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Introduction

The present paper consists of two parts. In the first part we shall
show the existence of an Abelian differential with given divisor and
periods on any open Riemann surface. This can be regarded as a
generalization of the Gunning-Narasimhan’s theorem [3] which states
that on any open Riemann surface there exists a holomorphic exact
differential without zeros. The proof can be achieved by a slight
modification of their ingenious method. As a result we know that for
every Abelian differential w there exists a holomorphic function f(0)
such that a differential fw possesses the prescribed periods.

In this connection we shall investigate, in the second part, some
properties of holomorphic exact (or semi-exact) differential of the form
fo, where f is merely holomorphic and w€ I', (Hilbert space of square
integrable differentials). The space I', has been studied in detail by
many authors. A differential fw is not square integrable in general
provided that f is not bounded. Theorem 2 shows a bilinear relation
for our differentials, which reduces, in special case f=1, to our pre-
vious results [4], [5]. Theorem 2 will give rise to our main result
(Theorem 3 or 4), which gives an information on the growth of
holomorphic (or meromorphic) functions expressed as ¢/w, where we I,

and ¢ is exact.
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§I. Abelian differentials with given divisors and periods.

1. PreLivinary. We shall consider an arbitrary open Riemann
surface and denote it by R. A Jordan closed curve 7 on R is called a
dividing curve (cycle) if y divides R into two disjoint parts. A divid-
ing cycle is homologous to a sum of oriented boundary contours of a
bordered surface containing it.

A region D on R is called a canonical region if (1) D is relatively
compact, (2) D and R—D have a common boundary which consists of
a finite number of analytic? dividing curves, (3) all components of
R—D are non-compact. On R there exists a canonical exhaustion
{Ru}u-1,2,. of R such that R,,; DR, (closure of R,) and every R, is
a canonical region. Every component of R,.;— R, has obviously pro-
perties (1), (2).

Let B={4;, B;; C;, (i, j=1,2, ...)} denote a canonical homology

basis on R, that is, (i) as to the intersection number
A,'XBj:é‘,‘j, A,‘XAjIB;XBj:O,

(ii) C; are the dividing curves, (iii) every cycle on R is (uniquely)
homologous to a (finite) linear combination of cycles in E. Since
C;x A;=C;x B;=0, every dividing cycle is homologous to a sum of
finite number of C,.

Let {R,} be a canonical exhaustion of R. Then a canonical
homology basis F is called a canonical homology basis with respect to
{R,} if it has further the following properties; 1) all 4; and B; are
disjoint with O@Rn, 2) every C; is a boundary contour of some R,
3) ENR, for’;;; a canonical homology basis on R,.

Such a canonical homology basis always exists.

Note that the number of C; contained in every component 4 of
R,.1i— R, (n=1,2,...; Ry=¢) is less one than the number of com-
ponents of OR,, 1N 4.

1) In the following it is enough to be smooth.
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2. A divisor on R is a locally finite zero dimensional chain on
R, i.e. Z"“P" where the points P; do not cluster in R. According to
a well-k;lown theorem of Behnke-Stein, for given divisor ¢ on R there
exists a single-valued meromorphic (or holomorphic) function on R
whose divisor is exactly equal to 0. It follows that there exists an
Abelian differential on R having a given divisor . Indeed, take an
Abelian differential w(=0) and let 0 be the divisor of w, then fo is
the required, where f is a meromorphic function with divisor §o—0.

Recently R.C. Gunning and R. Narasimhan [ 3] proved the existence
of a holomorphic exact differential whose divisor is zero. Now we shall

show a generalization of this result, that is,

TueoreM 1. Let R be any open Riemann surface and 0 be a
given divisor on R. Then there exists a meromorphic (or holomorphic)
differential o such that (1) the divisor of w is exactly 0 (2) w has the
prescribed periods along every cycle® of the canonical howmology basis
with respect to a canonical exhaustion of R.

First of all we shall prove a lemma. Take a canonical exhaustion
{R,} and a canonical homology basis E with respect to {R,}. For a
moment we fix n and write E=R,_;, F=R, and denote by {r1, -, 74},

{rq+15 ---» Ts} the subsets of E contained in £ and F—F respectively.

Lemma 1. Let w be an Abelian differential on F. For given ¢>0
and complex numbers {a;y (i=q+1,-..,s), there exists a holomorphic
Sunction w(p) on R such that |w(p)|<e on E and &=e"Pw has the

periods;

Jg W, i:]_’...,q
W { o=
13 ] ai, i=q+1,..., S.

Proor. We proceed by following the ingenious method due to R.

