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Introduction. It is well-known that a non-constant holomorphic
function is an open mapping.” In this paper we consider the converse
under the assumption that the real and imaginary parts of a complex-
valued function are harmonic functions. Our main purpose is to show
the following

Theorem. Let R be a Riemann suvface and let u and v be
real-valued harmonic functions on R.

[I] Assume that RE04:.2 Suppose u is not constant. Then
u+iv is an open mapping on R into the complex plane, if and
only if u has a single-valued conjugate function u* on R and
v=au+pu*+y, where a, § and y are certain real numbers and
B+0.

[II] Assume that Reé04y. Then there exist u and v such
that u+iv is an open mapping on R, the conjugate function u*
of u is single-valued on R and v+au+pu*-+y for any real numbers
a, B and y.

1. Let f be a complex-valued function defined on the disk
D={z; |z|<<1}. We say that f is open at the point z in D, if, for

1) From the viewpoint of openness of a mapping, for exemple, G. T. Whyburn
[4] shows theorems about the theory of functions of one complex variable.

2) Re04n means that R is a Riemann surface on which every bounded analytic
function reduces to a constant (see, for example, [2], p.200).
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any open set V containing z, the image f(V) contains an open set
(with respect to the plane topology) which contains f(2). f is said
to be open on a subset S of D, if it is open at each point of S.
Under these terminologies, we have

Lemma 1. Suppose that f is continuous on D and is open on
a punctured disk D— {0}. Then f is open at 0.

Proof. It is sufficient to show that f(0) is contained in the
interior of the image f(]z|<<7) for any #» such that 0<<r<<l. We
may suppose f(0)&f(lz|l=7/2). Put p=lz1\|’£i,%|f(z) —f(0)] (=0)
and U= {w; 0<<|w—f(0)|<<p}. Since the boundary of f(]z|<r/2)
is a subset of f(O)Uf(lz|=7r/2), it is disjoint with U. On the
other hand, U contains an interior point of f(|z|<r/2). It follows
that U is contained in the interior of f(]z|<7»/2). Q.E.D.

The following lemma will be frequently used in what follows:

Lemma 2. Let u and v be harmonic functions on D. Write

ou ou
. ox oy
f— -|- , =
A P
ox 0y
([ dv+idv* | du+idu* )
and w(z)—< dz / HA ) @)

where u* and v* are harmonic conjugate functions of u and v
on D.

Suppose that u is not constant on D. Then the following
conditions are equivalent:

(a) f is open on D,

(b) the set {zD; J,(2) =0} consists of isolated points,

(¢) w(2) is holomorphic on D and the set {z€ D; Imw(z) =0}
is empty.

Proof. For convenience’ sake we put g=u-+iu* and =v+iv*.

4
Since #=const., w(z)= ¥ (2) is a meromorphic function on D.

¢'(2)
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Observing that
f = Gt o— )
and ]/=llez—!fz!”=%(!¢’+ixb’lz—lco’—i\l/lz),

we have

{zeD; J,(2) =0}
={z€D; ¢'(2) =0} U{zeD; Imw(2) =0 or w(z)=oc}.

We simply denote by E the second part of the right hand side. Since
the set {z€ D; ¢'(2z) =0} consists of isolated points and each connected
component of E is clearly a continuum (cf. the footnote on page 387),
we see that (b) is equivalent to (c¢). Also Lemma 1 implies that
(b) induces (a). It thus remains to prove that (a)—(c), namely,
if w is holomorphic on D and E is not empty, then f is not open
on D. Since E consists of continuums, we can find a point 2z, in E
such that there exists a small disk with center at z, on which ¢ is
one to one. By change of variables:

z—C=¢(2) —¢(20)
and by J,(2)=],(&) ‘%5' 2, we can reduce our assertion as follows:
Let f(z)=x+iv(2), where z=x+iy and let v(2) be a (real-

valued) harmonic function on D. If J,(0)=0, then f is not open
on D.

