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L e t  k  b e  an  algebraically closed fie ld  o f arbitrary characteristic
and let X  be a complete non-singular irreducible curve defined over k.
A  complete surface S  defined over k  is  a  ruled surface over X  if and

only i f  th e re  is  a  k-morphism X  such  that r 1 (x ) = P I- fo r  all

x E X .  W e kn o w  th at every  ru led  surface is  lo c a lly  trivial, th a t  is,

P 1 -bundle over X  ([31  C o ro lla ry  0 .2 ). O n  the other hand, a n y  P 1 -

bundle over X  i s  the associated projective bundle P (E )  o f  a  vector

bundle E  o f  ra n k  2  o v e r  X  ( [3 1  Introduction). Thus automorphism

groups o f ruled surfaces are closely related to those o f  vector bundles

o f  r a n k  2  o v e r  X .  T h e  purpose o f th e  present article is  to  s tu d y
automorphism groups o f ruled surfaces in th is direction.

Notation and convention. A ll o b jects such  a s  varieties, bundles

e tc . in  the present article are restricted to those defined over k  and

therefore, under a point, we understand a  k-rational p o in t. I  denotes

th e triv ia l lin e  b u n d le  o v e r X .  Aut (E )  denotes th e  automorphism

group o f  a  vector bundle E  o f  ran k  2  o v e r X . (S , X , 7r) denotes a
ruled surface S  over X  w ith  a  canonical m orphism  : S--> X .  Aut (S)
denotes the automorphism group o f  S  and A u tx (S ) denotes the auto-
morphism group o f S  over X , th at is, A u t x ( S ) =  E Aut (S )  r.0 "=0 .
E, L denote sheaves o f germs of regular sections of vector bundles E, L
respectively. O x denotes the structure sheaf o f X  and CI(  denotes the
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sheaf o f  units of x .  Finally, G. denotes the multiplicative group

k — 101 and Ga denotes the additive group k.

The author wishes to thank Professors M. Nagata, H. Matsumura

and T. Oda for valuable conversations with them.

1 .  Let E  be a vector bundle of rank 2 over X .  We know that E
has infinitely many sublinebundles (see DI. Degrees of sublinebundles

of E  are bounded above ([31 Lemma 1.1). A sublinebundle of E  which

has the maximum degree is called a maximal subbundle of E  and M(E)
denotes the degree. We shall begin with a  key lemma which was

proved in [31 (Lemma 1.5 of [3 ]).

Lemma 1 .  I f  L i ,  L 2  are  distinct m ax im al subbundles of  E  and
if  L 1 L 2 , then E  L i  ED L2.

Let L  be a maximal subbundle of E .  If {U i }  jr ,, is  a sufficiently

fine open covering o f X , then we can choose a  system of local co-

ordinates ( u i )  (i -=1, • • •, n ) of E  such that transition matrices of E  arevi
{ (aou cb  11 j1. ) 1 j <  / L I  and L  is defined by v=0 fo r all i ,  where the

 

transition matrices of L  are {(au) I 1 j ,  j

Suppose that E . . - - LEI) L .  Aut (E) DO" induces an automorphism 6i

of the vector bundle El rj over Ui . By virtue of Lemma 1, 6  must fix

L  and Aut (E I u )=G L  (2, F (U 1, x ) ) .  Therefore 61 E Aut (El is de-

fine d by a i  r i ) la i ,  E  (U 1, 01)t 
t h a t  ' s  6 -

( u i ) _ ( a i ( x )  r i(x )1 (
(0  8 i  I r iE  r (u i ,  ex) 1' "  v i8 i ( x ) A v 1 )

in the fibre over x E Ui . There exists a 6E  Aut (E )  such that CI (7 =0". 1
for every i  if and only if the following conditions are satisfied ;

au c 11\/a1 r , cei r ic \ ui nu;

(1)
0 b 11/\0  j9/ 0  g i 0  bi ;

These conditions are equivalent to the following;
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(2) = a i au i n  ui nu i

(3) b11l3;—(3ibu

(4) ri+cii,3;=ai cif bu

B y  the equations (2 ) ,  (3 )  w e have th a t ai = • • • =CYn -= C ; • • •19 1 = 19n

= i9 E T (X, 6 1 ) = G . .  Thus (4 ) can be rewritten as the following;

(4') au ri—ribn= (a —  8)

Now, assume t h a t  a  3  and put a— 13= 6 .  Let us observe the
coordinate transformation;

—ri/o\(u;\

1 )  z ) ;
1< i < n.

(u -T h en , th e  transition  matrices b y  th e  new  coord inates 
vi 

are

i(c041
T hus w e get that E__--fLED I /  for some sub-

bundle L ' of E .  Therefore, if E  is  indecomposable, then a -= 3, whence
(4 ') reduces to the following ;

(4") ri=(bi.1 au)

Since {(bi1)}  define the linebundle (detE) 0L - ', {r,} is a regular section
of (detE) - 1 0  L 2 . Consequently, 6  determines a E G . and a regular sec-
tion {n} of (detE) - 1 0  L 2 . Conversely, suppose that a E Gm  and a regu-

lar section {n} o f (detE) - 1 0  L 2 are g iv e n . Then, {(g ral )11 i n}

define an automorphism of E .  Hence we have

(a) I f  E  is  indecomposable, then

sAut (E) = r )a aEG„t

sE T (X , (detE )-10L2)}'

where L  is  a maximal subbundle of E.



92 M asaki M aruyam a

N ext, assume th a t E L E B L ' ( L * L ') ,  th a t is, c i ;  -=- 0 in ( 1 ) .  In

th is case, (4') reduces also to (4"), whence 6  determines a, 8 E G . and

s E F(X , (detE) - 1 ® L 2 ) . Conversely, any a, 8 E G . and a regular section

Irdf  of (detE) - 1 0  L 2 define an automorphism of E ; { ( a  rik < i < n0  3 — 1.
Thus we get

(13) If L El) L I  (deg L  deg L ', th a t  is, L  i s  a maximal sub-

bundle of E , see [31 ) and if L L', then

Aut (E ) ={ ( a  s )
0  3

a, j3 E G,

s E F (X , (detE) - 1 0 1 . 2)} .

Finally,

i ( ao i; Oa i i )

( 1 )  assert

assume that E L L,  then  the transition matrices are

1 n } and 6  is defined by ( a
l, . The conditions as

that cei = • • • =an = a ,  31= •  •  •  =812= 3, 7. = • • • = ni=r, d1= • ..
= 6  and a, 49, r, E k, /9y 0. Thus w e have

(c) If E LE L , then Aut (E) (2, k).

