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Introduction

To generalize the classical theory of algebraic functions to open
Riemann surfaces, much effort has been made in the last three decades.
As for Riemann-Roch theorem and Abel’s theorem, similar formulations as
classical were obtained by L. Ahlfors [27] [3] [4], Y. Kusunoki [6],
B. Rodin [15] and H.L. Royden [167] for some class of open surfaces.
The results but for [6 ] are described in terms of distinguished harmonic
differentials introduced by Ahlfors. Although restrictions for surfaces
are not explicitly mentioned, they seem to be meaningful only for
surfaces with small boundaries, say, those of class Ogp. Otherwise, a
single-valued meromorphic function whose differential is distinguished
would reduce to a constant. As was pointed out by R.D.M. Accola [1],
the same situation occurs if the surface belongs to the class Oxp—Og.
For surfaces of class Ogp—Opyp, it seems yet unknown whether or not
non-constant meromorphic function f exists such that df is distinguish-
ed. While, the results by Y. Kusunoki [7] [8] [9] are meaningful
for general surfaces. His results are given in terms of canonical semiexact
differentials and functions introduced by himself, which have some
restrictions only in their real parts. M. Mori [13] pointed out that
canonical semiexact differentials are identical with meromorphic differ-

entials whose real parts are distinguished (in the real sense). Recently
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H. Mizumoto [117] and M. Yoshida [187] obtained further generaliza-
tions along Kusunoki’s program. Some interesting applications of these
theories can be seen in [7] [8], [11] and M. Mori [12], M. Ota
(147,

In the present paper, by modifying those methods we shall show
a slightly more extended formulation for Riemann-Roch theorem in
general surfaces, that is, it will be given in terms of the single-valued
meromorphic functions (multiples of a divisor §) with a certain
boundary behavior and the meromorphic differentials (multiples of 1/0)
with another behavior which is dual in some sense to the behavior above.
Our result generalizes the corresponding theorems in [7] [8] [9],
[11] and [187]. Even in the case of finite genus, our formulation yields
somewhat new canonical conformal mappings. Our treatment seems to
be analogous to Yoshida’s one, but different in some respects. Actually,
our starting point is to consider the totality of square integrable complex
differentials as a real Hilbert space, which differs from the customary
ones. Moreover, we shall not necessarily require that the real parts of
differentials under consideration are exact near the ideal boundary. We
impose restrictions onto differentials rather than functions and by doing
so, we shall be able to take into account a wider class of differentials
with an infinite number of non-vanishing periods.

Now we shall sketch our program. In the first section we consider
the space A of square integrable complex differentials on a Riemann
surface as a real Hilbert space, and show some fundamental lemmas
including de Rham’s decomposition, Dirichlet principle and Weyl’s lemma
etc.. The definition of Ay-behavior is given in section 2. In section 3,
we shall show the uniqueness and existence theorems of elementary
differentials with Ay-behaviors (Theorems 1, 2 and 3) by means of
orthogonal projection method.

In section 4, the notion of dual boundary behaviors is introduced
and some lemmas will be prepared for the following sections. In sec-
tion 5, we shall formulate the Riemann-Roch theorem in terms of dif-

ferentials with dual boundary behaviors (Theorem 4 and its Corollary).



On the Riemann-Roch theorem on open Riemann surfaces 497

The proof is analogous to Kusunoki’s one [6] [ 7] [9] (see also Yoshida
[187]). Our results generalize the known cases, e.g. canonical semiexact
differentials ([7] [8] [9] cf. also [107]), Mizumoto’s results [117] and
Yoshida’s I”,-behaviors [187]. We refer to these cases in section 6.

The last two sections, 7 and 8 are devoted to show examples
which exhibit the merits of our standpoint. The first example (sec. 7)
gives a canonical conformal mapping of a compact bordered Riemann
surface onto a region with slits whose directions are arbitrarily pre-
scribed. This can be regarded as a generalization of P. Koebe’s clas-
sical results [5]. The second example (sec. 8) shows that differentials
with an infinite number of non-vanishing periods may appear in our
theory.

The author wishes to express his deepest gratitude to Prof. Y.

Kusunoki for his many valuable suggestions and ceaseless encouragement.

§1. Preliminaries and existence theorems.

1. Let W be an arbitrary Riemann surface. A Lebesgue measurable
complex differential A=a(z) dx+b(z)dy on W is said to be square
integrable, if the integral SSW(lalz+ |b|®)dxdy is finite. The totality
of square integrable complex differentials on W forms a Hilbert space
A~=A~( W) over the complex number field C with the usual inner
product defined by

(lly }‘Z):Sgwll A\ I;k = Sgw(al dz‘l‘bl 52) dxdy

where 2;=a;(z)dx+b;(z)dy for a local parameter z=x+iy. We
denote by 1 the complex conjugate of A, and by A* the conjugate

differential of A. The norm in A is denoted by

Similarly, the
totality of square integrable real differentials on W forms a Hilbert
space I '=I'(W) over the real number field R with the same inner
product as above. A can also be considered as a linear space over R,
and 4 so understood is denoted by A=A(W ).  We introduce another
inner product
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<11, lz> =Re(/h, 12)

Then it is easily verified that A forms a real Hilbert space with respect
to this new inner product. We shall use symbol [I+|| to indicate the
norm in A. It is evident that [|All=||4|| for any square integrable
complex differential 4, and therefore we could do without the symbol
ll«ll. But we prefer to use it to make clear the structure of the space
under consideration. As has been pointed out, 4 has the same topology
as A. However, the orthogonality in A does not always imply the
orthogonality in /f, while its converse is true.

For any complex differential 2=a(z)dx+0b(z)dy we set
0=ReA=(Rea)dx+(Reb) dy,
t=ImA=(Ima)dx+(Imb) dy.

