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Introduction

The stable homotopy classes of maps: ),'*"X— 3,"*Y will be denot-
ed by 79(X; Y). When X=Y, & (X)=2 (X), #/(X)=r7(X; X)
forms a graded ring with the composition as the multiplication. p

n+l

denotes an odd prime and M=S"Ue a Moore space of type (Z,, n).
We call a space X a Z,-space if &/4(X) is an algebra over Z, or equiva-
lently MAX is the same homotopy type of X,"XV 2,""'X (n: large).
Then 75(MAX; MAY) is decomposed into 7§,,(X; Y)Pr;(X;Y)
Pri(X; V)Prd_(X;Y). For given ye€n7(X;Y), the smash product

1y A7 is decomposed to 0 (7y)PrPr0, and we have a linear map
0: n¥(X; V)i (X5 Y)
This ¢ is a derivation:
OGT)=0() 7"+ (=" 70 (1)

and if the spaces satisfy a sort of associativity then 6 is a differential
00 =0 (Theorem 2.2).

On the other hand, for a given &€ «/,(M) the decomposition
ENlx=21x(&) D(other terms) defines a linear map

Ax: (M) —> o1,1(X).

The basic property of this operation is the following commutation
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low (Theorem 2.4):
Ay &)y — (=D rag(©)=(—1)"*0(r) 2x (08) — v (£0) 0 (1)

where 7€n3(X; Y), é€ /(M) and 0 is a generator of & _(M)=2Z,
given by a smashing map. Note that Ax(0)=1x and Ax (1)=0.

We shall show how these operations are applied to determine mul-
tiplicative structure of &/ (M) and &4 (V (1)), where V(k), 0 <k <3,
is a Z,space (spectrum) given in [14]. For V(0)=M we have the
equality (Theorem 2.6), 6=D for D in [ 3],

An(§)=—0(8), &ec(M),

from which several relations in o7,(M) follow. For example, a generator
a of (M), g=2(p—1), whose mapping cone is V' (1), satisfies 0 ()
=0 and (ad—0a)&=(—1)48"¢(@d—0a), in particular Yamamoto’s
relation a0 —2ada+0a’=0 follows.

In the sections 3 and 4 we shall determine the structure of the
algebra o7, (¥ (1)) for degree less than (p®—1)q—5, where we assume
p=>5 since we need the existence of a generator S €., ,(V (1))
whose mapping cone is 7 (2). Let i;: M—>V (1) and 7y: V(1) 'M
be the natural maps and put B¢=m1F°i1€ L (sprs-1)-1(M). For the
above range of degrees, the algebra &/,.(V (1)) is generated by seven
elements 0y =101 € & _4 0, O1=01T1E A _4_1, &' E A y_s, &' =y 1,(0ad)
Ey-1, B =4vy(0B1)0) E A pg_2, B and "€ (p,0y0-3, Where 0(0)
=—0y, 0(@)=a’, 0(B")=pa"—a”B and 6(0)=0(a)=0(8)=6(R)
=0. An additive basis for .&/4(V (1)) is given in Theorem 3.6. In the
section 4 we determine a generating system of relations, among them

the following are useful and analogy of the Yanmiamoto’s relation:
B20,—2p01f+0:8°=0, P& —2Ba"B+a’B?=0,
B300—3B%00 B +3B0¢ B —00B*=0.

In the first half of the section 5, we reprove Yamamoto’s result
on &4(M) and generalize his relations (Theorems 5.1, 5.2). Let i: S”
—M and 7: M—>S"*! be the natural maps and put (0=in)



Algebra of stable homotopy of Zp-spaces and applications 199

a,=7ra’iEG,q,1 and Bsznﬁ(s)iEG(s,,H_l)q_g.

«, is detected by Adams invariant, and recently L. Smith has
proved the non-trivialtiy of 3, for general s>1. For the elements f,,

we have the equality

t(r4s—t)B, Be=rsBiBris-1

and hence every monomial .IkIBSi is a multiple of B,, B;B* ! or
Bpt-1820%2 (Theorem 5.3). o

In the second half of the section 5, we consider a class
7r11€ & p2g-1(V (1)) whose mapping cone is V<2-;—>/V(1) and put
T)y=T17[1101 € & (p2-1)-2(M) and y1=ny) €Ge_1y,-3. Then we have
(Theorem 5.5)

Tay=(Ba)0+08a)? (mod Bp-1)0cx)
and this implies (Theorem 5.8)
B.8?=0 and B2*1=0 for s>2.

The non-triviality of y; (a multiple of a@;83,-1) is an open question, we

have however
al/i,,_l,[?s-——o for 823 if Tl%o.

The section 6 is a deep discussion for the case p=3, whence V' (2)
and A do not exist, M and V(1) are not associative and the products
a’a”, a’'a” are non-trivial (trivial if p>5). So the structures of
& (V(1)) and o 4(M) are quite different from the case p>>5. Some
of Yamamoto’s relations in [15] fail for the case p=3, and the cor-
rected values will be given in Theorem 6.8.

In the last section we shall prove 8”0 for p=5 (B"B"'=0
for p=>7), the only particular property of the case p=5.

1. Smash Products in Stable Homotopy.

In this paper, all spaces, maps and homotopies are base pointed.
[X, Y] denote the set of the homotopy classes of the maps f: X— Y,
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in which we use the same symbol f&[X, Y] for the homotopy class
of fo XAX'=XxX'/XVX" and fAf': XAX'->YAY’ are the smash
products of spaces and maps. Denote by
T=Txx: XNX>X'NX
and
1=1X: X—>X
the map switching the factors and the identity map respectively. S”
denotes the unit n-sphere with the identification S” A S"=S"*". We
write simply
ln:15", TX,n: TX,S"; Tn,X: TS",X, Tm,n: TS’",S"-
The n-fold iterated suspensions of a space X and a map f are defined
by
2"X=8"AX and X"f=1,Af.
We identify S°AX and XA S® with X naturally. Whenever consider-
ing triple smash products (XAX)A X" and XA(X'AX"), two of the
spaces X, X', X" are compact, and the triple smash products are

identified. The composition of maps f: X— Y and g: Y—Z is denoted
by gf: X—Z. Then the following equalities hold.

(1.1) lyf=flx=f, h(gf)=(hg)f,
LA f=fAL=f, INFINF =FN NS,
(HINES)=(gNg)Y NS,
L= I H=E"g) (X7,
Tox=Tx,0=1x, Ty y (fANfI)='NF)Tx x
and T n=(—1)"" in [S™*" S™+7]
Apparently, the composition, the smash product and >.” are com-

patible with the homotopy, and (1.1) holds for the homotopy classes of

the maps.
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For each integer k& we define the k-th stable homotopy groups of
the spaces X, Y by

m3(X; Y)=lim[ "X, >"Y] (n+k, n>0)

where the limit is taken over the suspension ;. 73(X;Y) is an

abelian group. We define t-suspension isomorphism
1.2) ZhmX V) =ai(SX X))
by associating to each fe[X"**X, 3"Y]=[S"*"*AX, S"AY] the
class
(T w AN D (Tusre Alx) €LE"HEX), ZHE'Y)],
that is

1.2)" S fY=(=1Y*{f} for the classes { } of the same fe[ 1" X,
Z’H’X:l-

Sometimes we use the same notation fe€n§(X;Y) for the limit
{f} of fe[X; Y], eg, Txyen§(XAY; YAX), 1xenj(X;Y).
The product (composition)
i (Y; 2)Qni(X; V) > min(X; Y)
is defined by
{gH {fr=1gXZ"" "N}
for gE[Zm”‘Y, ZmZ:I, fE [erkX, Z"Y:L m+h2n

This product is well-defined, bilinear, associative and has the units

1x. We write
(X Y)=};7rf(X; Y),
d*(X)=ZkIdk(X), A (X)=ri(X; Y).

Then 74 (X) is a graded ri’ng and 73(X;Y) is a left o4 (Y)-right
4 (X) module.

The homomorphisms
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g« =B (X5 V)=, (X5 2)
and
fr=a*: 7i(Y; Z)>n3 (X Z)
are defined by By(a)=a*(B)=pa for f={g} and a={f}.
Next we shall define a smash product.
N i (X VIQui(X; Yo ai o XAX; YAY).

Let fe[2"*"X, 2'Y] and f'e[;"** X', 22"Y"] be representatives of
acni(X;Y) and @’ €nf(X’; Y') and put

f*flz(ll/\ TY,m/\ 1}”) (f/\fl) (ll+h/\ Tm+k,X/\1X')
ZZHm”Hk(X/\X/):SI”'/\S"H'k/\X/\X/% SH'II/\X/\ S"H'k/\XA’
SSIANYAS"AY' 5 SIANSPTAYAY =3H"YAY).

Then aAa’ is the class {(—1)"*(f*f")}.

Theorem 1.1. The smash product N is well defined and bilinear.
The following formulas hold.

(1.3) (Ba)N(B'a’)=(—1)dEd s (B A B) (@A),
(1.4) Ty y(@Aa)=(—1)%s 4 (' N@) Tx x,
(1.5) LANa=}'a,

(1.6) (@Na)Na"'=aN(a ANa').

Proof. By (1.1), we have (X f)xf'=2(f*f") and f*(XZf")
=T ADS (ff) (T AD)=(—1D"Z (f*f’). Thus the definition
of aAa’ is compatible with the suspension, and the smash product is

well defined. Next the equalities

(g N*(g" (THfN=(gxg) (T "H*(Z" )
(Tiw A\ Ty y ) (f*f)=Cf %) (Trenmer\ Tx,x7)

and
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(S*fORf " =fx(f*f")
are verified without difficulties. Then (1.3), (1.4) and (1.6) follow.
(1.5) follows from the definition of ).’

As a corollary we have the following.
(L7 anad'=(@Aly)IxAa)=(—1s eIy Aa)) (@A 1x).
(1.8) XD'ona'=Z'(ana), ZD'(Ba)=(Z'B) (X'a).
Also we remark
(1.9) loAa=aAly=a and Tox=Txo=1x.
Let I=[0, 1] be the unit interval with the base point (1), and let
g: I S!
be a mapping of degree 1 which identify (0) and (1) to the base point.

The cone over X is defined by CX=IAX. Consider the mapping cone
of a map f€[X, Y]: C;=Y\U;CX, and consider the cofibering

Y- LCi= X
where 7 is induced by ¢ Aly: CX— > X. Then there exists a homeo-
morphism

hi 5"Cr— Cspy
such that the diagram

Z”Y& Z"Cf&" Zn+1X:Sﬂ/\81/\X
(1.10) 1 Ih YT uan1x
ZnY—i>CZ"f Lle+1X=SI /\Slt/\X
commutes. For 1=1; we can identify C;AZ with Csr; then we have

a cofibering
X/\Zﬂ»(,'f,\lch/\Z"’\—l» IYNZ
Consider a representative fe[)"**X, ;Y] of an element

ac€ny(X;Y), and the mapping cone C;=>"Y\U,CY,"**X and the
cofibering >;"Y—5C;—=> 3 "*¥+1X. Then
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iens(Y;Cs) and mwensS, ,_,(Cs; X),
and we have the following two sequences.
(L1 Eomf (W5 X) =5 mfu(Ws V)2 eI €)oo
Qan*  Hrmi(Y; 2) 25niuX; Z) Zoniia(Crs Z2) 45

As is well known

(1.12) the above sequences (1.11) and (1.11)* are exact if each spaces

are finite CW-complexes.