1) We should choose, of course, the cycles so as to avoid the points with
negative coefficients in d.
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C. Gunning and R. Narasimhan. One can easily find the complex-valued
continuous functions u; (i=1, ..., s) on \Uy; satisfying the following pro-
perties; the supports of u; are mutually disjoint and contained in 7

and

S u,'a)#:O, (L'__]-,: Q)

[ oer=ay | woensco,  (j=g+1,-9).
75 7j
For z=(zy, ---, 2,)€ C° put

¢i(z)=S

S
Wexp ) zjlUj, (i=1, ..., s).
74 j=1

Then for a=(0, ..., 0, 1, ..., 1) we have
N et N——
q s—q
S ) for 1<i<gq
7
pi(a)=
we*i=aq; for g+1<i<s
7
[ woxo  for1<i<yg
. 7i
o=
S u;we“t=0 for g+1<i<s

v
6(0,- :S . wy . .
Bz, (a) Wu, we*'=0 for i3¢j.

Let ¢(z2)=(¢1(2), ---, ¢s(z)) be a holomorphic map of C° into itself,
then

(o(a‘):(S Wy« S Wy Agily +oy as)
71 Tq

0p
0z

and its Jacobian matrix (a) is non-singular. Let L=7;\U---\U7,,
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then by the Mergelyan-Bishop’s theorem [27] [7], we know that for
each i (1 <{i<q) there exist holomorphic functions w4 on R which
approximate u; uniformly on L as y;—oco. For sufficiently large

u=(t1, -+, tty) we set
q s R
0={ ve( Laup+ S zu), (=1, .9
Vs j=1 j=q+1

$()=(P1(2), -+, $:(2))

¢
0z
K=E\U7y,.1\J---\UT,, then again by Mergelyan-Bishop’s theorem there

(a) is non-singular. Let

then ¢(a)=¢(a) and the Jacobian matrix

exist holomorphic functions wj* on R such that wj*—&; (#;=u; on
75,=0 on E) uniformly on K as y;— oo, in particular, wj*—0 uni-

formly on E. For sufficiently large y=(vg,1, ---, ¥s) We put
q s
0= oexp( L mup+ % zwy)
7i j=1 j=q+1

¢v(z)=(¢;(z)! Tty ¢:(z))

then each ¢j(z) is an entire function of z and converges uniformly to
¢#{z) on every compact set in C° as y—>oo. Thus, for any 6 >0 and
sufficiently large v there is a point z°=(z), ..., 29) with |2°—a| <0
such that ¢*(z°)=¢(a)=¢(a). Hence for given ¢>0, if we choose 0

sufficiently small and put
q s
w(p)= 2 zjwi(p)+ 2 z3wi(p)
j=1 J=gq+1

it follows that |w(p)| <e on E, and the differential &=e"w satisfies
the condition (1), q.ed.

Proof of Theorem 1. Take an Abelian differential w, on R whose
divisor is exactly equal to 0. We may suppose that R; is a parameter
disk. Let w;=0 and w;=woe“'=w,. Suppose we have successively

chosen holomorphic functions wy, ---, w,—; such that |wi(p)| <1/2% on
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Ri_1 (k=2,...,n—1) and w,=weexp(w;+ - +w;) have the prescribed
periods;

S =0 for every 1;€ B}
i

where H, is the subset of F contained in R, and {a;} are the given
complex numbers. Then by Lemma 1 there exists a holomorphic
function w,(p) on R such that |w,(p)|<1/2" on R,_; and w,

=woexp(w;+ - +w,)=w,_1expw, satisfies the conditions

JS Wy-1=Cj, TiE En—l

e
7i p— —
242 Tie"-"'n_‘ﬂn—l‘
Thus w(p)= ) wi(p) converges uniformly on every compact set on R,
k=1

hence w is holomorphic on R and it is seen that
w=woe’

has the prescribed periods.

CoroLLARY 1. There exists a holomorphic exact differential without

zeros on R.
CoROLLARY 2. FEvery Abelian differential o on R can be written
in the form ‘
w=fw, or w=gw
where [ and gﬁ 1/f are holomorphic functions without zeros on R and

wo is a differential having the prescribed periods.

§II. A class of holomorphic differentials.

3. The Hilbert space I', of square integrable analytic differentials

has been studied in detail by many authors. In the connection with



Holomorphic differentials on open Riemann surfaces 187

the results in §I we shall here investigate some properties of analytic
(exact or semi-exact) differentials on R which are expressed in the

form
2) p=fo, where f€ A(R) and wel,

where A(R) denotes the space of holomorphic functions on R. This
turns out to give us also some informations on the growth of holo-

morphic (or meromorphic) functions on R which can be written as
(3) f=2.

Evidently a differential of the form (2) is not square integrable in
general, and ¢ €/, provided that f is bounded. Functions of the form
(3) with ¢, w €I, were investigated by L. Myrberg [ 8] in connection

with the value distribution.

