
J. Math. Kyoto Univ. (JMKYAZ)
12-1 (1972) 141-150

A  duality theorem
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The object of this note is to prove a certain duality relation bet-

ween the functors Ext and Tor and apply it in particular to the case

of Gorenstein rings of dimension < 2 .  This is done in section 1. In

section 2  we consider some questions on projectivity and homological

dimensions of modules.

Throughout we consider only rings with unity which are both left

and right noetherian; all modules will be assumed to be finitely genera-

ted and unitary, and the ring elements will be assumed to oprate on

the right of the modules unless otherwise stated.

§1.
Let R  be a ring and M  an R -m odule. In what follows we choose

a fixed resolution of M  by means of finitely generated free R-modules:

Let S21M=Ker(Fi_ 1 ->F i _2 ) .  where by convention F_ 1 =M, an d  S2°M =
M.

Let R-+S be a homomorphism of rings. If P  is any S-module by
P *  we mean the dual Hom s(P, S ) considered as a  le ft  S-m odule. If
Q  is  any R-module Q O R S  is considered as a righ t S-module in the
usual w a y . T h e  S-module P  is  sa id  to  be torsionless if the natural
map P -q ) * *  is injective.
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Proposition 1. For ev ery  integer n>0, there ex ist natural hom o-
morphisms,

f n : Ext,g(M,S)--Torl(M, S)* •

Fo r f n t o  b e  injectiv e it is  n e c e ssary  an d  suf f icient that Ex tls (2n - 1 M
O R S , S )=0 ; f o r  f n t o  b e  surjective i t  is  s u f f ic ie n t  th at  E x t l(g i 'M

O R S , S )= O. I f  f +  i s  injective th is  condition is also necessary  for
the surjectiv ity  of  f n .

Propostion 2. For ev ery  integer n> 0, there ex ist natural hom o-
morphisms

gn: Tor(M, S)—÷Extl(M, S)*•

gn is  injective i f  and  only  if  the  natural m ap 2„: (2 M ®  S )-›(S PM ®
5 )* *  is  injective, i.e. 2n M O R S  is torsionless; f or g n to be surjectiv e it
is surf f icient that 2„ is surjective. I f  g n _i  i s  injective th is  condition is
also necessary for the surjectiv ity  of  gn.

Proof  of  Proposition 1.
I f  n = 0 ,  the result follows by the well-known isomorphism HomR

(M , S ) Hom s (M O R S ,  S ) .  Let us consider the case n  =1. Applying

TorR (  ,  S )  to the exact sequence

(1) ->S21M->F0 M -> O.

W e get the following exact sequence

->Torf(M , S)--+2 1M O R 5-->F0 O R S ->M O R S-> O.

We spit this into two short exact sequences as follows:

(2) -- Torf(M , S)-->2 1M O R S -+X ->0.

( 3 ) 0 -÷X ->F0 0 S -->M 0 S--> 0.

Taking S-duals in  (2 ), we get the exact sequence
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(4) 0 —*X* —>(S21 M O R S)*—>Torf(M, S )* —>ExtVX, S)—>

Ext 1
s (S21M O R S, S).

Applying ExtR(, S ) to  (1 )  and using the isomorphism stated in the be-

ginning of the proof, we get the following exact sequences:

(5) 0 —>(MOS)*—>(F o OS)*—> (9 1 MOS)*—> ExtIT (M , S)---> 0.

Taking S-duals in  (3 )  we get the exact sequence:

(6)0 —›(MOS)*—>(FoOS)*—>X*—>Extls(MORS, S) — > 0.

Consider the commutative diagram where the top line is exact.

0---.X * ÷(..Q1M O R S )*  ' Torf(M,

\
(F0ORS) *

Since image ( g ) (  im age(6) we get an induced homomorphism Coker(8)
—>Cocker(6); composing with the injection Coker(6)—>Torf(M, S r  got

from the top exact sequence and noting that Coker(g)=ExtVM , S ) by

(5 ), we get the homomorphism E x t} ? (M , S ) - -T o r f (M , S )* .  Replac-

ing M  b y  sr-im  and using the natural isomorphisms Ext7(M, S )=
EXt3e(S2

n - 1  

1V1 S), TOrR
n (M , S )2 --:Torf(SP - 1 M , S )  w e  g e t as in the case

n  =  1 , natural homomorphisms E xtl(M , S) — >TornR(M, S)*. I t  is

c lea r by  th e  homotopy property of projective resolutions that these

homomorphisms f n 's  are independent o f th e  resolution fo r  M  chosen.