Let M=M,=S"U,e* be a Moore space of type (Z,, 1), ie. a
mapping cone of a map p=p-1, € #,(S°), where p is a prime. We

have a cofibering sequence
Stt,8' i, M, =, S%52,...

where ienf(S% M,), menS,(M,; S°).

Lemma 1.2. The following four conditions are equivalent.
() plx=0 in Zo(X).
(i) L«(X) is an algebra over the field Z,.
(i) 73X Y) and n3(Y; X) are Z,-modules for any Y.
(iv) There exists eclements pxenS,(MyNA\X;X) and
e ns(X; My,A\X) which satisfy the following

txpx =0, ux(Nlx)=(@Alx)px=1x
(1.13) and

GNAIx)ux+ox(mAlx)=1ypx.

Ox

Proof. Since 1y is the unit, (i), (ii) and (iii) are equivalent. (iv)

implies prlx=p(Alx)ux=pi)Alx) #x=0 and (i). Assume that
(i) holds, then for sufficiently large n, p+1:X;"*! X— 31**1X is homotopic
to zero. By use of the homotopy we have a homotopy equivalence
BiCp=2""XUpnC " X > Co=2"""XV L"*?X such that the

diagram
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Z’HI‘Y;"Z)HIJYU{)-ICZ’l+1XL’ZIl+2—Y
1 (Y 1
Z'l+1X—i’—vZ’l+1X\/Z"+2X —”—7>Z”+2X

homotopy commutes. M,A X is a mapping cone of f=p-lyx, then p-1
=2."f and we have a homeomorphism A: 2 "(M,AX)—>C,.1 of (1.10).
Put hy=h'h, then we have the following homotopy commutative

diagram

Zn+1XZI"'(i/\1,\>) Z”(Mp/\X) ZMr AL x) Zn+2X
1 Lho Je-n»
Z;H-IX i Zn+1Xv Zn+2X 7y Zn+2Xa

where the lower sequence is the natural cofibering. We also have

another natural cofibering
Z'HZXJZ—»Z"HX\/Z’HZXLZ""LIX
b
then the equalities (in homotopy classes)
miii=2""1x, mi=X"*1lx, Lm+ime=1

hold. For a homotopy inverse ko of ko, put #=m1he and ¢ =(—1)"hois.
Then 7,i,=0 and the above equalities imply

ue=0, aX"(iNlx)=x""1x, Z'@Alx)e=2""1x
and
LN nte"(mA1x)=1.

Let #x and ¢x be the limits of # and ¢ respectively, then (1.13)
holds. Q.E.D.

The condition (i) is to say that the stable order of X is p (or
possibly 1) in the sense of [9]. It is well known that ply,=0 iff
p>2. In the following we always assume that p is an odd prime.
Put

6:i7fe d_l(Mp).

Lemma 1.3. Let M=M, and T=Tyu€ L(MAM), then the
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Sfollowing rclations hold 2],
() T=—=CGALy) 1+ ou(mAly)+@mo s,
(i) ImAi=—0ALlm)+omu0, IuAT=mAly~+01m,
(i) umT=—um, Teu=on.
Proof: Since p is an odd prime, &1(M,)=0 and &7, (My)=Z,

is generated by 1=1. Then uTe=0, uT(iNA1)==x-1 and (x ALl)Tep
= y+1 for some x, y€ Z, Using (1.7), (1.4), (1.9), (1.13),

2 i=puTUEAD) QoAD)=nTEND)=—n(ENi)To,0
=—nGNAD (LA =—i.
and similarly y-r=@An)To=(mAnm)p=n. Thus x=-1, y=1,
and uT(iND)=—1, (rA1)Tp=1. Then —u=puTGEAl)u=pT and
¢=¢(r A1) Tp=T¢ by (1.13), and (iii) is proved. Next
AADTGEAD =@ AL AAD) Ton=1oAd) (TALy)=in=0.
Then we have (i):

T={GAD u+e@ADYT{GCALD) u#+e(@m A1)}
=EADpuTEAD) p+ 0@ AT EAL) g+ @(m A1) Te(n A1)
=—(CEADp+eor+e(rAl),

and (ii): IAi=QADTou=TUEANL)
={=GAD+ 0} u(iND)+o(@iNl)
=—0GA1)+¢0,
INt=(@AL)T=nAl+0un Q.E.D.

Remark 1.4. Let (ux, ox) and (uyx, ¢%) both satisfy (1.13).
Then pux=pyx iff ox=¢k-
For, if ux=pyx then ¢f={GADux+e¢x(mAlx)}¢'x=¢x, and

conversely.
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2. Operations 8 and Ax in Z,-Spaces.

Definition. A space X which is equipped two classes fx
enS,(M,ANX; X) and ¢xens(X; My,AX) satisfying the equalities
of (1.13) is called as a Z,-space. A map (class) y€n3(X; Y) is called

a Zy,-map if it satisfies
(—Drrux=nuy(Au A7) and @yr=01nA7)ex.
A Z,space (X, px, px) is called associative if

ux(yAnx)=—nx(uuNlx), (AuAex)eox=(uNlx)ex.

For the examples of Z,-spaces in this paper, the elements xx and

¢x will be unique by the following

Proposition 2.1. Let (X, ux, ¢x) be a Z,-space such that X is
a finite CW-complex. If £(X)=0 then pux and ¢x are unique and
there exists uniquely an element ax € (X)) such that

Ux(AuApx)+ux(uuN\lx)=ax(m AnAlx)

and
(IuAex)px—(euNAlx)ox=UNiAlx)ax.

In particular, X is associative if o/1(X)=ua>(X)=0.

Proof. Consider the exact sequence (1.11)* for the case X=Y=2,
n=1, a=p-ly, then the condition /1(X)=0 implies that (i Alx)*:
7S, (M,ANX; X)—>o(X) is a monomorphism. Since pux satisfies
GALx)*ux=ux(iNlx)=1y, it follows the uniqueness of ux. The
uniqueness of ¢x is proved similarly.

By Lemma 1.3, (ii),

2xUuAux) GANiNLIY)=px(Au Aux) GAIuAlx) GA1x)
=ux(IyAux)(—IyNiNlx+oudAlx) (Alx)
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= —pux(ENA1x)+nx(AuArx) (pudiNly)=—1x
and
ux(uuA1x) QNIALx) =ux(uu(EAIM) Alx) GA1x)=1x.
Thus ux(AmAux)+ux(uuAlx) is in the kernel of
GALD*G AL ALY 15,(MAMAX; X)— 75 (MAX; X)—> o4(X).

As above (iAlx)* is a monomorphism. Also Ker((AlpyAlx)*
=(@AIMAL)*n§(MyAX; X) and (t Alx)*: &2(X) > a§(M,AX; X)
is an epimorphism. Thus there exists an element ay €& .«;(X) such
that

tx(AuAnx)+ux(uuAlx)=ax(m Alx)(m AlyAlxy)=ax(r AT Aly).

Since (M AT Alx)(ouAlx)px=1x,ax(mAnAlx)=ak(t AT Alx)
implies ax=a%. Thus ayx is unique.
Next by use of (1.13) and Lemma 1.3,

GAIALx)ax(m AmAlx)
=C@AIuALx) GALx) ux(Iu A px + u Alx)
=CEAIALY) AuAlx —9x(@ A1x)) Am A rx + un Alx)
=(—1IuAiNlx+eudAlx) AuAux)+GEA1n) tuAlx
—C@ENex)(mApx+ruuAlx)
=—IuAAuAlx—px(TAlx))+oudAprx
+AuAIn—ou(@ AL Alx —0A@x 1tx—OunNox
=1luNex(MA1x)+oudAux—oeu(m A1) Alx
—0Noxux—0umNAox
and
AuAex—ouAlx) ox(m AmwAlx)
=AuNex—euAlx) AuAlx—GEALx) x) (T A1y Alx)
=AuA¢x) AMATALlx —0unAlx)—(EA@x) (T Aux)
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—ou(@ AL ALx+(ouiNAlx) (T A\ ux)
=1y Nex(TAlx) —0unNox —0Aoxttx —ou(@m ALy Alx
+oemdAux

=0EANiALlx)ax(T AT Aly).

Since (mATAlx)(¢uAlx)px=1x, we have (IyAg¢x—oeuAly)eox
=(i/\i/\lx)c¥x.

The following (2.2) is directly verified from Theorem 1.1 and
(1.9).

(2.2) Let (X, ux, ¢x) be a Zyspace and let X' be an arbitrary compact
space, then

(XAX', pxpx-=txNxy @xax-=¢xA1lx),
(X'AX, uxonx=AxAtx) (Tu,x Alx),
ex'ax=(Tx uAlx)(1x Agx))
and
(XX, px=2"1x(TuaN1x), oux=(TiuAlx) X ex)

are Zy-spaces.

We have easily

(2.3) Let aeni(X;Y) be a Zymap and let &' €ni(X'; Y') be an
arbitrary element, then by use of the above Z,-structures, we have that
aNd,ad'Na and Y'a are Zymaps. In particular, & ANlx is a
Zy-map.
Let X and Y be Z,-spaces, then we define a homomorphism
0: n3(X; Y) > 7i(X; Y)
by the formula

0r)=uy(luAT)0x for ren(X; Y).

This operation has the following property
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Theorem 2.2.
G) 6 is derivative: 0(r7")=0() 7"+ (—1D)**r0(r").
(i) 0()=0 iff v is a Zymap.
(i) OBAT)=(—1)EPRAO(), in particular, 0(L'T)=2L"0(7).
(iv) If X and Y are associative then 60(y)=0.

Proof. Using Theorem 1.1, (1.13) and (1.9) we have the follow-
ing.
0Gr) =1y A1) ow=ny(Au A7) A AT') 0w
=uy(Au AD{GALY) x +ox(m ALY A AT ow
=(—D* uy (i Aly) QAT OG) +0() (Lo AT (m Alw) ow
=07+ (= D" 700,

0(Y)=uy(Iu A7) ox =ty oy7=0 for a Z,map 7, and conversely
if 60(7)=0 then

py(Au AT =tyAu A {ex(m Alx) + (G Alx) px}
=0() (T AL+ (= 1" uy (i A1) Lo AT) 1
=(—1D¥ 1 px
and
AN ex={or(mx Aly) + (@ A1y) ny} AuAT) ox
=¢y7.
OBAY)=tyr av(AM ABAT) @x/ax
=y Auy) (Tuy Aly) Au ABAT) (Tx uAlx) Ax Ag)
=y Auy) (BAIMAT) (Lx A ex)
=(=D*EBAOG).
By the associativity of X and Y,
00(r)=pr(Au A uy) Au Al AT) Au A @x) ¢x
= —uy(uu Aly) Au ALy AT) (9 Alx) ¢x
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=—uy(Umeu A7) 9x=0. q.e.d.