4. For our purpose we introduce a coordinate on R. Take a
canonical exhaustion {R,} of R and mutually disjoint annuli D}
(i=1, ..., m,) each of which includes exactly one contour of 0R,. Let
D,,=@D,", and assume that D, (n=1, 2, ...) are disjoint each other.
We :i=elnote by vi(resp. v,) the harmonic modulus of D}(resp. D,),
namely, for instance, v, is defined by 2r/d, where d, is the flux
Scn*du" (C,=0D,N\R,) of the harmonic function u, on D, which is
=0 on C, and =1 on 8D,—C,. It follows that ;1/»,‘;:1/»,,. Define

a function v on \ /D, such that
n=1
n-1
UZZVH'Vnun on D” (IL:],,Z,...)
i=1

then u+iv (v; conjugate of u) maps \J D, conformally onto a strip
n=1

domain: 0<u<R’=f}v,,(goo), 0<v<2r.
n=1

5. For any two differentials ¢;=f;0; (j=1, 2) with f;€ A(R)
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and w; €I, consider the integral
4 L(N=L(r, ¢, ¢2)=_§1$71|¢1|57i1¢2|, 0<r<R

n-1 ”n .
where for r belonging to the interval I,,=|:Z Vi, 24 v;:l, m=m, and 7}
i=1 Q=1

denote the level curves {p€ R; u(p)=r} contained in Di. Put

(5) Ln—_“Ln(qpls ¢2):min L(r)'
r€I,

Lemma 2. Let ¢j=f;w; (j=1,2) where f;€ A(R) and w;€l,,
and M:;(fj):ma_)fo}(P)l. If the series
pED,

= vi
(6) 2B MY

is divergent, then we have

(7 lim L,(¢1, 2)=0.

NB—o0

Proor. Let wj=a;du+b;dv, then by Schwarz’s inequality

Sv;’lqpl'S”/il%l:S'rilfll |b1|dv-57$|fz| |bs| dv

SjQ'Z(g"i 3] Zdv.gv:' | b;] zdv>1/2

<o 2 7 wip({ 1551%aw)

V5 i=1,2

Summing up from i=1 to m, it follows that

L < L(r) < 270, max(w><gz ™ Zdu-SZ" ™ Zdv>”2.

Va

By integrating with respect to r € I, we have
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i i(£.y-1 172
L oo SIMDT (] 1] 10

S“‘DLHD”HQ)ZHD,,

therefore

ZL,,mln <2x||o|lf|wz]] < oo,

Mi(f1 )M'(f )

which implies (7).

Tueorem 2. Let ¢;= fjow; (f;€ A(R), w,€l’,, j=1,2). Suppose
@; are semi-exact, and the series (6) is divergent, then there exists a
canonical exhaustion {R,} of R and the canonical homology basis with
respect to {R,}, for which the following type of bilinear relation holds;

tm[Gnobm, B (], 00,00, 00, 0:)]=0
(8) im (01, ¥$)rs, Ah;‘ICR 4,015,927 ),,91), P2
where

XY, —1 *-_— —_ Do
(¢15 ¢3)rs, lSR, (24 SR:.,%%

By

Proor. By Lemma 2 there is a sequence {r,} of the level curves
of u such that L, (@1, ¢2)—>0(n,—>o0). Let R, be a canonical region
bounded by 7,. We may suppose that R, and R, have the same
canonical homology basis A;, By, --- (mod 7,). Now by Green’s formula

we have

_— 5.)—\ @ &
(01, )rs,= A BZ,‘:CRM(S ¢1§Bk¢2 SB,C(/)ISA,,(DZ) Svn,, e

where @; is an integral of ¢; defined separately on each contour 7}, of

Tn,» On account of the semi-exactness of ¢;, @) is single-valued and

SS%’WHS%VWZI-

moreover

S’/‘ 0 @
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Adding with respect to i we have

S ®,¢2|<L,, and hence our con-
Tny

clusion.

Remark. 1) Theorem 2 is also valid for meromorphic f;, provided
that the poles of f; fall in R—\/D,.

n=1

2) If wjel';e and f;=1, Theorem 2 is reduced to the bilinear
relation in Kobori-Sainouchi [4] and Kusunoki [5].

TueorEM 3.  Suppose that a holomorphic differential ¢=fw(=0)
is exact on R, where f&€ A(R) and w€l , then for any canonical
exhaustion {R,} the series

oy
(9) 2B iy

is always convergent, where Mi(f)=max|f(p)l.
pEDy

Note that Theorem 1 tells us that for given w there is always such a
holomorphic exact differential ¢=fw.

Theorem 3 is a direct consequence of Theorem 2, indeed, if the
series (9) is divergent, then by (8) we have ||¢||=0, hence ¢=0,
which is a contradiction.