W e introduced in [31 the invariant N (E) =deg E—  2M (E) and

proved the following lemma ([3 1 Corollary 1.6).

Lemma 2. ( 1 )  I f  o n e  o f  th e  f o llow ing  conditions (i), ( i i )  is

satisf ied, then E has only  one maximal subbundle.

(i) N (E) <O.

(ii) N ( E ) =0  and E  is indecomposable.

(2) I f  E  L i e L 2 ,  deg L i -= deg L2 ( i .e .  N (E) = 0) and if Li -  L z ,
then E  has only  tw o maximal subbundles and they  are L 1 and  L2.

In  th e  c a s e  (a ), (b ) above, if (X , (det E) - 1  L 2) 0 ,  then

— N (E)= deg ((detE) - 1 0 L 2) O. T herefo re , b y v irtue  of Lemma 2, L

is uniquely determined by E.

Now, let us define connected linear groups Hr , H ; ( r  i s  a non-
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negative integer) which are subgroups of (r+ 1)-pie product of GL (2, k).

= E GL (2, k) X • • • X GL (2, k)
1( 7a  "  a\0 a l ' 0 a" 7 a \\0 atr

aEGml

t1E k

 

H ='
{ (( a 0 di33) ' (\a0 t; ) ' t ; ) )

E GL (2, k) x • • x GL (2, k)
a, ,8 E G„,}

ti E k

Then, we have the following theorem.

Theorem 1 .  Let E be a  v ector bundle of  rank  2 ov er a complete

non-singular irreducible curv e X . Then,

(1) I f  N (E )>  0, then  Aut (E) Zt--
(2) I f  N ( E )  0 , E  i s  indecomposable, and i f  L  i s  the unique

maximal subbundle of E, then Aut(E)24 f i r , where r = dim T(X, (detE) - 1

0  L 2 ).

(3) If  E L1EJL2, deg L i  d e g  L 2 a n d  i f  L1 - L2, then Aut (E)

w here r= d im  (X , (det E) - 1 0  Li).
(4) If  E L L ,  then Aut (E ) G L  (2, k).

P ro o f .  (1) Since N(E) >  0  implies that E  i s  indecomposable,

th is  is  a  c a s e  o f  (a). M o reo ve r , r  (X , (detE) - 1 0  L 2 ) = 0  because

deg ((det E) - 1 0 L 2) =  —  N (E )<  O. T h u s  (a ) shows our assertion.

( 2 )  Th is  is  th e other case  o f (a). F i x  a  basis (s i , s r)  of

F(X, (det L 2 ).  Consider the map g: Aut (E)-- >.Hr

g . S \  7/a l a  t i ) ,t r

a ) a )  \O a) V ) a ))

where s= t i s i + "• +Gs,. It is obvious that g  is a  group isomorphism.

I f  Ir n  is  a  representative o f  s i  b y  0 ) E T(U J ,  (det E) - 1 0 L 2)  for

some sufficiently fine open covering 1U11 o f X .  Then, since the action

( ( a0  a0) , (a0  at i ) , . . . , (ao atr ) )o f 6= on the fibre over x E U1 is  C ( u i )vj
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t (r)(x) u •-=(a
o

0 ) ( 4 +  ••• r
r H r acts rationally on E.a v;

(3) This is the case (b). The proof is similar to that of (2).

(4) is the case (c). q.e.d.

Remark 1 .  H r (o r  H y')  has a normal subgroup K r  (o r, K;, respec-

tively) which is isomorphic to r-pie product o f Ga ,  and 1-/r/Kr=Gm,
G,,,. H y ,  H ; are, therefore, solvable groups.

2 .  Every ruled surface (S ,,X , 7r) is isomorphic to (P (E), X , r')
for some vector bundle E  o f rank 2  over X ; in other words there is

an isomorphism v : S  P  ( E )  such that r -= r'-ço . The relation between

A u t(E ) and A u tx (P (E )) is  g iven  b y  the following lemma which is

found in [11.

Lemma 3 .  L e t  E  h e  a  v ector bundle ov er a  connected locally
noetherian preschem e Y .  P u t  4= { N IN  is  isom orph ism  c lass o f  a
linebundle N  su c h  th at E E O N } .  (Clearly , d i s  a group .) T hen ,
w e hav e an ex act sequence;

e---*Aut (E)/ T(Y, 4 ) ,A u t y (p(E))--). e.

In  our case, since Y = X  and E  is  a  vector bundle o f  rank 2,

T (Y , OP)=T(X, CI)=G m  and 4  is  a subgroup of the 2-torsion part of

the Jacobian variety o f X  because E.--- 1-4 E O N  asserts N 2-= /. There-

fore, d  is a finite group.

Lemma 4 .  (1 ) I f  N ( E ) < 0  a n d  E - '" L E I)(L O N ) f o r any  line-
bundle N  such that N 2 I , th e n  4 =  {e}.

(2) I f  E ED (L. N ), N 2 I  a n d  i f  N ; I ,  then 4 Z/2Z.

(3) I f L  L ,  t h e n  4 =  l e l .

P ro o f .  (1) By virtue o f Lemma 2  either E  has only one maxi-

mal subbundle L ,  or E  has just two maximal subbundles L , L ' and
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L L 'O N  f o r  a n y  linebundle N  su ch  th a t N 2 / .  T ak e  N 'E  4,
N ' ; I ,  then L O N ' i s  sublinebundle o f  E O N ', w hence it is that of
E , which never occurs in  any case.

(2) Maximal subbundles of E  a re  just L , L O N .  Hence if  /7' E 4,

I ,  then L O N '= L O N ,  that is, / V .  Conversely, ç: vi

(

v i  )  is  a n  isomorphism o f  E  to E O N =  ( L  N ) e L .  Thus 4 = {/, N}u i

= Z/2Z.
(3) N ote  that every m axim al subbundle o f  E  is isomorphic to L.

T h e n , th e  proof is th e  same a s  above. q.e.d.

A  sec tion  s  o f  P (E )  is called  a  m in im a l se c tio n  o f  P (E ) if  and
only i f  s  has th e  smallest self-intersection number (s, s) among sections
o f  P ( E ) .  We proved i n  [ 3 ]  (Proposition 1.9, Theorem 1.16) t h e  fol-
lowing lemma.

Lemma 5 .  ( 1 )  N (E) depends only  o n  P ( E ) .  S o  N (P(E ))  (or
N ( S ) )  h as  m e an in g . N ( P ( E ) )  is  the self -intersection num ber o f  a
m inim al section of  P(E).

