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Let k& be an algebraically closed field of arbitrary characteristic
and let X be a complete non-singular irreducible curve defined over k.
A complete surface S defined over k is a ruled surface over X if and
only if there is a k-morphism 7: S— X such that 7~ !(x)=P" for all
x€ X. We know that every ruled surface is locally trivial, that is,
P'-bundle over X ([3] Corollary 0.2). On the other hand, any P!
bundle over X is the associated projective bundle P(E) of a vector
bundle E of rank 2 over X ([ 3] Introduction). Thus automorphism
groups of ruled surfaces are closely related to those of vector bundles
of rank 2 over X. The purpose of the present article is to study
automorphism groups of ruled surfaces in this direction.

Notation and convention. All objects such as varieties, bundles
etc. in the present article are restricted to those defined over k and
therefore, under a point, we understand a k-rational point. I denotes
the trivial line bundle over X. Aut(E) denotes the automorphism
group of a vector bundle E of rank 2 over X. (S, X, w) denotes a
ruled surface S over X with a canonical morphism 7: S—X. Aut(S)
denotes the automorphism group of S and Autyx(S) denotes the auto-
morphism group of S over X, that is, Autx(S)={0€ Aut(S)|n-c=r}.
E, L denote sheaves of germs of regular sections of vector bundles E, L

respectively. Oy denotes the structure sheaf of X and 0% denotes the
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sheaf of units of @x. Finally, G, denotes the multiplicative group
k— {0} and G, denotes the additive group k.
The author wishes to thank Professors M. Nagata, H. Matsumura

and T. Oda for valuable conversations with them.

1. Let E be a vector bundle of rank 2 over X. We know that £
has infinitely many sublinebundles (see [3]). Degrees of sublinebundles
of E are bounded above ([ 3] Lemma 1.1). A sublinebundle of E which
has the maximum degree is called a maximal subbundle of E and M(E)
denotes the degree. We shall begin with a key lemma which was
proved in [ 3] (Lemma 1.5 of [3]).

Lemma 1. If L, L, are distinct maximal subbundles of E and
Zf L1;L2, then E_—’:V—_Ll@Lz.

Let L be a maximal subbundle of E. If {U;}1si=. is a sufficiently

fine open covering of X, then we can choose a system of local co-

ordinates (Z‘) (i=1, ..., n) of E such that transition matrices of E are
1

{ i)

transition matrices of L are {(a;j) |14, j<n}.

1<, jgn} and L is defined by v;=0 for all i, where the

Suppose that E%ZLEBL. Aut(E) >0 induces an automorphism 0;
of the vector bundle F |Ui over U;. By virtue of Lemma 1, 0 must fix
L and Aut(E|y)=GL(2, I'(U;, 0x)). Therefore 0;€ Aut(E|y,) is de-

a; 1i\|ai, Bi€ I'(U; (93})} . ,(ui>_<6¥i(x) Ti(x))(lh)
fined by {<0 3;)]7’;’6 r;, 021:) > that is, 0 v;/  \0 Bi(x)/\v;
in the fibre over x € U;. There exists a 0 € Aut(E) such that 0|y,=0;

for every i if and only if the following conditions are satisfied;

Qij Cij\ (K Tj i Ti\[aij Cij in U;NU;
) =
0 bi;;/\0 B; 0 Bi/\0 by 1<, j<n.

These conditions are equivalent to the following;
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2) a;; 0=, a;; in U;NU;
3) bii Bi=PR:bi; 1<, j<n.
) a1+ o B =cti eyt 11 by
By the equations (2), (3) we have that a;=-=a,=a, B1="=08,

=pel(X, 0%)=G,. Thus (4) can be rewritten as the following;
4" aij7i—1ibii=(@—B) c;

Now, assume that == and put a«—B=0. Let us observe the

coordinate transformation;

R

/
Then, the transition matrices by the new coordinates <u/,> are
i

G
0 b,,

bundle L’ of E. Therefore, if E is indecomposable, then =/, whence

II/\
II/\

1§i,j§n}. Thus we get that EX L L’ for some sub-

(4") reduces to the following;
4" ri=(i}aij) ;.

Since {(b;;)} define the linebundle (detE) ® L', {r;} is a regular section
of (detE) '@ L% Consequently, ¢ determines @€ G,, and a regular sec-
tion {r;} of (detE) '® L% Conversely, suppose that « € G,, and a regu-

lar section {r;} of (detE) ' L? are given. Then, {(g Tt)

1<z<n}
define an automorphism of E. Hence we have

(@) If E is indecomposable, then

a s
Aut(E)={< >
0 «

where L is a maximal subbundle of E.

acG,
se ' (X, (detE)‘1®Lz)}’
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Next, assume that EXLP L’ (L;L’), that is, ¢;=0 in (1). In
this case, (4') reduces also to (4'"), whence ¢ determines «, 8 € G, and
se I'(X, (detE) '®L?). Conversely, any a, 8€ G, and a regular section
{ri} of (detE) ' L? define an automorphism of E;{ g 2i>‘1§i§n}.
Thus we get

(b) If EXLEPL (degL=deglL’, that is, L is a maximal sub-
bundle of E, see [3]) and if L= L, then

@ s
Aut(E)={< >
08

Finally, assume that EZX~ L L, then the transition matrices are

{(a;,- 0
0 ay
(1) assert that a1 = =a,=a, f1="=F,=PL, T1="""=7a=7, 01 ="
=0,=0 and «, B8, 1, 0€ k, 0 —Br+0. Thus we have

(¢) If EXLEL, then Aut(E)=GL(2, k).