Remark that

(24) IuAT=0EAITUx+orr (TALY)+E ALY)O() (m A lx) holds
and this characterizes 0(r).

The following lemma may be used to show the triviality of the

derivation 0.

Lemma 2.3. Let X and Y be finite CW-complexes and Z,-spaces
and let C=C;=3"Y\U;CY."**X be a mapping cone of a representative
fELE™ X, X"Y] of reni(X; Y), then

P'IC ':Lﬁ(')’)n' in «R{()(Cf).

Thus Cs is a Zy-space if 0(r)=0. Further assume 7S, (YV; X)=uw1(X)
= (Y)=0, then 0(y)=0 if Cs is a Z,-space.

Proof. First assume that n is sufficiently large so that there
exist maps uw €[ M,AW, X W] and owe[X°W, M,AW] for W
=>"Y, 2"**X satisfying (1.13). For s€ I, we Y, W, we represent by
(s, w) the corresponding points of CLW=IAYW and of M, AW
=2 W\UpaCL W, in latter case (0, w)=(pAlw)w). Then (s, w)

— uw(s, w) defines a null homotopy
awi IX LW W
of pAlw=p-lgw. As we define a map
O DEW > M,AW
by putting g9 (), W=(2s—1, W) for s> and (g (), w)

=pw(l—2s, w)e 2, WC M,A\ W, then it is easily seen that in homotopy
classes (m Alw)ew=1w and uwep=0. By (1.13)

ew=1{GAlw) tw+ ew(m A1w)} 0l = pw.

Thus i6(y)m is represented by Yiuy-(IuAf)ex 2me[5Cr 2Cr],
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where X'=)"*"**1X, Y'=3""'Y.
Next consider a homotopy g;: Cys— Cop=2""'Y Uz CLMHIX
given by the formulas (¢, s€ I, x € "1 X=X', ye 1"'Y=Y")
&(y)=ny(t, y)
ﬂY’(t_zs, Zf(x))’ OSSSt/Z,
gt(ss x): (Zf)ﬂX'(zs—t) x)3 t/z.g'ggtg
=0/ =), px (2, x)), t<s<1l
Then g is well defined (e.g., g:(t/2, x)=(pAly) Zf(x)=2Z f(pAlx)),
g0=h(p/\lc)h'l for the homeomorphism h: 3 Cs— Csy and g1=iuy-
AuAf)(—¢x)m for the natural maps },"*'Y s Cypp s 3" ¥*1 X, By
the commutativity of (1.10) it follows p:lc(=pAlc)=2iuy-(IuAf)
px m=i0(r)m in Zo(Cy).
When n is smaller, consider };2Vf for sufficiently large N then
we have the same relation.

Next assume 75,(Y; X)=&/(X)=/;(Y)=0 and that C; is a
Zy-space. Then i0(y) m=p-1c=0, and 6(y) is a kernel of

x5 (X Y)ous,(Cr; Y) > o(Cy).

By the exactness of (1.11), Keriy is an image of #n5,_,(C;; X). By
Q10)* o \(X)—> 7S, ,(Cs; X)—> s, (Y; X) and o 1(Y)—>Kern*—0
are exact. It follows that Keriy=Kerz*=0 and 6(y) € Ker ({7 *)=0.

q.e.d.

As an analogy of 0, for each Z,-space X we define a linear map
A=2x: (M) > 1 (X)
by the formula
x(&)=ux(ENlx)ox  for ¢€,(My).
Recall 0 =iw € & _1(M,). Obviously

(2.5) di=m0=00=0.
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Theorem 2.4.
(D) x(§8)=24x(§) Ax(0¢") + Ax(£0) Ax(£).
(1)) 2Axax(&)=1xA2x(8), in particular Agx(&)=2"Ax(8).
Gii) For rens(X; Y) and &€ o,(M,),

Ay (E)r+ v (§0) 0() = (=D ¥ r2x(§) + (= D™ 0(r) 1x (98).
(iv) Ax(080)=(m&i)Alx, Ax(0)=1x and Ax(1y)=0.
v) 0Ax(&)=2x(0(£))=0 if X is associative.

Proof. By use of (1.13), Theorem 1.1 and (1.9) we have
AEEN=uEAD{GAD n+ (@ AD}(E A ¢
=nEiAD) (@ADL @A(E)+A(E) nGAD) (T’ AL) ¢
=A(£0) A(&") + A(&) 2(0¢"),
Axax(@)=0x A (Tuy AD EANLx A (Tx,u AL Lx Ag)
=Qx AW Ax AEAD (Ax- Ap)=1x AAE),
Ay(§) 1+ Ay (£0)0(r)
=puy(EALY) oyt + ay(§in Aly) oy ty(IM AT) @ x
=uy(§Aly) oy(LoAT) (T Alx) ox
+uyENLY) CALY) uy(lu AT) ¢ x
=uy(ENI{er(TAly) +GALY) uy} AuAT) ¢ x
=uyENLY) AuAT ex=(=1"*uy(Au A7) EN1x) ¢x
=(=D"*uy(Au ADAGALx) ux+ox (A1)} EN LX) 9x
=(= DD uy( Aly) (LoAT) 2x(§)
F(=D*0) uxGEA1x) (TEA1x) @ x
=(=D P rax(©) +(—D™0() 1x(09),
Ax(0€0)=2Ax(ingin)=ux(iAlx)(m&iNlx) (T Alx) ox
=néiNly,
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Ax()=pux(@N1x) (@ A1x) px=1x,
Ax(I)=ux(AuN1lx) px=pnx ¢x =0,
and by the associativity and by use of next Theorem 2.6,
0Ax(EN=r1xAuAnx) AuAEALx) AuAex) ¢x
=—ux(uuA\1x) AuAENLx) (puA1x) ox
= —2x(0(8)) =2Ax(Au($))
=ux(tuN\1lx) EANIuALx) (puAlx) ox
=ux(IuA1x) EANIuALx) AuAex) ox
=ux(ENuxex)px=0. q.e.d.

Corollary. 2.5. If 0(y)=0 or if €0=0&6=0 (e.g. £=070) then
the following commutativity holds:

Ry (&)= (—1)cstrDIET 1 2 (8).

In the remaining part of this section we consider the case X=M,
(p: odd prime). M, is a Z,-space and both of 0 and Ay are defined on
o/,(M,), and our 6 coincides with D of [3].

Theorem 2.6. For &€ (M) we have

n(8)=—06(&).

Proof. By Lemma 1.3, (iii),

() =nu(EANL) ou=—1uT(EN1M) Ton
=—un(AuNE) o= —0(¢).
Corollary 2.7. Let ¢€(M,) and y€ 4 (My) then the following
equalities hold.

(2.6) 0(0)=—1,
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2.7)  wm(080)=(mENN1y=80—(—1)'06+006(¢)0,

(2.8) An(08)=¢+00(8), m(£0)=(—1)'¢—06(£&)7,

(2.9 07+ (=11 &0() +0(£) 000y
=100 ¢+ (=1)*"170(8) + 0(3) 00(£)},

(210)  &y—(—1)"9¢
=(—1)"*700(&) —86(&)7+(—1)" 0&0(y) — £00(y) —0(&) 56(p)
=—0(&) 0+ (=11 90(&) 8+ (—1)*""*0(y) &0
F (=1 0(p) 08+ (= 1) 0(5) 90(8) 0.

(2.11)  g0p—(—1)'0&n—(—1)"* 90+ (—1)"" "+ y¢
=(=1)"*906(£)0 —06(&) 0.

Proof. 0(0)=—An(0)=—1.
An(0§0) = —0(060) = —0(0) §6+00(£) 0+ (—1)'060(9)
=§0—(—1)'0¢+00(£)0,
Au(0§)=—0(08)=—000)§+06(&)=£+00($),
An(§0)=—0(60)=—0(&)0+(—1)'¢

(2.9) follows from (iii) of Theorem 2.4 of the case y=v. Similarly
the formulas of (2.10) and (2.11) are obtained by replacing & by 0§,

&0 and 0&0 respectively. More discussions can be seen in [ 3].

3. Z,-Spectrum V (k).

The spectra handled in this paper will be suspension spectra
X= {Xm jll: ZXn - n+1} Satisfying

(8.1) for sufficiently large n, Xy, 1=2Xy, ju=1 and X, are (n—1)-
connected finite CW-complexes.

Then for sufficiently large n

2 (X, Yn)_’”f(Xm—l; Yui1)
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is an isomorphism, and we put
m(X; Y)=limzn{(X,; Y,).

Notations in the section 1 such as 7y, &), &4 are used also for

spectra. The composition product in 7§ induces a product

(Y5 2)Q@uu(X; Y) >y n(X; Z)
by virtue of (1.8), and the new product is bilinear, associative and has
the units 1x the limit of 1x .

A Z,spectrum X is a spectrum satisfying (3.1) and having Z,-
spaces (X,, #x,, ¢x,) in which ux,  =pzx, ¢x, ,=¢zx, as in (2.2).
Then the operations

0: (X Y)o w1 (X Y)
and

Ax: dt(Mp)_’dHl(X)

are defined as the limits of 6 in 7§ and 1x, by virtue of Theorem
2.2, (iii) and Theorem 2.4, (ii). Apparently

(8.2) The formulas in the previous section valid for spectra if N\ and
>t are not contained.

S={S", ju,=1,:1} is the sphere spectrum. We denote
' Tx(X)=7x(S; X) and Gp=mx(S).

M={Y2""'M,, j,=1(n>1)} is the Moore spectrum which is a
Zy-spectrum (p: odd prime). We may identify

(M) =t (M)

Now consider spectra V(k)={V(k),} given in [14] having
H*¥(V(k); Zy) = E(Qo, Q1, -, Qr). V(0)=M and V (k) is, if it exists,
given by a mapping cone of an element in &p,c_o(V(k—1)), k>1.
The existence of V' (k) is assured [14; Theorem 1.17] for k=1, p>3,
for k=2, p>5 and for k=3, p>7.

Until the end of section 5, we assume p>5, so V (1), V(2) exist.
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The case p=3 will be discussed in section 6. For sufficiently large n
we have the following cofiberings:
S 2, 8" i,V (0)," S >,
LV (0) =5V (0), 5V (1), OV (0), =
TV (1,2 V (1), -5V (2), 5 BV (1),
where ¢=2(p—1). As the limits of these maps we have
tenyM), nwen_(M;S), acL, (M),
i€mo(M, V1)), men .(V(), M),
BE Ay d(V(Q)), iz€m(V (1), V(2)
and
Ty €EM_pg_g-1(V(2), V().
The following relations are obvious.
(3.3) wi=0,
nha=mi=amr;=0,
i2f=myi,=pBm,=0.
Theorem 4.4 of [147] shows
(3.4). V(1) and V (2) are Z,-specira.