Then A=0+4itr and 0,7t are real differentials. Indeed, their coefficients
are covariant because of the fact that the transformation matrix is real.
(Ahlfors-Sario [4] cf. also Weyl [17] p. 56). Conversely if ¢ and t
are real differentials, then 0+ it evidently defines a complex differential.
Further we can easily see that [IAlZ=Iloli®+lizli>. More generally, if

Aj=0;+it;(j=1, 2) are two complex differentials, then we have
<A1y, 22> =<0, 0>+ <71, 72>
=(01, 02)+ (71, T2)-

The space I' can be considered as a closed linear subspace of A.
If we write il ' ={iw; w &I}, i’ is also a closed linear subspace of A
and, by just obtained identity, it is evident that the orthogonal com-

plement of I” in A is exactly il i.e.
A=T +il (direct sum).

It should be noted that the meanings of the letters A4 and I" are
different from those in Ahlfors-Sario [47], Mizumoto [117], Rodin [15]
and Yoshida [187] etc.. With only these exceptions, we inherit the
terminologies and notations of Ahlfors-Sario [ 4], if not mentioned further,
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For example, I',, o0, I'¢cy I'co, I'1,--- stand for the real Hilbert spaces
of real square integrable differentials (on W) with some restricted pro-
perties; I', (resp. I',o) is defined by CII'! (resp. C1I'};), where Il
(resp. I'l,) is the linear space formed by all exact real C'-differentials
(resp. exact real C'-differentials with compact supports) on W and Cl
denotes the closure in I'. If we consider the corresponding linear
spaces (over R) formed by complex differentials, 4, and A4,, are defined
analogously. That is, we define A, (resp. A4.0) to be the closure of A!
(resp. Aly) in A. I', (resp. I';y) was defined to be the orthogonal com-
plement of I'¥, (resp. I'¥) in I'. Now it should be noted that 4, and
Ago are defined to be the orthogonal complements of A¥, and A¥ re-
spectively with respect to the inner product <, > (not ( , )!). With

these notations it is trivial that the following relations hold.
Ae:/fe:re"i‘ire
AeO:A;02r20+ireO~

In order to obtain other important decompositions we need the following

LEMMA 1. Let I'y and I'; be two closed linear subspaces of I’
and Av=1I"1+4+1il"y. Then At =11 +il'Y, where At means the orthogonal
complement of Ay in A and I'; mean the orthogonal complements of I';
in I'(j=1, 2).

Proof. It is evident that A+ DI'+4il's. To show the converse,
suppose that A€ A{. By assumption A;=01+i0,€ A, for any 0;€ ;.
If we set A=r1+4ity, 1;€T,

0=<1y, A> =<0y, 11>+ <03, T2 >.

We can take 0, to be the zero element of /'3, and obtain that
<01, 71>=0 for any 0,€l,. Hence r,€l%+. Similarly t,€ 5.
Therefore A=t,+it. €l +il'5, g.e.d.

The following lemma will justify the definitions of A, and A,,.
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LemmA 2.

Ac=1I" 41l
A00=[1C0+ir60'

Proor. We give the proof only for the first decomposition, since
the second case can be proved analogously. By Lemma 1, A =A%
=¥ 4 il*)r=I*t 4il*=r, il and this is the desired relation.

We define the space of square integrable complex harmonic dif-
ferentials on W, A, to be the class A1\ A*. Then we have

LEMMA 3. (Weyl’s lemma).

Ap=A.NA¥.

Proor. It is evident by Weyl’s lemma for 7', (cf. Ahlfors-Sario
[4] p. 281) and Lemma 2.

LEMMA 4. (de Rham’s decomposition).
A=Ay 4 Aeo + A%,
PrROOF. On account of the preceding lemma, (A, + AF) =45, N A%
=A,NAF=4,, which is to be proved.
As an immediate consequence of this lemma we have
LEmMmA 5. (Divichlet principle).
Ac=An+ Aeo.

The following lemma can be regarded as a generalization of Green’s

formula:

LEMMA 6. Let ¢, and ¢, be closed C'-differentials on 2 where
Q is a canonical regular region of W. Let E(W)={4;, B;j} be a
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canonical homology basis of W modulo dividing cycles such that
E(W)YNE forms a canonical homology basis of 8 modulo 02. If ¢,

is semiexact, then

o ] - )
(01, 93)a Saa (S(ﬂl) @2+ ‘;(SA,%SB,W SBI%SA/W)
Here 3 stands for the sum only for A; and B; which are contained in
2

Q. The precise meaning of the integral qul is given in the proof.

Proor. We cut £ along A4; and B;, and obtain a planar surface
2,. Since ¢, is semiexact, there exists a C®-function f on £, such

that df=¢;. We apply the well-known Green’s formula on £,. Then

(01, ¥ o= (o1, ¢§k)90= —ggg OING2= —SSQ df N\ @,

f¢2

28, _S-zA,B,A;'B,"+a.@
- ( By — 52), ed.
LI S

REMARK. Note that f is determined up to an additive constant.
But the choice of f has no effect on the integralS f@2, because of
a4
the closedness of ¢..

For later use we shall prove the following

LEMMA 7. Let £ be an arbitrary non-zero complex number. If
Ay is a closed linear subspace of A, then CAy={EA; A€ A} is also a
closed linear subspace of A and (§A;)t=CA:.

Proor. The first assertion is trivial. To show the remaining part,
we need only note that <&, ZA">=|&|2<4’, A”>. From this rela-

tion we know that if 1 € (£4,)* then {~'A € A{ and vice versa, q.e.d.

2. From now on, we regard the complex plane C as a two-
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dimensional linear space over R, and consider a family £ ={L;}%., of
(at most a countable number of) one-dimensional subspaces L; of C.
Here g denotes the genus of W which may be infinity. Once for all,
we fix a canonical homology basis E=EF(W)={4;, B;}f., modulo
dividing cycles and consider a space Aq=A4,(4;; %) such that

(1) Ay is a linear subspace (not necessarily closed) of Ay,

(2) there exists a closed linear subspace A; of A, such that
AgD Ay +iA+*
where Ai is the orthogonal complement of A; in Aj,

B) <A idE>=0 for any A, € 4,,

4 SA LEL; for every 0€4, and j=1,2, ..., g
j
By

Such a space Ag=A¢(A;; £) will be called a behavior space associated
with A4; and Z.

