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§ 0. Introduction

Let (G, 2) be a finite permutation group of rank 3. Then we can
make £ a strongly regular graph so that G is a subgroup of Aut £,
the full automorphism group of the graph £2. But, of course, the
automorphism groups of strongly regular graphs are not always of
rank 3. So it is interesting to determine strongly regular graphs with
automorphism groups of rank 3.

Strongly regular graphs are also obtained from partial geometries,
and such graphs are called geometric. Strongly regular graphs con-
structed from rank 3 permutation groups are often geometrizable.
Therefore it is also interesting to determine partial geometries with

automorphism groups of rank 3.

In §2, we construct a partial geometry 2 associated with a finite
group M (Theorem 2.6), and the full automorphism group of the graph
2y is determined (Theorem 2.7). We prove that (Aut 2y, 2y) is a
primitive permutation group of rank 3 if and only if M is a cyclic
group of order 5 or an elementary abelian 2-group of order greater
than or equal to 4 (Theorem 2.10).

In §3, we give some characterizations of 2. Namely, 2y for
M=_2Z5 or E;s are the only geometric graphs with r=3 and ¢t=2 whose

automorphism groups are primitive of rank 3 (Theorem 3.1). Let £
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be a strongly regular graph with k=3(m—1) and I=(m—1)(m—2),
m=4. Then #=6 unless #=9 and m=14 or 352 (Theorem 3.7). As
a corollary, we obtain that if (G, £) is a rank 3 permutation group of
degree m? with subdegrees 1, 3(m—1) and (m—1)(m—2), m>23, then
the graph constructed from (G, £) is isomorphic to some 2y, M=E,;,
unless #=9 and m =352 (Corollary 3.8).

The author would like to express his hearty thanks to Professor
C.C. Sims for pointing out that Corollary 3.8 may be viewed as a
special case of Conjecture 4 in [4], which is a consequence of Con-

jecture B, and that Conjecture B was proved by A.J. Hoffman.

§1. Notations and preliminary results

Graphs considered in this paper are finite undirected graphs without

loops.

Definition 1.1. A graph with n wvertices is strongly regular if
there exist integers k,l, A and p such that

(i) each vertex is adjacent to exactly k vertices and non-adjacent
to exactly I other vertices, k and 1 positive, and

(ii) two adjacent vertices are both adjacent to exactly A other
vertices and two mnon-adjacent vertices are both adjacent to exactly u

vertices.

Proposition 1.2. ([2], [31]). Assume £ is a strongly regular
graph. Then
O wl=k(k—2-1),
(ii) the minimum polynomial of the adjacency matrix A of R is
(x—k)(x*—A—p)x —(k— p)),
(iii) A has k as eigenvalue with multiplicity 1, and the multiplicities
f» & of the roots 1y s of x*—(A—p)x—(k—p) as eigenvalues of A are
respectively
f= LA Dsth

S—r

(k+Dr+k
8= 5

—S

and
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with f+ g=k+1, and therefore
(iv) ome of the following holds:
@) k=l, u=24+1=k/2 and f=g=k, or
() d=QA—u)®+4(k—p) is a square, and
Vd divides 2k+(A—p) (k+1).

If G is a rank 3 permutation group of even order on a finite set
2, 182|=n, and if 4 and I' are the nontrivial orbits of G in 2x 2,
then the graphs (£, 4) and (£, ") are a complementary pair of strongly
regular graphs, each admitting G as a rank 3 automorphism group,
the parameters k, [ and A, # being respectively the subdegrees (other
than 1) and the intersection numbers of G. G is primitive if and only
if 0<u<k. If 4=0, then k+1|n, and if 4=k, then [+1|n.

Definition 1.3. A partial geometry with characteristic (r, &, t) is
a system of points and lines such that

(i) any two points are incident with not more than one line,

(ii) each point is incident with r lines,

(iii) each line is incident with & points, and

(iv) if a point x is not incident with a line L, there pass through
the point x exactly t lines (t =1) intersecting L.

The graph 2 of a partial geometry £ is defined as a graph whose
vertices correspond to the points of the geometry, and in which two
vertices are adjacent or non-adjacent according as the corresponding points
are incident or non-incident with a common line. £ is called a geo-

metric graph with characteristic (r, K, t) having geometric structure £.

