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§ O . Introduction

Let (G, D) be a  finite permutation group o f rank 3. Then we can

make D a  strongly regular graph so that G  is  a  subgroup of Aut

the full automorphism group o f th e  g ra p h  2 . But, of course, the

automorphism groups o f  strongly regular graphs a re  not always of

rank 3. So it is interesting to determine strongly regular graphs with

automorphism groups o f rank 3.

Strongly regular graphs are also obtained from partial geometries,

and such graphs are  called geometric. Strongly regular graphs con-

structed  from  rank 3  permutation groups a re  often geometrizable.

Therefore it is also interesting to determine partial geometries with

automorphism groups o f rank 3.

In § 2, we construct a partial geometry i j i vi  associated with a finite

group M  (Theorem 2.6), and the full automorphism group of the graph

Dm  is determined (Theorem 2.7). We prove that (Aut  2 /1,/, Dm )  is  a

primitive permutation group o f  rank 3 if a n d  only i f  M  is  a  cyclic

group o f  order 5  o r  a n  elementary abelian 2-group o f  order greater

than or equal to 4 (Theorem 2.10).

In  § 3, we give some characterizations o f  Dm . Namely, Dm  fo r

M-=Z 5 o r  E V  are the only geometric graphs with r = 3 and t = 2 whose

automorphism groups are prim itive of rank 3 (Theorem  3.1). Let 2



382 Hikoe Enomoto

be a  strongly regular graph with k= 3 (m — 1) and / = (m — 1) (m — 2),
m  4 .  Then ,a = 6 unless a =99 and m = 14 or 352 (Theorem 3.7). As

a  corollary, we obtain that i f  (G, D ) is a  rank 3 permutation group of

degree m2 w ith  subdegrees 1, 3 (m — 1) and (in —1)(m — 2), m > 23, then

the graph constructed from (G, 2 )  is isomorphic to some 2 m, M = E 2 1,
unless ,a = 9 and m = 352 (Corollary 3.8).

The author would like to express his hearty thanks to Professor

C. C. Sims fo r  pointing out that Corollary 3.8 m ay be viewed as a

special case of Conjecture A  in  [4 ] ,  which is a  consequence o f  Con-

jecture B , and that Conjecture B  was proved by A. J. Hoffman.

§ 1 .  Notations and preliminary results

Graphs considered in  this paper are finite undirected graphs without

loops.

Definition 1 . 1 .  A  g rap h  w ith  n  v ertices is strongly  regular i f
there ex ist integers k , 1, A and it such that

(i) each vertex is  adjacent to ex actly  k  vertices and non-adjacent

to exactly  1 other vertices, k and 1 positive, and
(ii) tw o  adjacent v ertices a re  b o th  adjacent to  ex ac tly  2  o ther

vertices and tw o  non-adjacent vertices are  both  adjacent to  ex actly  ,u
vertices.

Proposition 1 . 2 .  ([2 1, [3 I]). Assume -(2 i s  a  strongly  regular
g rap h . T h e n

(i) =- k (k — A —1),
(ii) the minimum polynomial of the adjacency  m atrix  A  o f  D  is

— k)(x 2 —(2 — ,u)x — (k —
(iii) A  has k as eigenvalue with m ultiplicity  1, and the multiplicities

f ,  g  of the roots r, s o f  x 2 —(A— ,u)x —(k—,u) as eigenvalues of A  are

respectively

(k+1).5+k
a n d

( k + l ) r + k
g—f - s—r r—s



S trongly  regular graphs and f inite permutation groups of rank  3 383

w ith  f + g=k  +1, and therefore

(iv) one of the following holds:
(a) k =1 , it = 2 +1= k / 2 and f  g = k ,  or

(b) d=(2— - 14 2 + 4(k— ,a) is  a square, and

d  div ides 2k + (2—  ,a)(k +1).

I f  G is a  rank 3 permutation group o f  even order on a finite set

2 , I 2 I  n ,  and if 4  and T  are the nontrivial orbits o f  G  in 2  x

then the graphs (2, 4 )  and (2, 1") are a complementary pair of strongly

regular graphs, each admitting G  a s  a  rank 3 automorphism group,

the parameters k , 1 and 2, i t  being respectively the subdegrees (other

than 1) and the intersection numbers o f G .  G  is primitive if and only

i f  0  <  <  k. I f  it = 0, then k  +11n, and if ,a=k , then / +1 I n.

