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Introduction

To generalize th e  classical theory o f algebraic functions to open
Riemann surfaces, much effort has been made in the last three decades.

As for Riemann-Roch theorem and Abel's theorem, similar formulations as
classical were obtained by L. Ahlfors [ 2 ]  [ 3 ]  [ 4 ] ,  Y . Kusunoki [6],
B. Rodin [ 1 5 ]  and H. L. Royden [161 for some class of open surfaces.
The results but for [ 6 ]  are described in terms of distinguished harmonic

differentials introduced by A h lfo rs . Although restrictions for surfaces
a re  not explicitly mentioned, they seem to be meaningful only for
surfaces with small boundaries, say , those o f class O H D .  Otherwise, a
single-valued meromorphic function whose differential is distinguished

would reduce to a constant. A s was pointed out by R.D .M . Accola [1 ] ,
the same situation occurs if the surface belongs to the class OHD — O G .

For surfaces of class O H D — O H D , it seems yet unknown whether or not
non-constant meromorphic function f  exists such that d f  is distinguish-

ed . W h ile , th e  results by Y. K u su n o k i [7 ] [8 ] [ 9 ]  a r e  meaningful
for general surfaces. His results are given in terms of canonical semiexact
differentials an d  functions introduced by himself, which have some

restrictions on ly in  their real parts. M . M ori [ 1 3 ]  pointed out that
canonical semiexact differentials a re  identical with meromorphic differ-
entials whose real parts are distinguished (in  the real sen se ). Recently
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H. Mizumoto E l l ]  and M . Yoshida [1 8 1  obtained further generaliza-

tions along Kusunoki's program. Some interesting applications of these

theories can be seen in  [ 7 ]  E C , [1 1 1  and M . M ori [1 2 1 , M . Ota
[141.

In the present paper, by modifying those methods we shall show

a  slightly more extended formulation for Riemann-Roch theorem in

general surfaces, that is, it w ill be given in terms of the single-valued

meromorphic functions (m u ltip les  o f a  divisor 6 )  w ith  a certain

boundary behavior and the meromorphic differentials (multiples of 1/6)
with another behavior which is dual in some sense to the behavior above.

Our result generalizes the corresponding theorems in  [ 7 1 [ 9 ] ,
[ i i i  and D C . E v e n  in the case of finite genus, our formulation yields

somewhat new canonical conformal mappings. Our treatment seems to

be analogous to Yoshida's one, but different in  some respects. Actually,

our starting point is to consider the totality of square integrable complex
differentials a s  a  re al Hilbert space, which differs from the customary

ones. Moreover, we shall not necessarily require that the real parts of

differentials under consideration are exact near the ideal boundary. We

impose restrictions onto differentials rather than functions and by doing

so, we shall be able to take into account a  wider class o f differentials

with an infinite number o f non-vanishing periods.

Now we shall sketch our program. In the first section we consider

the space A  of square integrable complex differentials on a Riemann

surface as a real Hilbert space, and show some fundamental lemmas

including de Rham's decomposition, Dirichlet principle and W eyl's lemma

etc.. The definition of A 0 -behavior is given in section 2. In section 3,
w e shall show the uniqueness and existence theorems o f  elementary

differentials with A0 -behaviors (Theorems 1 ,  2  and 3 )  by means of

orthogonal projection method.

In section 4 ,  the notion of dual boundary  behav iors is introduced

and some lemmas will be prepared for the following sections. In sec-

tion 5 , we shall formulate the Riemann-Roch theorem in terms o f dif-

ferentials with dual boundary behaviors (Theorem 4  and its Corollary).
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The proof is analogous to Kusunoki's one [6 ]  [7 ]  [9 1  (see also Yoshida

[ 1 8 1 ) .  Our results generalize the known cases, e.g. canonical semiexact
differentials ([7 1 [ 8 ]  [ 9 ]  cf. also D O D , Mizumoto's resu lts [1 11  and

Yoshida's T x -behaviors [ 1 8 ] .  W e refer to these cases in section 6.

T h e  la s t  tw o  sections, 7  and 8  are  devoted  to  show examples

which exhibit the m erits o f our standpoint. The first exam ple (sec. 7)
gives a  canonical conformal mapping of a compact bordered Riemann

surface onto a  reg ion  w ith  slits w hose directions are arbitrarily pre-

sc r ib ed . This can  be regarded  as  a  generalization o f P . Koebe's clas-

sical results [ 5 ] .  The second example (sec. 8 ) shows that differentials
w ith  an  infinite number o f  non-vanishing periods may appear in  our
theory.

T h e  au tho r w ishes to  express h is deepest gratitude to  P rof. Y .

Kusunoki for his many valuable suggestions and ceaseless encouragement.

§ I .  Prelim inaries and existence theorems.

1 .  Let IV be an arbitrary Riemann surface. A Lebesgue measurable
complex differential 2= a(z ) dx  +b(z )dy  o n  W  i s  s a id  to  b e  square

integrable, if the integral ( I  a 12 + Ib12 )dx d y  is finite. The totality

of square integrable complex differentials on  W  forms a Hilbert space
11=-21- ( W )  o v er th e  com plex num ber fie ld  C  w ith  th e  usual inner
product defined by

(2 1, = 1 14,21 A  =1 v v (aid2+bib2)dx dy

w h ere  2i =a1 (z )dx +b ; ( z )d y  fo r  a  lo c a l param eter z -=-x +iy . We
denote by —2  th e complex conjugate o f  2 , and b y  2*  th e  conjugate

differential o f  2. Th e norm  in A  is  d en o ted  b y  1111. S im i la r ly ,  the

to ta lity  of square integrable re al differentials o n  W  form s a Hilbert

space T  =T ( W ) over the real num ber field R  w ith  th e same inner
product as above. z i can also be considered as a  linear space over R,
and 21 so understood is denoted by A =A ( TV). W e in troduce another
inner product
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<21, 22> =Re(21, 22).

Then it is easily verified that A  forms a rea l Hilbert space with respect

to  th is  n ew  in n er product. W e sh a ll use symbol 11:.111 to indicate the

norm  in  A .  I t  is  e v id e n t  th a t  1112111 =11211 f o r  a n y  square integrable

complex differential 2 , and therefore we could do without the symbol

111.111. But w e prefer to use it to  m ake clear the structure of the space

under consideration. As has been pointed out, A  has the same topology

as A . H o w e v e r , th e  orthogonality in  A  does no t a lw ays im p ly  the

orthogonality in j ,  w hile  its converse is  true.

For any complex differential 2= a(z )d  x  b(z )dy  w e set

6= Re 2= (Re a) d x (Re b) dy,

r =Im  = (Im  a) dx -P(Imb) dy.

Then A = 6 + ir  and 6, r  are real differentials. Indeed, their coefficients

are covariant because of the fact that the transformation matrix is real.
(Ahlfors-Sario [4] c f. a lso  W eyl [1 7 ] p. 56 ). Conversely if 6 and r
are real differentials, then 6 - P ir  evidently defines a complex differential.
F u rth er w e can  easily  see  th at 11]21112 =11161112 +111r1112 . More generally, if

=6, + ir i ( j=1 , 2 ) are two complex differentials, then we have

<21, 22> = <f i, + <r 1 , r2 >

= e l l ,
 0 0 + ( r i ,  r2).