We introduced in [3] the invariant N(E)=degE—2M(E) and
proved the following lemma ([ 3] Corollary 1.6).

a, BEG, }
se (X, (detE)"'®LY))

1<, < n} and 0 is defined by (?’ g’) The conditions as
1 1

Lemma 2. (1) If one of the following conditions (i), (ii) is
satisfied, then E has only one maximal subbundle.

i NE)O.

(ii) N(E)=0 and E is indecomposable.

(2) If E=L@L;, degLi=degL, (i.e. N(E)=0) and if L Ls,

then E has only two maximal subbundles and they are L, and L,.

In the case (a), (b) above, if I'(X, (detE)'®@ L% =0, then
—N(E)=deg((detE)"'® L?*)=0. Therefore, by virtue of Lemma 2, L

is uniquely determined by E.

Now, let us define connected linear groups H,, H, (r is a non-
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negative integer) which are subgroups of (r+1)-ple product of GL(2, k).

a 0\ /at at, aetG,
Hr={<< >,< >,.4.,< >>eGL(2, k)x - xGL(2,k) }

0a/ \0 a 0 a t;€k

a 0\ /oty at, a, BE Gy,
H;={<< >,( >,-~-,< ))EGL(Z,k)><~"><GL(2,k) }

045 045 048 L€k

Then, we have the following theorem.

Theorem 1. Let E be a vector bundle of rank 2 over a complete
non-singular irreducible curve X. Then,

(1) If N(E)>O0, then Aut(E)=G,

(2) If N(E)XO0, E is indecomposable, and if L is the unique
maximal subbundle of E, then Aut(E)2 H,, where r=dimI"(X, (detE)!
QL.

() If EXLi@®Ls, degL,>degL, and if LiF Ly, then Aut(E)
= H., where r=dimI'(X, (detE)'QL}).

4) If EZXL®L, then Aut(F)=GL(2, k).

Proof. (1) Since N(E)>0 implies that E is indecomposable,
this is a case of (a). Moreover, I (X, (detE)"!®L?*) =0 because
deg ((det E)"'®L?)=—N(E)<0. Thus (a) shows our assertion.

(2) This is the other case of (a). Fix a basis (si, ---, s,) of
I'(X, (detE)"'®L?. Consider the map g: Aut(E)— H,;

oo lek G

where s=¢;s;+--+t,s,. It is obvious that g is a group isomorphism.
If {r{"’} is a representative of s; by ri{'e€I'(Uj, (detE)"'®L?* for
some sufficiently fine open covering {U;} of X. Then, since the action

of o‘:((% 2), (g 2), oy gg)) on the fibre over x€ U; is g(ﬁf)

7
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(0 (r) R
:(8‘ L17; (x)+a +tery (x)><;‘{>, H, acts rationally on E.
J

(8) This is the case (b). The proof is similar to that of (2).
(4) is the case (c). g.e.d.

Remark 1. H, (or H}) has a normal subgroup K, (or, K, respec-
tively) which is isomorphic to r-ple product of G, and H,/K,=G,,
H}/K!=G,xG,. H,, H, are, therefore, solvable groups.

2, Every ruled surface (S,.X, #) is isomorphic to (P(E), X, ')
for some vector bundle E of rank 2 over X; in other words there is
an isomorphism ¢: S— P(E) such that 7=7n'-¢. The relation between
Aut(E) and Auty(P(FE)) is given by the following lemma which is
found in [1]].

Lemma 3. Let E be a wvector bundle over a connected locally
noetherian prescheme Y. Put A={N|N is isomorphism class of a
linebundle N such that E=EXN}. (Clearly, 4 is a group.) Then,

we have an exact sequence;
e—>Aut(E)/I'(Y, 0F) > Auty(P(E))—>d—e.

In our case, since Y=X and E is a vector bundle of rank 2,
ry, 0¥)=rX, 0%)=G, and 4 is a subgroup of the 2-torsion part of
the Jacobian variety of X because EXEQ® N asserts N2~ 1. There-

fore, 4 is a finite group.

Lemma 4. (1) If NE)X0 and E;LEB(L@N) for any line-
bundle N such that N1, then 4= {e}.

(2) If EXL®LQN), N°=1I and if NEI, then 4=Z/2Z.

(B) If EZXL®DL, then 4={e}.

Proof. (1) By virtue of Lemma 2 either E has only one maxi-

mal subbundle L, or E has just two maximal subbundles L, L' and
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L;L’@N for any linebundle N such that N2~ . Take N'€E 4,
N’;él, then LQ N’ is sublinebundle of EQ N’, whence it is that of
E, which never occurs in any case.

(2) Maximal subbundles of E are just L, LQN. Hence if N'€ 4,
N’;I, then LN’ =LQ®N, that is, N’ N. Conversely, (p:(ﬁ’)—»

(Z) is an isomorphism of E to EQN=(LQN)DL. Thus 4= {I, N}
=Z/2Z.
(3) Note that every maximal subbundle of E is isomorphic to L.