Definition 1 . 3 .  A partial geom etry  w ith characteristic (r, n , t )  is
a system of points and lines such that

(i) any  tw o points are incident w ith not more than  one line,
(ii) each point i s  incident w ith r  lines,

(iii) each line  is incident w ith n points, and
(iv) if a point x  is  n o t incident w ith a line L , there pass through

the point x  exactly  t  lines (t 1) intersecting L .
The graph  2 of a partial geometry i j  is def ined as a graph whose

vertices correspond t o  the points of the geom etry , a n d  in  w hich tw o
vertices are adjacent or non-adjacent according as the corresponding points
are incident or non-incident w ith  a  common line. 2  i s  c a l le d  a  geo-
m etric graph w ith characteristic (r, n , t )  hav ing geom etric structure

Proposition 1 . 4 .  ([1 1 Theorem 4. 1). A  geom etric graph w ith
characteristic (r, n , t) is strongly  regular w ith param eters

k =r (n —1),

1 (r — 1)(n — 1)(n —

= (r — 1)(t —  1) + —  2,
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w here 1< t < r  a n d  1 < t< n .

Definition 1 .5 . A  strongly  regular graph w ith param eters of the
f orm  giv en in Proposition 1.4  is def ined to be a  pseudo-geometric graph
w ith characteristic (r, IC, t).

Proposition 1.6. ([1 1 T h eo rem  9 .3 ). A  pseudo-geometric graph
w ith characteristic (r, n , t )  has unique geometric structure' ) i f

IC> [ r ( r t(r  +1 )(r 2 —2r +2)].2

The terminology and notation of [ 2 ]  for rank 3 permutation groups
are used throughout.

In a graph 2, 4 (a) (a E  2) denotes the set of vertices adjacent to
a, and T (a) the set of vertices non-adjacent to a. A  complete subgraph
consisting of ic vertices is ca lled  a clique of order n, th at is, any two
vertices of a clique are adjacent. XI denotes the cardinality of the

set X .  Finally,

symmetric group of degree m,

Z„, --= cyclic group of order m,

E p f  =elementary abelian group of order p i .

§ 2 . Construction of geometric graphs with characteristic (3, m, 2)

Let M  be a finite group of order m > 3 with the identity element
e, and 2 = -2 m = M x M  (direct product o f sets ). W e ca ll the elements
of 2  v e r t ic e s ,  and tw o vertices (a, b), (a', b ')  of 2  are, by definition,
adjacent if and only if one of the following holds:

(i) a = a' ,

1) It is not always possible to define geometric structure in a pseudo-geometric
graph . Also geometric structure in a geometric graph is not unique in general.
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(ii) b =b ', or

(iii) a 1 b = a' - l b' .

T he set of vertices of 2  adjacent to  (a, b ) is denoted by A (a, b ) in-

stead of ((a, b )),  and put [  (a, b)= D .61(a, b)— {(a, b)} , the set of
vertices non-adjacent to (a, b). Now we shall define some automorphisms

of 2 .  First, define

(a, b)T x ,y =-(ax, by ), (a, b) E

for x , yE M , and put

=  Tx ,  yy E

(We write (a , b)T x ,y instead of ((a, b))T x ,y  fo r  brevity.)

L em m a  2.1. E v e ry T x ,y (x , y E M ) is  an  automorphism o f  D, and
Z ,  w hich is isom orphic to M x  M , is  re g u lar (in  particular transitive)
o n  2.

Next, define

(a, b)S (a - 1  , a l b), and

(a, b)S 2
-= (b - i  a, b- 1 ), (a, b) E 2 ,

and put <S1, Sz>, the group generated by S i  a n d  S2.

L em m a  2 .2 . S1 a n d  S2 are  automorphisms o f  2  of  order 2, and
e is isom orphic to the  dihedral group of  order 6.