The space T  can be considered a s  a  closed linear subspace o f  A.
I f  w e w rite  iT -= ;  o i  E i F  is  a lso  a  closed linear subspace o f  A

and, by just ob ta ined  iden tity , it is  ev iden t that the orthogonal com-
plement o f F  in A  is  exactly  iF , i.e.

A = T  i F (direct sum).

It should  be noted that the meanings of the letters A  and T  are

different from those in Ahlfors-Sario [4], Mizumoto [111 Rodin [15]
and Yoshida [1 8 ] etc.. W ith  o n ly  th e s e  exceptions, w e in h er it the

terminologies and notations of Ahlfors-Sario [4], if not mentioned further.
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For example, T „ T , o , T „ F a ,  T , s t a n d  f o r  t h e  real Hilbert spaces

of real square integrable differentials (on W ) with some restricted pro-

perties; T, (resp. T e 0) is defined by Cl (resp . C 1 /1 0 ) ,  where Fie.
(resp. T el o )  is  the linear space formed by all exact real 0-differentials

(resp. exact real 0-differentials with compact supports) on W  and Cl

denotes th e  closure in T .  I f  we consider th e  corresponding linear

spaces (over R ) formed by complex differentials, A , and A e o a re  defined

analogously. That is, we define Ae (resp. A, 0 )  to be the closure o f A e'

(resp. Ale 0 )  in  A . T  (resp. T e o )  was defined to be the orthogonal com-

plement o f T*„ (resp. T n  in T .  Now it should be noted that A , and

A c o  a r e  defined to be the orthogonal complements o f  A es', and A',1̀  re-
spectively with respect to the inner product <  ,  >  (not ( , ) !). With

these notations it is  trivial that the following relations hold.

Ae =  e =  T  i T

Ae() =11—e0 =
re() i re() .

In  order to obtain other important decompositions we need the following

LEMMA 1. Let T 1 a n d  T 2  be tw o closed linear subspaces o f  F
and A l = F  i F  2 . Then A t = F t where A t means the orthogonal
complement of A1 in  A  and F ' m e an  the orthogonal complements of T
in  F (j =1, 2).

PROOF. It is evident that A f  T-; T o  show the converse,

suppose that A E AIL
.  By assumption Ai= 0 "i i62 E A i  fo r  any 6;  E T .

I f  we set 2=t-
i -Fir 2 , r 1 ET ,

0 = 2> = <0. 1, r i >  < 0 - 2, r2 >.

W e can  take 62 t o  b e  th e  zero  element o f  T 2 ,  and obtain that

< 6 1 ,  r  >  0  f o r  a n y  61 E r i .  Hence r E Ti-. S im ila r ly  r 2 E T i - .
Therefore 2=r 1 + ir 2 E T i in-, q.e.d.

The following lemma will justify the definitions o f A , and Ae 0.
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L E M M A  2.

A, =

i rc 0 •

PROOF. We give the proof only for the first decomposition, since
the second case can  be proved  analogously . B y Lem m a 1 ,  A, = A *e
= iPIA)±=- iTV- iT  and th is  is  the desired relation.

W e define the space of square integrable complex harmonic dif-
ferentials on  W, A l i ,  to  be the class Acin A l* . Then we have

LEMMA 3 . ( Weyl' s lemma).

Ah= A c n A .

PROOF. I t  is  ev id en t b y  W eyl's  lem m a fo r  T h (c f. Ahlfors-Sario

[ 4 ]  p. 281 ) and Lemma 2.

LEMMA 4 . (de R ham 's decomposition).

A= Ah A e o

PROOF. On account of the preceding lemma, (i1, 0 4- A*, 0 ) ±  A ieonA *eol

--, A ,n 4 =-A h ,  which is to be proved.
As an immediate consequence o f th is lem m a w e have

LEMMA 5 . (Dirichlet principle).

A ,  -

The following lemma can be regarded as a generalization of Green's

formula:

LEMMA 6. L e t ç o an d  ÇO2 be closed 0  -dif ferentials o n  12 where

S i  i s  a  can o n ical reg u lar reg io n  o f  IV . L e t  E (W )= {A i ,  B .}  b e  a
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canon ical hom o logy  basis  o f  W  m odulo d iv id ing  cy cles such  that
.1.7,( W)r1S2 f o rm s a  canonical hom ology  basis o f  S-2-  m o d u lo  0.Q. If
is  semiexact, then

(Çoi, (4 )9 = ( 401) (02+EG Çoi. 0 - 21 (04
i2 A i B i B

i
A

i

H ere E  stands f or the sum  only  f o r A i  an d  .131 w h ich  are  contained in
a

2 .  The precise m eaning o f  the  integral go '  is  g iv e n  in  th e  proof.

PROOF. W e cu t D  along A , and Bi ,  and obtain a  planar surface

Do . S in c e  çoi  i s  semiexact, there ex ists a  C2-function f  on S20 such
th a t df= Çoi. W e  a p p ly  the well-known Green's formula on Do . T h en

40 '219a=(Soi, (02 ) 20 = 1  V 1 A 0 2 = dfA02

=  L of(02= — 1 ' B, '+ aSdf v 2

= — 1
a sP

2 + 
E

A i

(T

B i
(91

A i

ç d 2 ) , q.e.d.

R E M A R K . Note th at f  is determ ined up to  an additive constant.

But the choice o f  f  h a s  no effect on the integral f0 2 , because of
as)

the closedness o f  V'2.

For la ter use we shall prove the following

LEMMA 7. L e t  C b e  a n  arb itrary  non-zero com plex  num ber. I f
A1 i s  a  closed linear subspace o f  A , th en  CAi= ICA; 2 E Al l  is also  a
closed linear subspace o f  A  and  (CA1 ) ±

PROOF. The first assertion is  trivial. To show the remaining part,

w e need  on ly note th a t <CA', CA I  > = 2 < 2" >. From this rela-
tion we know that if 2  E (il i )±  then C- 1 2 E A t  and vice versa, q.e.d.

2 .  From  now  on , w e  regard the complex plane C  a s  a  two-
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dimensional linear space over R, and consider a  family .2= IL117=1 o f
(at most a  countable number o f) one-dimensional subspaces L;  o f  C .
Here g  denotes the genus o f  W- which may be infinity. Once for all,
w e  f ix  a  canonical homology basis .E = E(FV)= B41=1 modulo
dividing cycles and consider a  space Ao A o (A i ; 2 ) such that

(1) Ao is  a  linear subspace (not necessarily closed) of Ah s „

(2) there exists a  closed linear subspace A1 of A h  such that

AoDA1+ iAt*

where is the orthogonal complement of A1 in  A h,

( 3 ) <  e, > = 0 for a n y  20 E Ao,

(4) 120 E L if o r  every 20 E Ao and  J=1 ,  2, g.Ai
j

Such a  space Ao =A o (Ai ; 2 )  will be called a  behavior space associated

with A1 a n d  2.
If Ao = Ao(Ai ; 2 )  is a  behavior space, so is Ao = {2 E A h ;  E Ao} .