Then, the proof is the same as above. g.e.d.

A section s of P(E) is called a minimal section of P(E) if and
only if s has the smallest self-intersection number (s, s) among sections
of P(E). We proved in [3] (Proposition 1.9, Theorem 1.16) the fol-

lowing lemma.

Lemma 5. (1) N(E) depends only on P(E). So N(P(E)) (or
N(S)) has meaning. N(P(E)) is the self-intersection number of a
minimal section of P(E).

(2) The set of minimal sections of P(E) is in bijective correspond-
ence with that of maximal subbundles of E.

(3) If L is a maximal subbundle of E, then the diviser class on
X defined by the linebundle (det EYQL™? is equal to that of w(s-s) for
the minimal section s of P(E) which corresponds to L by the cor-

respondence in (2).

Let us define a linear group H. which is a subgroup of (r+1)-ple
product of GL(2, k) and isomorphic to H./G,,.

. a 0 il iy
H;: ’ y "7y
01 01 01
Theorem 2. Let (S, X, ) be a ruled surface.
1) If N(S)>0, then Autx(S)=4d, where 4 is a finite group

aeGy,

L1y oy L € k}
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defined in Lemma 3 for a wvector bundle E such that (S, X, w)
~(P(E), X, n').

(2) If N(S)Z0, S is indecomposable® and if s is the unique
minimal section of S, then Autx(S)=G,X - XG,, r-ple product of G,,
where r=dim| —n(s*s)| +1.

(3) If S is decomposable and if S does not carry two minimal
sections s, s’ such that w(ses)=m(s'ss'), then Autx(S)=H!, where
r=dim| —n(s*s) | +1 for a minimal section s of S.

(4) If S is decomposable, S¥P1><X and if S has two distinct

minimal sections s, s’ such that w(s-s)=mn(s"ss") (accordingly, N(S)=0),
0R )

acGfu{(} §)seca .

(5) If S=P'x X, then Autx(S)=~PGL(1, k).

then Auty(S)= {(g (1)

Proof. (1), (3), (5) are obvious by virtue of Theorem 1 and
Lemma 3, 4, 5. If one notes that H,/G,=G,X - XG,, (2) is obvious
by the same reason. If (S, X, )= (P(E), X, n’), in the case (4), E
is a vector bundle of type (3) of Theorem 1 and type (2) of Lemma
4. Hence Aut(E)/G,=H.. but since (det E)"*QL*=N"! (notation is

the same as in Lemma 4, (2)), we have that r=0. The generator of

the group 4 corresponds to the isomorphism ¢: <z’>—>(2’> Thus
0 0\ /01 0 0
=[5 DA D DG DAC D) e

Remark 2. We showed in [37] that (1)—(5) exhaust all cases

which may occur and anyone of (1)—(5) can occur if the genus of

1) S is indecomposable (or, decomposable) if E is indecomposable (or, decom-
posable, respectively) for some vector bundle E such that (S, X, n)=(P(E), X, z’).
This property is independent of choice of E. S is decomposable if and only if S
has two sections which do not meet to each other.

2) The multiplication of this group is defined by

GHCED-GE ) GDCD-G6):
GHAOH-ED - CDE D=-G"D-
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X>1. If X is fixed, the set of isomorphism classes of P'-bundles over
X of type (4), (5) of Theorem 2 is in bijective correspondence with the
2-torsion part of the Jacobian variety of X ([3] Corollary 1.12).

Remark 3. Let s be a minimal section of S and let L(7(s*s)) be
a linebundle defined by a divisor of the divisor class m(sss). Let {U;}
be a sufficiently fine open covering of X and let {r*}, ..., {r?"’} be
representatives of a basis of I'(X, L(m(s+s))”"). Take the minimal sec-
tion s as the infinity section of S and let z; be the coordinate of fibres
over U,.

(i) In the case (2) of Theorem 2, if 0= (ty, ---, t,)EG, X - XG,,
the action of ¢ on the fibre over x€ U; is 0(z)=z;+ 17" (x)+ -+
+t, 77 ().

(ii) In the case (3), the action of o‘=(<g (1)),(3 t11>, ey g i’))
is 0(z))=azi+urP @)+ + 6,77 (%).

(iii) In the case (4), the action of (I:(g ?) is 0(z;)=az; and

the action of 0"2(2 ‘g is 0'(z;)=R/z.

. . _(« B\ . N azi+f
(iv) In the case (5), the action of ¢ (T b‘) is 0(z;) Fa 40

Remark 4. Let 7V be a variety of dimention 2 defined over k.
If the linear part of the connected component of the unit element of
Aut (V) has a positive dimention, then V is birationally isomorphic to
a ruled surface ([4]).

3. A relation between Autyx(S) and Aut(S) is given by the fol-
lowing lemma.

Lemma 6. Let (S, X, ) be a ruled surface. If X is irrational,

or if X is rational and S==P'x P}, then there is an exact sequence;

e— Autx(S) — Aut(S)LAut (X).
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Proof. If X is irrational, a fibring of S over X is unique because
a rational curve passing through a point of S is unique. In rational
case, the uniqueness of a fibring is due to Proposition 5 of [7]. In
either case, therefore, an automorphism ¢ of S sends a fibre to a fibre.
Thus we have an automorphism ¢ of X such that 7:0=d&-m and we
know that Auty(S) is a normal subgroup of Aut(S). It is clear that
d=e if and only if o€ Autx(S). q.e.d.

