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A duality theorem
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(Communicated by Professor Nagata, July 24, 1971)

The object of this note is to prove a certain duality relation bet-
ween the functors Ext and Tor and apply it in particular to the case
of Gorenstein rings of dimension < 2. This is done in section 1. In
section 2 we consider some questions on projectivity and homological
dimensions of modules.

Throughout we consider only rings with unity which are both left
and right noetherian; all modules will be assumed to be finitely genera-
ted and unitary, and the ring elements will be assumed to oprate on

the right of the modules unless otherwise stated.

§1.
Let R be a ring and M an R-module. In what follows we choose

a fixed resolution of M by means of finitely generated free R-modules:
o Fi>Fi 1> > Fo—>M—0.

Let 2'M=Ker (F;_,—>F;_;). where by convention F_,=M, and 2°M=
M.

Let R—S be a homomorphism of rings. If P is any S-module by
P* we mean the dual Homgs(P, S) considered as a left S-module. If
Q is any R-module Q& ;S is considered as a right S-module in the
usual way. The S-module P is said to be torsionless if the natural

map P—P** is injective.
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Proposition 1. For every integer n=0, there exist natural homo-

morphisms,
St Extp(M,S)—>TorR(M, S)*.

For f, to be injective it is necessary and sufficient that Ext5(2"'M
RS, S)=0; for fu to be surjective it is sufficient that Ext3(2"'M
RrS, S$)=0. If fu1 is injective this condition is also necessary for

the surjectivity of fu.

Propostion 2. For every integer n=>0, there exist natural homo-

morphisms
gn: TorR(M, S)— Exti(M, S)*.

&n 1S injective if and only if the natural map 2,: ("MK S)—> ("M
SY** is injective, i.e. Q"M S is torsionless; for g, to be surjective it
is surfficient that 2, is suvjective. If gy, is injective this condition is

also necessary for the suvjectivity of gu.

Proof of Proposition 1.
If n=0, the result follows by the well-known isomorphism Hompg
(M, S)=Homs(M&5zS, S). Let us consider the case n=1. Applying

Tor®( , S) to the exact sequence

(1) 0—>2'M—>F,—>M—0.
We get the following exact sequence
0 >Torf(M, S)>»2'MRS—>FQrS—>M& S — 0.
We spit this into two short exact sequences as follows:
(2) 0 —>TorR(M, S)>2'MRQrS—>X—0.
(3) OQXQFO(?S—*M(% S—0.

Taking S-duals in (2), we get the exact sequence
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4) 0->X*> (2'MRrS)*—>Tork(M, S)*—Exti(X, S)—
Extl(2'M®S, S).

Applying Extg(, S) to (1) and using the isomorphism stated in the be-

ginning of the proof, we get the following exact sequences:

(5) 0>(MRS)*—>(FyRQS)*—>(2'ME S )*— Exth(M, S)— 0.
Taking S-duals in (3) we get the exact sequence:

(6) 0->(MRS)* > (FyRQ@S)*>X*>Extl(M&RS, S)—0.

Consider the commutative diagram where the top line is exact.

0—X* 2, (Q'MRrS)* 2 Tork(M, S)*
[ B

(Fo®rS)*

Since image (B) C image(d) we get an induced homomorphism Coker(g3)
—Cocker(0); composing with the injection Coker(d)—Torf(M, S)* got
from the top exact sequence and noting that Coker(B)=Extk(M, S) by
(5), we get the homomorphism fi: Extk(M, S)—>TorR(M, S)*. Replac-
ing M by 2" 'M and using the natural isomorphisms Ext%(M, S)=~
Exth(2" M, S), TorR(M, S) =TorR(2"'M, S) we get as in the case
n =1, natural homomorphisms f,: Ext%(M, S)— Tor®(M, S)*. It is
clear by the homotopy property of projective resolutions that these
homomorphisms f,’s are independent of the resolution for M chosen.
Clearly f, are functorial in M and S. Now Kerf;=X*/Image(B).
Hence fi is injective & X*=image(8)© « is surjective < Exti{(M RS,
§)=0 by (6). Also f; is surjective is equivalent to saying that x is
surjective or equivalently Exti(X. S)—>Exti(2'MQzS, S) is injective,
by the exact sequence (4). In the general case we can therefore say
the follwing: f, is injective if and only if Exti(2"'M®zS, S)=0;