Indeed, (1) and (3) are  easily verified, because Ao is evidently a  linear

subspace o f Ahs ,  and < 2 e ,>  =  <  2 0 ,  — > = —  < 2 0 , i 2'01' > =0  for

any Ao E Ao . N ext, A D A i -  jilt* = A i + i i i t*  a n d  th is proves (2).
Finally for every 20 E Ao an d  j=1 , 2, g

_
20=1 2 0 EL;

A i A1B, B1

where L1 -= {z E C ;iE L ; }. L ;  is  ob v iou s ly  a  one-dimensional linear

subspace o f  C . S e t  2 =  ;  L E 2 1. Then we can write Xo = Ao (A i ;

Let d( W) be the collection of a l l  V (  W for which there exists a
canonical regular region 2  such that V = W— P .  Each element of
g( W ) is  a  neighborhood of the ideal boundary g  of W.

DEFINITION. Let Ao b e  a  behavior space. A  meromorphic differen-

tial ç9, defined o n  a  neighborhood o f  8 , is called to have A 0-behavior

if  there exist UE S( W), 2 0 E Ao a n d  2, 0 E Ae o n i f  such that
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so=A0+Aeo o n  U.

A  meromorphic function f  (not necessarily single-valued), defined near

is  c a lled  to  have /10 -behavior i f  differential d f has A 0 -behavior in

the above sense.

3 .  Existence and uniqueness theorems of the elementary differen-
tials with A 0 -behaviors.

THEOREM 1. (uniqueness). A  regular analy tic dif ferential ço which
has A 0 -behavior (A 0 = A o (A i; 9  9 = -(417= 1 ) is identically  zero provided
that

E L i ( j =  1, 2, ..., g).
Bi

R E M A R K .  Let = {0 7 =1 b e  an o th er fam ily  o f  one-dimensional
subspaces o f  C  su ch  th a t L; =L ;  f o r  a l l  but a fin ite num ber o f j .

Suppose th a t 1 ço E L  (j=-1, 2, ..., g ) .  T hen w e have the same con-Ai

clusion.

PROOF. Since ço has A 0 -behavior, there exist UE g( Ao E Ao and

2,o E Ae o nA 1 such that

49---- 20+2,0 on U.

W e take a sufficiently large canonical regular region ..(2 whose relative

boundary OS2 is contained in  U .  W e m ay assume th at ,Ens? forms a

canonical homology basis of 1-2 modulo the border. Then, using Lemma
6 twice, because of the analyticity of ço,

INVIIi Hkoill=(ço, O a=  — 49, V* )a

çi3( 1 1 1 . 7 1 3  -  B  1
q)

 A 1

i
a l 2

( 1 (2 0+ 2 80))( 2 0+2e0) — i E 0  4 91  0 S,9 0 )
A j B 1B f  A j
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—i(Ao+ Aeo, At+ 4 0 ) .o + iE 0 -;to- 2 0 L )Ai B , B A

E v  0 —  g o  0 )a A1 1311 3 1  A 1

+ 2 ? ) - 2  I m E ( 1  2 (

A1
=  0 0 +  2 e03 A 131

Hypothesis in  the theorem and the condition (4 )  for Ao imply that

and
A  

AoS
B

;10

are both real and consequently,

11140111L= — i(20+ Aeo, + Ato)a =G lib  a t) — is a

where

= (Aeo, 4 )  -I- (2o, A to)a4- (Aeo, 40)12.

Let S2 tend t o  W , then since lime a = 0  we obtain the equality

= (2 °, i4 )= <2e, iA 0 * >

T he fin a l term  is  zero because of the condition ( 3 )  fo r Ao a n d  we

conclude that O. q.e.d.

Next we prove the existence theorems of certain elementary dif-

ferentials with preassigned periods and singularities. Let L  be a one-
dimensional subspace of C. F o r  two complex numbers z i  and z 2  we

shall write Z1 Z2 modL if  zl— z2E L.

THEOREM 2. L et a;  a n d  49;  be given complex numbers, such that
a l \  0, i 9  O  m od  L . Th en  th ere  are  sq u are  integrable holomorphic
differentials Oc,1 (4 ) , 0 , 9 1 ( 4 3)  which have the following properties:

(i) «; (4 ) ,  8 1 (13;) have A0 -behaviors,

(ii) a a i ( A  x  k )
B k

l  a;  ( k  =  j )

0 (k j )  
mod Lk
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A k

 Oa  (A ; ).= ce; (2,1; x A k )=  0 mod Lk.

( i i ) '  S im ilar relations hold for i (131 ).

T he q5 a  i (A ; )  a n d  $ j (B ; )  are  uniquely determined f o r each j.

P R O O F .  W e give the proof only for the case of a  i ( A; ) , since the

case of 0 /4/3 ; )  will be analogously proved. W e may assume that the

given  cycle A;  i s  an  oriented analytic Jordan cu rv e . L e t  R  b e  a
relatively compact ring domain containing A i .  We consider a  C2-func-
tion  y on R —  A ;  such that

on the left side o f 24.;

V =
O on the right side of A .

We can extend y  as D E W—  4 ) .  Then di) is a closed C1-differential
with finite norm, that is, cif) E A ( W ). S o ,  by use of Dirichlet principle
(Lemma 5 )  Ac = Aeo and the orthogonal decomposition Ah= A i  -j-
we know the existence of differentials 1 E A1 , E AÏL and 2,0 E Ae o nAl
such that

= 21 - I-  At +

Since a; 0  m o d  L ,  2-1- is not identically zero.

W e set

Sba,(21;) i ( 2 ) *

=  di' — (Ai — i 21- * ) eo.

Then çb„ (A1) is  a regular analytic differential. Since c/P has a compact
support, and further Ao contains A l + Lit * , w e  can  co n c lu d e  th a t
0 a ,( 4 )  has A 0 -behavior. Moreover, for any cycle r, w e have

a ,(A.f)= 7 dP 7 (21— i 2±*)

= ce; • (A ;  x r) — 20
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provided that elo=  —  i 21.-* ( E A o ) . I f  we choose A k  resp. B k  a s  r,
condition (4 ) for Ao im plies (ii).

Next we show the uniqueness o f 0,„1( 4 ) .  Suppose that 01 and 02
are adm issible differentials. T h e  difference 01-02  is  th en  a  regular
analytic differential with A 0 -behavior a n d  satisfies

A 4
(01. -  02) E Lk (k=1, 2, .

Bk

Therefore by Theorem 1, 0 1 - 0 2 = -0 . This completes the proof.

REMARK. M ore generally we can prove that 0„ i ( 4 )= 0 ,4 4 ;)  if
mod L1 . Indeed, Theorem 1 is sufficient to draw this conclusion.

L et p o b e  a  p o in t  o f  TV and z =z ( p )  b e  a  lo c a l parameter near
p o f o r  which z(p 0 ) = 0 .  Conventionally, by a n  analytic singularity at

p o  we understand a  differential eo which is defined i n  a  punctured
neighborhood U0 o f  p o a n d  is analytic on Uo . It may be assumed that
eo is represented a s  follows:

60=  E-  b n z 'd z (b„EC).
n=1

ic7rJ 21,For sufficiently small r >0 t h e  quantity n

1
e o = b 1  is known as

th e  residue o f 0 0 a t  p o ,  which is independent o f  th e  choice of local

parameters. F o r  fu rther deta ils , refer to  Ahlfors-Sario [ 4 ]  p . 299,

p . 305.