Remark 5. Fix a section s of S and an isomorphism i: X—s
such that w-i=idx. Let us define a subfunctor &/«¢sx of the functor
Auts: (Sch/k);ea= (reduced algebraic schemes/k) — (Gr) ([5]). For
any T€ (Sch/k)rea put Luwrs;x(T)={0€ Lwrs(T)|(x X idr)0+(ixidr)
=idx«r} and define F(T)(0)=(xxidr)-6-(iXidr). Then, noting

that k is an algebraically closed field, we have an exact sequence;
e —’dﬂfs/X(T) _*-was(T)ﬁ(T—))..anfX(T).

Since this sequence is functorial, Autx(S) in Theorem 2 represents
Auts;x and since HLwss, Lusx are representable (see [5]), the se-

quence in Lemma 6 is an exact sequence as algebraic groups.

Corollary. Let Bir(k(V)) be the group of birational transforma-
tions of a variety V defined over k onto itself. If (S, X, w) is a ruled
surface, then dimBir (k(S))=0co.

Proof. Let n be an arbitrary positive integer. There is a
decomposable ruled surface S with N(S)=—n which is birationally
isomorphic to S. Then, by virtue of Theorem 2 and the above Remark,
dimAut(S)=n—g+2, where g is the genus of X. Thus we have
that dim Bir (k(S)) = co. g.ed.

Lemma 7. If the genus of X=2, or if X is an elliptic curve
and S is decomposable with N(S)=#0, then Im f of the sequence of

Lemma 6 is a finite group
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Proof. It is well known that if the genus of X=>=2, Aut(X) is
a finite group. Thus there is nothing to prove in the former case. In
the latter case, S has only one minimal section s and the divisor class
—m(s+s) has positive degree ([3] Theorem 1. 11). Since an automor-

phism of Im f fixes the divisor class, Im f is a finite group. q.e.d.

From now on, we denote the connected component of the unit
element of Aut(S) (Autx(S) or Aut(X)) by Aut’(S) (Auty(S) or
Aut’(X), respectively).

Corollary. Under the conditions of Lemma 7, we have that
Auty(S) = Aut®(S). In particular if N(S)>0 and if the genus of
X=2, then Aut(S) is a finite group.

If the genus of X is greater than 1, then there is an indecom-
posable ruled surface S such that dim|—m(s+s)| +1=0 for the minimal
section s of S. On the other hand, if X is a general curve with the
genus greater than 2, then we have that Aut(X)=4{e}. Thus there
is a ruled surface S with Aut(S)=/{e}.

Now, the remaining parts are the following cases;

i S=P'xX

(i) X is rational and SEP'x P!

(iii) X is elliptic and S is indecomposable.

(iv) X is elliptic, S is decomposable with N(S)=0 and S;P1

x X.

It is obvious that if S~ P'X X and X is irrational, then Aut(S)
= Autx(S) X Aut (X) =PGL (1) x Aut(X). If S=P'X P!, then Aut(S)
={PGL (1) x PGL (1)} U{V (PGL (1) x PGL (1))} where ¥ is the inter-
changing transformation (see [7] p. 354 (4)).

Lemma 8. (1) In the cases (ii) or (iii) above, f in Lemma 6 is
surjective.

(2) In the case (iv) above, let s be a minimal section of S and let
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n(ses)=xo—x, where x, is the unit element of X as an abelian variety.
Then, we have that Im f=Aut’(X)\U(poAut’(X))\U (g1 Aut®(X)\U...
U@, Aut®(X)), where ¢o(or, ¢;;, 1<i<r) is an automorphism of X
as an abelian variety such that ¢o(y)=—1y for all ye X (or, pi(x)=x,
1<i<r, respectively).

Proof. (1) If o€ Aut(X), the morphism é&: (z, x)—(z, 0(x)),
(z, x)€P'x X is an automorphism of P!x X. Suppose that X is
rational and N(S)=—n (n>0). Then, there is a bundle isomorphism
g: S— S,=elmp, p (P'x X) for some points P, ..., P,€ Px X(Pe P")

for 0€ Aut(X). Then, T,=elmzp),.. sp,) 6 (elmp,
map of S, to S,. On the other hand, since S, is isomorphic to S, as
P!-bundle ([3] Theorem 4.3), there is an isomorphism h,: S,— S, such
that w,=m.*h,, where 7, ™, are canonical projections of S,, S, to
X respectively. Thus we have an automorphism h,-7, of S,. Then,
6= g‘loh,,o T,-g is an automorphism of S such that the image by f is
0. In the case (iii), the same proof as above is available by virtue of
Theorem 4.8 of [3].

(2) S=S,=elmp p(P'x X) as P'-bundle, where mo(Py)= xo, 7o(P)
=x (m,: canonical projection of P'xX to X) Py€ (0)x X, P€ (o)
x X ([2] Proposition 4.1). Furthermore, S, = S, =elmspy,sp)(P' x X)
as P!-bundle if and only if ¢ transforms the divisor class 7(s's) to
either itself or —m(s+s). On the other hand, it is easy to see that
o€ Aut(X) satisfies the above condition if and only if ¢ is contained
in the group defined in our lemma. Thus the same proof as in (1) is

also valid in this case. q.e.d.