If Adg=Ao(Ay; &) is a behavior space, so is Ag= {1 € Ay; A € Ao}.
Indeed, (1) and (3) are easily verified, because A, is evidently a linear
subspace of A, and <o, idA¥>= <Ry, —id¥>=— <2, id%¥>=0 for
any AoE€4,. Next, AgD A +idi*=A,+iA** and this proves (2).
Finally for every 1,€ 4, and j=1,2,..., g

SAJXOZ SA,AO E LJ
By By

where Lj={z€C;z€L}. L; is obviously a one-dimensional linear
subspace of C. Set £={L; LE€Z}. Then we can write Ay=Ao(4;;
).

Let &(W) be the collection of all V'C W for which there exists a
canonical regular region £ such that V=W —£. Each element of
&(W) is a neighborhood of the ideal boundary S of W.

DEFINITION. Let A, be a behavior space. A meromorphic differen-
tial ¢, defined on a neighborhood of B, is called to have Aj-behavior
if there exist Ue&(W), Ao €Ay and A, € Ao\ A such that
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@=12¢+ e on U.

A meromorphic function f (not necessarily single-valued), defined near
B, is called to have Ay-behavior if differential df has A,-behavior in

the above sense.

3. Existence and uniqueness theorems of the elementary differen-

tials with Aj-behaviors.

THEOREM 1. (uniqueness). A regular analytic differential ¢ which
has Aq-behavior (Adg=Ao(A1; &), £ =A{L;}£-,) is identically zero provided
that

SA¢€Lj (]:1’ 23"" g)-
'l
By

REMARK. Let #'={L}}%., be another family of one-dimensional

subspaces of C such that L}=L; for all but a finite number of j.

Suppose that SA¢ELJ’- (j=1,2,..., g. Then we have the same con-
y

clusion. By

ProoF. Since ¢ has Ag-behavior, there exist U€ &(W), Ao € Ay and
2.0 € A,oN A such that

o=2Ao+ 4s0 on U.

We take a sufficiently large canonical regular region £ whose relative
boundary 98 is contained in U. We may assume that ZN@2 forms a
canonical homology basis of £ modulo the border. Then, using Lemma

6 twice, because of the analyticity of ¢,

gl =llell3=(0, )a= —i(e, ¥*)q

006530 08,01,00,0)

o Saotin @rio-ig({, el o[, ¢0,¢)

Il
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= — iAo+ Aeo, 1§+z:1,g+zz(g xog ZO—S /IOS 20)
@ \Ja;, s, B, Ja,

iy (SA,¢SB,¢"SB,‘”SA,¢)
= — * * - do— P
L(lo"’lvm AO +l¢0 2 2 Im;(SAJ,IOSBJZO SAJ(OSij) )

Hypothesis in the theorem and the condition (4) for A, imply that

Joplog e § el 2

are both real and consequently,
llglg=—i(Ao+Aeo, A¥+A%)a= (R0, i2¥)a—ica
where

ee=(Ae0, A¥)a+ (Ao, A¥))a+ (4eo, 1¥0)a.

Let £ tend to W, then since limeg=0 we obtain the equality
2-W

m(ﬂmz:(lo, ng‘): <10y i10*>-

The final term is zero because of the condition (3) for A4, and we

conclude that ¢=0. q.e.d.

Next we prove the existence theorems of certain elementary dif-
ferentials with preassigned periods and singularities. Let L be a one-
dimensional subspace of C. For two complex numbers z; and z; we

shall write zy=2z; modL if z;—z;€L.

THEOREM 2. Let o and ; be given complex numbers, such that
a;=<0, fj=0modL;. Then there are square integrable holomorphic
differentials ¢, (A;), $s,(B;) which have the following properties:

(D) Ba,(4)), b5,(B;) have Ag-behaviors,
a (k=j)

(i) S Bu(A)=at;(A; % By)= mod Ly
2 0 (k=)
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[ defa)=as4x 40=0  mod L.
k

(il)’ Similar relations hold for ¢5(B;)).

The ¢, I(Aj) and Pg j(Bj) are uniquely determined for each j.

Proor. We give the proof only for the case of ¢, j(Aj), since the
case of ¢,gj(B,-) will be analogously proved. We may assume that the
given cycle A; is an oriented analytic Jordan curve. Let R be a
relatively compact ring domain containing 4;. We consider a C2-func-
tion v on R— 4; such that

a; on the left side of 4;

v=

0 on the right side of A;.
We can extend v as # € C3(W — A4;). Then db is a closed C'-differential
with finite norm, that is, dd € AX(W). So, by use of Dirichlet principle
(Lemma 5) A,=A4,4 4.0 and the orthogonal decomposition A=A, + A5,
we know the existence of differentials 4, € A;, A1 € A} and 1, € 4,0\ A*
such that

dv =21+ A+ 0.

Since «;20 modLj, A{ is not identically zero.

We set
ba,(4) =41 +i(AD)*
= df) —(11 —il'{'*)_leo.

Then ¢,,(4)) is a regular analytic differential. Since d? has a compact
support, and further A, contains A;+iA+* we can conclude that

Da j(Aj) has Ay-behavior. Moreover, for any cycle 7, we have
[ eap={ ao—{ a—iapm
v ¥ v

=%«4xn—&%
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provided that A,=24;—ii+*(€4,). If we choose A, resp. B, as 7,
condition (4) for A, implies (ii).

Next we show the uniqueness of ¢, I(A,-). Suppose that ¢; and ¢,
are admissible differentials. The difference ¢; —¢; is then a regular

analytic differential with Aj-behavior and satisfies

SAk(¢l_¢2)ELk (k=1,2,.., g).

By

Therefore by Theorem 1, ¢; —¢>=0. This completes the proof.

REMARK. More generally we can prove that ¢, (4;)=¢.)(4;) if
a;j=a; mod L;. Indeed, Theorem 1 is sufficient to draw this conclusion.
Let po be a point of W and z=2z(p) be a local parameter near
po for which z(po)=0. Conventionally, by an analytic singularity at
po we understand a differential ®, which is defined in a punctured
neighborhood U, of p, and is analytic on U,. It may be assumed that

@, is represented as follows:

@y=3b,z"dz  (b,€C).
n=1

I,S ®y=05b, is known as
27T Jiz1=r
the residue of @, at po, which is independent of the choice of local

For sufficiently small r>0 the quantity

parameters. For further details, refer to Ahlfors-Sario [4] p. 299,
p. 305.

