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§1. Introduction

Let M and N be smooth manifolds and f : M—N a smooth map.
We say that f has maximal rank if at each point of M the Jacobian
matrix of f has maximal rank. If dim M <(dim N, then f is an im-
mersion; while if dimM>dim N, f is a submersion. According to
E. Thomas [13], for convenience we call the integer |dim M -—dim N|
codimension of a map M—N. In [13] E. Thomas considers the
following problem. Let g : M— N be a continuous map of codimension
one or two. When is g homotopic to a smooth map of maximal rank?
By exploiting the work of M. Hirsch [6] and A. Phillips [11] he
obtains answers in terms of cohomology invariants of M and N.
However, he supposes that the source manifold M satisfy the follow-
ing condition (*):

ConbrTioN (*):

(i) dimM=X9; if dimM=9, M is open;

(ii) H*(M, Z) has no 2-torsion;

(iii) H®(M, Z) has no 6-torsion.

In the present note we shall remark that the above condition (*)
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can be a little more weakened.

All manifolds in this note will be smooth, paracompact, connected
and without boundary. For any such manifold V we let ¢, denote
the tangent bundle of V.

Througout this note, we let a, denote 1 for 2 even and 2 for

k odd.
We will say that a manifold M satisfies ConbiTion (#) if it has

the following properties:

(a) torsion coefficients of H*(M,Z) are 0 or relatively prime
to (2k—1)'a,, k=1,2, ---.
(b) H*'(M,Z,)=H""*(M,Z,) =0, for k=1,2,---.

We combine Theorem 1.1 and Theorem 1.2 in Thomas [13] with
Theorem 5 in §4 to give the following results. The proofs will
be given in §5. For a manifold M, we shall denote by P¥(M)
e H*(M, Z) the i-th Pontrjagin class of M, and by Wi (M)
e H'(M, Z,) the i-th Stiefel-Whitney class of M, i=0.

Theorem 1. Let M be a manifold satisfying Condition (%)
and let f: M—N be a map of codimension 1.

(a) Suppose that dim M<<dim N. Then f is homotopic to an
immersion if and only if there is a class ues H'(M, Z,) such that

WiM)+ Wit (M)Uu=f* W (N), i=1,2,
and

PY(M)=f*P“(N), i=1,2, -

(b)  Suppose that dim M>dim N and that M is open. Then
f is homotopic to a submersion if and only if there is a class
us H'(M, Z,) such that

WilM)=f*W: (N)+f*W-(N)Uu, i=1,2,
and
PH(M)=f*P*(N), i=1,2, .

There are similar results for codimension 2.
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We will say that a map f: M—N is orientable if f* W*(N)
= W'(M).

Theorem 2. Let M be a manifold satisfying Condition (#)
and let f: M—N be an orientable map of codimension 2.

(a) Suppose that dimM<<dimN. Then f is homotopic to an
immersion if and only if therve is a class ve H*(M,Z) such that

i) W M) +f*W*(N)=v, mod 2,
(i) PH(M)+P(M)YJv*=f*P“(N), i=1,2 --.

(b) Suppose that dimM>dim N and that M is open. Then
f is homotopic to a submersion if and only if there is a class
ve H*X(M, Z) such that

(i) Wr(M)+f*W3iN)=v, mod 2,
(i) P¥(M)=f*P4(N)+f*P"*(N)Urv?, i=1,2, ---.

§2. Examples

We take N to be one of the two projective spaces, real or com-
plex, which we denote respectively by RP" (of dimension #n), CP*
(of dimension 2#). For a complex X we can compute the set [ X, V]
of homotopy classes of maps as follows. If dim X<<#, then [ X, RP"]
=H'(X,Z.); if dimX<2n, then [X,CP'1=H*(X,Z). In each
case the correspondence is given by f— f*:, where f denotes a map
from X into the projective space, and where ¢ denotes generically

the fundamental class of the projective space. Thus, we have
e H'(RP", Z,), =H*(CP", Z)

depending on which of the two projective spaces we are referring to.
We call the cohomology class f*: the degree of the map f. Since
the characteristic classes of the projective spaces are known, we now
can apply Theorems 1 and 2 to determine which degrees can occur
as the degree of an immersion from M into a projective space.