Proposition 1.4. ([1] Theorem 4.1). A geometric graph with
characteristic (r, £, t) is strongly regular with parameters

k=r(k—1),
I=—1DE-1(k—1)/t,
A=r—1D(—1)+k—2,
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u“=rt,

where 1<t<r and 1<t <k

Definition 1.5. A strongly regular graph with parameters of the
Jorm given in Proposition 1.4 is defined to be a pseudo-geometric graph

with characteristic (r, £, t).

Proposition 1.6. ([1] Theorem 9.3). A pseudo-geometric graph

with characteristic (r, &, t) has unique geometric structure® if

lc>——;—[r(r—1)+t(r+1)(r2—2r+2):|.

The terminology and notation of [2] for rank 3 permutation groups
are used throughout.

In a graph £, 4(a) (a € 2) denotes the set of vertices adjacent to
a, and I (a) the set of vertices non-adjacent to a. A complete subgraph
consisting of & vertices is called a clique of order «, that is, any two
vertices of a clique are adjacent. |X| denotes the cardinality of the
set X. Finally,

&,,=symmetric group of degree m,
Zn,=cyclic group of order m,

E,s=elementary abelian group of order pf .

§2. Construction of geometric graphs with characteristic (3, m, 2)

Let M be a finite group of order m =3 with the identity element
e, and 2=89y=Mx M (direct product of sets). We call the elements
of £ vertices, and two vertices (a, b), (a/, ') of £ are, by definition,
adjacent if and only if one of the following holds:

(i) a=d,

1) It is not always possible to define geometric structure in a pseudo-geometric
graph. Also geometric structure in a geometric graph is not unique in general.
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(i) b=0/, or
(iii) e 'b=a'"'b".
The set of vertices of 2 adjacent to (a, b) is denoted by 4(a, b) in-
stead of 4((a, b)), and put I'(a, b)=2—4(a, b)— {(a, b)}, the set of

vertices non-adjacent to (a, ). Now we shall define some automorphisms
of £. First, define

(a, b) Tx.y:(ax> by)a (a, b)) L
for x, y€ M, and put
T={T,,|x, ye M}.
(We write (a, b)T,,, instead of ((a, b))T,,, for brevity.)
Lemma 21. Every T, ,x, yEM) is an automorphism of 2, and

T, which is isomorphic to M XM, is regular (in particular transitive)
on £.

Next, define
(a, )S1=(a"1, a'b), and
(a, 8)S2=(b"1a, b71), (a, b)€ 2,
and put &= < S;, S;>, the group generated by S; and S,.

Lemma 2.2, S; and Sy are automorphisms of 2 of order 2, and
& is isomorphic to the dihedral group of order 6.

For any automorphism ¢ of M, we define
(a, &)X, =(a", b7), (a, b)€ 2,
and put X={X, |0 € AutM}.

Lemma 2.3. Every X,(c € AutM) is an automorphism of 82, and
X is isomorphic to Aut M.
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The proofs of Lemma 2.1 through Lemma 2.3 are automatic and

we omit them.

Proposition 2.4. Let & be the group generated by T, X and €.
Then & is the semidirect product of <ZT,%X> by &, and <Z, ¥> is
the semidirect product of ¥ by X. Especially, the order of & is equal
to

1T] % |%| % |&| =6m®x |AutM|.

Proof. It is easily verified that ¥ is normal in <%, ¥> and
ITNX={e}, which means that <, ¥> is the semidirect product of ¥
by X. Also <%, %> is normal in & and <%, X>NS={e}.

Define
Ki(a)={(e, b)|bE M},
Ku(a)={(b, a)| b€ M}, and
Ks(a)={(b, ba)| b€ M}
for a€ M.

Lemma 2.5. We have
m i=j, a=b,
| Ki(a)NK;(b)| =0 i=j, a7b,
1 7],
for 10, j<3 and a, bEM.

Theorem 2.6. @y with lines Ki(a), i=1,2,3, a €M, is a partial
geometry with characteristic (3, m, 2). Hence the graph 2y is a strongly
regular graph with n=m? k=3(m—1), I=(m—1)(m—2), A=m and
©==6.