THEOREM 3. Let pi, p2, ---, pn be a finite number of points on W,
and @; an analytic singularity given at each p;(j=1,2,...,N). Consider
a differential ® which is equal to ®; near p;. Suppose that the sum of
residues of @ is zero. Then there exists a differential ¢ =¢gq such that

(i) ¢ has Ay-behavior,

(ii) ¢ is regular analytic except at p; (j=1,2,..., N),

(i) ¢ has the singularity O, that is, ll¢—08;lly,<oo for some
punctured neighborhood U; of p;(j=1,2, ..., N).
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To prove this theorem we need the following extension lemma

for differentials which is due to H. Yamaguchi (Lemma 1, in Yoshida

(18]).

LEMMA 8. Let G be a regularly imbedded connected subregion of

W whose relative boundary 0G is compact, and let V be the complement

of G. For any closed C‘-differential, 0, defined on a neighborhood of V,
the following two statements are equivalent:

(i) 0|, the restriction of ¢ onto V, can be extended as a closed

C'-differential & on W so that the support of G has a compact

intersection with G.

(i) SaG(r:o.

Proof of Theorem 3. Take sufficiently small parametric disks 4;
about p; whose closures are mutually disjoint. We set W’'= W —{p;} Mo
d;=4;—{p;} and V=j\l:/ld§. For a while we focus our attention on
the new Riemann surface W’. Then =W'—V is a regularly im-
bedded connected subregion of W', and its relative boundary 02
=.\I§ZM,- is compact. It is evident that V=W’'—f2. By our assump-
tio;:l@ is a closed C'-differential on a neighborhood of ¥ and satisfies
that

g 6= ﬁg 6,=0.
29 a4,

i=1
For the sum of residues of @ vanishes. Therefore, by Lemma 8, we
can extend @|y as a closed C'-differential on W’ with compact support,

which we denote by é. (As for the constructive method to obtain @,
refer to Ahlfors-Sario [4] p. 301, p. 306. See also Ahlfors [27].)

On the other hand, since ® gives an analytic singularity at each

pi» ®—1i0*=0 near p; and so 6 satisfies the relation

6—i6*=0 near p; and near f3.
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Hence 6—i@* AW AW).
Now the de Rham’s decomposition (Lemma 4) A=A, 4 Ao+ A%,
and the decomposition A,=A4;+ A{ show that there are differentials

AL EA; AT €A1 Ay, A2y € A, satisfying

A

6 — i G* =2y + A+ AL+ A7,
Define
t=0— 21— Ag= A4+ AE+ 6%,

then we know that ¢ is a complex harmonic differential with singularity
6. Consequently, 4.y, 47, € A,0N\A*. Now it is obviously seen that
@ =—;—(t+ir*) has the desired properties.

REMARK. Up to this point, we can not insist that the so con-
structed differentials are uniquely determined. But under certain nor-

malization those are unique. We require that ¢ should satisfy

SA;¢ELj (]=1a 23"" g)-

By
It is easy to show that this normalization is always possible. Indeed,
if x;(resp. y;) are A;- (resp. Bj-) periods of ¢, only a finite number of

x; and y; are =0 modL;. Set
p=¢— ; (—¢:,(Bj) +8,,(4).

The sum in the right hand runs over j for which x;20 or y;2%0
modL;, and is therefore a finite sum. @ preserves the singularity and
satisfies the required normalization condition. As for uniqueness, we

need only Theorem 1.

Thus, if we take a local parameter z; near p; such that z;(p;)=0,
the following normalized differentials always exist and are unique:

(I) @p,n: differential with Ap-behavior, regular analytic except
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at p; where ¢, , has the singlarity dz;/z} (n=2,
3,...).

(ID) Ppynt differential with Ap-behavior, regular analytic except
at p;, where @, , has the singuularity idz;/z} (n=2,
3, ...).

(Il1) ¢, : meromorphic differential with Aj-behavior, which has
residues 1 at p, —1 at gq(p, g€ W) and is regular

analytic elsewhere.

(IV) {p,,: meromorphic differential with A,-behavior, which has
residues i at p, —i at ¢ (p, g€ W) and is regular
analytic elsewhere.

These normalized differentials together with holomorphic differentials

$a(4;), $s,(B;) whose existence and uniqueness are guaranteed by

Theorem 2 will play a fundamental role later.

§II Dual boundary behaviors and Riemann-Roch theorem.

4. For our purposes we consider here two boundary behaviors.
Let AP =A40(4¥; £:) (=1, 2) be two behavior spaces corresponding
to the spaces AV, A¥(C4;) and the families #;, £,. Let L, be a
one-dimensional subspace of C. Suppose that £,={L¥}f_, (k=1, 2).
We say that A{M-behavior and A{¥-behavior are dual to one another
with respect to L, if the following two conditions are fulfilled:

1°) (AP, 2AP*)=0 mod Ly i.e., <AL, AP*>+i<AP, iAP*> € L,

for all AP €A and 1P € AP,

2°) For each j,

LY x LP =L,
where the left term is defined by the set {z€C; z=¢M¢{P?
for some P eLP (k=1, 2)}.
If a behavior space Ay=Ay(4;; £) satisfies a stronger condition
3) <A id4*>=0 for any A, A} € 4,

then, A4o- and /fo-behaviors are dual to one another. In fact, we already
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know that A, always defines a boundary behavior if A, does (see sec.
2). Hence, we need only check the conditions 19) and 2°). To do

this, suppose that Ay, 45 € 4,. Then, on account of (3’) we have

(25, A)¥)= <25, Ag* > +i<Ap, i 45*> =<2, Ag*> €R

that is, (4g, (/l__’é)*)EO modR. What is more, L;xL;=R for each
j=1,2,..., g Thus we have shown

LEMMA 9. Let Ag=Ay(Ay; £) be a behavior space which satisfies
the condition

(3) <A, id*>=0  for all 2 ALE A,

Then Ay and Ag-behaviors are dual to one another with respect to R.

We shall make use of the following lemma which is essentially
due to Y. Kusunoki [6] [7] [9] (see also Yoshida [187)).