(2) T he set of  m inim al sections of  P(E) is  in bijective correspond-
ence w ith that of  m ax im al subbundles of  E.

(3) I f  L  is  a m ax im al subbundle of  E , then the div iser c lass on
X  defined by the linebundle (detE)OL - 2  is  e q u al to  th at  o f  g (s•s) f or
th e  m in im al s e c t io n  s  o f  P (E )  w hich corresponds t o  L  b y  th e  cor-
respondence in  (2).

L e t u s  define a  linear group H;. which is a  subgroup o f  (r+1)-ple
product o f  GL (2, k )  a n d  isomorphic to H,.' /G„,.

r( (a  0\ (a ti \ (c e tr \\

0 1„
I IJ ' I

0 1) , )  )

}t i ,  - - ,  t r  E k
•

aEG.

  

Theorem 2 .  L et (S , X , 7 -c) be a  ruled surface.
( 1 )  I f  N ( S ) >O , th e n  A u tx (S )  -= 4 , w h e re  4  is  a  f inite group



96 M asaki M aruyam a

def ined i n  L em m a 3  f o r  a  v e c to r b u n d le  E  s u c h  th at  (S , X , 7r)
(P(E ) , X, n'').

(2) I f  N (S ) S  is indecom posablen and i f  s  i s  the unique

minimal section of S , th e n  A u tx ( S )  GaX •••X  G a ,  r - p i e  product of  Ga,
w here r= dim — 7r (s., )1 + 1.

(3) I f  S  is decom posable and i f  S  d o e s  n o t  carry tw o minimal

sections s ,  s ' such  that ir (s .  )= yr (s t •s'), t h e n  Autx(S)„';'-__'-H "., where
r=dim — 7r(s. )  + 1  for a minimal section s  of S.

(4) I f  S  is decom posable, Sr/=P 1 x  X  a n d  if S  h as  tw o  distinct

minimal sections s , s ' such that ir(s. ) = i -c(s'.1) (accordingly , N (S )=0),

then Autx(S):--_- {(c
o
l a  E Gm } J  {( Ci

i  (33 ) 8 E G„}
2 )

.

(5) I f  S  P 1 x  X  then A u tx (S ) PGL  (1, k ).

P ro o f .  (1 ), (3 ), (5 ) are obvious by virtue o f  Theorem 1  and

Lemma 3, 4, 5. If one notes that H r /G m ' Ga .)< ••• xGa ,  (2) is obvious

b y  the same reason. I f  (S , X, ir) (P (E ) , X, 7 r ') ,  in the case (4), E
is a  vector bundle o f type (3 ) o f Theorem 1 and type (2) o f Lemma

4. Hence Aut (E)/G,,, H i r .  but since (det E) -  L
2 = iv (notation is

the same as in Lemma 4, (2)), we have that r = O. The generator of

the group d  corresponds to  the isomorphism ç : ( u 1 ) (v i )
•T husv, u i  

Autx(S )=  {(g  e
l
l
) } 10) } =  i (g  °I ) } ég)}. q.e.d.

Remark 2 .  We showed in  [3 ]  that (1) — (5) exhaust all cases

which may occur and anyone o f  (1) — (5) can occur if th e  genus of

1) S  is indecomposable (or, decomposable) i f  E  is indecomposable (or, decom-
posable, respectively) for some vector bundle E  such that (S ,  X, 7r). -_-- ( P ( E ) ,  X, 7;').
This property is independent o f choice o f  E . S  is decomposable if  an d  only if  S
has two sections which do not meet to each other.

2) The multiplication of this group is defined by
( 0  A  (a OE\  (0  fic r - 1 ( a  0 \  ( 0  A  _  ( 0  a A

.  ° • O 1) — 0 J ' 1 ). 1 0 ) 0
( 0  A  (0 — cr\ ( a  0\ ( a '  0 \  _  (n a ' 0 \

( ) )\ 1  0  ) 1 )  „ I ;)  1 ) . .0 1 ) — 1 )
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X > 1 . I f  X  is fixed, the set of isomorphism classes of P 1 -bundles over

X  of type (4), (5 ) of Theorem 2 is  in bijective correspondence with the

2-torsion part of the Jacobian variety o f X  ([3 1 Corollary 1.12).

Remark 3 .  Let s be a minimal section of S and let L(tr(s•s)) be

a linebundle defined by a  divisor o f th e  divisor class 7-c(s. s). Let {U1}

b e  a  sufficiently fine open covering o f  X  and let {0) } , •.., Iryl be

representatives o f a  basis o f F(X , L(7r(s.. )) - 1 ). Take the minimal sec-
tion s as the infinity section of S and let z1 be the coordinate of fibres

over U,.

(i) In the case (2) of Theorem 2, if  6=(t1, •••, t r ) E Ga x • • • xGa,
the action of 6  on  the fibre over x E U1 i s  6(z1) = z1 + t 1 y (i n (x )+  • • -

+  tr r ) ( x ) .
ao 01 ) , (ao(ii) In the case (3), the action of 6 = ( (

1 • • • ' ( a0 ) )
is 6(z1)=az1+t1 0)(x) + • • • + t r r(I)(x).

a 0(iii) In  the case (4 ), the action of 0 _ ( )  is  6(z1) =az i  and1

the action of 6 /
4

° 13
)  is  6'(z1)=3/z1.

1  0

az i+  3 (iv) In the case (5), the action of 6 = (  8
)  is  6(z,) —

r r z, + 6 •

Remark 4 .  L e t  V  b e  a  varie ty  of dimention 2 defined over k.
If th e  linear part of the connected component of the un it element of

Aut ( V ) h as  a positive dimention, th en  V  is  birationally isomorphic to
a  ruled surface CC).

3 .  A  relation between A u tx (S ) and Aut (S )  is  g iven  by the fol-

lowing lemma.

Lemma 6 .  Let (S, X , 7r) be  a  ruled su rfa ce . If X  i s  irrational,

o r i f  X  is rational and S P 1 x P l ,  then  there  is  an exact sequence;

Autx(S) —>Aut (S)4Aut (X).
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P ro o f. I f X  is  irrational, a fibring o f S  over X  is unique because

a  rational curve passing through a  poin t o f S  is  unique. In rational

case, the uniqueness o f  a  fibring is  due to  Proposition 5 o f  [ 7 ] .  In

either case, therefore, an automorphism 6  o f S  sends a fibre to a fibre.