Proof. The first assertion is immediate from Lemma 2.5 and the
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fact that K;(a),i=1,2,3, a€ M, is a clique of order m. Then the
second assertion follows from Proposition 1.4.
Now we shall determine the full automorphism group of £, name-

ly, we prove the following theorem.

Theorem 2.7. &=<Z, %X, &> is the full automorphism group of
the strongly regular graph Ly if m=5 or M is a cyclic group of
order 4. If M is an elementary abelian group of order 4, Aut Ly is
isomorphic to €4[€,, the wreath product of €4 with &, and is of
order 1152, If M is a cyclic group of order 3, Aut 8y is isomorphic
to ©5[&;3 of order 1296, and acts imprimitively on L.

Lemma 2.8. If m=>5, Ki(a)(i=1,2,3, a€ M) are the only maxi-
mal cliques of order greater than 4. Hence the geometric structure in

2y is unique.

Proof. Suppose K is a clique of order greater than 4. We may
assume that (e, e) is contained in K because of the transitivity of &.

Some K;(e) contains at least three vertices of K including (e, €), since
Kc d(e, e)\JA{(e, )}
=Ki(e)\UK;(e)\UKs(e).

Suppose (e, a), (e, b) €K, a,bE M—{e}, as=b. Then the lemma is
proved if we show that K is contained in K;(e). To the contrary
suppose (¢, d) € K—K;(e). Then (c, d) € (e, a) implies d=a or ¢ 'd
=a because cz~e. In case d=a, (c, a) € 4(e, e) implies c=a, but
this is impossible since (a, a) ¢ 4(e, b). Hence we must have ¢ 'd=a.
Similarly we have ¢ 'd=5 from (c, d) € 4(e, b). But ¢ 'd=a=54 con-
tradicts the assumption of (e, a)==(e, b).

For any subsets K, L of £, we define their incidence number
i (K, L) by

i(K, D)= |{(x, py eKx Lix€4(y}|.
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Also we put M,=M— {e, a} for a € M— {e}, and then

J«a, pibeMy =1,
(@, a)lbeM}y  i=2

Li(a)=Ki(a)NI (e, e)=
1 {(b, ba)|b" eM,} i=3.

Lemma 2.9, For 1<i, <3 and a, b€ M—{e}, we have
(m—2)* i=j, a=b,
2(m—3) i=j,asb,

m—2 i#j,a=b,a*=e,
i(Li(a), Li(b))=

m—3 i%#j,a=b, ale,

3m—8 i##j,a%b, ab=e,

3m—9 i#j,asb, abe.

Proof of Theorem 2.7. Note that we have only to determine
automorphisms of £23 which fix (e, e), since & is transitive on 2.
First, we deal with the case m =5, and we prove that any automorphism
0 of 2 fixing (e, ) is contained in <X, &>. From Lemma 2.8 0 is
an automorphism of .QMI), and we may assume that 0 fixes K;(e)

(i=1, 2, 3) since © permutes K;(e) symmetrically. Then
(Ki(a)) 6=K(ay), i=1,2,3

for some a; € M. This implies
(Li(a))0=Ly(a), i=1,2,3,

but we know that @; are the same element @° from Lemma 2.9, where
0 is a permutation of M. Noting that K;(e)N\K2(d)={(a, b)}(a, b€ M),

1) Any automorphism of a partial geometry 2 induces an automorphism of
the graph £, but the converse is not true in general,
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we have
(a, b)0=1(a", b°), (a, b) € Q.
Now (a, b) € Ks(a™'b) implies
(a, b)0=(a, b°) € (K3(a"'0)) 6=K;3((a"'b)).
Hence we have
(@) o7 =(a""b)’,

and ¢ is an automorphism of M. Then

=X, €X,

and the theorem is proved in case m>5.