For any automorphism a of M , we define

(a , b)X,,.= (a ',  b ), (a , b) E 2 ,

and put 1= {X,1 6 E

L em m a  2 .3 . Ev ery  X x (6 E AutM) is  an  automorphism o f  Sl, and
is isom orphic to Aut M.
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T h e  proofs o f  Lemma 2.1 through Lemma 2.3 a r e  automatic and

we om it them.

Proposition 2 .4 . Let 03 be the group generated by  Z, a n d .
T hen 13  i s  the semidirect product o f  < Z ,1 >  by  e^", and < Z ,1 >  is
the semidirect product of by  1. Especially , the order o f  13  is equal
to

1z1 >< 2E X I =6m 2 x Autml.

P ro o f. It is easily verified that 1 is n o r m a l in  <Z, X >  and

lel, which means that < Z ,  >  is th e  semidirect product of

by 1 .  Also <Z, X >  is  norm al in  13  a n d  <Z, 2E> r-■ = {e }.

Define

K i (a )= { (a , b E M} ,

K2(a)= {(b, a) I b E M } , and

K 3 (a)=  {(b , ba)lb E M I

fo r  a E M.

Lemma 2.5. W e have

in

{

i-= j, a=  b,

0I K i(a) n iC i(b)1= i =  j, a * b ,

1 i *  j ,

fo r  1 j and a, b E M.

Theorem 2.6. w ith lines K i (a ) ,  i = 1, 2, 3, a E M , is  a partial

geometry with characteristic (3, m, 2). Hence the graph  Slm i s  a strongly
re g u lar g rap h  w ith  n = m2 , k=3(m —1), / =(m —1)(m —2), A = m  a n d

lt =-  6.

P ro o f. T h e  first assertion is immediate from Lemma 2.5 and the
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fact that K i (a ), i=1 , 2 , 3 , a E M , is  a  c lique o f order in. Then the

second assertion follows from Proposition 1.4.

Now we shall determine the full automorphism group of 2 m ,  name-

ly, we prove the following theorem.

Theorem 2 .7 . 6= <Z, 1, is  the full automorphism group of

the s tro n g ly  reg u lar g rap h  2 1,1 i f  rn 5  o r  M  i s  a  cy clic group of

order 4. I f  M  i s  a n  elem entary  abelian group of order 4, A ut D iti is

isom orphic to 2' 4 ,je"2, th e  w reath product of w ith  e ,"2 , and i s  of

order 1 1 5 2 . I f  M  is  a  cy clic group o f  order 3, Aut .S2m  is isom orphic

to 3 .(E-'3 o f  order 1296, and acts imprimitively on 2 m .

Lemma 2 .8 . I f  m >  5, K i (a )(i -= 1, 2, 3, a E M ) are the only maxi-

m al cliques of order greater than  4. Hence the geometric structure in

Slm  i s  unique.

P ro o f .  Suppose K  is a clique of order greater than 4. We may

assume that (e , e ) is contained in  K  because of the transitivity o f 03.

Some K i (e )  contains at least three vertices o f K  including (e, e), since

K g  zl(e, e)U {(e, e)}

K i (e)U K 2 (e)U K 3 (e).

Suppose (e, a), (e, b) E K , a, b E M— { e} , a *  b. Then  th e  lemma is

proved i f  w e  show that K  is contained in  K i (e). T o  the contrary

suppose (c, d )EK — K i (e). Then (c, E 4(e, a) implies d = a  o r  c
=a because c e. In  case  d=a, (c, a) E ,d(e, e) implies c = a ,  but

this is impossible since (a, a) Et zl(e, b). Hence we must have c - 1  d= a.
Similarly we have c - 1  d =b  from (c, d) E zl(e, b). But c - 1  d= a-= b con-

tradicts the assumption o f (e, a) *(e , b ).

F or any subsets K , L  o f  2 ,  we define their incidence number

i (K , L ) by

i(K ,  L )= { ( x ,  y )E K x L ix  E il(y)}1•
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Also we put M a -=M— -(e, a}  for a E M— i e l ,  and then

L i (a)=K i (a)n T (e , e )=

{(a, b E 1=1 ,

{(b, a)lb E i =2,

1(b, ba)1 EM a lf 1=3.