Thus we have an automorphism d  o f  X  such that r• 6 = d • r and we

know that Autx(S ) is a normal subgroup o f Aut ( S ) .  It is clear that

d  =e if and only i f  6E Autx(S). q . e . d .

Remark 5 .  F ix  a section s  o f  S  and an isomorphism i: X ---> s
such that r•i = i d x .  Let us define a  subfunctor .31a/ 31x  of the functor

d a i s : (Sch/k) r e d-= (reduced algebraic schemes/k) --)- (G r) (D I .  For

any TE  (Sch/k)rcd put satae'5 1x ( T ) = { 6 E  .safuis( T) I (r x ic/T).0.(i X id -)
= i d x  .T1 and  define F (T )( 6 ) -= (n. x i dr). 0' • (i x i d T). Then , noting

that k  is an algebraically closed field, we have an exact sequence;

e—*.91,,, s i x(T)—> sf.e. s (T )- 51 .,x (T ).

Since this sequence is functorial, Autx(S) in  Theorem 2  represents

d a i s i x  and s in ce  da is , d a ix  are representable (see [51 ), the se-

quence in Lemma 6 is an exact sequence as algebraic groups.

Corollary. Let Bir (k (V )) b e  the group o f birational transforma-

tions of a v ariety  V  defined over k  onto itself . I f  (S , X, r )  is  a ruled

surface, then dim Bir (k (S ))= 00.

P r o o f .  L e t  n  b e  a n  arbitrary positive in teger. T h ere  is  a

decomposable ruled surface S ' with N (S I ) = — n which is birationally

isomorphic to S .  Then, by virtue o f Theorem 2  and the above Remark,

dim Aut(Y) __ n — g+ 2, where g  is  the genus o f  X .  Thus we have

that dim Bir (k(S)) = 00 . q . e . d .

Lemma 7 .  I f  th e  genus o f X____.2, o r  i f  X  i s  an elliptic curve

and S  is decomposable w ith N ( S )  *  0 ,  th en  Im  f  of the sequence of

L em m a 6  is  a f inite group
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P ro o f. It is w ell know n that if th e  genus of 2, Aut (X ) is

a  finite group. Thus there is nothing to prove in the former case. In

the latter case, S has only one minimal section s and the divisor class

— 7r(s•s) h as  positive degree ([31 Theorem  1. 11). Since an automor-

phism o f Im f  fixes the divisor class, Tm f  is  a  finite group. q.e.d.

From  now on, w e deno te the connected component of the unit

elem ent o f  Aut ( S )  (Autx ( S )  o r  Aut (X ) )  by A ut
°
( S )  ( A u q ( S )  or

Aut
°
(X ) , respectively).

Coro llary . U n d e r th e  c o n d itio n s  o f  L em m a 7 ,  w e  h av e  that
Aut3f (S)Z„ Aut

°
( S ) .  I n  particu lar i f  N (S )> 0  an d  i f  th e  genus of

X  then A u t(S ) i s  a  f inite group.

If th e  genus o f  X  is  g rea te r  th an  1 , th en  th e re  is  an indecom-
posable ruled surface S  such that dim l —7

-
c(s.. ) I + 1 = 0 for the minimal

section s o f S. On the other hand, if X  is  a  general curve w ith the

gen u s g rea te r th an  2 , th en  w e  have that Aut (X) = {e} .  Thus there
is  a  ruled surface S  with Aut (S )

Now, the remaining parts are the following cases ;

(i) S x X

(ii) X  is rational and S* P1
W O X  is e llip tic and S  is indecomposable.

(iv) X  is  e llip tic , S  is decomposable with N (S )= 0  and S ; P l

X X .

It is obvious that if S P 1 x X  and X  is  irrational, then Aut (S )
Autx(S) x  Aut (X) =PGL (1) x Aut ( X ) .  If x  ,  then Aut(S)

= IPGL (1) x PGL (1)} { V(PG L (1) x  PGL (1)))- where V  i s  th e inter-
changing transformation ( s e e  [7 ]  p. 354(4)).

Lemma 8 .  (1) In  the cases (ii) o r ( i i i)  above, f  in  L em m a 6  is
surjective.

(2) In the case (iv ) above, le t s be a  m inim al section of  S  and let
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7r(s. )--=x 0 —  x, where x o i s  the unit element o f  X  as an  abelian  variety.
T hen , w e  h av e  that Tm  f =  Aut

°
 (X)U (y 9 0 Aut° (X))U (491 Aut

°
 (X))U • • •

(4  Aut V ) ) ,  w h e re
 9 0 ( o r ,  i s  an  autom orphism  of  X

as an abelian variety  such that (oo(y )=—  y  f o r all y E  X  (or, çoi(x )=x ,

1 respectively).

P ro o f. (1 )  I f  6 E Aut ( X ) ,  th e  morphism : (z , x)— >(z, 6(x)),
(z , x )E 11 1  x  X  i s  a n  automorphism o f  P 1 x X .  Suppose that X  is

rational and N (S )= —n (n  >  0 ). Then, there is a  bundle isomorphism

S e =elmp,,...,p”.(11 1  x X ) for some points Pi, • • • , P, E Px X (P E P 1 )
([31 Proposition 4.1 and Theorem 4.3). Put S, = (P i x X )

for CE  Aut (X ) .  Then, T  = (p i),...,a (po• er• p ) a  biregular

map o f S e t o  S .  On the other hand, since S ,  is isomorphic to S e as

P 1 -bundle ( [3 ]  Theorem 4.3), there is an isomorphism h,: Se such

that= 7 r  e h ,  where 7r  7r e a r e  canonical projections of So., S e t o

X  respectively. Thus we have an automorphism he.•  T  o f Se . Then,

-= g- l •hre • Te.• g is an automorphism o f S  such that the image by f  is

C. In  th e  case  (iii), the same proof as above is available by virtue of

Theorem 4.8 o f [3 ].

(2) S = Se = elmpo,p(P i  x X ) as P 1 -bundle, where r0(P0)= xo, n o (P)

-=x  (7r o : canonical projection of 13 1  x  X  to  X )  Po E (0) x X, PE (ca)

X X ([21 Proposition 4.1). Furthermore, S e S e =e1m 5.( p0) ,5 ( p ) (13 1  x X )

as P 1 -bundle if and  only i f  6  transforms th e  divisor class 7r(s. )  to

either itself o r  --2r(s. ). On the other hand, it is easy to see that

E Aut (X )  satisfies the above condition if and only if  6  is contained

in the group defined in our lemma. Thus the same proof as in (1) is
also valid in this case. q.e.d.