Next, suppose M is a cyclic group of order 4 generated by a.
Then the maximal cliques of order four containing (e, e) are K;(e)
(i=1, 2, 3) and Ko(e)={(e, e), (e, a?), (a® e), (a?, a®)}. Therefore any

automorphism 6 of £ fixing (e, e) also fixes Ky(e), since
IKo(e)f\K,(C)I :2, 1§l§3, and
|Kt(e)/-\KJ(e)l :1) lél)jgs) L#I‘

Therefore ¢ is an automorphism of f)M. Then the same proof as in
the case m =5 can be applied and we have § € <%,&> and Aut =0,
If M is an elementary abelian group of order 4, the complementary
graph of £ is isomorphic to %, (in Higman’s notation) and Aut® is
isomorphic to €,/&, by Lemma 1 of [31].
If M is a cyclic group of order 3, the complementary graph of 2
is not connected but consists of three cliques of order 3. It follows

immediately that Aut® is isomorphic to &;[&;.
Theorem 2.10. (Aut 2y, 2y) is a primitive permutation group of
rank 3 if and only if M is a cyclic group of order 5 or an elementary

abelian 2-group of order greater than or equal to 4.

Proof. Aut@y is of rank 3 if and only if the stabilizer of (e, e)



390 Hikoe Emnomoto

in Aut £y is transitive both on 4(e, ¢) and on I'(e, ¢). This is easily
verified in case M is a cyclic group of order 5 or an elementary abelian
2-group of order greater than or equal to 4.

Conversely, suppose M is not an elementary abelian 2-group and
the stabilizer 9= <X, &> of (e, e) in Aut2=0=<T, %X, &> is transi-
tive on I'(e, ¢). We can find some a € M— {e} whose order is not 2,
since M is not an elementary abelian 2-group. Then (a, a?) is a vertex
in I'(e, ¢) and we consider the orbit containing (a, @?) under the action

of . The orbit containing (a, a®) under the action of & is
U={(a, a*), (a7}, a), (™', a™®), (a7%, a™), (a, a™"), (% a)}.

For every b€ M,, there exists some vertex (a/, a’)€ U and some

automorphism ¢ of M such that
(ai’ aj) Xa:(aa b)’

since we assume that © is transitive on I'(e, ¢). Then ¢ maps any

£ or a*?) to a.

power of a to some power of a, since ¢ maps a'(=a
Hence b is some power of a, and this means that M is a cyclic group
generated by a. Moreover, the intersection of L;(a) and the orbit con-
taining (a, a®) under the action of © consists of at most three vertices:

(a, a?), (a, ™) and (a, '), where 2i=1 (mod m). It follows that
|Li(a)| =m—2<3.

Hence M is a cyclic group of order smaller than or equal to 5. But
if M is of order 3, Aut £ is imprimitive, and it is easily verified that
9 is not transitive on 4(e, e) in case M is of order 4. Then the only
possibility is that M is a cyclic group of order 5, and the theorem is

proved.

§3. Some chracterizations

Theorem 3.1. Let £ be a geometric graph with characteristic
(3, m, 2), m=4, 2 being the geometric structure. If (Autf, 2) is a
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primitive permutation group of rank 3, then £ is isomorphic to some

Oy, where M=E,; or Zs. In particular, m must be equal to 2’ or 5.

Remark. Sims [4] defined a family of geometric graphs #:(f, q)
with automorphism groups of rank 3 for any prime power ¢q. £y for

M=E,; is the special case of g=2. Also there exists a family of

g—1 ,_49- g—1
2’ 4 4
where ¢ is a prime power and ¢=1 (mod 4). &y for M=Zs is the

and u=

strongly regular graphs with k=[=
special case of g=5"%

Proof. It is not difficult to verify that there exist two non-
isomorphic geometric graphs with characteristic (3, 4, 2) or (3, 5, 2),
but only one of them (that is, 2y for M=Z;Xx Z; or Zs) admits an
automorphism group of rank 3.

We deal with the case m>5 in the following. We fix a vertex
a € £, and count the number N of triangles contained in 4(a), where a
triangle is an ordered triple (x, y, z)(x, ¥, z€ 2) such that {x, y, z}
is a clique of order 3. Let s be the number of edges in 4(a)N4(b),
be€l'(a). Note that s is independent of the choice of b€/ '(a), since

we assume that Autf is of rank 3. Then we have
N=FkA(A—1)—2sl
=(m—1){8m(m—1)—2s(m—2)}.
On the other hand, we have
N=k(k—2)(k—3)+2kv
=3(m—1){(m—2) (m—3)+ 20},

where v=0 if every clique of order 4 is contained in a line, and v=1

otherwise. Therefore we have

3—3v

s=6+ m—2

)

and v must be equal to 1 since we assume that m>5. Note that v=1
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means that two vertices ¢ and d are adjacent if (a, b, ¢) and (a, b, d)

are triangles not contained in a line.