To prove this, we may suppose that v(0) =0 and that v does not
depend on only zx, ie., Z—ZBEO on D. Note that

J:(2) =—%(2)

and denote by C the connected component containing O of the set

{z; J,(z2)=0}. Since % is a nonconstant harmonic function, C is

an analytic curve® which does not reduce to a point.
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First suppose C contains Y= {{y; —1<<y<<1}. Then v 0 onY.
Smce v=const. on D, we find a point ¢y in Y at which a—q&O If

6 (zy)>0 then there exists a small square with center at iy whose

image by f is contained the first and the third quadrants. Hence f
is not open at 7.

2
gyvz =0 on C. Since
ov* _ ;00 v O _ 00"
g = 9y ) 3y and T 1 3y

we have
Im+’=Re+"’'=0 on C.

We find points z on C at which the slope (=tan#) of the tangent
of C is not equal to oo. Since

¥ (z+h) —4'(2)  |h|e”

7N — e W EER) = (2)
V(@) - 7 AP 7
l hl ei9

we see from lim

h>0

equal to a-(1/e”), (a: a real number). Because of tanf=xoco, we
have thus "/ (2) =0. It follows that =0 on D. Hence v=ax+p

where a and 8 are certain real numbers. This contradicts the fact

that %“_—:0 on D.

=1 that a pure imaginary number "/ (z) is

Finally suppose that C does not contain Y and 6y2 9% 0 on C.

We find a point z,=x,+%y, on C at which 6% #0 and the slope of

0y?
the tangent of C is not equal to oo. It is proved that f is not open
at 2z,. For, if 6 ——(20)>>0, then g(zo)zo implies that there exists

a 0>0 such that

v(%o, Y)=0(Xo, Yo)

for any y which satisfies y,—d<<y<<y,+0. It follows that f maps
a neighborhood of 2z, into the upper part with respect to the following

curve:

3) C may have branch points.
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{f(2); z€C and |z— 2,] <e, where ¢ is a small positive number}.
Q.E.D.

2. We shall now prove the theorem stated in Introduction:

Proof of [I]. If u* is single-valued and v=au+Bu*+r (B#0)
on R, then we see that, on each parametric disk: {z; |2z]<<1}, we
have

d(v+iv*) d(u-l—iu*)) o
( dz dz (2) =a—1p.

It follows from Lemma 2 that f is open on R. Let us prove the

converse under the assumption that RE04,. Suppose that f=u+1iv

is open on R. Consider the following holomorphic differentials on K:

o=du+i(du*) and os=dv+i(dv)*.
Then the quotient ¢/w is a meromorphic function on R, which we
denote by w. This notation is compatible with that in the proof
of Lemma 2. For, on each parametric disk: {z; |z|<<1}, we have

_Z)_(z):w(z):<d(v;—ziv*) d(u;—ziu*))(z).

On account of Lemma 2, we see that w is holomorphic on R and
Imw+#0 at each point in R. It follows that Imw>0 on R or
Imw<<0 on R. Since R=0,;, the function w must be a constant ¢
such that Imc+#0. Hence

v=(Rec)u— (Imc)u* -+
where y is a real number.

Proof of [II]. Since R&04;, there exists a nonconstant holo-
morphic function w on R such that Imw>0 on K. We can choose
a single-valued branch of logw. If we set

u=Re(logw) and wv=Rew,

then we have, on each parametric disk,

d(v+iv®) | du+in*) _
- / 1H5) —qw/dogw) —w.
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Since Imw>0 on R and w is nonconstant, we see from Lemma 2
that f=wu-+iv is open and v=awu+pBu*+r for any real numbers a,
B and 1.

3. By making use of the theorem and Lemma 2 we find some

results:

Corollary 1. Assume that R€0,. Let P be a point in R.
Let u and v be harmonic functions on R— {P} and have Laurent
developments at P as follows:

u(z) =Re 5‘: a,z2" and v(z)=Im ﬁ b, 2"

If f=u+iv is open on R—{P} and a,=b,#0 for some n+0, then
f is holomorphic on R— {P}.