fn is surjective if and only if the homomorphism Exti(X,, S)—
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Ext5(2"M@gS, S) is injective where X,=Kernel(F,_.,®zS—>2"'M
&®zS). Now suppose Ext}(2"'M®pzS, S)=0. This clearly implies
by the exact sequence 0—X,—>F, ®rS—>2" 'M&,S— 0, ExtL(X,, S)
=0. Hence f, is surjective in this case. Suppose frne1 is injective;
then Ext3(2"M&gS, S)=0, so that f, is surjective if and only if
Ext}(X,, $)=0, i.e. Ext(2""'M®zS, S)=0.

Corollary. In order that all the f, are isomorphisms it is neces-
sary and sufficient that Ext{(2'MQ@gS, S)=0 for i=1, 2 and all j>0.

This follows from Proposition 1 by using induction.

Proor of Proposition 2.
We split the exact sequence (5) into two parts as follows:

) 0>(M&S)*>(Fo@S)*— Y—0.
(8) 0> Y>(2'MRQS)* —>Ext}(M, S)—0.

Taking duals with respect to S in (7) and comparing with (3) we get

the commutative diagram:

0> Y*>(FoQgS)*>(MRS)**
© IR o
0>X —(Fo®zS) —(MQrS)—0

The diagram gives rise to a homorphism 6: X—Y* preserving the
commutativity. Taking duals in (8) we get another commutative dia-

gram after making use of (2):

0 > Ext3(M, S)* > (2'MRRS)**— Y*
(10) te ta 1o
0> Tor¥(M, S) > (2'M®zrS) —X—0

The map g, exists because of the commutativity of the right hand
square. From (9) we find that 6 is injective and Kery 2~ Cokerf. Ap-

plying the snake lemma to (10) we get the following exact sequence:
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0— Ker g; — Ker ¢ —Ker 6 — Coker g, — Coker g — Coker 6.

This exact sequence gives the following facts: g; is injective<>q is
injective, i.e. Q"M QxS is a torsionless S-module; g1 is surjective &
Coker g — Coker § =Ker # is injective. Using a dimension shifting argu-
ment we can construct natural homomorphisms g,: TorR(M, S)— Ext}
(M, S)* and the following conclusions are valid: suppose 4, denotes
the natural mapping 2"M®rS— (2"MQrS)**. For every integer n,
there is a homomorphism Coker 4,22 Ker 4,_;. &» is injective if and
only if 4, is injective. A necessary and sufficient condition for g, to
be surjective is that ¢, should be injective. For g, to be surjective it
is sufficient that 4, is surjective. Suppose g, is injective. Then for

&» to be surjective it is also necessary that 4, should be surjective.

Corollary. In order that all the g,'s are isomorphisms it is
necessary and sufficient that all the S-modules 2'MQpS for j=>0, are

reflexive.

Remarks. Since the homorphisms f,, g, are independent of the
resolution for M chosen, we see that the conditions stated in Proposi-
tions 1 and 2 are also independent of the resolution. Given any module
M over a ring R we can construct a module D(M) associated with it
as follows: take a finite presentation Fy— Fy—M—0 and define D(M)
to be the Cokernel of the map F%¥—F%. This module D(M) is not
uniquely defined by M, but Exti(D(M), R) depend only on M for
i>1[27]. It is well-known that M is torsionless &> Exti(D(M), R)=0;
M is reflexive ®Ext3(D(M), R)=0 and Ext3(D(M), R)=0[2]. Also
it is clear that D(D(M))=M. Hence the conditions Ext{(2' MRS, S)
=0 for i=1, 2 of Proposition 1 can also be interpreted as the reflexivi-
ty of the S-modules Ds(2/M®5zS). Similarly the conditions that
2'M®yS are reflexive stated in Proposition 2 can be interpreted as
the vanishing of the groups Exti(Ds(2'M®zS), S) for i=1, 2. Thus

there is a clear duality in the assumptions and conclusions of Proposi-
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tions 1 and 2.