THEOREM 3. Let p i ,  p 2 ,  •  •  ,  pN be a f inite num ber of  Points on W,
and Of  an analy tic singularity  given at each p i (j= 1 , 2, • • N ) .  Consider
a dif ferential 0  w hich is equal to O f  n e ar p i . Suppose that the sum  of

residues of ( )  is  zero. T hen there ex ists a dif ferential 9--=-- çoo  such that

(i) ça has A 0 -behavior,

(ii) yo is regular analy tic ex cept at p i ( j= 1 , 2, • • •, N),

(iii) ça h as  the singularity  0 , th a t  is , 1119 — 05111u1 < 0 .0 f o r  some
punctured neighborhood U of pi ( j= 1 , 2, • • N).
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To prove this theorem  we need th e  following extension lemma

for differentials which is due to  H . Yamaguchi (Lemma 1, in  Yoshida

[181.

L E M M A  8. L et G  be a  regularly  im bedded connected subregion of

W whose relative boundary  OG is  com pact, and let V be the complement

of  C .  For any  closed 0-dif ferential, 6, defined on  a neighborhood o f  P.,
the follow ing tw o statem ents are  equivalent:

( 0  61y, the restriction of  6  onto V , can be ex tended a s  a  closed

0-dif ferential o n  W so  that the support of  has a compact

intersection w ith C.

(ii) 6 =O.
ac

Proof  o f  Theorem 3. Take sufficiently small parametric disks 4;

about p;  whose closures are mutually disjoint.

Zri-= {p } a n d  V = U  4 ; .  F o r a  while
=1

th e  new  Riemann surface V .  T h e n  S2=

We se t f r {p;}7=1,

we focus our attention on

W'— r7  i s  a  regularly im-

bedded connected subregion o f  W ',  a n d  i t s  re la tive  boundary S2

= U 6 4 ;  is  com pact. It is evident that V = W '— .Q. B y  o u r  assump-
j=1

tion, 0 is a  closed 0-differential o n  a  neighborhood o f P  and satisfies

that

6 = Of=0.
Jan aei

For the sum o f residues of e vanishes. Therefore, by Lemma 8, we

can extend e j y a s  a  closed 0-differential on W ' with compact support,

which we denote by 6 . (A s  for the constructive method to obtain (),
refer to Ahlfors-Sario [4] p. 301, p. 306. See also Ahlfors [21.)

On the other hand, since e gives an  analytic singularity at each

ph  6— i e* =0  near p;  an d  so '6' satisfies the relation

-  6 *  0 near p i  and near 8 .
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Hence 6--C6* E 211( W) C A(TV).
N ow  th e  d e  R h am 's  decomposition (Lemma 4 )  A =- Ah  ./1 6 0 -j-

an d  th e  decomposition Ah=z114- A-1.-  s h o w  that there a re  differentials

A1 E A i ;E ; 2 , E A e  0 satisfying

— i6*-=.21+ Aieo-k 23.

Define

r=6 — 2 1—  2 /e0= 2 1- + 2 3 +  iê * ,

then we know that V is a  complex harmonic differential with singularity

O. Consequently, E  o n A l . Now it is obviously seen that
1  (t- ± ir* )  has the desired properties.
2

REMARK. Up to this point, we can not insist that th e  so con-

structed differentials a re  uniquely determined. B u t under certain nor-

malization those are unique. We require that ço should satisfy

2 1 . ,  
E L; ( j = 1 ,  2 , . . . ,  g).

By

It is  easy  to  show that this normalization is always possible. Indeed,

i f  x ;  (resp. y; )  are  A r (resp. B; - )  periods of ça, only a  finite number of
x;  an d  y ;  a r e  \    0  mod L1 . Set

ço=v— E(-0x 1 (B1)+Oyi (4)).

T he sum in  th e  right hand runs over j  for which x; \   0  o r  y ;   \   0

mod L5,  and is therefore a  finite s u m . ça preserves the singularity and
satisfies th e required normalization condition . A s for uniqueness, we

need only Theorem 1.

Thus, if  we take a local parameter z;  near p ;  such that z ; (p; )=-.- 0,

the following normalized differentials always exist and are unique :

(I) çopj ,„: differential with A 0 -behavior, regular analytic except
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a t  p i ,  where has th e  singlarity dzi /zy (n=2,
3 , • •.).

(II) rApi ,n • differential with 21 0-behavior, regular analytic except
at p i , where hashas the singuularity iclzVz7 (n =2,
3 ,

(III) Op, q : meromorphic differential with A 0-behavior, which has
residues 1  a t  p, —1 a t  q(p, q E W ) an d  is regular
analytic elsewhere.

( I V )  jfip .q  : meromorphic differential with A 0-behavior, which has
residues i  a t  p, — i a t  q (p, q E W ) an d  is regular
analytic elsewhere.

These normalized differentials together with holomorphic differentials

93a j (4 ) ,  ,(13;) whose existence and uniqueness a r e  guaranteed by
Theorem 2 w ill p lay a  fundamental role later.

§ I l  Dual boundary behaviors and Riemann - Roch theorem.

4 .  For our purposes we consider here two boundary behaviors.
L et /PP =A 0 (A e

ik) ; go (k=1 , 2 ) be two behavior spaces corresponding
to  the spaces Ain, A 2 ( (  Ah )  and the families 0 1 , .02. Let L o b e  a
one-dimensional subspace o f C .  Suppose that Yk= {L»}7 1 (k=1, 2).

W e say that Aeon-behavior an d  AP-behavior a re  dual to  one another
with respect to L o if  th e  following two conditions are fulfilled;

10) ( i w )  0 ) *)=----- 0 modL o i.e., < 4.) A ,(32)* > , i < 2 (01.) 4 2 )* > . E  L o

fo r  a ll ,qn E 4 ) and 4 2) E A? ) .

20 ) For each j,

x 142) = L 0

where the left term is defined by the set -(z E C ; z= v . )  (i 2)

fo r  some C(k) E L  (k= 1, 2)1.

If a  behavior space A0=A0(A1; 2 ' )  satisfies a  stronger condition
3') < 4 ,  UV' >  = 0  fo r any AL, A'ô E Ao

then, Ao - and Ito -behaviors are dual to one another. In fact, we already
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know that A- 0 always defines a  boundary behavior i f  Ao does (see sec.
2). Hence, we need only check the conditions 1°) and 2°). T o  do

this, suppose that AO, E Ao . Then, on account o f (3') we have

(4 , (4 )* )=  < >  <  A O, 2'4* > =  < 2 ,  AZ*> ER

that is, (26, (4)*)=--- 0 m od  R . W h at is  more, Li  x L i = R  fo r  each
j= 1, 2, ..., g .  Thus we have shown

LEMMA 9. L et Ao = Ao (A i ; 2 ') b e  a  behavior space which satisfies
the condition

(3') <AO, > =0 f or all A O, 2 E Ao.

T hen /10 - and A 0-behaviors a re  dual to  one another w ith respect to  R.

We shall make use of the following lemma which is essentially

due to  Y . Kusunoki [61 [71 [9]  (see also Yoshida [181).

LEMMA 10. L e t 0  an d  Aw) def ine dual boundary  behav iors to
each other w ith respect to  L o . L et yo be an  A belian dif ferential (o f  1st
o r 2nd k in d )  w ith  A,1) -behavior and ç  any  A belian  d if f eren tial w ith
0 -b e h av io r. W e  c u t  W along 4  an d  B1 to  m ak e it a  planar Riemann
surface W-

0 . Then

(i) there ex ists a  single-valued meromorphic f unction f  o n  W
such  that df = (o,

(ii) 27r i E Res. f —j E10 A 71 B iç b — mod Lo.