The above cofiberings induce exact sequence of the types (1.11)

and (1.11)* and they are translated to exact sequences in spectra:
(3.5) 0> GChQZy -0 (M) Z5Tor (Gi_1, Zp) =0

(3.5)* O—»nk+1(X)®Zp LMy X) -5 Tor (mu(X), Z,) >0
(3.6) (W M) 25 (W V(D) S g g (W M) 22
B6)*  Ehmya(M; X)Zhmy(V (1) X)L (M X) =5

For example, m,(M)=0 for k<¢—1 and k=<0, and we have
A (M)y=,(VQ))=m:(M; V(1))=n_,V(1); M)=0. Thus it follows

from Lemma 2.3
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3.7 0(@)=0(R)=0(i,)=0(m)=0.

Put

Boy=m1B i1 € (pers-139-1(M)

then since 0 is derivative
(3.7) 0(Bs)) =0

By (2.7)
(3.8) In(0ad)=ad—0a and Au(08)0)=0B(0+08)
and by Corollary 2.5,

(3.8)" for any €€,(M), (@d—0a)é=(—1)&ad—0a) and (B0
+0Bsy) E=E(Bs)0 +0Bs))-

In particular
(3.8)" a’d+oa’=2ada.

From now we shall compute &4 (7 (1)) up to some range. We

put

a,=nai €G,_q,

Bs=TBsyE EG(ipis—1)q-25

a' =y 0ad) (=ai Alyay) € &, 1(V (1))
and

B =Av1y(OB1Y) (=B1 A lvuy) € A py_2(V (1)).

Then the following commutativity follows from Corollary 2.5, (3.8)
and (1.7), (1.9).

(3.9) a¢=(-D'éa’, B¢=&8" Jjor any é€ A (V (1)),
a'é'=(—1) ¢&@@—oa), B'&=&Bw0+08u)
for any &'€n(M; V(1))

and
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a't’=(—1)¢"a,, P& =¢&"H for any §" € m,(V(1)).

Lemma 3.1. There cxists an clement o of £, »(V (1)) such that
a’ii=ai; 0.

Proof. First we show
(3.10) dada=adad.
For, 6a6a:% 6(a36+6a2)=%(a26+6a3)6=a6a6 by (3.8)". Then,
by (3.9) and (3.3)
a¥(@'i,0)=d'i,0a=i(ad —0a)da=i0ada=i,adad =0.

By the exactness of (3.6)*, the existence of a” is proved.

We use the following notations:
iy=i1€mo(V (1)), moy=nmi€nm_,2(V(1);S),

O1=im €y 1(V (1)), Oo=iomo=i10m1E€ A _,_5(V(1)).

Theorem 3.2. For deg<p’q—3
nx(V (1)=P(B, B)R{iv, &'iv, 018i0, &' Bioy 0o3*i0, 0oB’cic}.

Proof. By Theorem 5.2 of [14], for deg<p’qy—3
T (V (1)) ZP(B)RQARP(B1),

where A is spanned by non-zero elements ¢& mg, vy € m,_1, 5167:pq_1,
80E T (pr2yg-2, B2 E T (2ps1yg—2 and By, Here (B is just same as our f3,
B1=PB)i and B; is same as ours up to non-zero coefficient by (5.4)
of [147]. ¢ corresponds to 1y or ip. «; is detected by ho(2'), and it
coincides with ours up to non-zero coefficient since the mapping cone
of au=nai is V(%)/S in which #'5£0. We shall show

(*) a”’Biy, and 0,8%i, are non-trivial.

Then we may take A= {io, l:oal, 513(1)1:, (X”Bio, 60321:0, 6082i0a1}. By
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(3.9), €81=p'¢ for any &, ipa1=a'ig, OB ipa1 =00 iy and i1 By
=iymBi1i=01Bi,. Thus it is sufficient to prove (*).

Assume that «'’Bip=0. Then a representative a'': V(1),4,-2—
V' (1), of &’ can be extended over a map A: Cg;,= V(1)yqo\Je" 221
— V' (1),, where Cg;, is the n+(p-+2)q skeleton of V(2),,4-2. Consider
a mapping cone Ca=V (1),\Ue" " hUe" e+ e +2atl e+ (P+Da of
A, then PPPle" 1=Ppt P Je" 171 =pe" 17 =¢""P*1 by the coho-
mology structure of ¥ (2). Next V(1),Ue"'? '\Ue"*? is the mapping
cone of a”i, and a”i,=a’i,0 =i,0(ad —0a)=i,0ad=iea;w by Lemma
3.1 and (3.9). Since a; is detected by 2!, P'e"=¢"*9. Thus 2*P'P'e"
=" (P+ND9-L () in C4 But this contradicts to Adem relation P?2'P!
=P2'(2P*P'— P?*) since there is no cell of dimension n+(p+1)g.
Thus a’’Bi,7=0.

00B%iy0 is proved similarly by assuming (6,8)(Bi;)=0 and by
constructing a complex

V(l)”uenﬂaq—l Ue;t+querz+(p+1)quen+(p+1)q+lUen+(2p+1)q

in which P?2'®@?¢"=£0 contradicting to Adem relation 22! 2?
=PUP 4 P PP, q.e.d.

Since w4 (¥ (1)) is a Z,module (Lemma 1.2), (3.5)* implies a
splitting

0= e (V (1)) S5 me(M5 V(1) <5 m(V (1)) 0.

Obviously i*(9i1)=7ni, and 7*i*(¢)=¢&d, so we have

Corollary 3.3. For degrec <p’q—4

7T*(M; V(l))=P(B, B/)®{i‘13 a,l:la 61/35.1) a//Bila 6032i1a
doR’air} QE(0).

Lemma 3.4. B,io—_—ﬁoﬁio and ﬁ/i1=603i1+613i16.

Proof. By use of (3.9)
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Biv=toB1=1iomofio=00Pio
and
Bir=i1(B1y0+030))=i1m1Bi10+i:0m18iy
=018i10+00Bi1.

Lemma 3.5. There cxists an clement 8" of & (pyoyq-3(V (1)) such
that B”ilza”[)’il&

For, if: o (pr2)q-3(V (1)) > T(prnyg-3(M; V(1)) is an epimorphism
since 7py3y4-3(M; V' (1))=0 by Corollary 3.3.
Finally we compute &4(V (1)).

Theorem 3.6. (p>5). For degree <(p*—1)q—5
‘M*( V(l))zp(ﬂy B,)®{1a aly 6183 a”ﬁ) 6OBZa 60B2a/} ®E(60)
+P(B> B/)® {613 a/,a 61361) 606, auﬁala ﬂ//) 603261a 60626&”}.

Proof. Consider the exact sequence (3.6)* for X=V (1), then we
may forget P(B, B') and it is sufficient to prove the following rela-

tions.

a*(yi,0)=7i,0a= —ya'i,
for =1, 6,8%,
i¥a')=ya"i,=9a'i; 0
iF(B)=a"Bi,0,
if(B'—008)=018i10

i¥(&)=¢&i

for §=1, CZ,, 613: auﬁy 6052a 603205,3
n¥(£i10)=£&0,
71"1'((77111):7761 for 77=1, 613, a”[?, 6032.

The second, the third and the fourth relations follow from Lemmas
3.1, 3.5 and 3.4, The first formula follows from the following (3.11)
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and the remaining formulas are obvious.
(3.11) a'iy=—1i,0«

For, a/i;=i;(ad —0a)= —i,0c by (3.9) and (3.3).

4. Multiplicative Structure of &, (V(1)).

Theorem 3.6 shows that &74(FV (1)) is multiplicatively generated by
0o, 01, @’y 'y B’y B, B for degree<(p*—1)g—5. The purpose of this
section is to give a complete generating system of relations for degree
<(p*—1)¢q—>5.

First we recall (3.9).

(4.1). R'é=¢R" and a'¢=(—1)%% e, in particular o'’ =0.

Next the following trivialities hold because of the triviality of
&, (V' (1)) for the corresponding degrees.
(4.2) 0:0;=0 (i, j=0, 1),
a”60=60a€”=a’61=0,

a'a'=aa’=0,

B//ao :606//:B//a//—__a//ﬁ//:alﬂ//z 0,

a’Bfa’ =0,
and

B'B"=0 if p>5.

By Lemmas 3.1, 3.4 and 3.5 we have

(4.3) a’01=a'dy,

00B00 =00,

0001 =B'01—0180,
and

801 =80y,

We shall determine the derivation 6 for the generators.
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Theorem 4.1. 0(0,)=—01, 0(0,)=0, 0(a@)=ca', 0()=0(g)
=0(B)=0 and 0(B")=pa” —u"p.

Proof. By (8.7) and (2.6), 0(0¢)=0(i,0m)=—i1m1=—0,, 0(01)
=0(17)=0. 0(@)eL,_1={a’} by Theorem 3.6. Put 0(a)=zxa’
then xa'0y=0(")0y=0(a'0y)—a''0(0y)=a'’0;=a'0, by (4.2) and
(4.3). Thus x=1 and O0(a)=«’. By Theorem 2.4, (v) and (3.7)
0(aN)=0(R)=0(B)=0. O0(B")E A p,24-2=1Ba", @'’ 8} by Theorem 3.6.
Put 0(B")=xpBa”+ ya”Bs. By (4.3), 0(8"0,)=0(a"Bd0,)=0(a")B0,
+a” 30(8o)=c' 30— B0,=pBa’0y—a'' 31, and O(B"01)=0(8")0
=xPa’0;+ ya'' 30, =xPa'0y+ ya”[0;. Thus x=1, y=—1 and 6(B")
=pa’—a"pB. q.e.d.

(4.4) o =a'd,.

For 0=0(0a")= —01a" +0' = — 01" +'dy by (4.3) and (4.2).
In order to prove more relations we prepare the following theorem.

For the simplicity we write Ay =2yq,.
Theorem 4.2. Let y € (V (1)) and put yy=m17i1 € L —q_1(M),
then
v(r)y0)=rd;—(—1)d7+e¢
and
Av(071y0)=(—1)'r0o+(—1)0or+¢
for e, & satisfying
e01=(—1)""10:e=0:0(r)0
and
¢'0,=0,700+000(r)00, 016 =00701+(—1)'000(y)0o.

In particular, Av(B1y0)=R0,—018.

Proof. Put e=2y(y1)0)—rd1+(—1)"017, then by Corollary 2.5,
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(3.7) and (2.8)
e01=2Av(ry0) i1+ (—1) 01701
=11 Au(r)0) w1+ (—1) 0170,
=(—1Y""Yhraymi—i 0(wriy) 0w +(—1) 01701
=11710(7) i10m1=019(7) 0o

and
0e=i1m1Av(71y0)— 01704
=(—D"*Au(ray®) i — 01701 =(—1)"*10:10(7) 0.
Similarly by putting &' =2v(071,0) —(—1)"700—(—1)' 0ot
e'01=i14u(071y0) T1 —(—1)' 0701
=i1(ry0 — (=1 10y )+ 00(r ) Omy— (= 1) 070,
= 8,700 +800(7) 0
and

018'=(—1)"114u 071y 0) w1 — (—1)" 01700
=(—1)151(7’(1)5—(—1)”157’(1)‘*'&0(?’(1))6) 7271—(—1)!617’50
=00701+(—1)'000(y) 0.