Corollary. Let R, S be commutative, S being an R-algebra. Sup-
pose S is Gorenstein of dimention 2. Then if all the f,'s are isomor-

phisms, so are the g,'s and conversely.

Proof. Observe that over S, a module N is reflexive if and only
if Exti(N, S)=0 for i=1, 2[2]. Hence the corollary follows by ap-
plying Propositions 1 and 2.

§2.
In this section we discuss some criteria for projectivity of modules

and consider some questions on homological dimensions.

Proposition 3. R is regular local, S is an R-algebra finitely
generated as an R-module such that right and left self injective dimen-
sions of S are<1. Let M be an R-module. If there exists an integer
n>2 such that Ext% (M, S)=Ext%i(M, S)=0, then Extj(M, S)=0 for
i>n—1 and hdgM<n—1.

Proof. By a dimension shifting argument we can suppose that
n=2. Let then ExtLk(M, S)=Ext:i(M, S)=0. We shall prove that M
is R-projective. The proof uses the following simple fact [4]. If N
is a module over S then N is torsionless& N is reflexive & Extk(HV, S)
=0. Now Ext%(M, S)=0 implies, in the notations of Proposition 1,
that f, is injective, so that Exti(2'M®zS, S)=0. Hence by the re-
sult quoted above R2'M&®prS is a reflexive S-module. Proposition 2
gives therefore the isomorphism Torf(M, S)=ExtLk(M, S)*. The hy-
pothesis ExtL(M, S)=0 gives Torf(M, S)=0. Since R is regular and
M, S are finitely generated R-modules by a theorem of Licthenbaum
[6] we get Tor¥(M, S)=0 for j>>1. We assert that Extj(M, S)=0
for j>1. If j=1,2 there is nothing to prove. So let j=>3. Now
Tor®_ (M, S)=0 implies g;_, is injective and so by Proposition 2,
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27'M®pzS is torsionless. By applying the remark made in the begin-
ning of the proof we get Exti(27'M®gS, S)=0 for i=1,2. Apply-
ing Proposition 1, we get an isomorphism Ext}(M, S)= Tor?(M, S)*
and so we conclude Extj(M, S)=0 for j=>1. If hd M=¢ then by a
result of Auslander [17], we get Ext4t(M, S)=~0. Hence we must have

t=0, i.e. M is R-projective. The proposition is proved.

Proposition 4. R is a regular local ring; A is an ideal of R
such that depth R/N<2. Then a reflexive module M is projective if
and only if Extk(M, A)=0.

Proof. We have only to prove M reflexive and Exth(M, A)=0 implies
M is projective. Applying Extg(M, ) to the exact sequence 0 »A—>R—
R/A—0 we arrive at the exact sequence 0—>Hom(M, ) — Hom(M, R)
—(Hom M, R/%)—>0. Tensoring with R =R/, and observing that
Hom(M, R) is annihilated by 2, we get the exact sequence

(11) Hom(M, R)QR — Hom(M, R)— 0.

Now by [2] we have the exact sequence
(12) 0— Tor®?(DM, R) > Hom(M, R)QzR—
Homg(M, R)— TorR(DM, R)— 0.

where DM is defined as in the remarks following propositions 1 and 2.
From (11) and (12) we conclude Tor¥(DM, R)=0; since R is regular
by a theorem of Lichtenbaum [6] we get Tor®(DM, R)=0 for j>1.

Hence (12) reduces to an isomorphism

(13) Hom(M, R)® R=Hom(M, R) ~Homz(MQ R, R).