P R O O F .  (i )  is evident by assumptions. In  order to prove (ii), we

apply Lemma 6 on  S20 , the region obtained from a  sufficiently large

canonical regular region S2 by taking o ff mutually disjoint parametric

disks about the singularities o f  ço and 0 .  A s  before (th e  proof of

Theorem 1), w e m ay suppose that ,E7 n s? forms a  canonical homology

basis of 4  modulo Q .  T h e n
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2 7 t i  E  R e s .

.1.°= — (1 A 7 L ° - 5 B 7 2 1 +

W e can  assume th a t for som e AT EA (
0
1' ) (k=1, 2) and some

EA eo nA i

ç9 =AV' + 40 , sb +

o n  a  UES( W ), in  particular near OS2. And b y the usual techniques

including the use of Lemma 6, w e have

f o _ (»on , 2v)*) 2 + 2 (1)1  2 (02 ) _1  4 1 )1  2 (2 ) '\ +
A

5

6 2
B5B 5 A ,

where

ED
=  - I ( 2 (0 1) 2 2)u - I- (A teo, 2

(

32 ) * ) ta - k(Aeo, 2 2)421.

Now our assumptions 1° )  and 2° )  yield that

( you , 2(02)*) ..0
mod Lo.

i (1 2 (1 )1  42) 2()1) 2'02)) =0i= i  .A 5 °  B
1

B 1 A 5

On the other hand, since lims42 =0, it follows that

2 7 r i E  R e s . f°
 i ti(LAB,ÇbjBAA,Ø)

which is to be proved.

REMARK. Note th at w e have

çt) 0=0 modL oAj B 5B 5  A 5 .

mod Lo,

except for a finite number of j .  Indeed, ço and 0  have A T- and AW)-
behaviors respectively and these behaviors are dual to one another with
respect to  L o . So, b y  the condition 2° )  o f dual boundary behaviors,
we can conclude the desired congruence relation.

As in the traditional cases (Ahlfors-Sario [4] pp. 325-329, Kusunoki
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[6 ]  [7 ]  [9 ] , M iz u m o to  [1 1 ], Rodin [1 5 ] , Yoshida [ 1 8 ]  etc .), the fol-
lowing well-known algebraic lemma will be needed. For its proof, refer
to  [ 1 8 ]  (Lemma 4 ), for instance.

LEMMA 1 1 .  Let K  be a f ield and X, Y tw o linear spaces ov er K.
Suppose th at  h  i s  a  bilinear form  def ined on the product space X x Y,
and th at  X o (resP. Yo )  is  the left-(resp. right-) k ernel of h, that is, X 0

= Ix E X; h(x , y )=  0  fo r  a l l  y E Y }  and Yo -= {yE Y; h(x , y ) = 0  for

all  x E X} . T hen w e have an isomorphism

x/x, 1717 0

prov ided  that at least one of the quotient spaces X/ X0 , Y Y o is  f in ite
dimensional.

5 .  Let 6 --=Op/O0 b e  a finite divisor on TV, where Sp=pyup'2"...pm, '
and p q'2'2 q ns s are disjoint in tegra l d iv iso rs. Let L o b e  a  one-

dimensional subspace o f  C .  L e t  spaces AW) A 0 (M 1 ) ; 2' 1)  and AT
= A o(AP) ; 2 ) ( 2  k -= =1.(k -=- 1, 2 ) )  define dual boundary behaviors

w ith respect to L o . For each L'i k) (resp. L o)  we take a complex number

Cyi) (resp. Co)  o f modulus 1  which determines q ) (resp. L 0). We con-

sider the following sets which evidently form linear spaces over R:

S(A (
0
1) ; Vs) -=  { f ; ( i )  f  i s  a  single-valued meromorphic function on

W , ( ii)  f  has A T-behavior, ( iii)  f  i s  a multiple of

1 /64 ,

M(A (
0

1.) ; 1/6 p)=  I f ;  ( i)  f  i s  a (multi-valued) meromorphic function on

W , ( ii)  f  has A T-behavior, ( iii)  f  i s  a multiple of

1/6 b ,  (iv ) periods o f d f  are normalized.},

D (A (
0

2 ) ; = ( i)  a  i s  a  meromorphic differential o n  W , ( ii)  a
has AT-behavior, (iii) a  is  a multiple of ,

D (A? ) ; 1/ô) =  ;  ( i )  a  i s  a  meromorphic differential on  W , (ii)  a
has AT-behavior, (iii) a  is  a multiple of 1/6,.}.

Here, in the case th a t  6 0w e  id e n t i f y  t w o  e le m e n t s  f ,
 f 2  of



On the Riemann-Roch theorem on open Riemann surfaces 513

M (4,1) ; 1 / p) if and only if fi —f2= const. ( E C).

THEOREM 4. (Riemann-Roch theorem ). Suppose th at A (
0

1 ) - and A 2 -

behaviors are dual to each other. Let 6 = à'/à', be a f inite div isor on W,
w h e re  p and 6 , are disjoint integral div isors. T h e n

dim S (4 ; 1 / 6) -= 2 Lord à' + 1— min (ord 1)1 —

—  clim ID(A ? ; 1/ a g ) D(A (02) ; 6 )1.

PR O O F . F irst of a ll, we shall find the dimension of M(A (
0

1 ) ; 1/6p ).

To do so, w e need the integrals of the elementary differentials with
4 1 -behaviors obtained in sec. 3

1(0̀p1
) ,, , , 1

, , ,-  (1)
1 < j < r

2 < / t  < n 0 -1

w here the superscript denotes that they have AW ) -behaviors. I t  is
easily seen  that i f  6 , * 1  these integrals span M(A (

0
1 ) ; 1/6 ), and if

6 ,=1 , those integrals and constants 1, i  make a basis of M(A (
0
1) ; 1/6p).

So we find that

2 ± mi +2=2ordap+2 (à ', = 1){
i =1

dim M(A (
0
1) ; 1/6p) =

=2 (ord Sp +1 — min (ord a, 1)).

Now we consider a  (real-valued) bilinear form defined on the

product space M(AW) ; 1/6p) x D(AW ) ; 1 / ,)

f ,  a).= Re go E Res. fallJa  E D (A? ; 1/à').

Since a  is regular at each p , additive constants (including periods) of

f  have no effect on the residue of f a  a t  p i ,  and hence hL o is  w ell-
defined. By Lemma 10 w e have

2  ±  m
J
 =  2  ordap (0 , *1 )

J=1.

f  E M(A (
0

1 ) ; 1/6i,)
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h L 0 ( f, a) — — Im L o it r
i (S A  j df B j a - 1B  j df A  j a)1

—Re[ o E Res. fa l .k Qk

Then we can determine the left- and right-kernels o f hLo . In fact, if f
is  an element o f th e  left-kernel o f  hLo ,  we choose A (2 ) (  A

i 4" (2) \ k as a  and

know that d f= 0 .  S im ilarly  w e find  that d f= 0  by choosing
A k Bk

0 (
i

2 )
(k2) (B  k )  as a .  Hence f  is single-valued on the whole of W .