Proof. Since R— {P}<€0,;, Theorem [I] implies that v=au

+pBu*+y. Hence we have, in a neighborhood of P,

—1 _ﬁ a,2"=a _f‘;. anz"—iﬁ_i‘. a2 +c
where ¢ is a complex number. We have thus —ib,= (a—iB)a, for
all ##0. Our assumption implies «=0 and B=1. Consequently,
f=u+iu*+1ir.

Corollary 2. Assume that u and v are harmonic functions
on a punctured disk: D— {0} = {z; 0<<|z|<<1} which have essential
singularities at 0. Let they have Lauvent developments as in
Corollary 1. If f=u-+iv is open on D— {0} and a-,=b_, for suffi-
ciently large n, then f is holomorphic on D— {0}.

Proof. Let a_,=b_, for all n=n, and set

() dvridn LA
du+i(du)* S g, 2 '

Since f is open on D— {0}, Lemma 2 implies that Imw(2)>>0 on
D— {0} or <<0 on D— {0}. Hence 0 is a removable singularity of
w(z). On the other hand, we have
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Z'Z n?:ln ___Z' 2 nbnzn-l

ne=mn V4 n==—ng+1 . w Z)
W(Z):—‘ eao na m0+ :_Z‘i'#
- > -+t > naz? > na,z?
n=ny & n——ng+1 N=—oo

where w;(2) has at most a pole at 0. If we assume that w,(2)=0
on D, then 0 must be an essential singularity of w(z). This is a
contradiction. Hence w;(2)=0, namely, w(z)=—i{. We have thus
v=u*+y on D— {0}, where y is a real number. Q.E.D.

Corollary 3. [I] Assume that R€04,. Suppose that u is a
harmonic function on R whose conjugate is not single-valued.
Then there is no harmonic function v such that f=u-+iv is open
on R.

[II] If R&O04s, we can find a harmonic fnunction u on R
which satisfies the following two conditions:

(a) the conjugate of u has arvbitrarily given periods,
(b) there exists a harmonic function v on R such that u+iv
in open on RP

Proof of [II]. Consider a non-constant holomorphic function w
on R such that Imw(z)+#0 at each point z in R. Write simply

W(z)=——1—, which is also holomorphic on R. It is well-known

w(z)

4) For arbitrary harmonic function # we cannot always find » such that f=u+iv
is open. For instance, suppose R is the punctured disk: {z; 0<<|z|<{1} and put
u(z)=log|z|. Since any harmonic function » on R is of the form:

Re(”gézn z") +clog|z|

where ¢ is a real number, we have

_dvti(dn)* _ (3,
w(z) dutidn* d(g}_ogznz +clogz>/d(logz)

S ML= IEE s PP
n=1 2 n=1
Then the set {zER; Imw(z)=0} is not empty. In fact, if 0 is an essential singu-
larity of w, then by the Picard’s theorem we find z in R such that Imw(z)=0.
Next, if 0 is a pole of w, the image w(|z|<{1) contains a neighborhood of oo (with
respect to the Riemann sphere). Consequently, {zE€R; Imw(2)=0} is not empty.
Finally, if 0 is a regular point of w, then, observing that ¢ is a real number, we
analogously find z in R which satisfies Imw(z) =0. Hence u+:¢v is not open on R.
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that there exists a harmonic function p on R whose conjugate has
arbitrarily given periods. Put r=dp+i(dp)* and denote by {P,}
and m(n) the set of 0-points of holomorphic differential d W and its
order at P, respectively. By Mittag-Lefflerscher Anschmiegungssatz
(3], p. 257) for open Riemann surfaces, there exists a holomorphic
function g on R such that the order of zero of the holomorphic dif-
ferential dg—r at P, is at least m(n). Therefore the quotient

dg—r
aw

is a holomorphic function on R, which we denote by . Since the

equality

Wdiyr=d(Wyr) —pd W=d(Wipr—g) +¢
holds, the holomorphic differential Wd+y» has the periods of . If
we put

u(P)={"Re(Way) and v=Rey

then the conjugate of # has the given periods and f=wu-iv is open
on R. In fact, on each parametric disk, we have

dv+i(dv)* _ dyr
Im dutildn)” Im Wdir Im w+0.
Consequently, # is one of the desired functions. Q.E.D.

