

Definition 10. If u is a subharmonic function in D and {r.} is
a sequence of Jordan arcs in D we say u has s-order {A.} on
{r}, 4,20, s=>0, if
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An

M=z

2€E7r,, n=1,2,---.

Relative to the results in Sections 4 and 5 the following substitu-
tion rule is valid.

i) Replace “f” by “u” and ‘“holomorphic” by ‘“‘subharmonic”;

ii) Replace “f—w, has s-exponential order {A4,}” by “u has s-
order {A4,}”, or “log|f(z) —w,|” by “u(z)” depending on
the situation; also make this last change in Definition 3;

iii) Replace “f=w,” by “u=-—o”, (We agree to allow
#=—co as an extremal subharmonic function to accom-
modate the language.)

That this is valid rule can be seen by an analysis of the proofs
of Theorems 1, 2, 3 and 4. The function f intruded twice only
into the proofs of these theorems. Initially to validate the two con-
stant theorem. (See (4. 3) case (i) of Theorem 1; (4. 19), case (ii) of
Theorem 2; (4.44) Theorem 2; (5.6) Theorem 3: The proof of
Theorem 4 employs the same technique as does the proof of Theorem
2.) And finally the fact f was identically w, on a open subset of D
was used to infer f=w, and this weak identity theorem is still true
for subharmonic # vis-a-vis the valve —oco. For details see e.g. [13].
The rest of the proofs, and Lemmata 1 and 2, are only concerned
with estimating certain harmonic measure. Since the corollaries are
only geometric variations of the main theorem they, too, remain
true.

The requirement that a PHD sequence {7} have lim HD(s,)

<Coo can be omitted without affecting the validity of the theorems.
If a function f has some exponential order on this more general
PHD sequence {r.,} we may certainly find a sequence of subarcs
{ri}, r+Sr., all n, which has lim HD(y,)<<oo and on which f has

n-»oco

the same exponential order.

It is pcssible to derive more general theorems than Theorems 1
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and 3 if we abandon entirely the PHD notion and characterize
sequence of arcs by the behavior of their associated parameters
instead. We give now a generalization of Theorem 1 and sketch its
proof which is but a duplicate, with minor changes, of the proof of
Theorem 1. To generalize the PHD notion we need

Definition 11. A sequence of Jordan arcs {r.} in D with as-
sociated parameters {(R,, 7., 0., a.)}, 0<a, <<m, %gr,,<1, is said
to be an s-sequence, 1<_s<Too, if v,—>1, n—oo, and any subsequence

of {r.} contains itself a subsequence {y;} which satisfies either (R)
or (A);

. K; _ei—1
(R) }Lr:;l (1 7’) +K >O K i1’ 0;= p(RJ) 1’1)

l—s K _— 1-s K; .
(A) ljl_g} aA-7) ~K =0, and ljl_)rg a-r) 1+K§>0’

,e*i—1
S T

p(r e;a, v e,(a.+a,.)).

Note that when s=1 (R) is satisfied if {r;} is a radial-like sequence
and (A) is satisfied if {y;} is an arc-like sequence. Lemma A can
be used to verify this. Hence s=1 defines a PHD sequence
(although E_El_HD(rn)ﬁw, but as noted this is not serious.)

Theorem 1. Let u be a subharmonic function in D which has
s-order {A.}, 1<s<<oo, on the s-sequence {r,}. Let F® be
defined as in (2.2). If, setting M(u, F{®)=sup u(z), z€F®, we
have A,—+ o, and

(7.0) lim M 0,

then u= — oo,

Proof. We select a sequence which satisfies (7.0) and then divide
the proof into two cases according as to whether this sequence has
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a subsequence satisfying (R) or (A). These two cases correspond
exactly to cases (i) and (ii) respectively in the proof of Theorem
1. In these cases (and in Lemma 1 and 2) the key changes are
made in accordance with the following observations. Lemma A
says that if we factor |R,—7,|=0—7r)t,=Q—7r)* (A—7r)""t;
=7t and |re®—r,eor | =(A—r)t=1—r) (1—r)",
= (1—7;)t} then the behavior of #; and ¢f is given by conditions (A)
and (R), which behavior mirrors precisely the behavior of the cor-

responding #; (and E) in the proof of Theorem 1. A small change

occurs in the proof of Lemma 1 where we now estimate a;>>|7 e
— 7jei(9j+aj) I .

In Theorem 3 (and the resultant corollaries) the method of
proof does not allow us to consider, say, an arbitrary PHD sequence
approaching = C, even non-tangentially. They must travel in the
appropriate domains. To subject the {r,} to this mode of travel is
to imply that, as viewed from the point ¢, the arcs seem quite thin.

Whether this “thinness” is necessary we do not know.
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