I f  6 is  in tegra l, th en  6p=-6 and therefore f  E S(A (
0 ' ) ; 1 / 6 ) . Next,

in the case th a t 6  is non-integral, we set a=---  O , k . Then we know

that ImUof (qi)]=ImUof (q k )1  for k= 2, 3, • • •, s. It is entirely sim ilar
fo r  Re 1 0 /.1 , and so we can conclude that the function f — f (q i )  has

z e ro s  a t q k (k = 2, s). Moreover, i f  w e tak e  ço(,2,),,, and -0 (4),, as a
(1 <k  <s ; 2 <v <nk), it follows immediately that the function f —f (D)
h as  a t le a s t nk-ple zeros at q k (1 <k < s ) .  B y  the equivalence relation

in  M (4 ) ; 1/6 ) w e  k n o w  t h a t  f  E S(A (
0

1 ' ;  1 / 6 ) . C onversely, it is
obvious that the left-kernel o f hLa contains S(AV ) ;  1 / 6 ) . Therefore the

left-kernel o f  hLo i s  e x a c t ly  e q u a l  t o  S(./41 ) ; 1 / 6 ) . Concerning the

right-kernel, w e proceed analogously. In  th is  case a lso , it  is  e a s ily

v erif ied  th a t D(A (
0

2 ) ; 6 )  is  con ta ined  in  th e  right-kernel, fo r  f a  is

re g u la r  an a ly t ic  a t  p;  i f  f  E M(A (
0

1 ) ; 1/6p) and a E D (AW) ; 6). The

converse implication is proved by taking the integrals

5
. (0 (p 1j ) p, and 1

„ ,-  (1)

as f  (1 < j  < r; 2  <,ct <m i -F 1 ). Therefore the right-kernel is D(.4 (
0

2 ) ;

Now Lemma 11 i s  applicable and it fo llow s that M(A (
0

1 ) ; 1/6p )/
S (A(

0
1 ) ; 1 / 6) D  (A (

0
2 ) ; 1/ 6 ,)/ D (A (

0
2 ) ; 6), f o r  w e  a lre a d y  k n o w  th a t

M(A (
0

1 ) ; 1/6 p )  is finite-dimensional. This isomorphism yields the desired
dimension relation. q.e.d.

I f  g , the genus o f  W , is  f in ite , w e  can  eas ily  f in d  a  basis for

D o w);q )  a s  usual:
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(a) if q =1,

A1),0,32.),(B.i)}

(b) if a * 1 ,

span D (AV ) ; 1/6 q ) ,  and

(2) —(2) .1 (A1)) 0 
9

(2) 
91 , ji;(2),21}1.5i5g.21Vens0 (a2 j)0 4 0 1 ) krv q c , v1 , k

span D (AW) ; 1 / q ) ,

provided that in  both cases we choose a;  a n d  8;  appropriately, say,

a ;  = 8 ;  = iC (7 ) . Hence

2g (S  = 1)
dim D (AV ) ; 1 / q ) = 12[ g+ k±i (n k — 1) H s —1] (a 1)

= 2  Eg- min (ord a, 1) + or d  q ].

A n d  therefore Theorem 4  reduces to th e  following rather classical

form :

COROLLARY. I f  A ' -  a n d  AV ) -behaviors a re  dual to each other,

then f o r any finite divisor o n  Pr/

dim S (A 1) ; VS) — dim D (AV' ; 6)= 2 (ord — g + 1) .

6 .  In  th is section w e  mention about the important particular

cases.

(a) Let f ' ,  b e  a  closed subspace o f  T  h „  containing f hm . Set

Ax = r  ,  where rk  is the orthogonal complement o f T  , in T h .

It is easily seen that conditions (1) — (4) for behavior spaces in sec. 2
are all satisfied. Note that A, + i Ak* = A ,  where A i is the orthogonal

complement o f A , in  A h. Further, it should be noted that .29 consists

o f only one element L =iR .  It is easy to verify that A ,  satisfies the

stronger condition (3'). Hence, by Lemma 9 , we know that A ,-  and

A X -behaviors a r e  dual to each other (w ith  respect t o  R ).  What is
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more, A = A  a n d  therefore Ax -behav io r is  se lf-dual. T hus w e get
Riemann-Roch theorem for differentials with Ar -behaviors. Ar -behavior
is nothing other than T x -behavior in  Y o sh id a  [1 8 ]. In particular, the

case of T x = F h .  tells us the results for canonical semiexact differentials
obtained in  K usunoki 7 1 ,  [ 8 ]  and [ 9 ] .  It is obv ious that T ,  may
be any intermediate space between  T h o  and T , , ,  ( c f .  (b))•

(b) I f C is  a non-zero complex number and A, is  such  a one as

in  (a ) , th en  on account o f L em m a 7  w e can  sp eak  o f CT,-behavior

and obtain Riemann-Roch theorem for differentials with this behavior.

The extreme case T , -=T h „, g ives an at m ost (g+1)-valent conform al

mapping o f W  onto a region w ith parallel slits, provided that W  is of

finite genus g  (cf. M ori [121).

(c) W e  c o n s id e r  tw o  (distinct) boundary behaviors. L e t  A(
on

x +  1 * ,  /1(
0

2 ) = r e  iT x (T x  and T  are the same ones as in (a)),

then  they have all our required properties and therefore we obtain a

dimension relation between S (Ai»; 1 /S )  and D(M,2 ) ;1/6,)/D(A (
0

2 )
 ;  à').

Note that 21-=  2'2= {R } and L o -= iR. The extrem e case that

F„=T h n i n o w  h a s  a  connection w ith the re su lts  in  R oyden [16].

Further, as  in  (13), a  pa ir o f behavior spaces C1A(
0

1) , C2A(
0

2 ) g iv e s  a

similar example (Ci, C2 E C— {0}).

(d) We can also construct somewhat more general examples (sec.

7 ) w h ich  exh ib it that our resu lt strictly  con tain s the already known

ones.

§ I I I  Applications and examples.

7 .  Each element L;  of is representable as a straight line which

passes through the origin. In the seq u e l w e  use the term  "straight

lines passing through the origin" or sim p ly " lines" in stead  o f  "one-

dimensional linear subspaces of C".

Let r  b e  a differentiable curve on W  and r :  z  =z (t) t E 1-=[0, 1]

be one of its representations. A complex differential A = a(z)dx 4-b(z)d y

is sa id  to  be zero along r  if
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a (z (t )) x / (t)--1- b  (z  (t))y '(t)=  0

for all t E I ,  where x ' (t), y ' (t) are the derivatives o f x , y  with respect

to t. This notion does not depend on the choice of representations of

y. Similarly we say that A  is real along y if r = Tm 2 is zero along r.
We generalize this notion and say A  to be l-v a lu ed  along r, l  being a

line, if and only if

a (z (t)),x / ( t )+  b  (z (t)) y '( t)  E

for a ll t E l .  In the case that 1=R  (the real axis), to say that A  is

/-valued along y is nothing other than saying that A  is real along r.
Now we shall construct an example announced in sec. 6 (d). We

shall also obtain some canonical conformal mappings, Theorem 5 below.

L e t  lr  be a compact bordered Riemann surface of genus g , and

W its interior. Let s=  {4, 7=1 b e  a  canonical homology basis of

f r  modulo the border. Suppose that 9 =  g r ) ,  the border of pr, con-

sists of h boundary components 81, i3 2 , •  •  • ,  igh. With each j (1  < j <

and each k (1 <k < h ) ,  associate lines L;  a n d  /k. L e t  Li  (resp.

denote the line which is determined by -Cr= (resp. =  izk), where

C.; (resp. z k ) is a  complex number on Li  (resp. /k )  with ir
We set Y.= {L; } , = { 1  k }  and 2 ={L1}, 7 = { -1 k } .