For the case y=0, e€ &, 1(V(1))=1018, B01}. Put e==x0,8+ yB01,
then x0:1801=y0:180,=0 since 6(8)=0. Thus x=y=0 and Ay(B,0)
=R6,—016. q.e.d.

Theorem 4.3. The following formulas hold.
45) () 0.8°=280,8—B%,
(i) a’B’=2Ba"B—pR*,
(ii) doBa’'=pR'a” —a''d,,
(iv) 8:1pa”"=a""poy,
v) adB=pa’'—pa'dy+2a" R0,
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(vi) BI/BZBB/”
(Vll) 616“=ﬁ’a”—a"ﬁ60.

Proof. By Corollary 2.5, (3.7) and Theorem 4.2, (£#d,—07:1/8)
B=pB(B01—018), and (i) follows.
Consider 60305// S 'M(IH- 1)g-4=— {GCNB(?(), B,a//} and put 60305//: x“C(”Bao
+ yB'a”. Apply 0, from the left and from the right, then we have
by (4.2), (4.4), (4.3), (4.1)
0=61608a”=x-a'60860+ yﬁ'(?la”——‘(x—l— y) B’a’60
and
Blalao =603a/60 = 60301”61 =x+0+ y/.?’a”@l = yﬁ'a’ﬁo.
Thus y=1, x=— y=—1 and (iii) follows.
Consider a’B%€ A 2p13y-2= {B%’, B’ B} and put a’'B%==xRa”
+ yBa”’B. Then by Theorem 4.1 and (4.1)
Bl =a'B*=0(a""BY)=xpa'+ yBa' B=(x+ y) B*c,
and
BoB?aBo=at'0oB%30=01(c"8%) B
=x018%0+ y0:18(F'a’ —dBa”)
= y(61660+60361) Ba”— y61660ﬂa”

=—2-00(%:+8:8% & =~ 08%'B,
by (4.1)~(4.4) and (iii). Thus y=2 and x=1— y=—1, and (ii) is
proved.

Next consider 0,8a” € o (pi1)-3=1a"B01, B, B8y} and put
0B’ =xa’' 301+ yB'a’ +zBa'do. Apply B0, to each term from the
right, then

0180830 =—5 0x(B'a+ " B*) By =—— /o800 =~ Doy,
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Q" B0180y = (801 + 018%) o =~ & 00B" Dy = 0%/

B'a'Bdy=R'Ba'd
and
Ba'0oB0e=pLa’B'0o= R Ba’D.
Since 0oR%'0, and B’Ba’d, are independent we have x=1 and y+z
=0. Apply 0; from the right, then
0=0:18a"0o=x-0+ yB'ca'0o+z:0= y3'a’'d,.

Thus y=2z=0 and (iv) is proved.

Apply Theorem 2.4, (iii) to y=a’" and &=£,0, then by Theorems

4.1, 4.2 and by Ay(0Bny0)=p" we have
(Bo1—01R) " =a' (B0, —0.8)+ 'R,
Then (v) follows by (4.3), (4.4) and (iv).

Consider B”B € & (2pr3),-3={BB"}, put B”’B==xBR"” and apply 0,
then (Ba”’—a’B)B=xp(Ba’—a'’B), ie., a’B2=1+x)Ba’B—xB%".
Comparing with (ii), we have x=1 and (vi).

Finally, by (4.2) and Theorem 4.1,

0=0(0,B")=—0:8"+0o(Ba" —a'’B)= —0:8"+ oS’

Then (vii) follows from (iii).
Lemma 4.2. 2y(08)0)=B%00—280.8+00R%+285".

Proof. Apply Theorem 4.2 for 7=pf% then 741,=R), 0(8*)=0
and Ay(0B20)=R%0+0.8*+¢" for some ¢ satisfying ¢'0,=0,8%0, and
0,6'=008°01. Since & €A (zpr1yg-2= 1800, B0 B, 00 B% BB}, put &
=x8200+ yB0o B+ 200 B*+wfhp’, then

5/61=613260=2(3613—3261)5022361/350

and

g0y = ,’)’3(3’61—61360)"}‘2605251+wﬁﬁ/61
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=— yPR01800+ (y+w) BB'O1+2005% 1.
Thus y=—2, w=—y=2 and z=0. Also we have
00?0, =01"= 2018200+ 2(B'01—61800) B
=2x£018004+ 2008018
=2xP01800+ 0% 0.

Thus =0 and the lemma is proved.

Theorem 4.4. The following formula holds.

(4.6) 0B =[R%00—3R%*0,B+ 38R0, B

Proof: By Corollary 2.5, 2v(0B2)0)=p%00—2F88+00RE+2R5’
commutes with 8. Then the formula follows since BB '=p’'f5. q.e.d.

Theorem 4.5. Up to non-zero coefficient, the following formula
holds.

(4.7) BB =(B")*0:180: if p=5.

The proof will be given in the last section.

Theorem 4.6. For degree<(p2—1)q—5 the wmultiplicative vela-
tions in L(V (1)) are generated by the relations (4.1)~ (4.7).

Proof. It is sufficient to prove that the product of a monomial
in Theorem 3.6 with seven generators 0, 01, &”, ', 8’, 8, 8", from the
right, can be written in a linear combination of the monomials in
Theorem 3.6 by use of (4.1)~(4.7). This is obvious for B’ by (4.1).
Also the product with a’ can be reduced to products with other gener-
ators by (4.1). Then we forget the term P(B, s’) in Theorem 3.6 and
consider twenty monomials there and check the product with &y, 0, a”,
B, B”. Except the relations (4.1)~(4.7) and relations directly follow
from them, the products in question are the following:
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48) () 8:18008=B01B——1 30801,
(i) 0180:18=R01B01
(i) a’Bo.B=Ra"B —%— soB%t’,
(V) @’B0f=—p doB%+Ba" 80— Bady,

(v) 80B*00B=B00B%00— B*00Bd0+ 8008,
(vi) 00R%018=28%01R00+2R008%01—2R*B'01,
(vii) 00828 =B0cB%ads— B2B'c' Do+ BB,
(viii) 0oBPa’B=2R%a"f0y+280,8°a" —2p*R'a”,
(ix) OoBR’a’B=4B%0 0’ —3B%B'a’ —68%a" 801+ 3R0,8%,

(X) 618613//:-8/@//361——;— 608205160,

(i) 088" =—3- 08",
(xi) «’Bo.18"=0,
(xii)) 008%0.8" = B'0oB%e.

For example, (i) follows from (4.3) and (4.5), (i). The details are left
to the readers.

Proposition 4.7. The following relations hold:
(4.9 () BB =sB 1018+ —5)B"H0;
:rﬁalﬁr+s—l+(1_r)6lﬁr+s’
(“) Bra//Bs:SBrﬂ:—laNB_'_(l_S)Br+sa//
=rﬁa”ﬁ’+s"1+(l—r)a”B’”,

(iii) 316033___(8;1) Br+s60_8(8_2)37+s—1603+<§) BT+528, B2
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_(r—1 8BTS r+s—1 r 25,37+ ~2
=("5 1) 8087 —r(r—2) B8R+ (1) B200B7 2.

Proof. We prove the first equality of (iii), the others are proved

similarly. By induction on s, we have using (4.6)
3760/38“2<S; 1) 374-9605__3(3_2)Br+s—16032

+(3) 87238008~ 362008+ £%30)

Qe (s
+(3<';>—s(s—2)> 3715, 82

(S res+ly . r+s s+1 r+s-1 2
=(3) 80— G+ D=1 8 008+(* 5 1) 710,87,
q.e.d.

As is easily seen the relations (4.1) ~(4.7) are symmetric. Since
every polynomial on the seven generators are written in the form of

Theorem 3.6, the same is true for the symmetric form:

Proposition 4.8. For degree<(p®—1)q—5

L (V(1)=E(00)®{1, &, 891, Ba”, B%0, ' 8200} QP (B, B')

+ {01, @, 01801, B0, 018", B, 61800, ' B0} QP (B, B).

5. Applications to (M) and G,

First recall the following elements:

O0=ire o (M), ae o, (M)
and
By=m1B%1 € F(gsrs-1yg-1(M),  (=D).

The following relations contain the relations in [15] for p>>5.
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Theorem 5.1. (p>>5). The following relations hold:
(5.1) (i) 00=af=PLa=0,
(i) da?=2ada—a’0,
(iii) adBs=~RB)0a,
(iv) if r+s3=0 (modp), then B Biy=0,

(v) if r+s50,1 (modp), then

B(r) 53@):72%1— B(r+s—1)68(1),

+
if r+55£0,2 (modp), then
B(r)dﬁ(s)zT_-F?_‘:z— 3(r+s—2)65(2)-
(Vi) B(r+s) € =+ {B(r)a «, B(s)}-
(vil) if r4sF£0 (modp), T Birin€ % {Buy Bun @},

r

r+s

B(r+s)E i{a> B(s)a ﬁ(r)}-

Proof. By (3.3), 00=inin=0, af=an,B°1=0 and B«
=mf°i¢=0. Apply (3.8) for &=a, B, then we have (ii), (iii).
By (4.9), (i) 70,8 =sB""""1018+(1—s)B"** 0y and 018" =(r+s)
BT+ 710, 8+ (1 —r—s)B70,. It follows

(5.2) (r—|—S>576183286137+S+r87+561.

If r4+s540 then [3(,);9(3)=7r16’61{:?si1=0 since 7,0;=0,i1=0. Similar-
ly, from the first formula of (4.9), (iii) and the corresponding formula

for 0y08"*°, we have
(6.3) (@) G+s)+s—1)B70.8°
=s(s—1) 0B —r(s— D) (r+s—1) B"** 0o
+rs(r+s) 77100,
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Gi) (r+s)(r+s—2)B70,8°
=s(s—2)00B™ " —r(s—2)(r+s—2)B7"* &,
rs(rts) 7 00

Then (v) follows easily. Up to sign, m,8” is an extension of B and
B%i1 is a coextension of [y Then (vi) and (vii) follows from P,

=(m187)(B11), (r+$)Bn(m1B)=rBr+syir and (r+s)(BYi)BH=rT1Ber+s5)
by use of theorems in Chapter 1 of [10]. g.ed.

The following supplementary results are also obtained by similar
discussions and by the exactness of (3.6), (3.6)*.
(5.4) (1) In general, BiBsy=5Bcr+s-1yBy=rBayBrrs—1) and BB (s
= _3(-9_2) ﬁ(r ! s—1)63(1)+<32> B(m S—l)aﬁ(Z): —r(r—Z) B(l)aﬁ(m»s—l)

+<;> B2)08r+s-1ye

(i) By and BBy are divisible by o from the both sides, i.e.,
they are elements of forms aé=¢&a.
For (i), t1B8upn=018"m1=8"0171=0 by (5.2) and iiBu) B
=0:8"018°m1=£3°018"0,m1=0 by the following

(5-5) 613'5133—_—35513’61-

This is true for r=1 since 0;80; commutes with B by (4.8), (ii).
Then by (4.9), (i), 0:87018°=rB""10180:8°=rB°0,80:18" " =B0:1870.
The structure of the algebra & (M) for degree <qu_4 was
determined in [15]. We shall compute this from Corollary 3.3, so

here we need not use the results on G,.