As an example we have the following results giving immersions
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of codimension 1 or 2. We assume below that M is a manifold
satisfying Condition (#) given in §1.
Theorem 3. (a) Let f: M"—>RP"" be an orientable map,

3<m, with degree xe H'(M,Z,). Then f is homotopic to an
immersion if and only if there is a class ve H*(M,Z) such that

(i) Wz(M)+(m2+3)x2£v, mod 2,

Gi) PY(M)+ P *(M)Uv*=0, i=1,2, .-

(B) Let f:M*—CP"' be an orientable map, 2=<q, with
degree ye H*(M,Z). Then f is homotopic to an immersion if
and only if there is a class ve H*(M, Z) such that

(i) W2(M)+qy=v, mod 2,

(ii) P“(M)+P4“4(M)Uvzz<q:.r2)y2‘, i=1,2, -

Theorem 4. (a) Let f: M"—>RP"* be a map, 2<m, with
degree x€ H'(M, Z;). Then f is homotopic to an immersion if
and only if there is a class ue H'(M, Z.) such that

W) + WD Uu=("12)w, mod 2, i=1,2,
and
P¥(M)=0, i=1,2,--.

(B) Let f:M**—CP' be a map, 2<q, with degree
yeH*(M,Z). Then f is homotopic to an immersion if and only
if there is a class ue H'(M, Z.) such that

Wi(M) +u=0,
Wi(M)+ Wi(M)Ju=(q+1)y, mod 2,

and
PY(M) :(Q'i.‘l)yzi’ i=1,2, -

ExampLes. (a) For m=2, quaternion projéctive space QP™ can

not be immersed in RP*"*2
(b) For m=2, QP" can not be immersed in CP*"".
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We know the characteristic classes of @P™ (cf. Hirzebruch [7]),
therefore, these are obtained by Theorem 3.

§3. Lemmas on characteristic classes

We precede the proofs of Theorem 1 and 2 by a classification
theorem.

In this and next sections we shall study the problem of classify-
ing O(n)-bundles over complexes K of a certain kind. It is well
known (Steenrod [12], Part II) that the set of equivalence classes of
O(n)-bundles over K is in one-to-one correspondence with the set
[K, Boy] of homotopy classes of maps from K into the classifying
space By, for othogonal group. Thus we have reduced our geometric
problem to the computation of [K, Bouy].

In order to study [K, Bo.], we need to recall the following
results of Bott [3], [4]:

0, fer ¢ odd, (<2n,

Z, for i even, i<2n,

d) w1 (Buo)=Z,.,

(c) the groups n;(Bow), 2<<i<<n, are as follows;

(@) m(Byw)= {

¢t md8 01 2 3 4 5 6 7
ni(-BO(v)) Z ZZ ZZ 0 Z O 0 0.

We Shall denote by Eo(,,):<E0(u), po(n), BO(")); EU(’I):(EU(N)Y pU(n),
Bus) the universal O(n)-, U(x)-bundle, respectively. We shall denote
by s* the fundamental class of H*(S", Z)=Z.

Lemma 1. Let f:S'— By, be a representative map of a
generator of m(Bowy)=Z, (1<n). Then the Stiefel- Whitney class
W? of the O(n)-bundle f*Eo., induced by f is equal to s* mod 2.

Lemma 2. Let f: S*>By., be a representative map of a
genevator of m(Bow)=Z, (2<<n). Then the Stiefel- Whitney class
W= of the O(n)-bundle f*E,., induced by f is equal to s* mod 2.



398 Masahisa Adachi

Lemma 3. (a) Let g:S*—>By., be a representative map of
a genevator of nw(Bywy)=Z (0<<k<<n). Then the k-th Chern class
C* of the U(n)-bundle g*Eyq, induced by g is equal to — (k—1)s*.
(B) Let f: S*—>By., be a representative map of a generator
of nu(Bowy)=Z (0<<4k<n). Then the k-th Ponirjagin class P* of
the O(n)-bundle f*Eo., induced by f is equal to (—1)*"*(2k—1) ! a,s*.

Proor. (a) Let g: S*7'—U(n) be the characteristic map of the
U(n)-bundle g*Ey, and 7 : U(k)—U(n) be the inclusion map. Then
iy 1 (U(R))=ny-,(U(n)). Therefore, there exists a map g: S**
—U(k) such that the following diagram

s £ Uew)

2\ /i
Uk)

is homotopy commutative, and the homotopy class {g} of g generates
e (U(R))=Z.

Let p: Uk)—U(k)/Uk—1)=8%*" be the natural projection.
Then, as is easily seen, the Chern class C*(g*Eyq,) is equal to
— (degree of pog)s* (cf. Milnor [9]; Steenrod [12], Part II, Theorem
35.12). Now we consider the homotopy exact sequence of the bundle

p:UkR)—-Uk)/Uk—1)=5*":
s (U~ 1) s CU)) P apa (5570

—_ nz&—z(U(k—l))-i ﬂzk—zU(k))&)

Then {g} generates .- (U(k)), therefore, we obtain (degree of pog)
=(k—1)! by the table (a), (b). Thus («) is proved.