Define

A14( r)=.4 14( r ;  , l) =  {A E A l(r) ;  ( i )  A  is semiexact, i.e.,

2 = 0  for all 9 k (1 < k < h ), (ii) 2 = - 0 mod L;  (1 <j<g),
k A j

B j

(iii) A  is /k-valued along i g k  ( 1  <k < h ).}.

I f  w e denote by ) 4 ( r)  the class 21 14( r ;  2, ?), it is evident that the

following lemma holds.

L E M M A  12.
;407--)=L414(r).
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What is more, we can show the following

LEMMA 13. Ai4( i-r )  is the orthogonal com plem ent o f  Al(r)* in

P R O O F .  First we shall show th a t i lq (r)*_1_. A l(r17 ). Take Aq E

A14(1-17 )  and 2 E  Â ( ' ) .  Then, by Lemma 6, we have

2*> =Re (2,, 2 4')

=  —
k i i

i R e1 / 3 , ,f k a +  A R e (5  2 ,1  2 2q1 2)
1 131 A i

provided that d f k = A , near 8k (k-=1, 2, h ) .  Because o f th e  semiex-

actness of 2 we can take functions f k  separately on each boundary com-

ponent.

The condition that Aq i s  /k-valued along 8 k  implies that ik/l, is

real along 8 k i . e .  Im(± k fk)=const. o n  h . Similarly, we know that

2k2 is imaginary along 19 k , that is , Re(2k 2) is zero along g k .  Therefore

R e  fk 2 = - Re
a k

(2kfk) ( 242 )
k

-= 53 k Re (2k fk ) Re (2 2) s  k lm(z f k)Itn( h 2)

vanishes because of the semiexactness of ;7, k 2 •

On the other hand, the period conditions for A , and 2 yield that

Hence Re ( 1  2 q 1 — 2 ) =  O. Since these reasonings a r e  valid
A i s i B ,

for all k , j (1  <k  <h ; 1  < < g ) , it follows that < 4  2* > = 0.
Next we shall show  the converse. Before carrying out the proof

we note that for each k o  and  Jo (1 < k 0 <h ; 1< jo < g )  we can readily

construct a  semiexact C'-differential ak o lo = .  Akoio(Uko, Ck o , G1 0)  E A 14(1 7 )
such that
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Z k u ( U k o + iC k o) o n  ko
(1)

o on 8k ( k * k o ) ,

(ii) 2k — C./ 
•
Ci 1 2 1 0 0

= 0
A  j o  o  o o o Bjo

Akojo"
=

B i
A

kolo =1 3 ( j / Jo),

where uko E C.„2 (8k 0) =  {all the real-valued twice continuously differentiable

functions defined on 130 and coo , Cjo E R .  (In  (i) th e  in tegral 1A00 i a i s

understood in the sense o f Lemma 6. T hat is, w e  cu t r  along 211 ,

to  m ake it a  planar surface r o and consider the integral 52ko i o on fro)•

Indeed, such a  differential is obtained by a standard method as follows:

Let R  b e  a  re lative ly  compact ring domain containing B 1 0 which m ay
b e  a s s u m e d  to  b e  an orientable a n a ly t ic  Jordan c u rv e . F o r  any
uk 0 EQ(19k 0)  and cka, C10 ER  w e  t a k e  a  function F  defined on R

such that F= zk o(u ka i c k o)  on S'Ij a , F=C i o Ci a  on the right part of R  and

F = 0  elsew here. W e can extend F  so as P blongs to  c2( I-r—B10). If

w e set Ak a i a = c/P, Ak a j o i s  the desired differential.

Now suppose th at < /1* > = 0 for a ll 20 E /1( r ). By Lemma 6,

w e have

uko Re(±k a

E R e  (z, k 1 2 ,)2 k 2+ E R e (1  2,1 AY-- O.
k 8k j A i Bi Bi Ai

W e can  take  2k 010 (O, 1, 0 )  and 2 k 0 10 ( 1 , 0 , 0 )  as  A , and obtain that

Re1 2 k o  = R e 1  i2
k ° 2

= 0 ,  w h ich  p ro v es the sem iexactness of A.
8 ko akp 

Setting 20 = 2k 0 Jo (uk„ ck o , 0), w e have

2) = O.
S k e

This holds fo r a l l  uka E Ç(8k 0) ,  and therefore w e can conclude that

Re (21,0 ,0= 0 along 8k 0 ,  th at is, A  is 2k 0 -valued along 1
3

k0 .

F in a l ly  w e  s e t  Ag = Ak o i o (uk o , ck o , 1). T h e n  it  fo llo w s  th a t
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R e [Cf a =  0 ,  t h a t  is, the B,-period of 2  lies on  the line 1,10. We
B I 0

can discuss about A10 analogously.

Since these reasonings a re  valid fo r all k o a n d  j o (1 <k o <h;
1 .1,0 < g), we can conclude that A. E .;1( Pr), q.e.d.

I f  we restrict ourselves to harmonic differentials, we have the
following

LEMMA 14.

;i0( fv )=iA o( Pr)

Ah( Tr)= A0( Tr) 4- 40( rre)*.

Here, by definition,

Ao ( r ) -= Al(iT7 ) n An ( r )  a n d  .40 ( rr- )=M(r)nA h(r),

w hich are  evidently  closed linear subspaces o f  A h.

T h e  class A0 ( IT') satisfies all the conditions (1)—(4) in  sec. 2.

In fact, first, A0( Pr) C A hse( r )  is obvious. Second, Ao( Tr) + iA0( fr- )1*
.A 0 ( Tr)+ i;i0( r)=A 0 (0 -7-) by Lemma 14. Third, <2,  iAr> = 0 for

any 2,', an d  Ag belonging to A o ( r ) ,  since by Lemmas 7 an d  14

ag* E iA0( Pr)* i4 0 ( Try=A ocry. And finally by th e definition of

A0 ( IT'), th e  va lues 4  and 1B 120 evidently belong to L ;  f o r  each

o Elio( FV) and j=--  1,i  2, g. Therefore "Ao( r)-behavior" is well-

defined. Moreover, a s  has been verified, A0( IT') satisfies th e  stronger

condition (3'). Hence by Lemma 9 we know that z10( P77 )  and A 0 ( IT')
=A- 0 (1r) define dual boundary behaviors (with respect to R ). Riemann-

Roch theorem is now applicable for these boundary behaviors, and we

know that there exists a non-constant meromorphic function f  with

A0 ( r)-behavior whose possible poles are  arbitrarily prescribed (g+ 1)

points p r (0.<r . g ) .  Indeed, Corollary to Theorem 4 yields that
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dim S (Ao( Pr) ;  1/8)_=dimp(A 0 ( Pr); ô)+ 2(ord 6—  g+ 1)>2(ord 6—  g+1).