  

Lemma 2 .9 . For 1 i, j 3 and a, b EM— { e} , w e have

(m -2 ) 2i  = j , b,

2 (m -3 ) i-=j, a  /  b,

m — 2 * j ,  a = b, - = e ,
i(L i (a), L f (b))=

m — 3 i  I  j, a= b, a2   /  e,

3m — 8 a± b , ab= e,

3m — 9 i * j ,  a b , ab * e .

Proof o f Theorem 2 .7 . Note th a t  w e  have only to determine
automorphisms of 2 3,/ w hich fix (e , e ) , since 6  i s  transitive on S2m .
First, we deal with the case nt >  5, and we prove that any automorphism

of ..(2 fixing (e , e )  is contained in  < I , 2-", > .  From Lemma 2.8 0  is
an automorphism of ijit,f 1 ) , a n d  w e  m a y  assume th a t  0  fixes K i (e)
(i=1 , 2 , 3 ) since permutes K i (e )  sym m etrically. Then

(K i (a))0 =K 1(a 1), 1=1 , 2, 3

for some ai E M .  This implies

(L i (a)) 0 -= L i (a), i = 1, 2, 3,

but we know that a i are the same element a  from Lemma 2.9, where
6  is a permutation of M .  Noting that Ki(a)(11C2(b)= {(a, b)}(a, b EM ),

1) Any automorphism of a  partia l geom etry D  induces an  automorphism of
the graph Q, hut the converse is not true in general.
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we have

(a, b) 0 =(ct", b'), (a, b) E D.

Now (a, b)E K 3 (a - l b )  implies

(a, b)0 = (a', b") E (K 3 (a - 2 b))0= K o ((a - l b)").

Hence we have

(a")-lb° = (a - 1  b)",

an d  6  is a n  automorphism o f  M .  Then

0 = X , EE,

a n d  th e  theorem is proved in  c a se  m > 5.
Next, suppose M  is  a  cyclic group o f  order 4  generated by a.

Then th e  m a x im a l c liq u e s  o f  order f o u r  containing ( e ,  e )  a r e  Ki(e)
( i=1 ,  2 , 3 ) a n d  K o (e)= -((e, e), (e, a 2 ), (a 2 , e), (a 2 , a 2 )} . Therefore any

automorphism 0  o f  D  fix ing (e , e )  also fixes K o (e ) , since

K o(e)nK i(e) I = 2, 1 < i <  3 , and

K 1(e)(1K ; (e)I =1, 1 i , j 3, i  I  j.

Therefore 0  is  a n  automorphism of i M . T h e n  t h e  same proof as in

th e  ca se  m > 5 can be applied and we have  0 E  < ,a n d  Aut S2=-03.
I f  M  is a n  elementary abelian group o f  order 4 , th e  complementary

graph o f  D  is isomorphic to Y 4  (in Higman's nota tion) and  Aut D is
isomorphic to e''45 2 by Lemma 1  of [31111.

I f  M  is a  cyclic group o f  order 3 ,  t h e  complementary graph o f  D
is not connected b u t  consists o f  three c liq u e s  o f  order 3. It follows
immediately that Aut D is isomorphic to 3.J.

Theorem 2.10. (A ut Q M ,  m )  is  a prim itive perm utation group of
rank  3  if  an d  only  i f  M  is  a  cyclic group o f  order 5  o r an  elementary
abelian 2-group o f  order greater than o r equal to 4.

P ro o f. Aut DM  is o f  rank 3  if  a n d  only i f  th e  stabilizer o f  (e, e)
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in Aut S2m is transitive both on 4 (e , e )  and on F ( e ,  e ) .  This is easily

verified in case M  is a  cyclic group o f order 5 or an elementary abelian

2-group o f order greater than or equal to 4.

Conversely, suppose M  is  not an  elementary abelian 2-group and

the stabilizer < I ,  c -, >  of (e, e) in Aut S2 = Qi= <Z, is transi-

tive on T ( e ,  e ) .  We can find some a E M—  {e}  whose order is not 2,

since M  is not an elementary abelian 2-group. Then (a, a 2 )  is a vertex

in T (e , e) and we consider the orbit containing (a, a 2 )  under the action

of T h e  orbit containing (a, a2 ) under the action of is

U= {( a ,  a 2) , ( a -i , a ) , ( a -i , a -2) , (a-2, a - 1

) ,  ( a ,  a
- 1

) ,  ( a
2

,  a ) }  .