LEMMA 10. Let AN and AP define dual boundary behaviors to
each other with respect to Lo. Let ¢ be an Abelian differential (of I1st
or 2nd kind) with A{V-behavior and ¢ any Abelian differential with
AP -behavior. We cut W along A; and B; to make it a planar Riemann
surface Wo. Then

(i) there exists a single-valued meromorphic function f on W,
such that df=g,

(i) 27 X Res. fg= —ji]l(gAj(pSngb - SB,‘”SA,‘b) mod Lo.

Proor. (i) is evident by assumptions. In order to prove (ii), we
apply Lemma 6 on £,, the region obtained from a sufficiently large
canonical regular region £ by taking off mutually disjoint parametric
disks about the singularities of ¢ and ¢. As before (the proof of
Theorem 1), we may suppose that EN2 forms a canonical homology
basis of 2 modulo 2. Then
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21i L Res. fp=—T7 (gA,‘”SB,‘b_ Saf"SA,‘b)+ Sagfsb

We can assume that for some A{¥ € AP (k=1,2) and some 1),

7o € Ao At
P=25"+ 205 G=2+ 2%

on a Ue&(W), in particular near 0£. And by the usual techniques

including the use of Lemma 6, we have

— (1) (2)% (1) (2) __ 1 (2)
S fo=—@" & )Q+§(SA,AO SB,/IO SB,AO SA,lO >+89
where

t=—LA, T+, T¥)a+ Aoy Ta .

Now our assumptions 1°) and 2°) yield that

(g, 2F*)=0

g
(0 @ __ (1 2) \—
E(, ol g ={, a0, a)=0

On the other hand, since limeg=0, it follows that
9w

sizne = (0, o0,9-1,54,5) e

mod Lo.

which is to be proved.

REMARK. Note that we have

SA,¢SB,¢_§B, S $=0 mod L,

except for a finite number of j. Indeed, ¢ and ¢ have A{’- and AP-
behaviors respectively and these behaviors are dual to one another with
respect to Ly. So, by the condition 2°) of dual boundary behaviors,
we can conclude the desired congruence relation.

As in the traditional cases (Ahlfors-Sario [ 4] pp. 325-329, Kusunoki
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(6] 7] [9], Mizumoto [117], Rodin [157], Yoshida [18] etc.), the fol-
lowing well-known algebraic lemma will be needed. For its proof, refer
to [18] (Lemma 4), for instance.

LemMA 11. Let K be a field and X, Y two linear spaces over K.
Suppose that h is a bilinear form defined on the product space X% Y,
and that X, (resp. Y,) is the left-(resp. right-) kernel of h, that is, X,
={x€X; h(x, y)=0 for all y€Y} and Yo={y€Y; h(x, y)=0 for
all x€X}. Then we have an isomorphism

X/X, = Y/Y,

provided that at least one of the quotient spaces X/X,, Y/Y, is finite

dimensional.

5. Let 0=0,/0, be a finite divisor on W, where Op=pTip3:... ppr
and 0,=gq7'¢q%...q% are disjoint integral divisors. Let L, be a one-
dimensional subspace of C. Let spaces A =A¢(4{"; £1) and AP
=A)(A?; L) (ZLr=4{L#}{_1(k=1, 2)) define dual boundary behaviors
with respect to L,. For each L{¥ (resp. L,) we take a complex number
¢{¥(resp. £o) of modulus 1 which determines Lj® (resp. L,). We con-
sider the following sets which evidently form linear spaces over R:
S5 1/6) ={f; (i) f is a single-valued meromorphic function on
W, (ii) f has A{"-behavior, (iii) f is a multiple of
1/0.},

M(AP; 1/8,)={f; () f is a (multi-valued) meromorphic function on
W, (i) f has A{'-behavior, (iii) f is a multiple of
1/6,, (iv) periods of df are normalized.},

D(A®;0) ={a;({) a is a meromorphic differential on W, (ii) «
has A{®-behavior, (iii) « is a multiple of 0.},

D(AP;1/6,) ={a; (i) « is a meromorphic differential on W, (ii) «
has A®-behavior, (iii) « is a multiple of 1/0,.}.

Here, in the case that 0,%1 we identify two elements f), f; of
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M(AY; 1/6,) if and only if fi— fz=const. (€C).

THEOREM 4. (Riemann-Roch theovem). Suppose that AS- and AP -
behaviors are dual to each other. Let 0=0,/0, be a finite divisor on W,

where 0p and 0, are disjoint integral divisors. Then
dim S(4Y; 1/6)=2[orddp+1—min(ordd,, 1)]—
—dim[D(4; 1/04)/D(A 5 0)].

ProoF. First of all, we shall find the dimension of M(A{; 1/0,).
To do so, we need the integrals of the elementary differentials with

A{V-behaviors obtained in sec. 3
fosm | tsj=r

Phpws  \@bon
2<u<mi+1

where the superscript denotes that they have A{"-behaviors. It is
easily seen that if §,5~1 these integrals span M(A{; 1/0,), and if
0,=1, those integrals and constants 1, i make a basis of M(4{'; 1/0,).
So we find that

23 mj+2=20rd0,+2 (3,=1)
=1
dim M(A{V; 1/0,)=
2ym; =2ordd, 0,#1)
i=1
=2(ord0p+1—min(ordd,, 1)).
Now we consider a (real-valued) bilinear form defined on the
product space M(A; 1/0,) % D(AP; 1/0,)
fEMAY; 1/8,)
hi(f, ®)=Re[ o 2 Res. fa]
iop a€D(AP; 1/8).

Since « is regular at each p;, additive constants (including periods) of
f have no effect on the residue of fa at p;, and hence Ay, is well-

defined. By Lemma 10 we have



514 Masakazu Shiba
hi(fs @)= S 2m Im[fo Z SAjdeBja—SBjdeAja>:|
—Re [fo § Rqeks. fa] .

Then we can determine the left- and right-kernels of A;. In fact, if f

is an element of the left-kernel of Az, we choose ¢22§)(2)(Ak) as a and
k

know thatS df=0. Similarly we find that SBkdeO by choosing
) (B,) as a Hence f is single-valued on the whole of W.