Remark 6. The proof of Lemma 8 shows that if S is decom-
posable and S;PIXX, then 0€ Aut(X) is in the image of f in
Lemma 6 if and only if ¢ transforms the divisor class 7(s-s) to either

itself or —m(s+s), where s is a minimal section of S.
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Lemma 9. Let (S, X, w) be a ruled surface over an elliptic curve
X and let S be isomorphic to Py ([3] p. 66). '

(1) S carries no linear pencil L which satisfies the following
conditions

a) A generic member is a non-singular elliptic curve.

b) If L>D, D, then (D, D)=0

c) If LoD, then (D, l)=2, where | is a fibre of S.

(2) Suppose that the characteristic of k is not equal to 2. Then,
S carries a linear pencil L which satisfies the conditions (a), (b) above

and the following;
(¢"Y If L>D, then (D, l)=4, where |l is a fibre of S.

Proof. Let m, be the canonical projection of So=P!x X to X.
We know ([3] Theorem 4.8) that S=P;=elmg,q,q,(So), where
7o(Q)Fmo(Q;) (i5~j) and Q;€ R;x X (R;%R; (i+)), R:i€ P'). Note
that a linear system on P; such that a generic member of it does not
contain a fibre of P, is the proper transform by elmg, g, ¢, of a linear
system on Sp;. On the other hand, a positive divisor D on §, is

”
linearly equivalent to m(PxX)+ > my'(x;) for some points xq, .-,
i=1

wn€X. If D~m(Px X)+ > 75" (x:) on Sy, then we obtain that ps(D)
=m+(mn—1)(n—1) and (l’)=,lD)=2mn ([3] Remark 3.3). Thus we
know that a linear pencil L on P, satisfying conditions (a), (b) must
be the proper transform by elmg g, q, Of (]2m(P><X)+j§ml7r;1(x,-)|
_le_mQZ_mQS)S)

(1) (Nagata) Since the points 7o(Q:), 7o(Qz), mo(Q3) are arbitrary

if 7o(Q:) #mo(Q;) (i5=)), we may assume that 27o(Q1)* 27o(Qz). The
condition (c) asserts that the number m above is equal to 1. It is easy

3

to see that dim(]|2(P x X)+ 375 (x:)| — 20, — 20, —Q5)=8—3—3—1
st

=1 ([3] Lemma 3.1). Assume that every member of M=(|2(P x X)

3) Let M be a linear system and P; be points. Then M—73 P, denotes the
linear system which consists of members of M going through all P,



102 Masaki Maruyama

+i§3:17r51(x,-)| —2Q1—2Q2:—Qs) goes doubly through the point Q;. Put

lo,=m(mo(Q3)) and consider Trio M. Since dim(Tro, M)=0, we have

that dim(M—1lq,)=0, whence there is a member E-+lo, of M—Iq.

Hence we obtain that 2m¢(Q,) ~27,(Q:) because E-(R;x X)=20Q,,

E-(Ry;x X)=2Q,. This contradicts to the assumption that 27,(Q;)

*270(Qs). Thus we have that dim(|2(Px X)+ 31mo(x)| - 320)=0,
< <

which proves our assertion.

(2) Since the characteristic of k£ is not equal to 2, the group
of 2-torsion part of the Jacobian variety of X is isomorphic to Z/2Z
@©Z/2Z, whence we may assume that 2m(Q1)~ 27(Q2)~ 27,(Qs).
Consider the linear system L;=|2(PXx X)+2n5'(mo(Q1))] on So. (L;—
2Q1—20Q;) (or, (L1 —2Q;—2Q3)) contains 2(R; X X)+ 275 (7(Q;)) and
2(Re x X)+2m51 (mo(Q1)) (or, 2(Ryx X)+27m5(mo(Qs)) and 2(Rsx X)
+2n51(mo(Q1)), respectively). Thus we have that dim (L;—2Q;—20Q;)
=1 (or, dim (L, —2Q;—2Q3)=1, respectively), whence (L;—2Q;—2Q;
—Qs) (or, (L1—20Q1—2Q3—(:)) contains a divisor D; (or, D,, respec-
tively). Therefore, the linear system M= (|4(P X X)+67my1(mo(Q1))|
—4Q; —4Q;—4Q3) contains 2D, 4 275%(7o(Q3)) and 2D+ 275 (7 o(Q2)).
Hence we obtain that dimM=1. Now, we can see easily that the
proper transform of M by elmg, ¢, o, satisfies the conditions (a), (b), (c).

q.e.d.

Remark 7. By “reduction” we know thet Lemma 9 (2) is true
even if the characteristic of £ is equal to 2. On the other hand, M.
Nagata proved directly that Lemma 9 (2) is true if the characteristic
of £ is equal to 2 and X has non-trivial 2-torsion part (i.e. Hasse
invariant of X=-0).

Calculation of H(S, B5) (Bs=F0om(R), 05)) for a ruled surface
(S, X, @) over an elliptic curve defined over € has been done by T.
Suwa [10]. Similar argument is applicable to the case where k is an

arbitrary algebraic closed field and X is rational or elliptic.