(B) Let f:S*'=0(n) be the characteristic map of the O(n)-
bundle f*Ey., and p: O(n)—U(n) be the canonical injection. By
Kervaire [8], we know that the composite map pof : S* = U(n)

represents the class «,s, where ¢ is the generator of . (Un))=Z.
By (&) the Chern class C* of the U(xn)-bundle (o(O(n), U(n))of )* Eucy
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induces by o(O(n), U(n))of is equal to (2k—1)!a,s*, where p(O(n),
U(n)) denotes the canonical map Bouy—>Buwy induced by p: O(n)
—-U(n). Therefore, by the definition of Pontrajagin classes, we
obtain
P*(f*Eoiy) = (—1D*C*((0(0O(m), Um)) of ) * Eviny)
= (=1 (2k—1)!a.s™

Thus the lemma is proved.

Lemma 1 and 2 are easily proved by the same way as the proof
of Lemma 3(a).

Remark. This Lemma gives another proof of Theorem 26.5 in
Borel-Hirzebruch [2] (the case of Sp(#n)-bundles we can easily prove
by this method), and Theorem 5.1 in Peterson [10].

§4. A classification theorem

In this section we shall use the terminologies and notaions in
Wu [15].

We shall consider the classifying space By, as the Grassmann
manifold R,,=0(m+n)/0(m)x0O(n), where m is sufficiently large.
We shall consider two celluar subdivisions K., and K.« of R,
which are dual to each other (cf. Wu [15], Chapitre I, §4).

Theorem 5. Let K be a complex of dimension<n—1, and &,
& be O(n)-bundles over K. Assume that

i) the torsion coefficients of H*(K,Z), k=1,2,---,
are 0 or relatively prime to (2k—1)!a., and

ii) HY'(K,Z,)=HY"*(K,Z,)=0, j=1,2, -
Then & and & are equivalent if and only if

Wi (&) = W'(0,
ey W2(g) = W2(s0),
P(g)=P*(¢), k=1,2, -
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Proor. Assume that &, & satisfy the relations (1). We know
that O(n)-bundles & over K are induced by mappings f; of K into
Bowy, (1=1,2). Let K' be the i-dimensional skeleton of K and I be
the unit interval. It is sufficient to construct a mapping F of K X[
into By, such that

@ F(x,00=fu(x), F(x,1)=fi(x).

We shall construct such a mapping F skeletonwise. Since R,
is arcwise connected, we can define a mapping
F,: (Kxe)U(K°xI)—R,,,,
satisfying (2). By the relation W?'(&) = W'(¢&), there exists a 0-
cochain D° of K such that?
fl* {wi’} 2_fo* {(D;} 2=5D°-
We shall replace F, by a mapping F,: (Kxol)U(K°XI)—R,,
such that
(a) F()/'(Kxal):Fo,
(B) for a O-cell "€K, Fy/(s*xI) and Fy(s"x1I)

from a sphere homotopic to® {D°(s") — L ([wi*]2, Fo(s0 X I))} - S; where
I, denotes the intersection number mod 2 in R, , and S} the spherical
cycle mod 2 representing a generator of m(R,.)=Z,. By Lemma 1
we can deduce from this

L([oi*]., F/'(*x1))=D"(s").
Therefore, for a 1l-cell /'€ K,
L([w]:, F (06" %X 1)) =D"(@s") = (6D") (¢")
=f*{oi}2(6") —fo* {01} (a").

Consequently we have

1) {0"}: denotes a cocycle of W!'(Eom)EH (K, Z:). For the precise definition,
see Wu [15], Chapitre I.

2) [@!*]. denotes a cycle mod 2 in K* which is dual to {e}}:. For the precise
definition, see Wu [15], Chapitre I.
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L([o"]2, FY(8(s*xI)))=0.

By Lemma 1 it follows that
Fy(0(e*x1))=0, for any 1-cell s'€ K.

Therefore, we can extend F, over K'xI. We shall denote it by
F,: (KxoDU(K'xXI)—R,...

Using Lemma 2 and the relation W?*(&)= W?(¢&), we can extend
F, over K?x I by the same way as above:

F.: (KxaDU(K*XI)—>R,,.