More generally, we have the following theorem, which gives alsc
a sufficient condition that a semi-exact differential ¢ = fw (0 €17°,) should

belong to I,.
TueorEM 4. Let ¢=fw(=<0) with f&€ A(R) and w €I 4, for which
the series (9) is divergent. Let SA Y=ay, SB ¢=b, (k=1,2,...). Suppose
k k

that ¢ is semi-exact and the series Y,Imayb, is absolutely convergent,
E=1

then ¢ belongs to I', and actually we have

II¢I|2=2k§IImakl3k>0.
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In other words, if Y, Imayb, is absolutely convergent and non-positive,

then the series (9) must converge.

CoroLLARY. If ¢=fo=<0 (f€A(R), wel,) is semi-exact and
has vanishing A;-periods (i=1, 2, ...), then the series (9) always con-

verges.

The assumption is not vacuous on account of Theorem 1.

6. Here we shall show some variants of the theorems in the
previous section.
A) First of all we shall give another evaluation of the integral (4).
For f € A(R), put m,,(f)z;gzgﬁf(p)l where C,,:{p;u(p)———jgivi}
—OD,NR,, and A f):SSD”| F'12du dv, v¥=min vi.

1<i<mgn

Lemma 2 For gj=f;w; in Lemma 2, if the series

v, v¥

(10) 2 7 Gu AL+ Vi ml

J=1

is divergent, then lim L,(¢1, ¢2)=0.

N—o0

Proor. For f=U+ilV € A(R) we evaluate the integral
o=\ _1/120o={ W+ rhan,  rel,

where C,={p; u(p)=r}. Let 2(r) be the relatively compact domain

bounded by C, and put A(r)=SS | f'|?do, do being the areal element.
8
Then

2<p(r)¢>’(r)=zgc (U%Zf—+ V%Z—) dv=4A4(r).

n—1

Integrating from 7,_1=2,v; to r(€1l,) we get
=1
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(11) FO=4] AC)dr+ oY,

Yu-1

Choose a constant k£ so that S7L(U—k) dv=0, and set U=U—k, then
by Wirtinger’s inequality

s < g (§0) § (5 ) ao=(5) T30 o

so that Scrﬁzdvg< Yn >2$C'(—a£>2dv. Hence

v¥ ov

a0={, var={, vav<(f, 0o, (5-Y )"

<5l () +(5) )

v, dA@)
2y} dr

It follows therefore from (11) that

P(r)? <221 A,(f) 427 ma(f)%

vy
Thus we know the conclusion by the same way as in Lemma 2, q.e.d.

Lemma 2’ obviously leads the variants corresponding to Theorems

2, 3 and 4. For instance,

TueoreM 3’ If ¢=fo(#Z0)(f€ A(R), w€I,) is exact, then for
any canonical exhaustion the series (9) and

i v, vE
n=1 VnA”(f)+ V:: mn(f)z

are always convergent.

It seems us that both series are not comparable in general.
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B) Here we shall consider a regular exhaustion {R,} of R which is,
by definition, a canonical exhaustion without the condition that each
component of OR, is a dividing curve. Let R (i=1, ..., m,) be the
components of R,— R,_; and #} (resp. #,) be the harmonic modulus of
R (resp. R,—R,_1). Then with a slight modification we can prove

the theorems corresponding to Theorems 2, 3 and 4. For instance,

Tueorem 3’ Let ¢=fw==<0 (f€ A(R), w€T,) be exact, then for
any regular exhaustion {R,} the series

u¥ L 11
e Z )+ 1 My ()

are always convergent, where M,(f)=max|f(p)|, 4.(f)= SS _If'|*do
pEOR, Rp—Rp-1

and pf=min pi (> pn).
1

We note that in a particular case where R belongs to the class
O¢ it is known that there exists a regular exhaustion such that x,>k,

for arbitrarily given sequence {k,} of positive numbers.

7. Finally we note that the divergence of a series like (9) gives
an information for the growth of Euler characteristic of our surface R.

Let {R,} be a regular exhaustion of R. Then as in sec. 4 we can
introduce a coordinate w=u+iv on \jR,, instead of UD

Let o=fo (f€ A(R), wel,) be a holomorphic dzﬁ’erentml on R.
If ¢ does not have zeros on R and if the series

(12) Z g =max f(p)

M(f)2 ’

is divergent, then we have
s w
(3) [ xydr=co, s=3 1
n=1

where x(r) denotes the Euler characteristic of the relatively compact
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region bounded by {u(p)=r}.

In fact, by the same way as Lemma 2 we know that if the series

(12) diverges, then there exists a sequence {r,} such that r,— S and

() flel=0, (oo

U=T 0

While, by Gauss-Bonnet’s theorem (cf. [6] Theorem 2) we have then

—S;xo) dr+0(1)=--21?glog| oldv, o=g¢ dw.

The right hand side is less than log(—zln_—glgbldv>=log<—2—1;gl¢)|>, thus
(13) follows from (14).
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