Our results are the following;
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Let p be the characteristic of k and 6 is an element of H(S, @s).

A) The case where N(S)=—n<0; There is an open covering
X=U, U such that 7 Y (Up)=P'x U, n (U)=P'xU and that
zo=u"z, where z, (or, z) is coordinate of fibres over U, (or, U, re-
spectively) and where u is a local parameter at a point Q€ U.

i) X: rational.

a) If p|n, then

gy 0
0=g 970 +az + D,

62’0

where g€ #(nQ), De H'(X, @x) and where a is an arbitrary constant.
b) If ptn, then

0 0
=g— — D
=g 9z +(a—nah)zg o7, +D,
where g, D, a are the same as in (a), h is a fixed non-constant function
in #(Q) and where « is uniquely determined by D and h.
ii) X: elliptic.
a) If p|n, then

0=g—a——+az0 + D,

aZo aZo
where g€ #2(nQ), De H(X, Ox) and where a is an arbitrary constant.
b) If ptn, then

—y 0 0
0_g 020 ‘l’azo Ozo ’

where g, a are the same as in (a) above.
B) If S~P!x X, then

0=ao +GIZO

) , 0
620 +a2zo aZQ +D’

0
020
where aq, a1, a; are arbitrary constants and where D€ H(X, @x).

C) The case where X is elliptic, N(S)=0 and where S is
decomposable;

There is an open covering X=U,\JU;\UU; such that = }(U))
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=P'xU; (i=0,1,2) and that zo=u,z;, z0=uj;'zs, where z; is a
coordinate of fibres over U; and u, (or, us) is a local parameter at a
point Q1€ U, (or, Q,€ U,, respectively) and where ;% (,. Then,
there are Do€ H%(X, Ox), go€ £(Q,+Q;) and

0=(ago+b)zo ('?Zo +aD,,

where a, b are arbitrary constants.
D) The case where X is ellipticc, N(S)=0 and where S is in-
decomposable, that is, S= P, (see [ 3] p. 66).
There is an open covering X=U,\UU and z0=z+—1— (Notation is
the same as in (A)). ¢
a) If p2, then there are Do€ H(X, Ox), go€ £ (2P) and

0= (ago+b) +C¥Zo Z +aD,,
0

where a, b are arbitrary constants and « is uniquely determined by go.

b) If p=2, then
0=((b+a2) go-+ar) =t azo— —Fazzh -+ 0Dy,

where go, Do, & are the same as in (a) above and where ay, a;, b are
arbitrary constants.
E) The case where X is elliptic and N(S)=1, that is S=P,
(3] p. 66);
There is an open covering X=U,\JU and zy=uz+u"' (notation
is the same as in (A)).
a) If p2, then there are go€ .2(2Q), Dy H(X, @x) and

+ 20D0»

0 0 0
0=3ag,—=—+azo—~—+azd
8o aZO + zo0 8z0 + 0 6 0
where a is an arbitrary constant and where « is uniquely determined
by go and a.

b) If p=2, then
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0
0z

0

620 ’

0=ago 0 +az,
0

0z

+azd
0

where go, a, a are the same as in (a) above.

Sumalizing the above results, we have the following.

Lemma 10. Let (S, X, @) be a ruled surface, Os be the sheaf
of germs of regular sections of the tangent bundle of S and let p be
the characteristic of k.

1) Let X be rational and let N(S)=—n.

a) If n=£0, then
dim H°(S, O@5)=n+5

b) If n=0 (j.e. SZP'xX), then
dim HY(S, O5)=6.

2) Let X be elliptic and let N(S)=—n.

c) If ptn, and n+#0, —1, then
dimH(S, Os)=n+1.

d) If pln and n+#0, —1, then
dim H(S, Os)=n+2

e) If n=0, S is decomposable and if S;PIXX, then
dim H%(S, O5)=2.

f) If n=0, S is indecomposable (i.c. S= Py) and if p72, then
dim H(S, 05)=2.

g) If n=0, S is indecomposable and if p=2, then
dim H°(S, 65)=3.

h) If n=—1 (i.e. S=Py), then
dim HY(S, O5)=1.

i) If S=P'x X, then
dim H(S, 05)=4
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Corollary. 1) Aut(S) in Lemma 6 (Cf. Remark 5) represents
the functor wts over (Sch/k) in the case satisfying one of the con-
ditions (a), (b), (c), (e), (f), (h), (i) in Lemma 10.

2) In the case (d), (g) in Lemma 10, Aut(S) in Lemma 6 never
represents the functor futs over (Sch/k), that is, the group scheme
which represents this functor over (Sch/k) is not redued.

3) Let fy be the morphism of Lie(Aut’(S)) to Lie(Aut®(X)) which
associates to f in Lemma 6. Then, fy is surjective if one of the fol-
lowing conditions is satisfied;

i) X is rational.

ii) X is elliptic and S is decomposable with N(S)=0.

iii) X is elliptic, S is indecomposable and the characteristic of k

is not equal to 2.