Moreover, it can be extended over K*®x I, because n;(R, ,) =0. Thus
we have a mapping F;: (Kxal)U(K*xI)—R,,, satisfying (2).
By P*(&)=P*(,), there exists an integral 3-cochain A°® in K such
that®

S {ws 2} o — fo{ws o} o =0 A%

Suppose that for a 4-cell s*€ K the sphere
F;(0(6*xI))=B*(¢")Ss,

where S; is the spherical cycle representing a generator of =;(R..)
=Z7. Then we can consider B* as an integral 4-cochain of K. Let

us define another integral cochain C* by
C' (") =L ([ws]0, F5(*XI)).

Then for any 4-cell s’ K, by Lemma 3, () we have
Li(o3s]o, F3(8(s* X 1)) =2B"(s").

On the other hand

Iy([ws5]0, F5(@(s* X 1)))
=1,([ws2)e, Fs(06* X 1))+ I,([w52]o, F3(a"x0I))
= (8C%) (6") + (84" (o").

3) {w%,:}o denotes a cocycle in P*(Eowm)EH*(Kw, Z) and [e%).]o is the cycle in
K% which is dual to {o%,2}e.
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Therefore, we have
2B*=5(C*+ A%.

By the assumption we have that B* is cohomologous to 0. By the
classical obstruction theory (Eilenbeg [5]) we can replace the mapping
F; by another mapping

F/: (Kxa)U(K*xI)—R,,,
such that

i) F/(ExeDU(K*XI)=F;,
ii) Fy/(0(s**xI))=0, for any 4-cell #*= K.

Consequently this mapping F; can be extended over K*x I, and we
denote an extended mapping by Fy. Since ns(R,,.) =n(R,.,) =m(R,,.)
=0, we can extend F, over (Kxol)U(K"xI). We shall denote
an extended mapping by F;. By the same method as in dimension
3, we can extend F; to Fy: (Kx0l)U(KsxI)—R, ., using Lemma
3, (8.

We know that #o(R...) = (R, .)=Z, (for n>>10), and we assume
that H°(K, Z,) =H"(K, Z,)=0. Therefore, we can find a mapping
Fy: (KxoDU(K*xI)—R,,, satisfying (2). In virture of the
assumption, the periodicity of 7;(Bow,) and Lemma 3, (8), we can
easily obtain a mapping F: KXI—R, ,, satisfying (2) by repeating
this method.

Remark. By this way we can also prove Peterson’s Theorem
([10]), using Lemma 3, («) (cf. Adachi [1]).

§5. Proof of Theorem 1 and 2

Now we shall prove Theorem 1 and 2.

Recall that 1-plane bundles over a complex X are in 1—1 cor-
respondence with H'(X, Z,). For each class uc H'(X, Z,) let »(u)
denote the 1-plane bundle such that W'(»(#)) =u. Similarly oriented
2-plane bundles over X are in 1—1 correspondence with H*(X, Z).
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For each ve H*(X, Z), let ¢(v) denote the oriented 2-plane bundle
with Euler class X2(¢(v)) =v.

For a bundle ¢ we let (&) denote the stable equivalence class
determined by é&.

Now let M and N be manifolds and f: M—-N a continuous
map of codimension one or two. We consider separately these two

cases.

Case 1: Codimension f=1. By the work of Hirsch [6] and
Phillips [11], E. Thomas [13], [14] gives the following:

Theorem 6. (a) Suppose that dimM=dimN—1. Then f
1" homotopic to an immersion if and only if there is a class
ucs H' (M, Z,) such that (cu@n(w)) =f*(tn).

(b) Suppose that dim M=dim N+1 and that M is open. Then
f is homotopic to a submersion if and only if there is a class
ucs H'(M, Z,) such that (zu)=(f*cxDr)).

Case 2: Codimension f=2, f orientable.

Theorem 7. (a) Suppose that dim M=dim N—2 and that
f: M—N is an orientable map. Then f is homotopic to an im-
mersion if and only if there is a class ve H*(M, Z) such that
(cuDe(@)) =1 *(ow).

(b) Suppose that dim M=dim N+2, that M is open and that
f: M—N is orientable. Then f is homotopic to a submersion if
and only if there is a class ve H*(M,Z) such that (cu)=(f*cy
De@)).

Again E. Thomas [13], [14] shows that the result follows from
Hirsch [6] and Phillips [11].

If a manifold M satisfies Condition (#) in §1, it also satisfies
the hypotheses of Theorem 5. Consequently, Theorem 1 and 2 now
follow by computing the characteristic classes of the bundles in
Theorem 6 and 7 and then applying Theorem 5. Here we need the
fact that for ve H*(X, Z), P*(¢(v)) =v* and that by the assumption
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H*(M,Z) has no 2-torsion for any k=1. We leave the details to
the reader.
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