Remark 6 .  The proof o f Lemma 8  shows that i f  S  is decom-

posable and S  P 1 x X ,  then 0E Aut ( X )  is  in  th e  im age  o f f  in

Lemma 6 if and only if  6  transforms the divisor class 7r(s•s) to either

itself o r  —7r(s. ) ,  where s  is a minimal section of S.
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L em m a 9 .  Let (S , X, rc) be a ruled surface over an elliptic curve

X  and let S  be isom orphic to P i  ( [ 3 1 p. 66).

(1) S  carrie s  n o  lin ear p en c il L  w h ich  satis f ie s  the following

conditions;

a) A  generic m em ber is a non-singular elliptic curve.

b) I f  LD D, D , th e n  (D, D')-=0

c) I f  L  D ,  then  (D, 1) =2 , w here 1 is a f ibre  o f  S.

(2) Suppose th at the characteristic of k  is  no t equal to  2. Then,

S  carries a linear pencil L  w hich satisf ies the conditions (a ) , (b ) above

and the following;

(c') I f  L  D ,  then  (D , 1) = 4 ,  w here 1 is a f ibre of S.

P r o o f .  Let r 0 b e  the canonical projection of 5 0 = P 1 x X  to X.
W e know  ( [3 1 Theorem  4 .8 )  that Pi = elm o i , Q 2 , Q 3 (S 0 ),  where

go(Qi) r  WO (i j )  and Q E R i x X RI (1* j), R i E P 1). Note

that a  linear system on Pi such that a generic member of it does not

contain a fibre of P 1 is  the proper transform by elmo i ,Q,,Q, of a linear

system on S .  On the other hand, a positive divisor D  o n  So is

linearly equivalent to m (Px  X ) - F E n o
- 1 (x i)  fo r  some points xi, • • •,i =1

E X .  If D (P x X ) - E E 7tc7 1( X i )  on So, then we obtain that p a (D)

=In+ (m, — 1)(n —  1 )  and (D, D)== n  ( [ 3 1  Remark 3.3). Thus we

know that a  linear pencil L  on P i  satisfying conditions (a ), (b )  must
3m

be the proper transform by elmQ i , 422 , Q 3 o f  ( I 2m (P X X) + E 2r (71(x i) Ii =1
-  m Q i - mQ2 - mQ3) 3)

(1 ) (N aga ta ) Since the points r0(21), no(Q z), r 4 3 )  are arbitrary

i f  r  71.0(0 )  ( i  j ) ,  we may assume that 2 r (Q i) 2 n  (Q  2 ) •  The
condition (c ) asserts that the number n t above is equal to 1. It is easy

to see that dim ( 2 (P x  X )d -  r o- i(x 1)1 — 2Q2 — Q3)= 8 — 3 - 3 - 1
i=1

= 1  ( [3 1 Lemma 3.1). Assume that every member o f M = ( I 2 (P  x X )

3 )  L e t  M b e  a  linear system and P , b e  points. Then M—E P t denotes the
linear system which consists o f members o f M going through all P .
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3+ E 7r(1, 1 (xi)1 — 2Q1 — 2Q2 — Q3)  goes doubly through the point Q 3 .  Put

/Q3 =- no
- 1 (rco (Q3 ) )  and consider Tr 1,, M .  Since dim ( Tri ,, M )= 0 , we have

that dim (M -1 0 3 ) =0 ,  w hence there is a  member E+ /0 3 o f  M —I Q ,.
H en ce w e o b ta in  th at 27r0(Qi) 2 7 r0 (Q 2 )  because E .(R ix  X )= 2 ■21,
E .(R 2 X X)= 2Q 2 . T h is  contradicts to th e  assum ption that 271* o(Q1)

3 3
2 no(Q3). Thus we have that dim (12(P x X )+ E n.0 ( x i)  I —  E  2 0 ) 0 ,

1=1 1=1
which proves our assertion.

( 2 )  Since the characteristic o f  k  is  n o t eq u a l to  2 ,  the group
of 2-torsion part of the Jacobian variety o f  X  is isomorphic to Z/2Z

Z /2 Z , w hence w e m ay assume th a t  27r0(Q1)"- 2 7ro(Q3)'"- 2 7co(Q3).
Consider the linear system Li = I 2 (Px X) + 2 7-cV(7r0 0 ) 1  on So- (L1 —

2Q1 — 2Q2) (or, (Li —
 2 Q1 —  2Q3)) contains 2 (R 1 x X ) - 1- 27t6.1 (7ro(Q0) and

2(R 2 x X )+ 27r -0-1 (ro(Q1)) (or, 2(R 1 x X )+ 2 7 q 1 ( 7 r o ( Q 3 ) )  a n d  2 (R 3 x X)
+ 27q 1 (7lo W O), respectively). Thus we have that dim (L i — 2Qi — 2Q2)

1  (or, dim (L 1 - 20. —  2 Q 3 )  1 , respectively), whence (L i  —  2Q1 —  2Q2
— Q3) (or, (L1 —  2Q1 —  2Q3 — Q2)) contains a  divisor D i (or, D 2 ,  respec-
tively). T h ere fo re , th e  linear system  M = (14(P x X) d- 6 7r-0-1 (1ro(Q1))1
— 4Q1 — 4Q2 — 4Q3) contains 2D1+ 2 7r6-1 (7ro(Q3)) and 2D2 + 2 7rV(ro(Q3)).
Hence we obtain that dim M > 1. Now, w e can  see  eas ily  th a t the

proper transform of M  by elmo i , Q2 , Q3 satisfies the conditions (a), (b), (c').

q.e.d.

Remark 7 .  B y  "reduction" we know th et Lemma 9  (2 )  is true
even if th e  characteristic o f k  is equal to  2. On the other hand, M.

N agata proved directly that Lemma 9  (2 )  is  true  if th e  characteristic
o f  k  is  eq u a l to  2  and X  h as non-trivial 2-torsion part (i.e . Hasse

invariant of X* 0).

Calculation o f  H °
(S, es) (es =.e,m(S2's , Cs )) fo r  a  ruled surface

(S , X, 7t) over an elliptic curve defined over C has been done by T.

Suwa D O ]. S im ilar argument is  applicable to the case where k  is  an

arbitrary algebraic closed field and X  is rational or elliptic.

Our results are the following ;
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Let p  be the characteristic of k and 0 is an element of H
°
(S, Os ).

