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Introduction

The present paper consists of two parts. In  the first part we shall

show the existence of an Abelian differential with given divisor and
periods o n  any open R iem ann surface. This can be regarded a s  a
generalization o f th e  Gunning-Narasimhan's theorem [ 3 ]  which states

that on  any open Riemann surface there exists a  holomorphic exact

differential without zeros. T h e proof can be achieved by a  slight

modification of their ingenious method. A s a  result we know that for
every Abelian differential w there exists a  holomorphic function f (  * 0 )
such that a  differential f w  possesses the prescribed periods.

In  this connection we shall investigate, in the second part, some

properties of holomorphic exact (or semi-exact) differential of the form

f w , where f  is merely holomorphic and w E T a (Hilbert space of square
integrable differentials). The space T a  has been studied in  detail by

many authors. A  differential f w  is not square integrable in  general
provided that f  is not bounded. Theorem 2  shows a bilinear relation
for our differentials, which reduces, in  special case f------ 1, to our pre-
vious results [ 4 ] ,  [ 5 ] .  Theorem 2  will give rise to our m ain result

(Theorem 3  o r  4 ) ,  which gives an  inform ation  on the growth of
holomorphic (or meromorphic) functions expressed as (o/w, where w E T o

and 9  is exact.
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§ I .  A b e lian  d iffe ren tia ls  w ith  g iven  d iv iso rs  a n d  periods.

1 .  PRELIMINARY. W e shall consider an  arb itrary open Riemann

surface and denote it by R . A Jordan closed curve r  on R  is called  a
dividing curve (cycle ) if r divides R  into tw o disjoint parts. A divid-
ing cycle is homologous to a  sum  o f  oriented boundary contours of a

bordered surface containing it.

A  region D  on R  is called a canonical region if  (1 ) D  is relatively
compact, (2) D and R —  D  have a common boundary which consists of

a  fin ite num ber of analytic l )  d iv id in g  cu rves , (3 )  all components of

R —  D  are non-compact. On R  th e re  ex is ts  a  canonical exhaustion
o f  R  such that R + 1  j R,, (closure o f R„) and every R „ is

a  canonical region. Every component o f R 1 —  R„ has obviously pro-
perties (1), (2).

L e t 27= {A i , B i ; C , ( i ,  j=1 , 2, . ) }  denote a  canonical homology
basis on R , that is, (i) a s  to  the intersection number

A 1 x B 1 -=-60  A i x A i = B i x B i =0,

(ii) C 1 a re  th e  dividing curves, ( i i i )  ev e ry  cycle on  R  is (uniquely)
homologous to a  (fin ite) linear com bination o f c y c le s  in  E .  Since
Ci x A f=-C1 x B 1 = 0 ,  every d ivid ing cycle is hom ologous to a  sum  of

finite number of

L e t  { R , }  b e  a  canonical exhaustion o f  R .  T h en  a  canonical
homology basis H  is  c a lled  a  canonical hom ology  basis w ith respect to
IR ,4  i f  it has further the following properties; 1 ) a l l  A i a n d  B i are

disjoint with ORn ,  2) every  C ; i s  a  boundary contour of some R„,
n = 1

3 ) E l ,  R n form s a  canonical homology basis on R .
Such a  canonical homology basis always exists.

Note th a t the number of C 1 contained in  every component A of

R 1 —  R,, (n=1, 2, • • • ; R  = 0 ) is  le s s  one th an  the number o f  com-
ponents o f O R „in  4.

1 )  In the fo llow ing  it is enough to  be  sm ooth .
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2 .  A  divisor on R  is  a  locally finite zero dimensional chain on
R , i.e . E ini P i where the points P i do  not cluster in R .  According to

a  well-known theorem of Behnke-Stein, for given divisor 6  on R  there

exists a  single-valued meromorphic (o r  holomorphic) function o n  R
whose divisor is exactly equal to 6. It follows that there exists an
Abelian differential on  R  having a  given divisor 60 . Indeed, take an
Abelian differential co(  \   0 )  an d  le t 6  be th e divisor o f co, then p o  is

the required, where f  is a  meromorphic function with divisor 60 - 6 .
Recently R. C. Gunning and R. Narasimhan [31 proved the existence

of a  holomorphic exact differential whose divisor is zero . Now we shall

show a generalization of this result, that is,

THEOREM 1. L e t  R  b e  an y  o p e n  Riemann surface and 6  b e  a
given div isor on  R . T h en  th e re  ex is ts  a  meromorphic (o r  holomorphic)

differential w such  that (1 ) the div isor o f  a) is exactly  6  (2 )  to  has the

prescribed periods along every  cycle' )  o f  t h e  canonical homology basis

w ith respect to  a canonical exhaustion o f R.
First of all we shall prove a  lemma. Take a  canonical exhaustion

{Rn }  a n d  a  canonical homology basis E  with respect to  IR 5 1. For a
moment we fix n  and write E= R 5 _1 , F = R  an d  denote by In, • • •,
{ r„ 1 , ,  r s } the subsets o f H  contained in  E and I" — E respectively.