Theorem 5.2. For degree< pPy—4,
(M) =P(@)QE (0, ad— o)
+E(0)R{B} ®P(0B1)RE (0, ad —ida).

Proof. Let A={1,c, 015, a”B, 6,0% 0oB8%a’}y. Then Corollary
3.3. states wx(M; V(1))=P(B, BRAiLQE(0). By (3.9) m (M; V(1))
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=P(P)RAi1QP(L1)0+0B1,)RE(0). Now consider the exact sequence
(3.6):

A o o(M) 22, (M) Loy (M V(1)) Doty o g1 (M) 2,

and compute «7,(M) by induction on k. Then it is sufficient to check
the correspondence between basic elements. For degree<pq—3, m4(M;
V(1)=Ea)QRQ{i1} QE(0)={i1} RE(0, ad —da) by (3.9). Since P(a)
2o, P(@) 54} is a short exact sequence, the first part P(a)
RE0, ad—0a) of (M) and E(a)Q{i1}RE(0) form a sub exact
sequence and we may omit them and consider the remaining parts.

Here we need
(5.6) mo'=—adn, and mo''=—0adw,.

For mia'=—(ad —0a) m,=—adm; by (3.9) and (3.3). Apply the
above result on &4 (M) for deg< pg—3 to the exact sequence (3.6)*,
then we have that 7_(V(1); M)={alm}=Z,=n_s(V(1); M)
={0adm}. Put mia’=x0adm,, then —adr,=ma' =n,0(a’)=—0(m )
=—x0(0adr,)=x(adr, —0an,)=xadr,. Thus x=—1 and (5.6) is
proved.

Now in &4(M) we can replace P(053¢)) by P(Buy0+08a,) since
Bisy(Bay0+0B81y)* =B(0B8a)* by Theorem 5.1 (s<p). For the sake
of simplicity we put B=pf1,0+0531) and also we forget the term E(J).
By (5.1), (i), Bs(ad —0a)= —pBy0c. We check the exact sequence
replacing &/4(M) by E(0)&{B}&{1, 0a}@P(B) and m«(M; V(1))
by P(B)R{i1, @iy, 01 Ri1, &’ Biy, 00 %11, 0oB° ' i1} QP(B)— {i1, &'ir}.

The correspondence of basic elements are given as follows (¢ >>0):
n1x(B°i1 B ) =mR. i1 B'= BB (s>1),
Tix(B°a’i1 BY) = f(ad —da) B' = — B(sy0aB'  (s>1),
T((s+1) B’ Bi1 B ) =m (s’ B** + B° ") i1 B!

= —s0a0B(s+1)B'+ B(s+1)00 B
= —s0a0B+1yB'  (modImo*) (p—1>s=>0),
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a*(dﬁ(s)B’)za@[S’(s)B’:B(s)éaB’,
il*(ﬁ(s)B'):5133i13‘=838_1613513t (P>S_>_1),
il*(aﬁ(s)BI)Eil*((FB(s)B'—(S—Z)E(s)Bta)

=603Si1B'—(8—2)613si16Bt

—(3) B 008" B —s(s—2) (8" 100 Bir + 87 1018010) B’

:(%)/}““36063513‘—5(5—2)[33“‘i1B’” (p>s>2),
i1*(63(s)6a31):i1(63(s)) (Oa—ad) B!

= _a,il*(aﬁ(s)) B!

=—(3) BB i B 5= B B (p>s>2),
i1x(08y B)=i14(0B0) B*+ By B'0)=i1 B,
1:1*(63(1)6CZB‘)= —a/i1(68(1) Bt)—: —CK/l:lBt+1.

Consegently we have proved the theorem.

Next recall the elements
Bs=mByi =moB8°i0 € G(sprs-1)g-2-

Recently, the non-triviality of 3, for general s_>1 has been proved by
L. Smith [6]. We also denote

a, =t i EG,q_1.

Theorem 5.3. (i) t(r+s—t)B,8:=rsBiBy.s_1, (ii) Every mono-
mial By - By, is some multiple of Bys(k=1), B84 '(¢5£0(mod p)) or
Bps-1B:817% (iii) a,B:=0 if r>2.

Proof. 7[3(,)65(,)1::”B(,)iﬂ'ﬁ(s)i=ﬁrﬁs. Then it follows from
(5.4), ()

B,8s=—5(s—2) Brie 181+ (}) BrvesBi
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Put r=1, then B.f1=F1B:= —s(s—2)B.8:+(}) BuiBs e,

200 —1)*BuBr=1t(t —1) B;_1B-.

Thus
— BB if r+s1 (modp)
r+s—1 r+s-1P01, r—-s O /
(57) B:Bs=
rs _ .
Brts—2) Bris-2B2 if r+s3£2 (modp),

and (i) follows directly. Repeating (5.7) we have (ii).

From (5.1), (ii), we have a’'0=rada’*+(1—r)da’, then «,f;
=’ in i =1’ 0B i =n(rada’ >+ (1 —r)da’ HaB, i=0, by (5.1),
(i), if r>2. q.e.d.

Remark 5.4. The vrelations o'By=Ba’ =0 and PiyBuy=0
s+t0 (modp) imply

{ar, pe, Bt =1Bs, p¢, a,} =0
and
{Bs pes By=0  if s+150 (mod p).
But as is seen in (15.6) and Theorem 15.2 of [12], {By, p¢, Bp-1}3%0.
This shows
BwBp-1yF0.

From now we consider some application of the complex V(3) and

the class

76"‘7/(17%%1)4(’/(2)) (]7> 5)
of the attaching map of ¥ (3)=V(2)U,CLP**D4}(2). For the case
p=>5, the existence of /' (3) does not known but V(Z%—) does exist.

So, we can consider

riZEd(pz»v—p+1)q(V(1); V(Z))
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even for the case p=5. Put
T011=72(7i2) € & pry—1(V (1)),
The mapping cone of (13 is V<2%)/V(l) and in which 2?0 for
the bottom class. Put
TH=T17130 € F pr_1yq-2(V (1)).

Theorem 5.5. 71y=x((81)0)"+(080)")+ yBp-10a for some
integers x50 (mod p) and y.

Proof. By Theorem 5.2, & (:_1),-2(M) is spanned by (B,0)”,
(0Bwy)?s Bp-1y0a and a?”~%0ad. Put
Tay=x(B1y0)?+x' (0B’ + yB -1, 0+ za?* "% dad.
Theorem 4.4 of [14] says there exists a multiplication MA V(Z -;-)—»
V(Z»é—). This induces a multiplication M A V(Z ~;—>/V(1)—>V(2%>
/V (1) where V<2—§—>/V(l) is a mapping cone of yr;3=m2(riz). Thus

V<2 —é—)/V(l) is a Z,-space, and by Lemma 2.3, we have

(5.8) 0(rc1)=0 hence 0(rqay)=0.

Since fBy»1y=0, 0((5(1)&")z(ﬁu)a)pvlﬁ(l), 0081y’ = —(3(1)5)0_1
By 0Bp-1y0a) =B 1ya=0 and 0(a”*0ad)=—a’'0+a”*0a by
(3.7), (3.7) and (5.1), (i). Then

0:0(7(1)):(x—x/)(ﬁa)a)p_lﬂ(l)—Z“pz—z(aa—&ﬁ),
and x=x" and z=0. Next put
(5.9) ' =71+ B8

The element [8?"'a’ is the composition of p elements which induce
trivial homomorphisms of the chomology. It follows the functional

cohomology operation is trivial for #?~'a’. So, the cohomology opera-
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tions for the mapping cones of both of y" and yri7 are the same. The

mapping cone of yrijis V (2 —é—)/ V(1) and its cohomology corresponds

to the part {Q:, Qs}QE(Qo, Q1) of H*(V(3); Zy)=E(Qo, Q1, Q2, Q3).
Then Q3=2%(Q,. Thus 2?0 for the bottom cell of C,.. By (5.9),

Ty =ruy+ yn1ﬂ”'1i1(a6—5a)=r(1)—yﬁp-15a
:4V((/3(1)6)p+(63(1))p)-
Now assume that x=0, then m,7i;=0. This shows that the cell cor-
responding to (3 is attached only to the bottom Moore space. Thus
we have a subcomplex S"\Ue"*'\Ue”*?*? of C,. such that 2?"5~0. But
since the p-component of G, » vanishes [117], the attaching map of
e"*?? deforms into S” and this contradicts to the triviality of modp
Hopf invariant. Thus x3%0. q.e.d.
Remark that

(5.10) (Bay®)*+ (08w =(Bayd + 0Bk,
(5.11) Breii=~Bm:(riz)=0 (11138 =0 if p>5).

Theorem 5.6. CZT(l):T(l)CK=O and B(s)r(l):O fOl’ 822. ,8(5)67*(1)
=0 for s>3.

Proof. By (3.3) CKT(1)=CC7Z1‘)’[1JI:1:0 and T(1)C(:7E1’)’|:1JI:16K:0.
By (4.9), (i) and (5.11)
ﬁ(s)i’(l):ﬂlﬁsal?’(lj51=7T1(556138—1+(1—5)5138))’[13 i1=0
if s>>2. Similarly B(071y,=0 (s>3) follows from (4.9), (iii).

Corollary 5.7. (B1)0)’a=a(0B1)’=0. If s>2 B ((Bayd)?
+ (0B =0, hence B (OBu)'=0 further if s#=—1 (modp). If

523 then 6(5)6(3(1)6)P:—% 8(3)63(,,_1)604.

This follows directly from Theorems 5.6, 5.5 and 5.1.
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Theorem 5.8. [If s>>2, then B,82=0 and B2*1=0.

Proof. By Corollary 5.7, B:8=7rB(0B1)?i=rB((Ba)0)?
+(0Bay)?)i=0. By Theorem 5.3, (ii) A2*! is a multiple of Bspss_pBh
=0 or Bsprs—p-1828271. In the latter case sp+s—p—1=—1 (mod p),
then s=0 (mod p) and 82=0 by Theorem 5.3, (i). q.e.d.

The following problem seems very difficult.
Problem. Is 71=nyrqiE€Gypi_1yg-3 non-trivial?

Proposition 5.9. If 7150, then

ai1fp-18:=0 Jor s>3,
hence
a18168.=0 if k#=—2 (modp) and k>p,
ai1fzB5-1=0 if k£=—2 (modp) and k>p+1.

Proof. By Theorem 5.5,

(5.12) 7’1=7TT(1)5:_)’51>-1C¥1-

If 7150, then y3=0 (modp), and by Corollary 5.7, a;Bp-18s
=nﬂ(s)ﬁﬁ(p_l)&u':»”;—/72:13(3)6({5’(1)6)”=O. The remaining part follows

from Theorem 5.3, (i).

6. The Case p=3.

The case p=3 is quite diflerent from the other cases. For p=3,
M and V(1) are not associative, ¥ (2) and B do not exist and the
products a’’a’, '’ are not trivial.