Let M be a set with m elements and identify the vertices of 2
with Mx M as follows. Choose an element of M and call it e, and
choose a vertex of £ and call it (e, e). Let Ki(e) (i=1, 2, 3) be the
three lines through (e, e). Fix a bijective map f from M onto Kj(e)
such that f(e)=(e,e), and let (a,a) be the image f(a) of a€M. Let
(e, a) (resp. (a, e)) be the vertex in 4(a, a) K, (e) (resp. d(a, a)N\K;(e))

K3(a)
(e, @) (a, e)
(e, €) (a, @)
Ks(e)
K.(e) Ki(e) Ki(a) Ky(a)

different from (e, e¢) for a€M—{e}. (Note that |d(a, a)NK;(e)]
=|d(a, a)NK(e)| =2 for a€ M— {e}.) Furthermore, let K,(a) (resp.
K,(a)) be the line through (a,a) and (a, e) (resp. the line through
(a, @) and (e, a)). Note that (a, e) and (e, a) are adjacent, since

(Ce, €), (a, a), (a, €)) and ((e, e), (a, a), (e, a)) are triangles not con-
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tained in a line. Now let Kj3(a) be the line through (a, e) and (e, a).
Then we have
m i=j, a=b,
IK(@NK®B) ={0  i=j, asb,
1 ]
Finally, let (a, b) be the unique vertex in Ki(a)NKy(b).

Now we define the addition in M by

a+b=c if and only if (a, b) € K;(c).
Lemma 3.2. a+e=e4+a=a for ac€ M.

Proof. This is trivial since (e, a) and (a, e) are vertices in K;(a)

by definition.
Lemma 3.3. a+b=b+4+a for a,be M.

Proof. This is trivial if a=b. Therefore we may assume that
asb. Then ((a,a), (b,b), (a, b)) and ((a, a), (b, b), (b, a)) are triangles.

Ks(e)
(a, b) (b, @)
(a, @) (b, b)
Ka(e)
Kz(a) Ki(a) Ki(b) Ka(b)

If one of them is contained in a line, the line must be Kj(e), but this
implies a=>5, which is not the case. Hence there exists a line passing
through (@, b) and (b, a), and this line must be of the form K;(c).
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This means
a+b=c=b+ta,

and the lemma is proved.

Lemma 3.4. a+(a+b)=b for a, b€ M. In particular

ata=e for a€ M.

Proof. If a=e, this lemma is trivial from Lemma 3.2. Therefore
assume az~e. Then ((a,d), (e,a+b), (e, b)) and ((a,d), (e, a+b),

(a, a+b)) are triangles not contained in a line. Hence there exists a

K3(b)
<(l, (1+b) (e, [))
(a; b) (e,a+b)
K3(a+0b)
K,(b) Ki(a) Ki(e) Kz(a+b)

line passing through (e, b) and (a, a+b), and this line must be K;(b).
This means

a+(a+b)=0b,

and the lemma is proved.
Lemma 3.5. (a+b)+c=a+(b+c) for a, b, c€M.

Proof. If a=c, this lemma is trivial from Lemmas 3.3 and 3.4.
Therefore assume a=~=c. Then ((a+b, a), (b+c, c), (a+b, c)) and
((a+b, a), (b+c, c), (b+c, a)) are triangles not contained in a line.
Hence there exists a line passing through (a+b, ¢) and (b+c, a), and
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K3(d)

(a+b,c) (b+c,a)
(a+b,a) (b+c,c)
K3(b)

Kz(a) Kl(a—l-b) Kl([)+c) KZ(C)

this line must be of the form K3(d). This means
(a+b)+c=d=0b+NVt+a=a+(b+c),

and the lemma is proved.
From the above lemmas, we know that M is an abelian group of
exponent 2 (that is, an elementary abelian 2-group) with respect to this

addition, and the theorem is proved.