LEMMA 1. Let w be an A belian dif ferential on P .  For giv en s>0

and complex numbers (i= q+ 1 , ..• , s ), there ex ists a  holomorphic

f unction w (p) on  R  su c h  th at  lw (p)I <s on E and i6= ew( P) u) h as  the

periods;

(1)
 

7
 i = 1 ,  • • • ,  q

7 {
i =  q+1, • • • s •

P R O O F .  We proceed by following the ingenious method due to R.

1) We should choose, of course, the cycles so  as to  avoid  the points with
negative coefficients in a.
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C. Gunning and R. N a r a s im h a n .  One can easily find the complex-valued
continuous functions u i  (i=1 , ••., s) on U 11 satisfying the following pro-
perties; the supports of u i a r e  mutually disjoint and contained in  r i ,
and

u ico*O , q)
76

coeu i-=cti, ufwe u i * O , (j=q +1 , ••• , s ) .

For z = ( z i ,  • - • ,  z s ) E  Cs put

vi(z)-= exp zi (i = 1, • •  s).
76 :7=1

Then for a = (0 , •  •  • , 0 , 1 , •  •  • , 1 )  we have
••■ .....„ .■ ■ •••

q s— q

we u ' =ai for

j u i t o * 0 for 1 < i < q
( a ) =  7

z i
U j (D e U i  0 for q + 1 < i s

7i

( a ) =  //it/Je t =  0 for i * j .

Let ç (z )=(41(z ), 5  V S ( Z ) )  be a  h o lo m o rp h ic  map o f  CS into itself,

then

9(a)--=(S  co, • • • , co, a „ 1 ,  •  •  as )
I I 7g

Oçoand its J a c o b ia n  matrix ( a )  is non-singular. Let L = riU • • • U r  q ,
az

_  1
co

76I
for l i q

76
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then  by th e  Mergelyan-Bishop's theorem [2 ]  [7 ] ,  w e know  that for
each i  (1 <i <q )  th e re  ex is t holomorphic functions w7i on R  which
approximate ui u n ifo rm ly  o n  L  a s  /4-4 00 . F o r  sufficiently large
,a= Cab • • # q )  w e set

iØ(z )=e x p (  zi w v +  
j 1j = q + 1

(i= ••-, s)

0(z)= (01(z), • • •, 0s(z))

80then 0(a)= ço(a) and the Jacobian matrix (a) is non-singular. Let
z

K= E u r,,,v -•-u r s , then again by Mergelyan-Bishop's theorem there
ex ist holomorphic functions w';' on R  such  that u4i -+ ( '4 =  u i on

-= 0 on E) uniformly on K  a s  vi --> co , in  particular, w7i ---> 0 uni-
formly on E . For sufficiently large v = (v q , i , • v s )  w e put

(z)-=- w  exp( E
j=1 j=q+1

0'(z )=(C(z ), • • • ,  0:(z))

then each 0 (z )  is  an  entire function o f z  and converges uniformly to
i (z )  on every compact set in Cs a s  V - 1  0 0

 Thus, for a n y  > 0 and
sufficiently large v  th ere  is  a  p o in t z° =(z?, 4 )  with I z

°
 — a i < 6

such that O'(z °)--= 0(a) = ça(a). Hence for given e > 0, i f  we choose
sufficiently small and put

w(p)=12 z3wV(p)+ Es z3 w?(p)
j=q+1

it fo llo w s th a t w(p)1 < e on E, and  the differential 65= eww satisfies
the condition (1), q.e.d.