For every b E M a ,  there exists some vertex (a i , ai) E U  and some

automorphism 6  o f M  such that

(a i , al) -= (a, b),

since we assume that is transitive on F ( e ,  e ) .  Then 6  maps any

power of a  to some pow er of a , since Cr maps a i ( = a± 1 o r  a± 2 )  to a.

Hence b  is some power of a, and this means that M  is a  cyclic group

generated by a. Moreover, the intersection of L i (a) and the orbit con-

taining (a, a 2 )  under the action of consists o f at most three vertices:

(a, a 2 ), (a, a - 4 )  and (a, a i ) ,  where 2i 1 (mod m). It follows that

L i (a ) =  —  2  3 .

Hence M  is a  cyclic group o f  order smaller than or equal to  5 . But

i f  M  is o f order 3, Aut S2 is imprimitive, and it is easily verified that

is not transitive on z l(e, e) in case M  is o f order 4. Then the only

possibility is that M  is  a  cyclic group o f order 5, and the theorem is

proved.

§ 3 .  S o m e chracterizations

T h e o re m  3 . 1 .  L e t  S 2 b e  a  geom etric graph w ith characteristic
(3, m, 2), in  4, i j  b e in g  the geom etric s tru ctu re . If (Aut S2, S2) i s  a
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prim itiv e perm utation g ro u p  o f  rank  3, then 2 is isom orphic to  som e
Dm, w here M =E 2 r  o r Z 5 .  In  particu lar, m  m ust be equal to  2 f  o r 5.

R em ark . Sim s [4 ]  defined a fam ily o f geom etric  graphs 2 ( f ,  q )

w ith  automorphism groups o f rank 3 for any prime power q. Sl i t l for

M =-E 2 1  i s  the specia l case o f q = 2. A lso  there  ex ists a  fam ily of

strongly regular graphs w ith  k — l —
q

 2
1  , 2 =q - 4: 5 a n d

a 
q - 1  

' 4
where q  is  a prime power and  q l  (m o d  4). D m  fo r  M = Z 5 i s  the

special case of q = 52 .

P ro o f .  I t  is  n o t d iff icu lt to  v e r ify  th a t th e re  ex is t tw o  n o n -
isom orphic geom etric graphs w ith characteristic (3, 4, 2) o r  (3, 5, 2),

but on ly  one o f them  (that is, 2 1,1 fo r  M = Z 2 X  Z 2  o r  Z 5 )  adm its an

automorphism group o f rank  3.
W e dea l w ith  the case m> 5 in  the fo llow ing . W e fix  a  vertex

a E D, and count the number N  of triangles contained in zl(a), where a
triangle i s  an ordered triple (x , y, z )(x , y, z E 2 )  such  that {x , y, z}

is  a clique of order 3. L e t s  b e  the number o f edges in  4 (a )n 4 (b ) ,

b E l -  (a). Note th a t s  is independent o f th e  choice o f b E T ( a ) ,  since
w e assume that Aut D  is  o f rank 3. Then we have

N - =k 2 ( 2 - 1 ) - 2 s l

= (ni — 1){3m(m —  1)— 2s(m — 2)}.

On the other hand, w e have

N-=k(K—  2)(K —3)+ 2kv

= 3(m —1) {(m —2) (m — 3) + ,

where v = 0 if  every clique of order 4 is contained in a line, and v =1
otherw ise. Therefore we have

3 — 3vs —  6 +
m -2

and v  must be equal to 1  since we assume that rn> 5. Note th at v
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means that two vertices c  and d  are adjacent if (a, b, c) and (a, b, d)
are triangles not contained in a line.