A ) T h e  c a se  where N(S)= — n <0; There is  an open covering

X= U0 U U  such that 7r-1(u0).---, p l  u o , 7 r -1 (u ) r rr -  X u  an d  that

z0 = u n z ,  where z 0 (o r , z )  is coordinate of fibres over U 0 (o r , U , re-

spectively) and where u is a local parameter at a point QE U.

i) X: rational.

a) If p  n, then

00=g  a z o  -Faz o   a z o  + D ,

where gE ..T(nQ), DE H °(X, e x )  and where a  is an arbitrary constant.

b) If p n ,  then

0g +(a—  nah)z o a z o  + D ,
uzo

where g, D , a are the same as in  (a), h  is a  fixed non-constant function

in  .29(Q ) and where a is uniquely determined by D  and h.

ii) X : elliptic.

a) If p in , then

0— g
0  

 + az 0 +D ,
uzou z o

where gE 2 (nQ ), DE H °(X ,  x )  and where a  is an arbitrary constant.

b) If /3-1-77, then

0— g -F azo   n  ,
o oz.°

where g, a are  the same as in  (a ) above.

B )  If S P 1 xX, then

0— a0 -Faizo -Fazzg +D ,
uz0 UZ0 U z0

where a 0 , a l, az are arbitrary constants and where DE H
°
(X , ex ) .

C )  T h e  ca se  where X  is elliptic, N (S )-= 0  a n d  where S  is
decomposable;

There is an  open  covering X = Uo U UI.0 U2 such that 7r-1(U1)
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x (i =0, 1 ,2 ) a n d  th a t z0 =- ui zi, zo = u2- 1 z2, w here z i  i s  a
coordinate of fibres over U , and  u1 (o r, u2 )  is  a local parameter at a
point Qi  E U1 ( o r ,  Q2 E U2, respectively) an d  w here Qi -X-Q2. Then,
there are Do E H

°
(X , ex ), go E .-r(Qi +Q2) and

a 
o= (ago+b )zo a z o  + apo,

where a, b are arbitrary constants.

D ) T h e  case  where X  is e llip tic , N (S )= 0  and where S  is in-
decomposable, that is , S_Z P o (se e  [ 3 ]  p. 66).

There is an open covering X = Uo U U and zo — z +  1 (Notation is

the same as in (A)).

a) If p * 2 ,  then there a re  Do E H°
(X, e x ) , go E 2 ' (2 P ) and

a00=(ag o +b)  o z o  -Fax()   o z o  a D o ,

where a , b are arbitrary constants and a  is uniquely determined by g o .

b) If p = 2, then

0 = ((b + a 2 )go+ a i) n

o  
 +azo +a24 n  + b D o ,

uzo (no (no

where go , D o , a  a re  th e  same a s  in  (a ) above and where ai, a2, b are
arbitrary constants.

E )  The case where X  is  e llip tic  an d  N(S)= 1, that is

( [ 3 1 P. 6 6 );
There is an open covering X = Uo U  U  and z o = u z  u- 1  (notation

is  the same as in (A)).

a )  I f  p * 2 ,  then  there a r e  g o E Y(2Q), Do E H
°
(X , ex)

0 =3a g o

a  
 +az, 

 a
 + a z o

2 +2aDo,
UZ0 CrZo UZ0

where a  is  an  arbitrary constant and where a  is uniquely determined

by go and a.
h )  I f  p = 2, then

and
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8  0=ago +cezo + azg
oz . °d Z o OZ0

where g o, a , a  a r e  th e  same a s  in  (a) above.

Sumalizing the above results, we have the following.

Lemma 10. Let (S , X , 7-r)  b e  a  ru le d  surface, s  b e  the sheaf
o f germ s o f regular sections of the tangent bundle  o f  S  and let p  be
the characteristic of k.

1 )  Let X  be rational and let N(S)= —  n.

a) I f  n*-0 , then

dimH
°
(S, e 5 ) = n+5

b) I f  a = 0  (i.e . S -ItP l x X ), then

dim H°(S, 0 )= 6 .

2 )  Let X  be elliptic and let N(S)= —  n.

c) I f  p -  n , and n 0, — 1, then

dimH
°
(S, e s )= n + 1 .

d) I f  p in  and n z 0, — 1, then

dim H °( S ,  s ) = n + 2

e) I f  n =0 , S  is decomposable and if S ;  P l x  X , then

dim H °(S, 05) = 2.

f) I f  n=0, S  i s  indecomposable (i.e. S 2 --'_-P0) and if p * 2 ,  then

dimH °(S , s ) .= 2.

g) I f  n =0 , S  i s  indecomposable and if  p= 2, then

dim H°
(S, es)=3.

h) I f  n= — 1 (i.e . S  P O ,  t h e n

dimH
°
(S, es)=1.

i) I f P1 x X , then

dimH
°
(S , 00=4
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C o r o lla r y .  1 )  A u t (S )  i n  L em m a 6  (C f . R em ark  5 )  represents
the fu n c to r  d i 5 o v e r (Sch/k) in  th e  c ase  satisf y ing o n e  o f  th e  con-
ditions (a ), (b ), (c ), (e ), (f), (h), (0  in  L em m a 10.

2) In  the  case  (d), (g) in  L em m a 1 0 , A u t(S ) in  L em m a 6  never
represents the functor .Jzif s o v e r (Sch/k), th at  is ,  th e  group scheme
w hich represents this functor over (Sch/k) is  n o t redued.

3) L et f *  b e  the morphism of  Lie (Aut
°
(S )) to Lie (A ue(X )) which

associates to f  in  L em m a 6. T hen, f *  i s  surjective i f  one of  the fol-
low ing conditions is satisf ied;

0  X  is  rational.
ii) X  is elliptic an d  S  is decom posable w ith N (S )=  O.
iii) X  is elliptic , S  i s  indecomposable an d  th e  characteristic o f  k

is  no t equal to  2.

P r o o f .  If o n e  n o t e s  that d im  Aut(S) =  dim H
°
 (S, s ) (or,

dim Aut (S)<dim (S, Os ) )  under the conditions of ( 1 )  (or, (2 ) ,  re-
spectively) (see Theorem 2 ,  Lemma 7  and Lemma 8 ) ,  then our asser-
tions in  ( 1 )  an d  ( 2 )  a r e  followed from th e  results o f  [ 5 ] .  Since
H °(S, e s ) ' -=  Lie ( A u e ( S ) )  if A u t ( S )  represents t h e  functor d ata

0 0  over D(Sch/ k) and since f * (a o  a l  zo -Faz zg ) --=DOzou z o uzo
(DE H °(X ,  x ) ) ,  we obtain (3 )  by virtue of (A ) (i), (B ), (C ), (D), (E)
above. q.e.d.