Proof o f  Theorem 1. Take an Abelian differential wo  o n  R  whose
divisor is exactly equal to 6 .  W e may suppose that R 1 i s  a  parameter
d is k . L e t ix '  0  and  w1 = ewl =- coo . Suppose w e  have successively
chosen holomorphic functions w, • • • , w„... 1 such that I wk (p)1 <1/2k on
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174_, (k= 2, n — 1) and cok = wo exP(wi + • + wk) have the prescribed
periods ;

= a i for every ri E Efk
7 i

w here E h  is  th e subset o f E  contained in  R k  and are the given
com p lex  num bers. T hen  by L em m a 1  th e re  e x is ts  a  holomorphic

function wn ( p )  o n  R  such that w (p )1  <1/2  o n  R 1  a n d  ton
=  w0 exp (wi + • • • + wn )=  wn _  exp wn satisfies the conditions

con-i=ai,
io n 7y

ri E E' n- 1

ri E  n —  n - i •

Thus w (p )= w k (p ) converges uniformly on every compact set on R ,
k=1

hence w is  holomorphic on R  and it  is  seen  that

w = wo
ew

has the prescribed periods.

C O R O L L A R Y  1. There exists a  holomorphic exact differential without

zeros on R.

C O R O L L A R Y  2. Every Abelian differential w o n  R  can be written

in the form

w --fwo Or W o=  go.)

where f and g =  f  are holomorphic functions without zeros on R  and

wo is  a  differential having the prescribed periods.

§ I I .  A  class of holomorphic differentials.

3 .  The Hilbert space F  of square integrable analytic differentials
has been studied in  d eta il b y  m an y  au th o rs . In  th e  connection with
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the results in  § I  we shall here investigate some properties o f analytic
(exact or semi-exact) differentials on R  which are expressed in the

form

(2) yo =fw, where f E A (R )  and w E Fa

where A (R )  denotes the space o f holomorphic functions on R .  This

turns out to  g ive  us also some informations on the growth o f  holo-

morphic (or meromorphic) functions on R  which can be written as

(3) f = •

Evidently a  differential o f th e  form (2 )  is  n o t  square integrable in
general, and yo E F a  provided that f  is bounded. Functions of the form
(3 ) with yo, W E T a were investigated by L. M yrberg [8 ] in  connection
with the value distribution.

4 .  For our purpose we introduce a  coordinate on R .  T ake a
canonical exhaustion {R n }  o f  R  and m utually disjoint annu li DL

(i =  1, • • •, mn )  each of which includes exactly one contour of O R „. Let
m„

D n =  DL and assume th a t D„ (n = 1, 2, ... ) are disjoint each other.
i =1

W e den o te  b y  vL (resp. v„) the harmonic modulus o f  DL (resp. DO,
namely, for instance, I), is  d e f in ed  b y  27i/d„ w here d„ i s  the flux

S*du n (C n = OA, n R n )  of the harmonic function un o n  D,, which is
c„

= 0 on Cn and = 1 on OA,— C n . It follows that E 1/vL 1/vn . Define

a function u  on U D „  such that
n=1

n - i
u =  E v i + v„ u„ on D„ 1, 2, • • • )

i=1

then u+  iv (y ;  conjugate o f  u ) maps \j D „ conformally onto a  strip
n=i

domain: 0 < u < K =  v.(< 00), 0<v <2n.
n=1

5 .  For any two differentials çoi= fia ); (j=  1, 2 ) w ith j;  E A (R)
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and w, E T a  consider the integral

(4) L (r)= L (r,  i , (0 2)=Em I  vi 11 I v215 0 < r< R 1

n-1
where for r  belonging to the interval /„.= E m=m„ and

i=1 i=1
denote the level curves { p E  R ; u(p)=r}  contained in  M .  Put

(5) L„= n(S 0  1, V2)= min L(r).
r e in

L E M M A  2. L e t  50 .i= f ic o f (j=  1, 2 )  w h e re  L E A (R ) an d  co;  E r a ,
and M L (L )= m a x Ifi(p )1 . I f  the series

per4

(6) n=1 15iSni n
 11

( f 1 ) M ( f 2 )
E  min 

is divergent, then we have

(7) lim-Ln(40 1, (00
=  0.

P R O O F .  Let of  = ct, du+ b, dv, then by Schwarz's inequality

i I V21 = Ibi dv. folf211b21 dv

‹ j _11
1

,
2
(5 1 Ifil 2 dv- 71. 11); 12 di)) 

1/2

\ 1/2
 27r  v

v
inn .1 17, 2M ;;(f.i)(1 lb; I 2 d v )  .

Summing up from i= 1  to in n it follows that

2n 1/2
< L ( r )< 2 7 -cvn max(  M n i ( f l )M

. 
L (f2 )   ) 0 2 ' ' b i  1 2 dv.

o  

1b21 2 c /v )  .