Now DM is defined by an exact sequence of the type:
0->M*—>Fy,—>F,—->DM—0

where Fy, Fy are free R-modules. This gives Tor®(M*, R) =~ Tor%,,
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(DM, R) for j>1, i.e. Tor’(M*, R)=0 for j>1. Hence M*®rR
considered as an R-module has finite projective dimension. By the
isomorphism (13) this means hdz(M&@ R)*<oo. This implies by a
well-known result hdzg(M QR)* + depthzg( M QR)* =depthR. Since depth
R <2 by assumption, by a result of Auslander [1] we get depthzg(M&
R)*=depthR. Hence by what precedes (M QR)* is R-projective, i.e.
M*QR is R-projective. Since we already know that TorR(M*, R)=0,
by a proposition of Strooker [10 ]M* is R-projective. M being reflexive

this means M is R-projective.

Remarks. This generalises the Corollary to Proposition 4.7 of
Auslander [17]. Using similar arguments we can prove the following:
R is regular local, 2 an ideal of R such that depthR/2L>>2. Then for
any module M such that M*==0 and Extk(M, A)=0, we have hdgM*
gdepthR/QI;Z. In the previous proposition we can drop the regulari-
ty assumption on R provided we assume hdM*<oco and R/ is a
rigid module, i.e. whenever Torf(R/2, N)=0 for a finitely generated
module N, we should have Torf¥(R/2, N)=0 for j>>1. For example
if the ideal 2 is generated by an R-sequence this latter condition is
satisfied.

Next we note the following simple results whose proofs can be

given on the lines of the previous proposition and hence omitted.

Proposition 5. R is regular local, U an ideal of definition and
M is an R-module. Then M is projective < Exth(M, A)=0.

Proposition 6. R is a ring not necessarily commutative, N is a
2-sided ideal contained in the radical and M is an R-module. Suppose
Exth(M, 0)=0 and M/AM is R/U-projective. Then M is R-projective.

Remark Proposition 6 generalises theorem 1.3 of Mark Ramras

9l

The following proposition is an analogue of the result of Strooker
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used in Propositiou 4, for the Ext functor:

Proposition 7. Let R be a ring, U a 2-sided ideal contained in
the radical and M is an R-module. Let 0 >K—>F—>M—0 be exact
with F free. Then M is projective if and only if Exti(M, R)=0 and
K®R is R-projective where R=R/.

Proof. Let KQR be R-projective and Extk(M, R)=0. By Pro-
position 2 we get an isomorphism Tor§(M, R) =~ Ext}(M, R)* so that
Torj(M, R)=0. Applyiug Tor®(, R) to the exact sequence:

(13) 0>K>F->M—0
we get the exact sequence
(14) 0>KQR—>FRR—->MKR—O.

Applying Hom( , R) to (13) and noting that Ext}(M, R)=0 we get the

exact sequence,
0>(MQOR)*>(FRR)*>(KQR)*—>0

where * denotes dual with respect to R. This sequence splits since
K®R, and hence (K®QR)* is R-projective. Taking R-duals again and
noting that KRR, FQR are reflexive we get the split exact sequence
0>(KQR)>(FRR)—>(MQQR)**— 0.

Comparing this with (14) we find that (14) is a split exact sequence
i.e. MR is R-projective. Since we already know that Tor¥(M, R)=
0, the result of Strooker implies that M is R-projective.

The next result is a generalisation of theorem 2.1 of Jans [7].

Proposition 8. R—S is a ring homomorphism and M an R-mod-
ule. Suppose hd gM =n<oco and TorR(M, S)=0. Then Extj(M, S)*
=0.
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Proof. In the notations of Proposition 1, £"M is R-projective and
so £2"MQrS is S-projective. Hence Proposition 2 gives the isomor-
phism Tor®(M, S)=ExtZ(M, S)*. This proves the proposition.

Proposition 9. R, S are commutative rings, S being an R-algebra.
Assume that S is Gorvenstein of dimension 1. Let M be an R-module.
Then if Tor®(M, S)=0 for i>n we have Exti(M, S)=0 for i >n+1
and conversely if Extj(M, S)=0 for i>n+1, then Tor¥(M, S)=0 for
i>n+1.

The proof of this is similar to that of Proposition 3 and hence
omitted.

In conclusion I wish to thank Professor R. Sridharan for the con-
stant encouragement he had given me in my work, and for critically

reading the manuscript.
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