If 0 is integral, then 0,=0 and therefore f& S(A{M; 1/0). Next,
in the case that 0 is non-integral, we set a=¢#, . Then we know

that Im[&of(g1)]=Im[&of(qr)] for £=2,3,...,s. It is entirely similar
for Re[&of], and so we can conclude that the function f—f(g:) has

;(z)

zeros at q,(k=2,...,s). Moreover, if we take ¢, and ¢;%, as «

1<k <s;2<v<ny), it follows immediately that the function f— f(q1)
has at least n,-ple zeros at g, (1 <k <s). By the equivalence relation
in M(AV;1/6,) we know that fe&S(Ai;1/0). Conversely, it is
obvious that the left-kernel of h, contains S(A{; 1/9). Therefore the
left-kernel of h;, is exactly equal to S(A";1/0). Concerning the
right-kernel, we proceed analogously. In this case also, it is easily
verified that D(A{’; 0) is contained in the right-kernel, for fa is
regular analytic at p; if f€M(A";1/0,) and a€D(A®;0). The

converse implication is proved by taking the integrals
fom, ana fop

as f(1<j<r;2<u<mj+1). Therefore the right-kernel is D(A?; d).

Now Lemma 11 is applicable and it follows that M(A{"; 1/6,)/
SAL; 1/0)=D (AP 1/8,)/D (4 0), for we already know that
M(A{Y; 1/6,) is finite-dimensional. This isomorphism yields the desired

dimension relation. q.ed.

If g, the genus of W, is finite, we can easily find a basis for
D(AP;1/0,) as usual;
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(@) if 0,=1,
{82 (4)), 8)(B)} 1<j<e span D(A¥51/0,), and
(b) if 0,51,

2 . (2) « >(2) . 2) 7,(2) :
{¢512,)(AJ)3 ¢/3])(B]) }) ¢qk)." ) ¢'Ik,"‘ b q1qL qpql} ééféf,’zlgsvgsns,‘

span D (AP ;1/8,),

provided that in both cases we choose «; and [3; appropriately, say,

a;=p;=i{{". Hence

[ 2g (64 =1)
dim D (AP 1/8,) = .
|20+ Bn—D+s—11 @,#1)

=2[ g—min(ordd,, 1)4ordd,].

And therefore Theorem 4 reduces to the following rather classical

form:

COROLLARY. If AM- and AP-behaviors are dual to each other,

then for any finite divisor 0 on W

dim S(A{; 1/8) —dim D (A ; 0)=2(ord0 — g+ 1).

6. In this section we mention about the important particular
cases.

(a) Let I'y be a closed subspace of [, containing [ .. Set
Ay=T, +il'y*, where I'y is the orthogonal complement of /'y in Iy
It is easily seen that conditions (1)— (4) for behavior spaces in sec. 2
are all satisfied. Note that A, +idi*=A, where Ax is the orthogonal
complement of A, in A,. Further, it should be noted that .# consists
of only one element L=¢R. It is easy to verify that A, satisfies the
stronger condition (3’). Hence, by Lemma 9, we know that A,- and

A,-behaviors are dual to each other (with respect to R). What is
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more, A,=A, and therefore A,-behavior is self-dual. Thus we get
Riemann-Roch theorem for differentials with A,-behaviors. A,-behavior
is nothing other than I',-behavior in Yoshida [187]. In particular, the
case of I'y =1y, tells us the results for canonical semiexact differentials
obtained in Kusunoki [7], [8] and [9]. It is obvious that I', may
be any intermediate space between [ 4, and I, (cf. (b)).

(b) If £ is a non-zero complex number and A, is such a one as
in (a), then on account of Lemma 7 we can speak of &/ ,-behavior
and obtain Riemann-Roch theorem for differentials with this behavior.
The extreme case [ y=1I 1, gives an at most (g-+1)-valent conformal
mapping of W onto a region with parallel slits, provided that W is of
finite genus g (cf. Mori [12]).

(c) We consider two (distinct) boundary behaviors. Let A
= +il'3*, AP =Iy*+il ,(I'y and I'y are the same ones as in (a)),
then they have all our required properties and therefore we obtain a
dimension relation between S(A{;1/0) and D(AP;1/0,)/D (4P ; 0).
Note that #,={iR}, £,={R} and L,=iR. The extreme case that
I'y=I4, now has a connection with the results in Royden [16].
Further, as in (b), a pair of behavior spaces {14(", {24 gives a
similar example (&;, &, € C— {0}).

(d) We can also construct somewhat more general examples (sec.
7) which exhibit that our result strictly contains the already known

ones.

§III Applications and examples.

7. Each element L; of £ is representable as a straight line which
passes through the origin. In the sequel we use the term ‘straight
lines passing through the origin” or simply “lines” instead of “one-
dimensional linear subspaces of C’.

Let 7 be a differentiable curve on W and r: z=2z(t) t € I=[0, 1]
be one of its representations. A complex differential A=a(z)dx+b(z)dy
is said to be zero along 7 if
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a(z(£)) 2’ () +b(z (1)) y'(1)=0

for all ¢t € I, where x'(¢), y'(¢) are the derivatives of x, y with respect
to t. This notion does not depend on the choice of representations of
y. Similarly we say that A is real along y if r=Im4 is zero along 7.
We generalize this notion and say 4 to be [l-valued along y, ! being a

line, if and only if
a(z() x' () +b(2(0)) y' () €l

for all t€l. In the case that /=R (the real axis), to say that 1 is
l-valued along 7 is nothing other than saying that 4 is real along 7.
Now we shall construct an example announced in sec. 6 (d). We
shall also obtain some canonical conformal mappings, Theorem 5 below.
Let W be a compact bordered Riemann surface of genus g, and
W its interior. Let H={4;, B;}§_, be a canonical homology basis of
W modulo the border. Suppose that 3=R(W), the border of W, con-
sists of h boundary components By, 83, .-, 8. With each j(1<j<g)
and each k (1 <k<h), associate lines L; and I,. Let L;(resp. Zk)

denote the line which is determined by ~C,-=iC,- (resp. Z,=1iz;), where

Zi(resp. z;) is a complex number on L;(resp. ;) with |&;|=|z,|=1.
We set Z={L}, /={lL:} and Z={L}, 7={}}.
Define

AW)=A(W; £, 0)= {/l € AN W); (i) 2 is semiexact, i.e.,

gﬂ A=0 for all B,(1<<k<Ch), (i) SAon mod L; (1< < g),
13 1

By

(iii) A is Ilj-valued along B, (1 gkgh).}.