By integrating with respect to r E I n w e  have
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Mi( f f   1- 1-
(L,[27 .cmax n •  " 1 1b212dv)

1 / 2

.11(0111D„11(0211D.
therefore

vLL„min . <27r11(.0111110)211<c°,n=1 i Mgfi)Mn(f 2)

which implies (7).

THEOREM 2. L e t (of = f  co;  ( J ..;  E A (R ), (of  E T ,  j = 1, 2). Suppose
v i  a r e  semi-exact, an d  th e  series (6 ) i s  divergent, then there ex ists a
canonical exhaustion IRO. o f  R and the  canonical homology basis w ith
respect to  {R }, f o r w hich the follow ing ty pe of  bilinear relation holds;

21z!nio. 
[ ( 1 i , B f t 51)1 A 1 , 02)1 =

(V15 4)1? i1r 1  01 = — 1 1 ÇO 2.124

PROOF. By Lemma 2 there is a  sequence Ir n j  of the level curves
of u such that L„,(v i , v z ) —>0(n,—÷00). Let Rn% be a  canonical region
bounded by r „ „  W e  m a y  suppose th a t  Rn% and R „ have the same
canonical homology basis A1, B1, ••• (mod n ).  Now by Green's formula
w e have

sot)n= E soi.2 — Ç
 v i5  ç o z ) j  0 1 v 2

A k ,B k C R %  A k Bk Ak

where 0 1 i s  an integral of v i  defined separately on each contour rk  of

7'n. On account o f th e  semi-exactness of ç ,  0 1  is single-valued and
moreover

lf,,,!Di021.<17Liv ilf ,„1(021.

(8)

where
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Adding with respect to  i  w e have

clusion.

 

CO1V2
7ro,

< L „ „  and hence our con-

  

R E M A R K .  1 )  Theorem 2  is also valid for meromorphic f ,
 provided

-
that the poles of k  fa ll in  R — \) D n .

2 )  I f  co  E E a se  and f i =- 1 , Theorem 2  is  reduced  to  the bilinear
relation in Kobori-Sainouchi [4] and Kusunoki [51

T H E O R E M  3. Suppose th at  a  holomorphic dif ferential ço= fa )(\    0)
i s  e x ac t o n  R ,  w here f  E  A (R ) a n d  co ET a  t h e n  f o r  any  canonical
exhaustion {R„} t h e  series

(9) E  min 
i 1 1 ^ i ^ m a  M n

i ( f  )2

is alw ay s convergent, where M L(f)=  m axlf(p)
pEDi„

Note that Theorem 1  te lls  u s  that for given co there is alw ays such  a
holomorphic exact differential y=f(o.

Theorem 3  i s  a  d irec t consequence of Theorem 2 ,  indeed, i f  the
series ( 9 )  i s  divergent, th e n  b y  ( 8 )  w e  have 1140 H = 0 , hence
w hich is a contradiction.

More generally , w e have the following theorem, which gives also
a sufficient condition that a semi-exact differential ço = p o  (co E T a )  should

belong to  T a .

T H E O R E M  4. L et çO j r 0 ) (\  0) w ith f  E A (R ) and co E T a , for w hich

the series (9) is divergent. L et ço ak , ,1 3 k ço b  k (k =  1, 2, • • •). Suppose2 ,1 ,, 

th at yo i s  sem i-ex act and the series E Im akbk is absolutely  convergent,
k = 1

then ço belongs to T a  an d  actually  w e have

i101 2 = 2  E Im akbk> 0 .
k =1
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In  other w ords, i f  E  1m 0 k b k  is absolutely  conv ergent and non-positive,

then the series (9) must converge.

COROLLARY. I f  v =p o 0  (f E A(R), F 0 ) i s  semi-exact and

has v anishing A i -periods ( i= 1, 2, ...), th en  the series (9) always con-
verges.

The assumption is not vacuous on account of Theorem 1.

6 .  H ere w e shall show some varian ts o f the theorems in the
previous section.
A )  F irst o f all we shall give another evaluation of the integral (4).

-

For f  E A (R ), p u t m„ (f  ) = ni. Tc f (p) I w h e r e  C„ = ; u  (p)=-
n I

=a,onnR„, and A n(f )=--- 11 I f '  2 d v ,  4 ,m in  4.
D, 1 5 i  Sm.