Clearly f n  a r e  functorial in  M  and S. N ow  K erf1=X*/Im age(3).
Hence f i  is  injective<=> r =  image (g)<=› a  is  surjective <—>Extls (M  RS,

S )= 0  by (6). Also f i  is  surjective is equivalent to saying that x  is
surjective or equivalently Extls (X. S)—>Extls (S21 M O R S , S ) is injective,
by the exact sequence (4). In the general case we can therefore say
the fo llw ing : fn i s  injective if and only i f  Extis (fln - i m o R  

3  S) = 0;
f n  i s  su rjective if and  on ly  if t h e  homomorphism Extls (Xn,  S) — >
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Extls (SPM O R S ,  S )  is  injective where Xn=Kernel(Fn-i.OR
S_±s2n - I m

O R S). Now suppose Ext2
s (0 - 1 M O R S , S )= 0 . This clearly implies

by the exact sequence 0 - >X„- - ->Fn-1ORS - SP- 1 M OR S -  0, Extls (X„, S)
= 0 .  Hence f n i s  surjective in this case. Suppose f n ÷ i  is injective;
then Extj(SPMO R S, S )=0, so that f „  is  surjective if and only if
Extls (X„, S)=0, i.e. Ext 2

s (S2n - I M O R S , S)=0.

Corollary. In  order that all the f n  are isomorphisms it is neces-
sary  and suf f icient that Ex t(2lM O R S , S )=0  for i =1 , 2 and a l l  j>0 .
This follows from Proposition 1  by using induction.

Proor of Proposition 2.
We split the exact sequence (5 ) into two parts as follows:

(7) O->(M OS )*-(FoOS )*--). Y->0.

(8) 0-> Y-(S2 1 MO R S) * -±Extl(M,

Taking duals with respect to S  in  (7) and comparing with (3 ) we get
the commutative diagram:

--> Y* - ÷ (FOORS) * * (MORS) * *

(9) tX
0 - >X" - (.F0O R S ) - - , (MORS) - > 0

The diagram gives rise to a  homorphism 0: X -> Y *  preserving the
commutativity. Taking duals in (8) we get another commutative dia-
gram after making use of (2):

0 S ) *  ( .9 1 M O R S)** -› Y*
(10) tgi Tg to

- ÷Tori(M, S )  - - >(n I MORS) --->X-+0

The map g i exists because o f th e  commutativity of the right hand
square. From (9) we find that 0  is injective and KerzeCoker0. Ap-
plying the snake lemma to (10) w e get the following exact sequence:
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0 ->Ker g i -> Ker q Ker û -> Coker gi -> Coker q-> Coker û.

This exact sequence gives the following facts:  g i  i s  injective<=>q is

injective, i.e . S2I M O R S  is  a  torsionless S-module; g i  i s  surjective=>

Coker q-> Coker û =K er i t  is injective. Using a dimension shifting argu-

ment we can construct natural homomorphisms g n : Torli (M, S) ->Ext1
(M , S )*  and the following conclusions are valid: suppose 2 „ denotes

the natural mapping S PM O R S ->(S PM O R S ) * * .  For every integer n,

there is a  homomorphism Coker 2„ L.--›i Ker 2n -1. g „ is injective if and

only i f  2 ,  is in jec tive . A  necessary and sufficient condition for g ,  to
be surjective is that çon  should be in jective. For g „ to be surjective it

is sufficient that 2„ is surjective. Suppose g n _ i  is in jective. Then for

gn to be surjective it is also necessary that A , should be surjective.

Corollary. I n  o rd e r t h a t  a l l  th e  g n 's a re  isom orphism s it is
necessary and suf f icient that all the S-modules M O R S  f o r  j > 0 ,  are

reflexive.