Proof. If one notes that dimAut(S)=dimH°(S, @s) (or,
dim Aut(S)<dim H°(S, @s)) under the conditions of (1) (or, (2), re-
spectively) (see Theorem 2, Lemma 7 and Lemma 8), then our asser-
tions in (1) and (2) are followed from the results of [5]. Since
HY(S, @5)~Lie(Aut’(S)) if Aut(S) represents the functor Fess
over (Seh/k) and since f*<a0 azo +a zg 020 +ay 2z} aazo +D>=D
(De H(X, Bx)), we obtain (3) by virtue of (A) (i), (B), (C), (D), (E)

above. q.e.d.

Now, we come to the following theorem.

Theorem 3. Let (S, X, 7) be a ruled surface.
Q) If X is rational and S=F, (n>0) ([7] or [3] Theorem

4.3), then we have an exact sequence® of algebraic groups;

e—>H,.1—Aut(S)—>PGL(1)—e.

4) By an exact sequence of algebraic groups
esG >G5 G e
we mean the following; G’ is an algebraic subgroup of G and g: G/G’S G’ as
algebraic groups.
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(2) If X is elliptic and if S is decomposable with N(S)=0,

S %ZPI X X, then we have an exact sequence of algebraic groups;
e—>G—Aut(S)—> Aut'(X)—e,

where Aut'(X) is the group defined in Lemma 8 and where G is Gy
or the group defined in Theorem 2, (4) according to whether S satisfies
the condition (3) of Theorem 2 or not. Moreover, Aut’(S) is a com-
mutative group and it is isomorphic to S—s;—s; with the natural
algebraic group structure (see [9] Ch. VII §3 n° 15, 16), where si, s2
are the minimal sections of S.

(3) If X is elliptic and if S P,, then we have an exact sequence
of algebraic groups;

e—=>G,— Aut(S) > Aut(X) —e.

Moreover, Aut’(S) is a commutative group and it is a non-trivial
extension of Aut®(X) by G, ie. Aut’(S) is isomorphic to S—s with
the natural algebraic group structure (see [9] Ch. VII §3 n° 15, 17),
where s is the minimal section of S.

(4) If X is ellipticc S=P, and if the characteristic of k is not

equal to 2, then we have an exact sequence of algebraic groups;
¢e—>d4—>Aut(S)—>Aut(X)—e,

where 4 is the group of the 2-torsion part of X. Furthermore, we
have that ANAut’(S)= 4.

Proof. Exactness of the sequences of (1), (2), (3) above is fol-
lowed from Theorem 2, Lemma 6, Lemma 8, and Corollary to Lemma
10 except for the case where S P, and the characteristic p of k is
equal to 2. In order to prove exactness of the sequence in (3) in the
case where p=2, we must show that Aut’(S)/G,—Aut’(X) is a
separable morphism. In fact we can prove existence of a local section

from Aut’(X) to Aut’(S), but it is very complicated, hence we omit
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it. By virtue of Corollary 2 to Theorem 13 of [8], we have that
Aut’(S) in the case (2), (3) is a commutative group. In the case (3)
if Aut’(S)~Aut’(X)xG,, then an orbit of Aut’(X)x {e} is a section
of S, whence it meets the minimal section s of S. On the other hand,
s is also an orbit of Aut’(X) x {e}, which is impossible. Thus Aut’(S)
is a non-trivial extension of Aut’(X) by G, It is easy to see that
S—s with the natural group structure (or, S—s;—s; in the case (2))
acts regularly on S (or, S in the case (2), respectively) (see [9] Ch.
VII n°15). Thus we have the last statements of (2) and (3). By
virtue of Lemma 4.5, Theorem 4.7 of [3], if P,~P(E), we have
that E~XEQ®N if and only if N*~ 1. Thus if S=~P;, 4 in Theorem
2, (1) is isomorphic to the 2-torsion part of X. Hence, by virtue of
Theorem 2, Lemma 6, Lemma 8 and Corollary to Lemma 10, we have
an exact sequence in (4). Finally, the latter assertion of (4) is fol-
lowed from Lemma 9 because the orbit space of Aut’(S) is a linear
pencil satisfying the conditions (a), (b) in Lemma 9 and because
A=Z/2ZPDZ/22Z. g.e.d.

Remark 8. In the case (4) of the above theorem, we have a
morphism f: Aut(S)/4— Aut(X) even if the characteristic p of k is
equal to 2 (4 is the 2-torsion part of X). Moreover, we know that
ANAut’(S)=4 (see Remark 7). But if p=2, then f is not an

isomorphism (i.e. f is purely inseparable).

4. In this section we shall consider an application of the above
results. A complete non-singular surface S is called an elliptic surface
if and only if there is a morphism g of S to a complete non-singular
curve C such that g‘l(c) is a non-singular elliptic curve for a generic
point ¢ of C. Consider the following problem®; “When does a ruled
surface become an elliptic surface?”’

Since if a ruled surface S is an elliptic surface, the curve C in

5) This problem was solved by T. Suwa [10] when the base field £ is the
complex number field,
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the above definition is a rational curve, our problem is equivalent to
the following; “When does a ruled surface carry a linear pencil

satisfying the conditions (a), (b) in Lemma 9?7

Lemma 11. Let (S, X, n) be a ruled surface. If S is also an
elliptic surface, then (i) X is an elliptic curve and (i) N(S)=0 or 1.