L E M M A  2' Fo r çoi = f ; co;  in  L em m a 2, i f  the series

f i  r• A
n

( 1 0 )
V : 

n =i I y in (f j )-F  v m 0
( f i )2 ) 1 I 2

1=1.2

is  divergent, then limLn(49 i, 492)-=0.

PROOF. For .f = U +  VE A (R ) we evaluate the integral

(0 2 (r)--= Ifi'dv =5 (U 2 + V 2 )dv, r E
c, c,

where C7 =- 1p; u(p)=r1. Let 2(r) be the relatively compact domain

bounded by C,  and put A(r)== 11 If' 12 do", do being the areal element.
.12(r)

Then

2(o(r)ço'(r)=2 °U  + V 
 °V

 dv=4A (r).c, au Ott

Integrating from = E v i to  r( E I n )  we get
1=1
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492(0= 41 A(r)dr+ 0(?)• n-02 .

Choose a constant k so that 1 ,( U — k)dv=0 , an d  se t CT= U— k, then

by Wirtinger's inequality

<( 1 4 ,102 . ( )2d2)=( V
v

n4 ) 1 4 (  8
a

U
v d v ,

so that
c r

LI2 dv <((   6 U  d v .  Hence1): c ,  a v

A(r)-=
c

UdV= c ,
-(7 d V < O c r (772 d v L ( 8

,91
V; ) 2

( ( (   8 U   ) 2 +(  & V   ) 2 ) dv
2vvn: .1c,\\ av / \ av / /

vn  d A (r)
2 v 'd r  •

It follows therefore from (11) that

40(02 <2A n (  f )+ 27r m n ( f  ) 2 .

Thus we know the conclusion by the same way as in  Lemma 2, q.e.d.

Lemma 2' obviously leads the variants corresponding to Theorems
2 , 3  a n d  4 . For instance,

THEOREM 3' I f  ço= Po( 0 )(f E A (R), ET a )  i s  ex act, then for
any  canonical exhaustion the series (9 ) and

are  always convergent.

1/2

It seems us that both series are not comparable in general.
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B )  Here we shall consider a  regu lar exhaustion {R „}  of R  which is,
by definition, a  canonical exhaustion without the condition that each
component o f ORn i s  a  dividing curve. Let R „ i ( i= 1 , . . . ,  m n )  be the

components of R n —  Rn - i  and it n
i (resP. /i n )  be the harmonic modulus of

R„i (resp. R n — R 1 ). T h e n  w ith  a  slight modification we can prove
the theorems corresponding to Theorems 2, 3 and 4. For instance,

THEOREM 3" L et q2= p 0 \    0  (f E A(R), (0 E  T a) he ex act, then for
any  regular ex haustion {R n }  th e  series

V '  and
n=i M ( f )f  ) 2

fin  id  
n=1 fin An( f ) +  I l m ( f ) 2

are always convergent, where .111n(f ) = max If (p)1, A(f)== ,If'1 2 c16peaR n

and  /4 = min /4; (>  fin ).

W e note that in  a  particular case where R  belongs to the class
OG it is known that there exists a regular exhaustion such that f i n > k.
for arbitrarily given sequence {ltn }  of positive numbers.

7 .  Finally we note th at the divergence of a series like (9) gives
an information for the growth of Euler characteristic of our surface R.
Let {R ,} be a  regular exhaustion o f R .  Then as in  sec. 4  w e can

introduce a coordinate w= u + iv on R „ instead of D„.
n=1 n=1

L et yo= fco (f  E A (R ), o  E Ta) b e  a  holomorphic dif ferential o n  R.

I f  yo does not have zeros o n  R  and i f  the series

-  1  
(12) R n ( f ) 2 Aln(f)= max If (p)I

p e R n

is  divergent, then w e have

r ia

x (r) dr C O ,  S= E ti n
n=1

(13)
çs

w here x ( r)  denotes th e  E u le r characteristic of  t h e  relativ ely  compact
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region bounded by  {u (p )= r } .

In  fa c t , b y th e  sam e w ay a s  Lemma 2 w e know  that i f  th e  series
(12) d iv e rg es , then  there ex ists a  sequence {rn}  such that S  and

(14) I go Ho, (n co).
= 711

While, by Gauss-Bonnet's theorem ( c f .  [6 ] Theorem 2) w e h av e  then

Pr

—  x (r )d r + 0 (1 )= 271. S. log 01 dv, ço=çbdw.

T h e  right hand side is less than log (
2 '  r

(TO= log ( 1 f k9 1) , thus27r
(13) follows from (14).
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