Remarks. Since the homorphisms f n ,  g „ are independent of the

resolution for M  chosen, we see that the conditions stated in Proposi-
tions 1 and 2 are also independent of the resolution. Given any module

M  over a ring R  we can construct a module D (M ) associated with it
as follows: take a  finite presentation F1-->F0 ->M -> 0 and define D(M )
to  be the Cokernel o f th e  map 1 1 -> 1 1 . This module D ( M )  is not

uniquely defined by M , but E x tl(D (M ), R ) depend only on  M  for
i > 1 [ 2 ] .  It is well-known that M  is  torsionless Extl(D (M ), R )= 0;

M  is  reflexive<=>Ext il(D (M ), R ) =0  and Exti(D (M ), R ) = 0 [2 1 .  Also
it is clear that D ( D ( M ) ) =M . Hence the conditions E x t(S 2jM O R S , S )
= 0  for i =1 , 2 of Proposition 1 can also be interpreted as the reflexivi-
t y  o f  th e  S-modules D s  (D iM O R S ). Similarly the conditions that
g iM O R S  are reflexive stated in Proposition 2  can be interpreted as
the vanishing of the groups E x t(D s (2 iM O R S ) , S )  for i = 1 , 2 . Thus
there is  a  clear duality in the assumptions and conclusions of Proposi-
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tions 1  and 2.

Corollary. L et R , S  be com m utative, S  being an  R-algebra. Sup-
pose S  is  Gorenstein of  dimention < 2 .  T hen  if  all the f n 's are  isomor-
phism s, so are  the  g n 's and  conversely.

P ro o f . Observe that over S, a module N  is reflexive if and only

if  Extis (N , S )= 0  fo r i =1 , 2E21. Hence the corollary follows by ap-

plying Propositions 1  and 2.

§ 2.
In  this section we discuss some criteria for projectivity of modules

and consider some questions on homological dimensions.

Proposition 3 .  R  is  re g u lar local, S  i s  a n  R-algebra finitely
generated as  an  R-module such  that righ t and  lef t self  injective dimen-
sions o f  S  a re < 1 . L et M  be an  R-module. I f  there ex ists an  integer

n > 2  su c h  th at ExtV 1 (M , S )= E x tl(M , S )= 0 , then Extp(M, S )= 0  f or
i n - 1  and  hdRM<n —1.

P ro o f . B y  a dimension shifting argument w e  ca n  suppose that

n = 2 .  Let then E x t(M , S )= E x t 2
R (M ,  S ) = 0 .  We shall prove that M

is R-projective. The proof uses the following simple fact [4]. I f  N

is a module over S  then N  is torsionless<=>N is reflexive<=>Extls (N, S)

= 0 .  Now  Ext 2
R (M , S ) = 0  implies, in the notations of Proposition 1,

that f 2 i s  injective, so that Ext1.(S2 1 M O R S ,  S ) = 0 .  Hence by the re-

sult quoted above SPM O R S  is  a  reflexive S-module. Proposition 2

gives therefore th e  isomorphism Torf (M, E x t(M , S)*. The hy-

pothesis Ext 1
R (M , S )= 0  gives T orf(M , S )= 0 . Since R  is regular and

M, S  are finitely generated R-modules b y  a  theorem o f Licthenbaum

[6 1  w e get Tor(M , S ) = 0  for j > 1 .  We assert that ExtL(M , S)=0
for j 1. I f  j= 1 ,  2  there is nothing to prove. So let Now

Toq_ 1 (M, S )= - 0  implies g ;_ i  is  injective and s o  b y  Proposition 2,
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SP- I - M O R S  is torsionless. By applying the remark made in the begin-

ning of the proof we get Extis (S2l- 1 M O R S, S) = 0 for i =1, 2. Apply-

ing Proposition 1, w e  ge t a n  isomorphism Ext(M , S)*

and so we conclude ExtL(M , S)=0 for j > 1. I f  hd M = t  then by a

result of Auslander EC, we get ExtfR (M, S )*  O. H en ce  w e  must have
t=- O, i.e. M  is  R-projective. The proposition is proved.

Proposition 4 .  R  i s  a  regu lar lo cal rin g ; a i s  an  ideal o f  R

such that depth R/K < 2 .  T hen a  reflexive m odule M  i s  projective if

and  only  i f  Ext3?(M ,:1)= O.

Pro o f . W e  have only to prove M  reflexive and Ext(M , 91) = 0  implies

M  is projective. Applying ExtR(M, ) to the exact sequence 0 -> >R - >

R/91 - > 0 we arrive at the exact sequence 0 ->Hom(M, %)->Hom(M, R)
-> (Hom M, R /K) - > O. Tensoring with R= R/ W., and observing that

Hom(M, R) is annihilated by A, we get the exact sequence

(11) Hom(M, R)OR - >Hom(M, R) - > O.