I f  we set 6 =p o pi•••p g ,  then dim S (A0( Tr); 1/8)> 4  > 2 . The function

f  has A0 ( 07 )-behavior and so d f  is 1h-valued along g k ,  that is, Re (2kf
is  constant on 13k . It follows that f  maps the border le k  to  a  slit

which is parallel to /k•
Thus, by use of an argument which is sim ilar to Kusunoki [7]

(pp. 256-257) we have

THEOREM 5. L et W  be the interior of  a com pact bordered Riemann
surface. T hen there is a meromorphic function f  o n  W  such that

f  m ap s  W  onto  a  region w ith slits w hose directions are
arbitrarily prescribed,

(ii) f  maps some o f  (g +1 )  preassigned points o n  W  to the point
at infinity,

(iii) f (  W ), th e  im ag e  o f  W  under f ,  is  at  m o s t (g+1)-sheeted
over the R iem ann sphere.

R E M A R K S .  ( 1 )  In connection with Theorem 5, cf. Koebe's classical

work (Koebe [5], especially pp. 198-215) which deals with planar case
(g = 0).

(2) Our starting point (to consider the totality of square integrable

complex differentials as a  real Hilbert space) and the notion of dual

boundary behaviors essentially contribute to ensuring the existence of
such a conformal mapping as in Theorem 5.

(3) I f  a ll l k and  Li  coincide with the imaginary axis iR, then
meromorphic differentials with A0 ( Tr; /)-behaviors are nothing other

than canonical semiexact differentials. S e e  the first example of sec. 6.
Cf. also [7 ]  Theorems 12-14 and [ 121 Theorem 4.

(3') Even if for some j ,  a meromorphic differential with
A0 ( 07 ; 2, l)-behavior is canonical semiexact and vice versa, provided
that / k = iR  fo r  a l l  k =1 , 2, h. See [1 0 ]  Theorem 1. Compare
with the example in the following section.
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8 .  Finally we shall construct another exam ple, which shows our
Riemann-Roch theorem is valid for some functions and differentials with
an infinite number o f non-vanishing periods.

L e t  IF be an open Riemann surface of infinite genus whose ideal
boundary g  consists o f  on ly  tw o  Stoilow components it 3 and 8 0 . L e t

Q be the canonical partition of

Q: 8 ---
403U8 tt .

Let { Q } 1 b e  a  canonical regular exhaustion of W and 43(P„) be the

border of the compact bordered surface Sl„. B y (2,, w e deno te  the

partition of 13(D „) induced by Q;

Q .: 8(S2.) —  As'u  „,

w here „8 (resp. 8 , )  i s  the common relative boundary of S2, and the

regularly im bedded open neighborhood V(resp. V ,)  o f  0 8 (resp. ( 0 )

(v  =1 , 2 , ...). For each m and n w e  put 7. v =1V — nv , r i n =  V1 —  Vm,

ti rVm = Y V  S 2 1U  VT, nPV =  n  ff7 n, a n d  Wm =  „  Wm . T hen clearly
m=1 n = 1

c0

nrVn —  9 n, nPrr n  Wm— nrV m  and T V =  n P V =  Tvm --=-U n fV..
n=1 m = 1  7 1 . m = 1

W e take a  canonical homology basis ,E= {.211 , /3,}1„1 of W  modulo

dividing cycles such that ,En n rm forms a  canonical homology basis of

n  f rm  modulo the border (in, n=1, 2, • • •). We divide J  into two disjoint

classes Ji and J 2  w hich  are both infinite sets. S e t  3 k= { -41,
(k =1, 2).

W e  b e g in  w ith  compact bordered surfaces n rr.(m, n=1 , 2, • • •)-
For the tim e being, we confine differentials in real ones. Define

or ( n r m ).= {6 E rhseGi (i)

(ii) 6 = 0  along n fil

6 -= 0 i f  A i, .13; E S in n  rm,Ai
al

and
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=T (ni r  ET hs e(n frm) ; ( i ) r  0  i f  A J ,  B1 E  2 n n 1rm ,
135

(ii) r  =  0  along 19m}.

Then, repeating the discussions in the proofs o f  Lemmas 13 and 14,

we have

LEMMA 14'. For m, n-=1, 2, ...,

T h(n r m ) = ( n 117 m ) + rf7.)* = ( i r m )
*

F o r  each in w e  d e fin e  th e  space #T  CO  a s  th e  s e t  o f  6
Erhs e( rm) which is approximated by n 6 m E it r ( n rm )  in the sense of

norm . That is, C .  belongs to  T( Wm) if an d  only i f  f o r  any a >0

and any compact set EC 'rem there exist n tr.D E and n a m  E itr(n rtm)
such that 1116m — < E . O n the other hand, we define T t (117„,)

directly :

T o ( WM) = ir E T s  e ( 117m) ; ( i ) r 0  i f  A1 , B; E E2r1 1Vm ,
A;/31

(ii) r  = 0  a lo n g  8m }

With these definitions we can prove the following

LEMMA 15. For m =1, 2, ,  w e have the orthogonal decomposi-
tions

rh( Tr.) = or( 1Vm) -i- F4( 1V m ) = ,r( f r . ) *  f

Since the proof is substantially th e same as in  Ahlfors-Sario [4] (see

pp. 292-295), w e  omit it. (In addition t o  the ordinary discussions, we

need to verify that (6 — 6 m ) *  vanishes along 8m ,  Cm  b e in g  the limit

differential o f no-m . However, this can be done without difficulty i f  we

use the Schwarz' reflection principle on 8m .)
Now we pass to the open surface V .  W e  d e f in e  it r= itr(W) to
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be the set of all the elements 6  E T h s e (  W ) which is approximated by

n o - E ,r ( n r p - )  in  th e  sense of no rm . T d = Td ( W ) is similarly defined.

Suppose that 6 E d r  and r E Td . Then, for any 6> 0 and any com-

pact set E , there are , It', 1 m (7 W m D E), n 6 E itr ( n rre) and rm  E Td (
such that

1116— nalll <, Illr

Note that n 6 I n Wm  E #T(, Irm) and rm I n  tr,n E Td („ CO. Hence

< 6* ,r > „w„, I I  <6 *> < OK, r r.>„w„, 1

1116 — n6111.w 111r111 w +

<6. 111rIllw + (Ill 0111 w +s).€

for < n 6*, rm >.w. vanishes by Lemma 14'. It follows that # r * _LF4 .

Suppose that r _L d T * .  We have decomposition r = 61+ z nz o n  rpn,
where 6,n E itT ( rm )  and r in E Td (lr,„). In  fa c t , a s  fo r  rrm w e have
Lemma 15. The argument in the proof of Lemma 15 may be repeated

to conclude that rn i co n verges t o  a  harmonic differential v.. E
(uniformly on com pacta and then in  th e  sense of norm ) and  that

r e_ Therefore r E T d ( W ). These reasonings imply the following

LEMMA 16. For the open surface TV

T h ( W ) -= ( W) + F (W )* = T tt ( W )* -j- #1 '( W).

Now we set

Ad A d ( W)= d T( iT1( W).

Then Ait i s  a  closed linear subspace o f A h s € . D u e  to the last lemma

we know that A a  behavior space. What is m ore, Ad -behavior

is  self-dual since A d F o r  t h e  details o f th e  proof, refer to the
preceding section . Corresponding family o f lines consists o f only two

lines R and iR .  For any C E C — {0}  an d  any 2 E Ad both Re (CA) and
Tm (CA) have an infinite number of non-vanishing periods. Nevertheless,

our Riemann-Roch theorem is valid for functions and differentials with
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A -behaviors.
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