L e t M  be a  se t w ith  in elements and identify the vertices of 2

with M X M  as follows. Choose an  element o f  M  and ca ll it e , and

choose a  vertex o f 2  and call it (e, e). Let K 1(e ) (i =1 , 2, 3) be the

three lines through (e, e). Fix a bijective map f  from M  onto K 3 (e)
such that f (e )= (e , e ), and let (a, a ) be the image f  (a ) of a E M .  Let

(e, a) (resp. (a, e)) be the vertex in tl(a, n K 1 (e) (resp. .d(a, a)n-K2(e))

different from (e ,  e )  f o r  a E M —  le l.  (N o te  that Ll(a, a)(1K i (e)1

= I zi(a, a) r1K2(e) I =2 for a  E M —  {e }.) Furthermore, let Ki(a) (resp.
K2(a)) be the line through (a, a ) a n d  (a, e )  (resp. the line through

(a , a ) and (e, a ) ) .  N ote  that (a, e )  and (e, a )  are adjacent, since
((e, e), (a, a), (a, e ) )  and ((e, e), (a , a), (e, a)) are triangles not con-
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tamed in  a  lin e . Now let K 3 (a ) be the line through (a, e )  and (e, a).

Then we have

{ in i =j ,  a=b ,

1K i (a)n K ; ( b ) 1 =  0 i = j ,  a  I  b,

1 i *  j.

Finally, le t  (a, b )  b e  the unique vertex in  K i (a)(1K2(b).
Now we define the addition in M  by

a +  b  c  i f  and only  if  (a, b)EK 3 (c).

Lemma 3 .2 . a + e = e + a = a  f o r a E M.

P ro o f. This is trivial since (e, a) and (a, e) are vertices in K 3 (a)

by definition.

Lemma 3 .3 . a + b = b + a  for a , b E M.

P ro o f. This is  tr iv ia l if a = b .  Therefore we may assume that

a b. T h e n  ((a, a), (b, b), (a, b)) and ((a, a), (b, b), (b, a )) are triangles.

If one of them is contained in a line, the line must be K 3 (e ), but this

implies a= b , which is not the case. Hence there exists a  line passing

through (a, b )  and ( b ,  a ) ,  and this line must be o f th e  form  K3(c).
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This means

a+b =c =b +a,

and the lemma is proved.

Lemma 3.4. a + (a + b)= b for a , b E M . In  particular

a+a=e fo r  a E M.

P ro o f. I f  a= e, this lemma is trivial from Lemma 3 . 2 .  Therefore

assume a  /  e. T h e n  ((a , b), (e, a+ b), (e , b )) and  ((a , b), (e, a+ b),
(a, a+ b)) are triangles not contained in  a  lin e . H ence there exists a

line passing through (e, b) and (a, a+ b), and th is line must b e  K 3 (b).

This means

a+(a+b )=b ,

and the lemma is proved.

Lemma 3.5 . (a+ b )+ c =a+(b + c )  for a , b, c E M.

P ro o f. I f  a= c , th is  lem m a is  trivial from Lemmas 3 .3  and 3.4.

Therefore assume a = c. T h e n  ( ( a  b, a ), (b+ c, c), (a+ b , c ) )  and

( ( a  b, a), (b+ c, c), (b+ c, a ) )  are triangles not contained in a line.

Hence there exists a  line passing through (a+ b, c) and ( b  c ,  a), and
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K 3 (b)

K 2 (a)  K i (a+b ) K i(b+ c) K 2 (c)

th is line must be of the form K 3 ( d ) .  This means

(a + b)+ c= d= (b  + + a= a+ (b  + c ),

and the lemma is proved.
From the above lem m as, we know that M  i s  an abelian group of

exponent 2  (th at is, an elementary abelian 2-group) with respect to this
addition, and the theorem is proved.

Corollary 3 .6 . Let 2  b e  a  s tro n g ly  re g u lar g rap h  w ith  k
=3(m-1), / -= (m —1)(m — 2), 2=m a n d  ,tt= 6 .  I f  (Aut Sl, 2 )  i s  a

primitive permutation group of rank  3 and tn> 23, then 2 is isom orphic
to som e S lm , w here M =E 2 f. In  particular m  must be a power of 2.

P ro o f. From Proposition 1.6, 2  i s  geometrizable if m > 23.

R em ark : The restriction in  > 23 cannot be dropped, since there
ex is ts  a  stro n g ly  regu la r g rap h  w ith  k = 15, / = 20, 2 = 6  a n d  ,a = 6

w hose automorphism g ro u p  is  prim itive of ra n k  3. Of course, this
graph is not geometrizable from Theorem 3.1.