Corollary 3.6. Let £ be a strongly regular graph with k
=3(m—1),l=(m—1)(m—2),A=m and p=6. If (Autf, 2) is a
primitive permutation group of rank 3 and m>23, then 2 is isomorphic

to some Ry, where M=UE,;. In particular m must be a power of 2.

Preof. From Proposition 1.6, £ is geometrizable if m>23.

Remark: The restriction m>23 cannot be dropped, since there
exists a strongly regular graph with k=15, [=20, A=6 and x=6
whose automorphism group is primitive of rank 3. Of course, this
graph is not geometrizable from Theorem 3.1.

Higman [ 3] proved that some families of rank 3 permutation
groups are characterized by their subdegrees. Here we make similar

consideration in the case k=3(m—1) and [=(m—1)(m—2).

Theorem 3.7. Let 2 be a strongly regular graph with k=3(m—1)
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and |=(m—1)(m—2),m=4. Then u=6 unless y=9 and m=14 or
352.

Proof. We may assume that the case (b) of Proposition 1.2 (iv)
holds, since we have m=5 and #=6 if the case (a) occurs. From

Proposition 1.2 (i), we have
#(m—2)=3(3m—4—2).

We consider two cases according as 3 divides # or not.

Case 1. p=3uy. In this case yo(m—2)=3m—4—1, so that
(uo—3)m=2puy—4—A. We have 120 and 0puy<m—1, since
0<u<k=3(m—1). Hence (#o—3)m=<2u,—4=<2m—6, so that u,<4.

If #y=4, we have A=4—m =0, so that m <<4. But then u#=34,
=12>3(m—1)=k, which is impossible.

If uy=3, we have 1=2, 4=9 and d=12m+1. Therefore
V12m+1 is an integer and divides 2k+(A—u)(k+1)=14+6m—7m>
Hence Y12m +1 divides 65, because Y12m +1 and m are relatively prime
and 146m—7"m?>=(1—6m)(12m+1)+65m? Therefore Y12m+1=65,
13,5 or 1, and then m=352, 14, 2 or 0.

If #o=2, we have A=m and y#=6 as desired.

If #o=1, we have 1=2m—2, #=3 and d=4m*—8m+1=(2m —2)*
—3. But the only solution is ¥d =1 and m=2.

If #,=0,k+1=3m—2 must divide n=m? Then 3m—2 must
divide 2m. In particular, 3m—2<2m, hence m <2.

Case 2. 3 does not divide u#. In this case 3 divides m—2 and
we can write m=3t+2,t>1. Then wut=9t+2—24, that is, 2
=(9—u)t+2, so that £<11.

If =11, we have t=1, A=0 and k=12. Then d=11%2+4(12—11)
=125 is not a square.

If #=10, we have A=—t+22=>0, so that t=2 or 1. If t=2,
we have 4=0 and k=21, but it is easily proved that there exists no

strongly regular graph with £=21,1=42,2=0 and #=10. If (=1,
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we have 2=1 and k=12. Then d=9°+4(12—10)=89 is not a
square.

If #=8, we have A=t+2 and d=124+24:t+16=(¢t+12)*—128.
There exist two solutions, but ¥d does not divide 2k+ (21— x)(k+1) in
both cases.

If <7 we have A=(9—x)t+2 and d=(9—p)%t®
+(72—224+24%)t+16—8u+ 4%, but there exists no solution with
t=1, and the theorem is proved.

Corollary 3.8. If (G, 2) is a rank 3 permutation group of degree
m® with subdegrees 1, 3(m—1) and (m—1)(m—2), m>23, then the
graph constructed from (G, ) is isomorphic to some 2y, M=E,s, and
G is isomorphic to a subgroup of Aut Qy=8=<Z, X, &> unless £=9
and m=352.

Kyoro UNIVERSITY

References

[1] R.C. Bose: Strongly regular graphs, partial geometries and partially balanc-
ed designs, Pacific J. Math. 13 (1963), 389-419.

[2] D.G. Higman: Finite permutation groups of rank 3, Math. Zeit. 86 (1964),
145-156.

[3] D.G. Higman: Characterization of families of rank 3 permutation groups by
the subdegrees I, II, Arch. Math. 21 (1970), 151-156, 353-361.

[4] C.C. Sims: On graphs with rank 3 automorphism groups, to appear.