First we consider the effect of non-associativity. In this section
we assume that each Z,-space X is a finite CW-complex and «7{(X)
=0. Then an element (associator) ay € &;(X) of Proposition 2.1 is

associated for each Z,-space X. Theorem 2.2, (iv) and Theorem 2.4,
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(v) are generalized as follows.

Theorem 6.1. (i) For reny(X; Y),
00(r))=ayr —rax.
(ii) For g€ (M),
0(Ax(8)=—22x(0(8))=2(axAx(0§) —(—1)' 1x(§0) cx).

Proof. By Proposision 2.1 and Theorem 2.6,

00(r)=uy(Iu A 2ty) Au ANIu AT) AuA@x) @ x
=(ay(m AT Alx) = 1ty(uu A1ly)) A A1u AT)
(GAiNlx)ax+(enAlx) ¢x)
=ay(miAmiNT)ax+arr(@Alx) (TA L) eu A 1x)¢x
—uy(unGNA L) ALy) rax — ny(umeu A7) 9 x
=ay7 —rax,
2x(0(8)=—2x(Am(&) = — ux(uu A1x) ENIuALx) (euAlx) o x
=(ux(IuApx)—ax(@ATA1x) (A1 Alx)
((AuNex)px —(ENIADax)
=— (="' ux(EANL) Qu A nx(EA1)) (L ANiA1x) ax
—ax(@AL)AuAEALex) (ENLx) @x
=(=D'ux@iNlx)(mAlx)pxax
—axux(EN1x)(@ENLx) o x
=(—D!2x(§0) ax —axlx(0$),
0(Ax(&)=nx(UuArx) AuAENL)AnAex) ¢ x
=(ax(mATALx)—p1x(uA1x) (Au AENA1x)
(GAiINI)ax+(euAlx)¢x)
=ax(LoATEALY) (T ALIM) ouAlx) o x — Ax(0(£))
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—(—D'ux(unGNI)ALx) Qo ANEiNLx)ax
=axux(néNlx)ex —Ax(0(8) —(—1)ux(&in Alx) pxax
= —21x(0(&)). q.e.d.

In our case p=3, Theorem 6.1, (ii) says

(6.1) 0(Ax(6)=2x(0(£)=(—1)' 1x(§0)ctx —xAx(0¢).

Some of the results in the previous sections are valid for the case
p=3, and we shall recall them. The sections 1, 2 and the beginning
of the section 3 are general theories and can be applied here. From
the existence of M=V (0) and V (1), we can define the elements
I, Ty O=im, i1, W1, Lg=1i1i, Ty=ATy, 01 =011, 00=1¢Mo, &, X =7AL, &'
=Avy(0ad). The following are valid.

(3.3) Ti=iha=mi=an,=0,

(3.7) 0(a)=00i1)=0(mw,)=0

(3.8) An(0ad) =ad —da

(3.8) (ad —0a) & =(—1)" &(ad — Ocx)

(3.9) aé=(—-Dk%a, a'¢’'=(-1"¢(ad—ia),

a's’=(—1)"¢"a.
Some relations follow from these, for example (3.8)” and (3.10) valid,
and we have the existence of a”’ € &3(/ (1)) (Lemma 3.1).

By Lemma 6.2 of [14], My is not associative: apy =0 in o ,(M3)
={0ad} = Z;. By changing the sign of «, if it is necessary, we have
(6~2) ay=0ad.

Even though (3 does not exist, an element

LRir]eris(M; V(1))

does exist since as a mapping cone of it the existence of V (1 —%—) is

assured [14] for p=3. Here the notation [£7] indicates a single

element which is not a product of elements, one of & and 7 is an
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imaginary element.
We define

By=mi[Bii €L (M), Bri=rnlui€Gy
and
B =2v1y(0B1)0) € L 1,(V (1)).
Then (3.8), (3.8)" for s=1 and (3.9) hold. Using [ 3¢, ], [Bio]=[Rii]i

and (A0, ]=[#i,]m, in place of Bij, Bi, and 3J;, we see that Lemma
3.4 holds and

(6.3)"  Theorem 3.2 holds for deg<26, Corollary 3.3 holds for deg<25
and Theorem 3.6 holds for degree<10.
Now we change the sign of [3i, ], if it is necessary, so that the

following theorem holds with the right sign.
Theorem 6.2. «''a’'=4'0y and o’'a’’ =['64.

Proof. First we prove a’’a’’ =0, then the first formula holds by
suitable choice of the sign of [#i; ] since &,(V (1)) is spanned by
B'0p. As is seen in the proof of Theorem 3.2, in the mapping cone
Co of &’y P'(e")=¢€"*? and hence 4P'P'(e")=¢e"*2¢*!(top cell). By
use of Adem relation 22'4P'=P'P U4+ AP P, we see P'P'd(e")
=2 (e" )= —¢"*?%*1, Then assuming a’’«@’’=0 and considering an
extension A: M4 2C,»— V(1) of a”, we see P'P'P(e")5~0 in C4
which contradicts to 2'?'?'=0 (p=3). Thus a’a’’50. By use of
the following (6.3) and (3.9), we have

ada’=—-2aa’"=—0)a"—a"0(c")=—0(c"'a"”)
= —0(p'00)=—B'0(00)=F'01.
(6.3) 0(00)=—01, 0@ )=a’ and 06(01)=0()=0(8)=0.

The proof is same as one of Theorem 4.1, but use Theorem 6.1,

(ii) in place of Theorem 2.4, (v).
For the convenience of discussions, we introduce the results on the
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additive structure of «,(M) which is directly computed from the
results on G4 by use of (3.5), (3.5)*.

(6.4) For degree<32
A (M)=P(a)QRE(J, ad —dar)
+E@)&AL, ad} {8y B} QPORKE(D),
where P2y € o 27(M) satisfies By i(=R2)=0.

Lemma 6.3. There exists an element [m,B]€ 11 (V(1); M) such
that E”lﬁ]ilznltﬁil:I:B(l)-

Proof. By the exactness of the sequence (3.6)* for X=M, it is
sufficient to prove fuya@=0. By (6.4), Bnya=xa'd+ ya®da for some
%, y€Z, Then xa’d+ ya'da=afya=ar i ]=0 by (3.3). Thus
x=y=0 and fux=0. g.ed.

We put
Bey=[mBI[Ri1] and Br=nlz)i€ Gy,

then the non-triviality of [, is proved as in the proof of Theorem 3.2,
and (6.4) holds for this S,.

The following parts of Yamamoto’s formula hold for p=3.
(6.5) (i) 0d=aBy=Rua=0,
(ii) da’=2ada—a’o,
(iii) adBy=BLu)dc.

For, (ii) is (3.8)", 00=0 is obvious and aByy=ami[Bi]=0,
Buya=[m8]ii¢=0 by (3.3). Then (iii) follows from the relation
(a0 —0a) Bay= — By (ad —0a) of (3.8)".

Theorem 6.4. 0(3(1))’-‘—‘6@63(1)6 and 0([:61,1])“—‘6!”[311]6, thus
1 , 1 .
V(l —2—>/V(0) and V(l 7) are not Z,-spectra.
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Proof. Since 0(Ba)) € &12(M)=1{a?, 0adB1y0}, we put 6(Ba))
= xa®+ ydadfuy0. By (6.5) and (3.10),
0=0(afuy) =al(Buy) ="+ yadadB,,0
=xa'+ ydadaf )0 =xa’.
Thus x=0. By Theorem 6.1, (6.2) and (6.5)
0(0(Bny) =0adB1y—Baydad =0adBay—adBa,0
and
0(8adBy0)= —adB )0 +0afny0+0ad [,
=0adBqy—adBay0.

Thus y=1 and the first formula is proved. Next 0([8i1])€ m1,(M; V(1))
={a’[Bi; 10} by (6.3). Put 0((Fi; )=xa”[ i1 ]0, then by (5.6)

6a65(1)6=0(3(1)) =0(mi[ B ])=—m 0([/3i1:|)
= —xnla”[ﬁiﬂ@:x6a6ﬂ1[8i1]6=x6a5ﬁ(1)6.

Thus x=1 and the second formula follows. The last statement follows

from Lemma 2.3. q.e.d.
Lemma 6.5. ay=«a" for V=V (1).

Proof. Since ay€ «,(V(1))={a"}, ay=xa” for some x. Since

0(i1)=0, iy is a Zymap: {14y=nv(IyAi1). Then we have
xa" i(mAT A1) =ay(mATALy) QAu A1y Aiy)
=(yQuA )+ mv(en A1v) Au A1u Air)
=uv(AuNirs) + 1Ay Nin) (e Alw)
=01 (I A 2tm) + (st A1)
=i 0ad(r ArAly)=a"ii(x Ar Aly).

Since (mATA1y)(@uAly)ou=1y, we have xa’’iy=a’’i;, x=1 and

24
.

Ay =
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Lemma 6.6. iy(ad)=p'0y for V=V (1).

Proof. Jy(ad)e o 4(V)={B'0s}. Put Ay(ad)=2x['0,, then
xR0 =—xp'0(00) = —x0(B'0p) = —0(Av(ad))
= —Ay(add) ay +ay Av(fad) by (6.1)
=o' by Lemma 6.5
={'0, by Theorem 6.2.

Thus x=1, and Ay(ad)=pB'0,.
The following values are the obstructions to the existence of V' (2)
and V(l %), (see Lemma 6.4 of [14]).

Theorem 6.7. [Bi,]a=(8)%i,+B0:[Ri1]0, thus [Bi]ai
=(B)*io=1i0(B1)%
Proof. By Theorem 2.6, iy(ad)= —0(ad)=—ab(0)=ca. Then
by Theorem 2.4, (iii), Theorems 6.4, 6.2,
Av(@d)[Bir]=[Rir]am(@0) +0(Bir]) An(0ad)
=[BiJa+a"[Bi]0(ad —dc)
=[RiJat+a'a’[Ri,]0
=[BiJa+p'0:,[Bi]0
and by Lemma 6.6 and Lemma 3.4
Av(a@d)[Bir]=p'00[Ri1]
=(R)? i —B'0:[Bir]0,
and the theorem follows.

The following theorem corrects the parts of Yamamoto’s relations
which do not hold for p=3, (see Theorem 5.1).

Theorem 6.8. (p=3).
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(i) 5(1)3(1)=6a63(1)53(1)6,

(i) aBey=Beza=F1)0B8a1)0B0)
(ili) Bela=adBfe+(Bay0)*— 081y
@(iv) 0(B)=0adf 0.