Let E be a compact set in the complex plane. It is well-known
that, if E is linear measure zervo, then E is AB-removable (see
[1], p. 121). Using this fact, we shall prove

Corollary 4. If E is linear measure zero, then E is OB-
removable. Namely, let G be a conne cted open set w vich contains
E and suppose that f=u-+iv is a bounded open harmonic mapping
on G—E. Then it is possible to find an extension of f which is
bounded and open harmonic on all of G.

Proof. Since f=u+1iv is open on G— E, Lemma 2 implies that,
dv+i(dv)*

dutildn)*®’ then w(z) is a holomorphic function

if we put w(z)=
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on G-FE and Imw(2)>0 on G—FE or <0 on G—E. We may
suppose Imw(z)>0 on G—E. Using the fact that E is removable
for all AB-functions, we can find an analytic function #(z) on G
which is equal to w(z) on G—E. By maximum principle we have
Im#(2)>0 on G. For simplicity we write #(2) =Re(2) +i Im#(2)
=p(2)+iq(z) on G. We have on G—E,

dv+i(dv)*=(p+ig) (du+i(du)*)
and hence

dv=p(du) —q(du)*.

By virtue of ¢#0 at each point in G, we can write

x_ D _ 1
(du)* = 7 (du) z (dv).

Observing that

_JZ_(du) =d(%u>—ud(%) and %(dv) =d<—(11—v) —vd(—2—>,

we obtain, on G— E,
(du)*=d(%)-—ud(%)+vd(%).

Now, let S be any subregion of G which is bounded by a Jordan
curve in G—E. Let 8 be an arbitrary simple closed analytic curve
in S-—F and denote by Sg the subregion of S which is bounded by
B. For a given ¢>0 a priori, let {8,} be the peripheries, of total
length <Ze, of circles in Sz that enclose the subset of E contained
in Sz. Since B is homologous to a cycle Zv B,, where 8, is a certain

subarc of 8,, we have
Jacar* - Sgﬁ;(d“) = SZVZB.',d (P7)~ua (%) rod()
“Ely i) rea()

On the other hand, by the assumption # and v are bounded on G—E,
and the function p/q and 1/¢ are continuously differentiable on G.
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We have thus, on any arc y on S—E,
| (—w)d(p/@) +vd(1 /DI =ul 1d(p/D |+ |v|1d(1/q) | <M|dz]
where |dz| is the line element of y and
()] (X220 ()" + (LLLD )’
= sup 1/( ox > ( o0y )

:&5-F (

+10) 1 (232 ) + (LD o) )

<o),

Consequently,

o

<M (zgﬁ, |dz| ) <Me.
We let e—0 and hence

Sﬁ(dw *—0,

Moreover, since the region S is simply connected, it follows that
has a single-valued conjugate function #* on S—E, that is, #-+iu*
is an analytic function on S—E. Observing that E is an AB-
removable singularity and # is bounded, we can find an analytic
function u#s+iu¥ on S which is equal to #+iu* on S—E.

Analogously, there exists an analytic function vs+7v¥ on S which
is equal to v+iv* on S—E. Obviously, we see that

dvs+idv¥

du v idu* =Im#w(z)>0 on S.
S S

Im

Hence the mapping #s+:vs is open on S.

Since S is arbitrary Jordan subregion of G, if we set
#=us and d=wvs on each S,

then 4 and 9 cleary define harmonic functions on G. If we consider

f =#+1i0 on G, then the mapping f is the desired extension of f.
Q.E.D.
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