If we denote by AL(W) the class A}(W; 2, 7), it is evident that the

following lemma holds.

LemMma 12.

AN ) =i AN (7).
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What is more, we can show the following

LEMMA 13.  ALW) is the orthogonal complement of A}(W)* in
ALW).

Proor. First we shall show that AL(P)* L AL7). Take 1,€
AXW) and A€ AL(W). Then, by Lemma 6, we have

<Ag A¥>=Re (4, A%)

= —kgh:lReSﬁksz+j§1Re(SA,quB,Z_SB,quAJZ>

provided that df,=4, near B,(k=1,2,...,h). Because of the semiex-
actness of 4 we can take functions f, separately on each boundary com-
ponent.

The condition that 2, is [,-valued along @, implies that z,4, is
real along (3, i.e. Im(Z;fr)=const. on B, Similarly, we know that

zZ3A is imaginary along (3, that is, Re(z;4) is zero along (3;. Therefore
Re| fil=Re| (aufo)Gd)
B B

_ Sﬁ Re (4 f2) Re(zk1)+SB Im(z4 f4) Im(24 2)

vanishes because of the semiexactness of z,A4.
On the other hand, the period conditions for A, and 4 yield that

g zqg A€l xI=L;xil;=R.
Ay Bj
By Aj
Hence Re <S lqg Z—S lqg ,_l>=0. Since these reasonings are valid
4; "JB, B, "Ja,
for all k, j (1 <k <<h; 1<j<g), it follows that <2, 4*>=0.

Next we shall show the converse. Before carrying out the proof
we note that for each ko and jo (1<Cko<<h; 1<j,<g) we can readily
construct a semiexact C'-differential As,;,=Ar,;,(Lry Crp Cj,) € ANW)
such that
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zp(wp,+ick,) on B,

O
0 on Br (k+ko),

(i) SAjolkOjll: CjO.Cj“’ SBfuikufo:O
P ; =0 ] ] )
&Ajlkulo SBj'{kulo (] #]0)

where u, € C2(3;,)= {all the real-valued twice continuously differentiable
functions defined on S,} and ¢, C;, €ER. (In (i) the integral S/I;,ojo is
understood in the sense of Lemma 6. That is, we cut W along 4;, B;
to make it a planar surface 7, and consider the integral S’Ikofo on 7).
Indeed, such a differential is obtained by a standard method as follows:
Let R be a relatively compact ring domain containing Bj; which may
be assumed to be an orientable analytic Jordan curve. For any
ur, € C2(Bs,) and cy, C;,ER we take a function F defined on RUp
such that F=z, (us,+ice,) on B, F=C;&;, on the right part of R and
F=0 elsewhere. We can extend F so as F blongs to C*(W—B;). If
we set Aj,;,=dF, A, is the desired differential.

Now suppose that <2, 4*>=0 for all 3, €AW ). By Lemma 6,

we have

Zk; ReSm(“Slq )2_':'i + ; Re(SA,qusz - gleqSAjz>= 0.

We can take 4,;,(0,1,0) and 44,;(1,0,0) as A, and obtain that
Regﬁ sz/I:ReSB iz, A=0, which proves the semiexactness of 4.
ko ko

Setting ;= Ak, j, (s, Crpy 0), we have
S u, Re(zp, 4)=0.
Bkn 0 0

This holds for all u, € C%(B:,), and therefore we can conclude that
Re(zx,A)=0 along B, that is, 1 is Zko-valued along B,
Finally we set A,= 44, (ur, Crp 1). Then it follows that
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Re[CiugBhZ]=0, that is, the B; -period of 4 lies on the line f,jo. We
can discuss about A4; analogously.

Since these reasonings are valid for all ko, and j, (1 <ko<h;
1<jo<g), we can conclude that lé/fz( w), q.e.d.

If we restrict ourselves to harmonic differentials, we have the

following

LEMMA 14,
AW )=ido(W)
(W)= A7) 4 A ).
Here, by definition,
A(T)Y= ANV A(W) and  Af(W)= AW INA(T),

which are evidently closed linear subspaces of Ap.

The class Ao(W) satisfies all the conditions (1)-(4) in sec. 2.
In fact, first, Ag(W)C Ays (W) is obvious. Second, Ao(W)-+ido(W)**
=A( W) +id(W)=A(W) by Lemma 14. Third, <Af, iAj*>=0 for
any A, and 2} belonging to A(W), since by Lemmas 7 and 14
i€ idg(W)*=idf( W) =Ao(W)*. And finally by the definition of
Ao(W), the values SA,IO and SB,AO evidently belong to L; for each
A EA(W) and j=1,2,..., g Therefore “Ao(W)-behavior” is well-
defined. Moreover, as has been verified, A,( W) satisfies the stronger
condition (3"). Hence by Lemma 9 we know that Ao(#) and A()
=Ao( W) define dual boundary behaviors (with respect to R). Riemann-
Roch theorem is now applicable for these boundary behaviors, and we
know that there exists a non-constant meromorphic function f with
Ao(W)-behavior whose possible poles are arbitrarily prescribed (g+1)
points p,(0<r<g). Indeed, Corollary to Theorem 4 yields that
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dim S(4,(W); 1/8)=dimD(Ao( ) ; 6)+2(ordd — g+1)>2(ord6 — g+1).

If we set 0=pop1- Py then dimS(Ao(W);1/6)>4>2. The function
f has Ay(W)-behavior and so df is ls-valued along 8, that is, Re(z:f)
is constant on [,. It follows that f maps the border /5, to a slit
which is parallel to [,.