Proof. By Theorem 6.4, 0(8a))0=00(B1)=0. Then by (2.10)
and (6.5), (iii)

BamBay=—(BayBay+BayBay) =081 0(Bay)
— 881, 08Bty 8 =000 By 3Bony -
Remark that
(6.6) Bey Byd =08 Bay=0 and
(Bay®+0Bay*=(Bay0)* +(8Bay*.
Next Theorem 6.7 and (3.9) imply
Beya=Lm8I0Bi Jar=L1 81 () is+ 89, 8ir10)
=[7187i1(Bay0+0Bw)* +[718]0:1LRi1J0(B1y0 +0Ba))
=B (B0 +081)* + By By 0810
=Bw0B1) 0B ).
By (2.10)
Beoya—aBey=ad0(Bz)—00(8qz)a,

where 0(3(2)) € A= {C(7, 66}553(2)6}. Then B(z)a—dﬂ(z) is a multiple
of ada’—a’da=0. Thus (ii) is proved.
By (3.8)/, (a6—6a) B(z) = — 8(2) (a@-—@a). Thus

By0a=adBa—0aB e+ Bead
=adBa— (0B +(Bn)0)3

Finally, put 6(B)=xa’+ ydadfBz) 0, then as in the proof Theo-
rem 6.4.,

0:0(3(1)63(1)63(1))6 by (6.6)
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= 0(“@(2)) 62050(3(2)) 0==xa’0,

and
00(B2)) =0adB2)— B2 0ctd
=0a0B 2 —adB 20+ (0L1)%0,
0(0adPB2y0) = —adB2)0+ 0P 2y0 + 0cd B2y
=0adB 2 —adB 0+ (0B))%0.
Thus we have x=0, y=1 and (iv) follows. q.e.d.

By this theorem and (6.4), (6.5) the algebra structure of o4 (M)

is determined for degree<<32.

The module 74.(M; V(1)) has the following basis.

Proposition 6.9. For degree<32
mx(M; V(1) =LP(BISB+A{L, 8T Q{[0:8]i1} JIQE(9)

where B:{ila a/ih Eﬁllja a”[ﬂil]a a/EBil:L [60[}][8“39 [616)][511]3
a[0:81[Bi}. Comparing with Corollary 3.3 the differences are the
relations (B)*0.[ Bi1]=(B)20,[RBi,]16=0 and the lack of B%, and
B%i,0.

This is computed from (6.4) as a converse of the proof of Theorem
5.2. The only difference is
ax(B2) 0)=apB 0= L1, (081))? 0¢ (e=0,1)

and thus il*(ﬁa)(aﬁm)zaf) = ilﬁ(l)(ﬁ(l)6+aﬂ(l))26€ = (3/)21'1/9(1)55
=(B’)261|:Bi,]6‘°-——0.

Next consider the exact sequence (3.6)*:
oy (V (D)) 25 m(M; V(1) 2wy o(M V(1)) 222,

and check the proof of Theorem 3.6. First consider a* for k+4<32.
For é=1, «, [0,8],
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a*((B) &i)=(R) ¢ a=0
and
ax((B) &i10)=(B") &irda=(B") ¢i(da—ad)
=+(B) a'¢i, by (3.9).

Thus a*((B)7¢i10)=(B) i1, 0, 0 for each value of & For =1, ",
o, [0:8], [6:8], we have by Theorem 6.7 (omitting (5")")

a*(qLRi D =(B)nir+ B'90.[Ri1]0
and
a*(y[Bi1]0)=n[RiJad —y[Bi](ad —da)
=(B) 0 —a'g[Rir].

The case =1 is obvious. For 7=a", a"ii=a'i,0, a’a’"=('0, and
a0, Bi =0 Bi1]0=a'isfir=L'c’i,0. Thus

a¥(@'[Ri])=—(B8)a'i:0 and a*(a’[Bi]0)=R[0:8]ir.
For y=a’, since a'd;=a'a’ =0,
a*(@[Ri D=(F)’a'iy and a*(@[Bii]0)=(8")’ai 0.
For 7=[0087, [008]ir=R'i1—[0:18]i:0 by Lemma 3.4, [0,8]0.[Bi1]0

=R'0,[Ri, 10 —[018]0o[Ri1J0=R[0:18]i1:10 —[018]B'110=0, [0oB]i:0
=R'i,0, thus

a*(C0uRILRILD=(8)1, by Proposition 6.9
and
a*([doﬁj[ﬁiljﬁ)z(,@’fild—a’[doﬁj [Bii]

For % = [6,8], a*([(0:p][Ri:]) =0 since m5(M; V(1)) =0,
(8)?*[0.8]i16=0 by Proposition 6.9, and

(0,81 B ]=a'i1Bey=110aB2y=i1(08a))*
=i,(080y+ Bay®): — (6B + B1y0)? By 0
=(B)2i,—(F)*0.[Ri1J0=(B) iy
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Thus
a*([(0.81[Ri1 D=0 and a*([(0:8][Ri1]O)=—(R)i1.

These formulas determine a*. As relations of the form 0=n}Fa*( )

=[a*( )], we have

Theorem 6.10. The following relations hold (p=3).

(i) (B)0,=a[B0.], (B)?0,=—R'[0:18]0,,
(ii) (31)23,6025/[613]61:(51)361 Z([J’/)ZE(F;B:I(?():O.

The kernel of a* is spanned by (0 <{r<(2, 0<{e< 1)

(B ¢ii=iT((B)¢) for §=1, «/,
(B a'id=iF(B) "),
(BY*[018]ir=1¥((B)*[0:8D),
(8)°L0:181i10=1F((B)* — (B [008]),
'[Ri]+a[Bir]0=if[a"B+Ba"],
a'[Bi]—(8)io=if[a'B],
[0.8]CR:]0+ B'LRI]=iF[B0:R]

and
[0081[Ri:]—R[Ri]=iF[0:R"]

where the last four equations define new elements in the right hand

sides.
The image of 7% is spanned by (degree< 27)
(B)70,(0 <r <3), (B)(0<r<2),
(8o, [618]0e, (B[RO, (B[R],
(8)a'[Bdo], [0:81[R: ], a'[0o8I[RI0],

where ¢, ¢=0, 1.

Consequently we have
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Theorem 6.11. (p=3). For degree<27=(p*—1)q—5, o4(V (1))
have a basis which consists of the above nw¥-images and if-anti-images.
More precisely, o£,(V (1)) has a basis as in Theorem 3.6 for k<14 and
for 20 <k<24, o15=4{(8)?01}, L= 17=0, L13={[a’B+pa"]},
Aro={[a'BT}, F25=0, Z2={R0cB], [0:8*T}.

Finally we remark on some of the easy relations:
[0eR]0s =0e[ A0 ],
[60B]00= 800,
[008]01+[018]00=8"01,
a’d,=0a"=a'0y, 0:.0,=0, a'a’=0,
(R0 ][0eA]=0,
LRI ]a"=a"[0:8]=0,
(B0, Ja" =a'[ B0 ].

7. The Case p=>5.

For the case p=5, the only difference from the general p is
Theorem 4.5:

[J’”B”=(/:?’)251351 ([):5)
up to non-zero coefficient. Here B"B"” € 2pr4yq-6(V(1))= 3p-1)0-6
(F(1)=A{(8")*0180:}.
Let n be sufficiently large, Co,=S"\U,e""" a mapping cone of a;
and let

S _ie,C, Tc,S"*1
1

be the cofibering.

Lemma 7.1. (i) There exists an element cy of the p-component
of A24-1(Ca,) such that mctgic=0.

(ii) If p=5, aoo=ichrc up to non-zero coefficient.
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Proof. By the exactness of the sequences (1.11), (1.11)* for
a=q; and by the triviality of the p-components of Gi,_» and G343,
Ter: Tavgq-1(Ca) > Gyo1 and iE: 5, 1(Co) —>73124-1(Ca,) are epimor-
phisms of the p-components. Then (i) follows. Similarly from the
mod p triviality of Gs,_p and Gyy_z, 7E: Gsgoz >R, 40-2(Cay; S*) and
ic*:nﬁﬂq_z(Calé S")—> o 4,-2(C,,) are mod p epimorphisms. For p=5,
the p-component of Gs,_z is generated by f,. Thus aoaozxicﬁl.n'c
for some x€Z, Now assume that x=0, then aoay=0 and there
exists an extension A: }}%11Ce,= 221 1(Co\JC %11 Cy ) > Co, of .
Since #'%0 in C,, and since «; is detected by 2!, P'P'P'=2*=£0
in C,. Thus #°2'2'5~0 in C4 but this contradicts to the Adam
relation 232'?'=102°=0 (p=5). Thus x=0 and the lemma is
proved. q.e.d.

a=rai: S"M'—>S"  for a: LMUTEMy— "M,

Then Co,=V(1)y_1, Cui= V(——;—) o

have the following commutative diagram of cofiberings.

Coo=V({1),_1/S" ! and we

Sn—l Sn—l
Lo

qu i Ca N Sn+q+1
lﬂ” l:r’

Ca1 i” C’m Sn+q+1

Lemma 7.2 There exists an element By of T¥ipe-3((Cra; Cai)

such that "By’ =B1 Ay and i'Bon’'=R".

Proof. From the cofibering S"‘1—>Ca¢,-"—”»(]a1 we have and exact
s'equence Tpe20-3(Cay Cai)&vy(twZ)q—S(Cal)“’”?})+2)q-4(Cw,; §"71). The
mod p triviality of the last group follows from that of G,2),-3 and
G(p+3)q-3. Then 7”7y is an epimorphism of the p-components. Simi-
larly, we have the modp triviality of 75, 2),-4(S"*9*!; C,;) from that

"

of Gpizyg-3 Gpiya-20 Gping-3 and thus i 7&i50-3(Cras Cai) >

nﬁ;+2)4_3(0a1; C.i) is a mod p epimorphism, This shows the existence of
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By satisfying 7"B5i" = B1 A € o (pi2)4-3(Ca)). Next i'Bom' € (5120 3

(Ca=V(1),-1)=4B"}, so i'Byr’=xp". By Lemma 3.5, (4.4) and (4.1)

018", =01 Ri 0 =a'0,Bist=aigB17t
=R'diygn=pai0.
Apparently 7,i'=incn” and 7’'i,=i"icm, then
01(i'Bor’ )iy =iymyi' Born'iy=iomen” Byt icT

=i(LoAmc)(BiAao)(loNic)m=io(BrNar)w
=Syt =L'a'i,0.

By Corollary 3.3, f'@'i10+0. Thus x=1 and i'Byn’=pR". q.e.d.

Proof of Theorem 4.5. By Lemmas 7.1 and 7.2 we have
n'(B'B")i'=n"i'Bym'i' By’
=i"7"Boi"w"Boi’"'w’ =i"(B1 Aao) (Bi Aao) "
=i"(BiINichimen”’ =i"icBincn”
=i"icRinBayincn” =i"icn(BIN1M)Bayimen”
=1L, (BN By’ =1 (B) i By i’
=7'((B)?0180)i".

Thus it is sufficient to prove that i"*: & (35_1-6(Co) = T{p-1,0-6(Cai; Ca)
and 7'y T&p-11q-6(Cai; Ca) > T&p-1¢-6(Cai; Cre) are mod p monomor-
phism. The kernel of these homomorphisms are images of 7p_1y0-6
(S***1: C,) and wHp_iyq-6(Cai; S™1). By Theorem 3.2, 75p-1)4-6
(8704 Co)=mp-11q-6(S" 1 V(1)u1)=7ape-a(V(1))=0. Also the
mod p triviality of 7&p-1,4-6(Cai; S ') follows from that of Gy_1y4-s,
Gep-1y¢-5 and Ggpe_5. Thus i and 7'y are mod p monomorphisms and
we have obtained the equality B”8"”=(8)?0.80..
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