Now, we come to the following theorem.

T h eo rem  3 .  L et (S, X , ir) be a  ruled  surface.
( 1 )  I f  X  is  ratio n al an d  SL=.:F „  :(n > 0) ([7 1 o r  [ 3 ]  Theorem

4.3), then w e hav e an ex act sequence4) o f  algebraic groups;

e —> Aut(S)—>PGL(1)—> e.

4 )  By an exact sequence o f algebraic groups

e --+ G' G  G "  = *  e

we mean the follow ing; G ' is  an  algebraic subgroup o f  G  and g , : G/ G' G "  as
algebraic groups.
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(2) I f  X  is  e llip t ic  a n d  i f  S  is decom posable w ith N (S )= 0 ,

So/P 1 x X , then w e hav e an ex act sequence o f  algebraic groups;

e —› G Aut(S)— Aut'(X)— e,

w here Aut i(X )  i s  th e  group def ined i n  L em m a 8 an d  w here G  is  G .
or the  group def ined i n  Theorem  2, (4) according to w hether S  satisfies
the condition (3 ) o f  Theorem  2  o r n o t .  M oreover, A u t°(S ) i s  a  com-
m utativ e group an d  it  is  iso m o rp h ic  to  S— s i — s2 w ith  t h e  natural
algebraic group structure (see [91 Ch. VII §3 n ° 15, 16), w here sl , s2

are the m inim al sections of  S .

(3) I f  X  is elliptic and i f  S  P 0 , then w e hav e an ex act sequence
of  algebraic groups;

e —>Ga —÷ Aut(S)—> Aut(X) —› e.

M oreover, Aut° ( S )  i s  a com m utativ e g ro u p  a n d  it i s  a non-triv ial
ex tension of  Aut ° (X )  by  Ga ,  i.e . Aut ° ( S )  is  isom orphic  to  S— s with
th e  natural algebraic group structure (see [9 ]  Ch. VII §3 n ° 15, 17),

w here s i s  the m inim al section of  S .

( 4 )  I f  X  is  e llip tic , S  P 1 a n d  i f  t h e  characteristic o f  k  is not
equal to 2, then w e hav e an ex act sequence o f  algebraic groups;

e --> Aut(S)-- Aut(X)—  e,

w here d  i s  th e  g ro u p  o f  the  2 -to rsion  part o f  X . Furtherm ore , w e
have th at zlnAut °(S)--= zl.

P ro o f. Exactness of the sequences o f (1 ), (2 ), (3 ) above is fol-

lowed from Theorem 2, Lemma 6, Lemma 8, and Corollary to Lemma

10 except for the case where S  P 0  an d  th e  characteristic p  of k  is
equal to 2. In order to prove exactness of the sequence in (3) in the
case where p = 2 ,  w e  must show that Aut°(S )/ G , A u t °( X )  i s  a
separable morphism. In fact we can prove existence of a local section
from Aut°(X )  to A u e (S ), but it is very complicated, hence we omit
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it. B y  v ir tu e  o f  C oro llary 2  to  T heorem  13 o f  [ 8 ] ,  w e  have that
Aut°( S )  in the case (2 ) ,  (3 )  i s  a commutative group. In the case (3)
i f  Aut°( S )  A u t °(X) x G a ,  then an orbit o f  Aut°(X ) x  {e l  is  a section

o f S , whence it m eets the minimal section s  o f S .  On the other hand,

s  is a lso  an orbit of Aut°(X) X  { e}  , w hich is impossible. Thus Aut°(S )
i s  a non-trivial extension of Aut °(X )  by G a. I t  i s  e a s y  to  s e e  th a t
S - s  w ith the natural group structure (o r, S - s 1 - s 2 in  the case (2))
acts regu larly  on S  (o r, S  in the case (2 ), respective ly) (see  [9 ] Ch.

VII n °1 5 ) .  T h u s  w e  have the last statem ents o f  ( 2 )  and (3). By
v irtu e  o f  L em m a 4 .5 , T heorem  4 .7  o f  [ 3 ] ,  if P ( E ) ,  w e  have

that EL- 2 E 0 N  if and only if N 2 I. Thus if S P 1 , d  in Theorem
2 , (i) is  iso m o rp h ic  to  the 2-torsion part of X .  H ence, by virtue of

Theorem 2, Lemma 6, Lemma 8 and Corollary to Lem m a 10, we have

an exact sequence in  (4). F inally , the latter assertion of ( 4 )  is fol-
lowed from  Lem m a 9 because the orbit space o f Aut °( S )  i s  a linear
p en c il sa tisfy in g  the conditions ( a ) ,  ( b )  in  L em m a 9  and  because

Z / 2 Z  Z /2Z . q.e.d.

Remark 8 .  I n  the case ( 4 )  o f th e  above theorem , w e have a

morphism A u t  (S )/4  -*Aut ( X )  even  if th e  characteristic p  o f k  is
eq u a l to  2  ( d  i s  the 2-torsion part of X ) .  M oreover, we know that

ti nA ut °(S ) -=  ( s e e  R e m a r k  7 ) .  B u t  i f  p = 2 ,  th e n  J  i s  n o t  an

isomorphism (i.e. J  is purely inseparable).

4 .  In  th is  section w e shall consider an application of the above
re su lts . A  complete non-singular surface S  is called  an elliptic surface

if and only i f  th e re  is  a  morphism g  o f S  to  a complete non-singular

curve C  such  that g - 1 (c )  is  a non-singular elliptic curve for a generic

point c  o f  C .  Consider the following problem 5) ;  "W hen does a ruled
surface become an elliptic surface?"

Since i f  a  ru led  surface S  i s  an ellip tic  surface, the curve C  in

5 )  Th is problem was solved by  T .  Suwa [10] when the base field k  is  the
complex number field.
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the above definition is a  rational curve, our problem  is equivalent to

the following ; "W h e n  d o e s  a  ru le d  su rface  ca rry  a  linear pencil

satisfy ing the conditions (a), (b )  in  L em m a 9?"

Lemma 11 . Let (S , X , ir)  b e  a  ru le d  surface. I f  S  is  also  an

elliptic surface, then  ( i)  X  is  an elliptic curve and ( ii)  N  (S )=0  or 1.