H igm an  [3 ] proved  that som e fam ilies o f  r a n k  3  permutation

groups are characterized by their subdegrees. H ere w e m ake sim ilar
consideration in the case k = 3(m —1) and / (m — 1) (m — 2).

Theorem 3 .7 . Let 2  b e  a strongly  regular graph w ith k =3(m -1)
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and  1=(m -1)(m  —  2), m  > 4. T hen a= 6 un less  a= 9 a n d  m =14 or
352.

P r o o f . We may assume that the case (b )  of Proposition 1.2 (iv)

holds, since we have m  = 5 and a = 6  if the case (a) occurs. F r o m

Proposition 1 .2  ( i) , we have

/Km — 2)=3(3m — 4 — A).

We consider two cases according as 3  divides /..t or not.

Case 1. f l=  3 ,a 0 . I n  th is case fi o (m —2)=3 m — 4 — A, so that

(Po — 3) m = 2fio — 4 —  A . W e  have 2 O  a n d  0 < /to < m —  1, since

O a k=3(m - 1 ) .  H en ce  Cao — 3)m — 4 2m — 6, so that fi c, 4.
If = 4 , we have A= 4 — m > 0, so that m  G  4 . But then it = 3/10

=12> 3(m — 1)= k , which is impossible.

If a 0 = 3 ,  w e  have 2 =2 ,  a = 9  a n d  d= 12 m + 1. Therefore

V12 m +1 is  an  integer and divides 2 k + (A — ,u)(k +1) =1 + 6 m — 7 m2 .

Hence V12 m +1 divides 65, because V12 m + 1 and in are relatively prime

and 1 + 6m — 7m 2 = (1 —6 m) (12 m + 1) + 65 m 2 . Therefore V12m + 1 = 65,
13, 5 or 1, and then m = 352, 14, 2 or O.

If a 0 =2, we have A =m  a n d  = 6  as desired.

I f fi o = 1, we have A = 2m —2, a = 3 and d = 4m2 — 8m +1 = (2m — 2) 2

—3. B u t th e  only solution is and m =2.

If = 0, k  +1= 3 m — 2 must divide n = m 2 . Then 3 m — 2 must

divide 2m. In particular, 3 m — 2 2 m , hence m < 2.

Case 2. 3  does not divide a. In  this case 3  divides m — 2 and

w e  c a n  w r ite  m -= 3t + 2, t > 1 .  T h en  zit =9t + 2 — A, th a t is, A
= (9 — t + 2, so that it < 11.

If /1=11, we have t =1, 2 =0  and k = 12. Then d= 11 2 + 4(12 —11)
= 125  is not a square.

I f  /1= 1 0 , w e have A = — t+ 2 >  0, so that t = 2 o r  1. I f  t = 2,
we have A = 0 and k = 2 1 , but it is easily proved that there exists no

strongly regular graph with k=- 21, 1= 42, 2 = 0  and /1= 1 0 .  I f  t
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w e  have 2 = 1  and k = 1 2 . T h e n  d= 92 -F 4(12 — 10) = 89 is not a

square.

I f  p =  8 ,  w e  h a v e  2 = t + 2  a n d  d=t 2 + 24 t+16=(t+12) 2 -128 .

There exist two solutions, but VT does not divide 2k  - (A —  /)(k  +1) in
both cases.

If 7, w e  have .1= (9 —#) t + 2 and d = (9 — p) 2 t 2

+ (72 —22# + 2# 2 ) t + 16 — 8# + #2 , b u t  th ere  ex ists  n o  s o lu t io n  with
t >  1, a n d  th e  theorem is proved.

Corollary 3 .8 . I f  (G, S2) is  a  rank  3 perm utation group o f  degree
m2 w i t h  subdegrees 1 , 3 (m - 1 )  a n d  (m — 1)(m -2), m>23, t h e n  the
graph constructed f rom  (G, S2) is isom orphic to som e f l i t f ,  M =E 2f ,  and
G  is isom orphic to a  subgroup of  A u t  m =0= <Z ,?e , >  unless g =9
and  m =352.

K Y O T O  U N IV E R SIT Y
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