Proof. By virtue of Lemma 23 of [ 2] (it remains true even if
the characteristic of k is positive), we have that (K?)=0 for a canoni-
cal divisor K on S. On the other hand, if the genus of X is g, then
(K?)=8—8g. Thus we get that g=1, whence X is an elliptic
curve. In order to prove (ii), assume that N(S)=—n<0, then
S=elmp,, p,(P'x X) for some points P, ..., P, on Px X (PeP"). If
S carries a linear pencil satisfying the conditions (a), (b) of Lemma 9,

n

it must be the proper transform of a linear system L, on P'x X
S

such as L,,s=< r(PxX)+ 2 met(x)|— 2 rP;), where r>0, s=0,
i1 i=1

Pe P, %, ..., x;€X and where m, is the projection of P'X X to

X. Let D be a general member in L, ;, then D must be irreducible
and D can not be tangent to fibres going through P; (1<i{<n). Since
pa(D)=r+(@—1)(s—1), D*=2rs, we have that

nr(r—1)

1=pa(elmp, .. p,[DD=r+(r—1) (s~ 1)~ —5—,
0= (elmpl,.__,p"[Djz) =2rs—nr?.
nr< (D, Px X)=s.
Therefore, we obtain that r=0, which is a contradiction. q.e.d.

Theorem 4. Let (S, X, ) be a ruled surface over an algebraical-
ly closed field k with characteristic p.

i) If S is an elliptic surface, then X is an elliptic curve.

if) Assume that p=0. Then, S is an elliptic surface if and only
if one of the following conditions is satisfied;
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1) Sz=p
2) S is decomposable with N(S)=0 and m(s-s) is a torsion
element in the Jacobian variety of X, where s is a minimal
section of S.
iti) Assume that p>0. Then, S is an elliptic surface if and only
if one of the conditions (1), (2) above or (3) below is satisfied;
3) Sz=P,

Proof. (i) is Lemma 11, (i). By virtue of Theorem 3, (4) and
Remark 8, S is an elliptic surface if S=P,. It is clear that if S
=P'x X, then S is an elliptic surface. If S is decomposable with
N(S)=0 and if S;PIXX, then S=elmp p(P'x X) for some points
Pie(0)xX, P,e(o)x X and w(s-s)=mo(P)—mo(Py) for a minimal
section of S, where 7, is the projection of P'x X to X ([3] Proposition
4.1). A linear pencil on S satisfying the conditions (a), (b) of Lemma
9 is the proper transform of a linear system L, for some r>0 on
P'x X;

L=(Ir(Px X)+ £ 75*(x)| —rPi—rPy).

Take a general member D in L,, then mo(D+(0)x X)=rmo(P)) is
linearly equivalent to mo(D-(o0) X X)=rmo(P;). Thus n(s-s)=m,(P;)
—mo(P;) is r-torsion element. Conversely, suppose that 7w(s-s)=my(P;)
—mo(Py) is a torsion element. Let r be the smallest positive integer
such that rw(ss)=0. Then,

Ly=(r(PX X)+ras (mo(P1))| —rPy—rPy)

contains r((0) X X)+rryl(mo(P2)) and r((c0) X X)+rrgt(mwe(Py)),
whence dimL,=>1. A general member of L, is irreducible because r
is smallest. It is easy to see that the proper transform of the above
L] by elmp, p, satisfies the conditions (a), (b) of Lemma 9. Thus if S
is decomposable with N(S)=0, then S is an elliptic surface if and

only if 7 (s's) is a torsion element for a minimal section s of S.
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Lemma 11, (ii) implies that the remaining part of our proof is the
case where S= P,. If P, carries the required linear pencil L, then G,
acts non-trivially on L (Theorem 3, (3)). Every member of L is never
a section because two sections of P, meet to each other. If D is a
general member of L, then D:l=P;+---+P, (P;5P; if p=0, i#]),
where [ is a general fibre of P,. Any element 0€ G, such that ¢(P)
=P; fixes D. This is impossible if p=0. If p>0, then Py is an
elliptic surface by virtue of Proposition in p. 336 of [6] (take the

minimal section as C in the Proposition). q.e.d.

Finally, we add some more remarks.

Remark 9. 1) If p5%2 and S=P;, then S has three singular
fibres. They are multiple fibres of the following type; 2C, C is an
elliptic curve with (C, 1)=2 for a fibre 7 '(x)={. This is proved by
studying the action of automorphisms on the points s;s; 10, j<4,
where s; are minimal sections on S such that 7w(s;es1)="--=m(s4°54).

2) The moduli space of isomorphism classes of decomposable
ruled surfaces S with N(S)=0 is a curve (see [ 3] Theorem 4.10).
The parameter is 7 (s-s), where s is a minimal section of S. Thus
Theorem 4 shows that the cardinal number of the set of isomorphism
classes of ruled surfaces which carry the structure of an elliptic surface
is countable.

3) If S satisfies the condition (2) of Theorem 4 and if S
;PIXX, then S has two singular fibres rsy, rs;, where s;, s; are the
minimal sections of S and where r is the smallest positive integer such
that rm(s;es;)=0.

4) M. Nagata and the author proved directly that if p>0 and
S= P,, then S has a linear pencil L satisfying the conditions (a), (b)
of Lemma 9 and (D, l)=p for De L, I=n""(x).
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