Thus, by use of an argument which is similar to Kusunoki [7]
(pp. 256-257) we have

THEOREM 5. Let W be the interior of a compact bordered Riemann

surface. Then there is a meromorphic function f on W such that

(i) f maps W onto a region with slits whose directions are
arbitrarily prescribed,
(ii) f maps some of (g+1) preassigned points on W to the point
at infinity,
(ii) f(W), the image of W wunder f, is at most (g+1)-sheeted

over the Riemann sphere.

REMARKS. (1) In connection with Theorem 5, cf. Koebe’s classical
work (Koebe [57], especially pp. 198-215) which deals with planar case
(g=0).

(2) Our starting point (to consider the totality of square integrable
complex differentials as a real Hilbert space) and the notion of dual
boundary behaviors essentially contribute to ensuring the existence of
such a conformal mapping as in Theorem 5.

(8) If all I, and L; coincide with the imaginary axis iR, then
meromorphic differentials with Ay(W; &, /)-behaviors are nothing other
than canonical semiexact differentials. See the first example of sec. 6.
Cf. also [7] Theorems 12-14 and [127] Theorem 4.

(3") Even if L;==iR for some j, a meromorphic differential with
Ao(W; £, /)-behavior is canonical semiexact and vice versa, provided
that [,=iR for all k=1,2,..., h. See [10] Theorem 1. Compare
with the example in the following section.
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8. Finally we shall construct another example, which shows our
Riemann-Roch theorem is valid for some functions and differentials with
an infinite number of non-vanishing periods.

Let W be an open Riemann surface of infinite genus whose ideal
boundary B consists of only two Stoilow components ,3 and B,. Let

Q be the canonical partition of A
Q: B:#BUB#-

Let {2,}7_, be a canonical regular exhaustion of W and Z(£2,) be the
border of the compact bordered surface 2,. By Q, we denote the
partition of B(£2,) induced by Q;

Q.: B(2,)=.8U8,,

where ,B(resp. 8,) is the common relative boundary of £, and the
regularly imbedded open neighborhood ,V(resp. V,) of ,@8(resp. 8,)
(v=1,2,...). For each m and n we put V=V —,V, Vi=V,—V,,
Wan=2VUe,ure, , W:m\?f W, and W,= 01" Wn. Then clearly

W=y WAV =W and W=\J o=\ W=\ .

We take a canonical homology 'l:asis ) 2_{A,~, Bj}’:;; of W modulo
dividing cycles such that &N\, W, forms a canonical homology basis of
» W modulo the border (m,n=1,2,...). We divide J into two disjoint
classes J; and J; which are both infinite sets. Set F,={4;, Bj};es,
(k=1, 2).

We begin with compact bordered surfaces ,W,(m,n=1,2,...).

For the time being, we confine differentials in real ones. Define

#F<n WM)Z{O'EF;,M(” ”_77)1); ® SAO-ZO if 4;, B;€E 1N, W s
1
By

(ii) =0 along ,,B}

and
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r#(ﬂW,,,)={fer,,w(,,Wm); () SA,’:(’ it A, B;€ By, W,

Bj

(ii) v=0 along Bm}.

Then, repeating the discussions in the proofs of Lemmas 13 and 14,

we have

Lemma 14'. For m, n=1,2, ...,

rh(n Wm)=3;r(n ’?m)'i'rg(n FV,,,)*=#F(,, Wm)*'Frg(n Wm)-

For each m we define the space #]" (fV,,,) as the set of 0,
€T 1s.(W,) which is approximated by .0 €,/ (,W,) in the sense of
norm. That is, 0, belongs to ,J°( W,) if and only if for any &>0
and any compact set EC W, there exist ,W,DE and .0, €, (zWu)
such that [l6,—0nll w <e. On the other hand, we define I',(W,)

n'm

directly:

r,(Wm)={rerhge(tz‘7m>; () SAr=O it A, B;€ 5y W,
-
Bj

(ii) =0 along Bm}.

With these definitions we can prove the following

LEmMMA 15. For m=1, 2,..., we have the orthogonal decomposi-

tions
I'i( an)znr( Wrn)+]'g( Wm)*:#r( Wm)*'l“r#( u_’/m)j

Since the proof is substantially the same as in Ahlfors-Sario [4] (see
pp. 292-295), we omit it. (In addition to the ordinary discussions, we
need to verify that (60—0,)* vanishes along (,, 0, being the limit
differential of ,0,. However, this can be done without difficulty if we
use the Schwarz’ reflection principle on ,.)

Now we pass to the open surface W. We define ,J'=,I"(W) to
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be the set of all the elements 0 €/ ;,, (W) which is approximated by
20 €, (,W) in the sense of norm. I'y,=I",(W) is similarly defined.

Suppose that ¢ €,/" and r €l,. Then, for any ¢>0 and any com-
pact set E, there are , W, Wu(;WuDE), ,0€ (W) and €l (W,)
such that

llo— A0l w<e, llt—Tullw, <e.
Note that ,0|,W,, €, (W) and ty| W, €I ,(sW,). Hence
| <o*e> w, | =|<0*—.0% > w, + <.0% c—Tn> w,]|
<G — w0l Il + a0l e lie — Tl

<e-licliw +(llollw +e)-e

for <,0%, tn> w, vanishes by Lemma 14'. It follows that JJI*LT,.

Suppose that r L,/'*. We have decomposition t=0%+7, on W,
where 0,€,(W,) and tn€ly(W,). In fact, as for W, we have
Lemma 15. The argument in the proof of Lemma 15 may be repeated
to conclude that 7, converges to a harmonic differential 7.1l M
(uniformly on compacta and then in the sense of norm) and that

T=Tt.. Therefore t €I'y(W). These reasonings imply the following

LEMMA 16. For the open surface W
T WY=L (W) 4+ T(W*=T(W)* 4 T(W).
Now we set
Ay=A,(W)=, (W) +il((W).

Then A, is a closed linear subspace of Ass.. Due to the last lemma
we know that A, is a behavior space. What is more, A,;-behavior
is self-dual since A,=A—,. For the details of the proof, refer to the
preceding section. Corresponding family of lines consists of only two
lines R and iR. For any {€C—{0} and any A€ 4, both Re({2) and
Im (£2) have an infinite number of non-vanishing periods. Nevertheless,

our Riemann-Roch theorem is valid for functions and differentials with
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Ay-behaviors.
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