P ro o f. B y v irtue  o f Lemma 2 3  of [ 2 ]  (it rem ain s true even  if

the characteristic of k  is  positive), w e have that (K 2 ) =  0  for a canoni-

cal divisor K  on S. On the other hand, if the genus of X  i s  g ,  then

(K 2 ) =  8  —  8g . T h u s  w e  g e t  t h a t  g= 1, w hence X  i s  a n  elliptic

c u rv e . I n  o rd e r  to  p ro v e  (ii), assume t h a t  N (S )= — n  0 ,  then
S = x  X )  for some points P 1 , • • • , Pn on P x  X  (P E P ') .  I f

S  carries a linear pencil satisfying the conditions (a ) , (b )  of Lemma 9,

i t  must b e  the proper transform o f  a  lin ear system  L , , ,  on P' x X
su ch  as  L ,,,=-(  r  ( P x  X ) +  TIV ( x i )  -E  r -P i ) ,  w h ere  r  >  0 , s >  0 ,

i =1

PE P l ,  x l ,  • • - ,  x ,E X  and w here n o i s  the projection of /3 1  X  X  to
X .  Let D  b e  a  general member in L ,, , ,  then D  must be irreducible
and D  can not be tangent to fibres going through Pi (1  < j < n ) .  Since

p a (D)-- -- r + (r — 1)(s — 1), D 2 2 r s ,  w e have that

1 =p a=  r  ( r  — 1 ) ( s - 1 ) —   nr (r2— 1)  ,

0 =(elmpi ,...,p1D1 2 ) =2rs —  nr 2

nr Px  X )=s .

Therefore, we obtain that r =  0 , w hich is a contradiction. q.e.d.

Theorem 4 .  Let (S, X, ir) be a  ru led  surface over an algebraical-
ly  closed f ield k  w ith characteristic p.

0  I f  S  i s  an elliptic surface, then X  i s  an elliptic curve.

ii) Assume that p = 0. Then, S  is  an elliptic surface if and only
i f  one of the follow ing conditions is satisf ied;
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1)

2) S  is decom posable w ith N (S )= 0  a n d  rc(s. )  i s  a torsion
elem ent in  th e  Jacobian v ariety  o f  X ,  w here s  i s  a minimal
section of S.

iii) Assume that p> O. Then, S i s  an elliptic surface if and only
if  one of the conditions (1 ), (2) above o r  (3 ) below is satisf ied;

3) S

P ro o f .  ( i)  is Lemma 11, (i). B y  v irtu e  o f Theorem 3, (4) and
Remark 8, S  is  a n  elliptic surface if S  P 1 . It is clear that i f  S
= P 1 x X , then S  is  a n  elliptic s u r fa c e . I f  S  is decomposable with

N (S )= 0  a n d  if  S *- ' . . P 1 x X , then S=elmp1,p2(P 1 X X ) fo r some points
E (0) X X , P2 E  ( 0 0 )  X  X  an d  7r(s. )=  7-co (P 1 )-7 r0 (P 2 )  for a m in im al

section of S, where r o is  the projection of P l  X  X  to X  ([31 Proposition
4 .1 ). A  linear pencil on S satisfying the conditions (a), (b ) of Lemma
9  is  th e  proper transform o f  a  linear system L,. fo r  some r>0 on
P 1 x X;

L,.= (Ir(Px X)-F Ê 7rV(x1) I — rPi — rP2).
1=1

Take a  general member D  in L , th e n  1 7 0 (D . (0) X X)=r7ro(Pi) is
linearly equivalent to r o (D• (00) x X)=r7r o (P 2). Thus r(s.  )=7 -c 0(1) 0
— o (P 2) is r-torsion element. Conversely, suppose that n (s • s) =  o (P
- co (P 2 )  is  a to rsion  element. L et r  be the smallest positive integer
such that rn (s. s) = O. Then,

L = (1 r (P x  X )+ 7-7W(ro(P1.))1 — rPi — rP2)

contains r ((0) x r7r' (7ro(P2)) and r ( (0 0 )  x  X ) + r r  (r0(P0),
whence dim L; >  1 .  A  general member o f L ; is irreducible because r
is smallest. It is easy to see that the proper transform o f th e  above
L,.'  by elmp1,p2 satisfies the conditions (a), (b ) of Lemma 9. Thus i f  S
is decomposable with N (S )=  0, then S  is  a n  elliptic surface if and
only if r  (s •s ) is  a  to rs io n  element fo r a  m in im al sec tio n  s  o f  S.
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Lemma 11, (ii) implies that the remaining part of our proof is the

case w h ere  S  P o. I f  P 0 carries the required linear pencil L , then Ga

acts non-trivially on L  (Theorem 3, (3)). Every member of L  is never

a section because two sections of P o meet to each other. I f  D  is  a

general member o f L ,  then D•1= Pi + •• • + Pt (P i *  P;  i f  p=0, j ) ,
where 1  is a general fibre of Po. Any element 6 E  Ga  such that 6(P 1 )
=Pi fix es  D . This is  im possib le  if p=0 . If p>0 , then P0 i s  an

elliptic surface by virtue of Proposition in p. 336 of [6] (take the

minimal section as C in the Proposition).  q . e . d .

Finally, we add some more remarks.

R em ark  9. 1 )  I f  p *2  a n d  S a -_- P i , then S  has three singular

fibres. They are multiple fibres of the following type; 2C, C  is  an

elliptic curve with (C , 1) = 2  for a fibre 7r- 1 ( x ) = / .  This is proved by

studying the action of automorphisms on the points si•si  1 i , j < 4 ,

where s i  are minimal sections on S  such that 7-c(s i •s i ) = • •• =r(s4.s4)•

2) T h e  moduli space o f  isomorphism classes of decomposable
ruled surfaces S  with N (S )= 0  is  a  curve (see [3] Theorem 4.10).
The parameter is 7t (s. ) ,  where s  is  a minimal section of S .  Thus

Theorem 4 shows that the cardinal number of the set of isomorphism

classes of ruled surfaces which carry the structure of an elliptic surface

is countable.

3) I f  S  satisfies the condition (2 ) of Theorem  4 a n d  if  S

11 1  x  X , then S  has two singular fibres rs i , rs2 , where si, s2 are the
minimal sections of S  and where r  is the smallest positive integer such

that rn(s i • si ) = O.

4) M. Nagata and the author proved directly that i f  p > 0  and
S =  P 0 ,  then S  has a  linear pencil L  satisfying the conditions (a), (b)
of Lemma 9 and (D, 1) = p  for DE L,

K Y O T O  U N IV E R SIT Y
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