Now by [2 ]  we have the exact sequence

(12) 0 ->Torf(DM, R) - >Hom(M, R)ORR->

HomR (M, R) - >Torf(DM, R) - > O.

where DM  is defined as in  the remarks following propositions 1 and 2.
From (11) and (12) we conclude Torl(DM, R )= 0 ; since R  is regular

by a  theorem of Lichtenbaum [6] w e get Tor7(DM, r)=o for j> 1 .

Hence (12) reduces to an  isomorphism

(13) Hom(M, R )  R  H o m (M , 2-_'- HomR(M R, R).

Now DM  is defined by an exact sequence of the type:

0 - >M* - > Fo  - > F1 - > DM - > 0

where F o , F1 a r e  f r e e  R-modules. T his gives Toril(M*, Tor7+2
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(DM , R ) for j > 1, i. e. Tor7(M*, R )= 0  for 1 > 1. H e n c e  M* 0  RR
considered a s  a n  R-module has finite projective dimension. By the
isomorphism (13) this means hdR(MO R)* < 00. T h is  implies by a
well-known result hdR(MOR)* + depth(MOR)*= depthR. Since depth
R <2 by assumption, by a  result of Auslander [11 we get depthR(MO
R)* = depthR. Hence by what precedes (M O R )* is R-projective, i.e.
M*OR is R-projective. Since we already know that Torf(M*, R )= 0,
by a proposition of Strooker 1101M* is R-projective. M  being reflexive
this means M  is R-projective.

Remarks. T h is  generalises t h e  Corollary to Proposition 4.7 of
Auslander [1]. Using similar arguments we can prove th e  following :

R  is regular local, W. an  ideal of R  such that depthR/K >2. Then for
any module M  such that M * * 0  and Ext1

R (M, %) = 0, we have hdRM*

depthR/%— 2. In  the previous proposition we can drop the regulari-

ty assumption o n  R  provided we assum e hdM* < co  an d  R /K  is  a
rigid module, i. e. whenever Torf(R/A, N) = 0 f o r  a  finitely generated

module N , we should have Torl(R/K, N)-= 0 for j >  1 .  F or example

if  th e  ideal a is generated by a n  R-sequence this latter condition is
satisfied.

Next we n o te  th e  following sim ple results whose proofs can be

given on the lines of the previous proposition and hence omitted.

Proposition 5 .  R  is  re g u lar local, %  an  ideal o f  definition and
M  is  an  R -m odule. T hen M  is  projective<=>Extl(M, A) -= O.

Proposition 6 .  R  is  a  rin g  not necessarily  commutative, % is  a
2-sided ideal contained in  the  radical and M  i s  an  R -m odule. Suppose
Extl(M,V .) = 0 an d  M /K M  i s  R/a-projective. T hen M  i s  R-projective.

R em ark  Proposition 6  generalises theorem 1.3 o f M ark  Ramras

[9 ] .

The following proposition is an  analogue of the result of Strooker
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used in  Propositiou 4, for the Ext functor:

Proposition 7 .  L et R  be a ring, 2X  a  2-sided ideal contained in

the  radical and  M  i s  a n  R-module. L et 0 — 1(—> F ÷  0  b e  exact

w ith F  free. T hen M  is  projective i f  and  on ly  if  Extym, ro=o and
K O  .11-  i s  R-projective w here R= RAC.

P ro o f . Let K O R  b e  R-projective and Ext 1
R (M , R )= -0 . By Pro-

position 2  w e  ge t a n  isomorphism Torif(M, R )=Ex tl(M , R )* so that

Torl(M, R)= O. Applyiug TorR(, R ) to the exact sequence:

(13) 0 —> F M— > 0

we get the exact sequence

(14) 0— *KOR— >FOR-->M OR-0.

Applying Hom( , R ) to (13) and noting that Exti(M, R) = 0  we get the
exact sequence;

--- (MO R)* — ÷(F OR)* — >(K OR)* — > 0

where *  denotes dual with respect to R .  This sequence splits since

K O  R, and hence (K O R )*  is R-projective. Taking R-duals again and
noting that KOR, F O R  are reflexive we get th e split exact sequence

0-->(KOR)--qFOR)-->(MOR) ** —> 0.

Comparing this with (14) we find that (14) is  a  split exact sequence

i.e. M O R  is R-projective. Since we already know that Tori(M, R).=
0, the result of Strooker implies that M  is R-projective.

The next result is a  generalisation of theorem 2.1 of Jans [7].

Proposition 8 .  R—)..5 is  a rin g  homomorphism and M  an  R-mod-
ule. Suppose hd R M = n < 00 an d  Toll (M , S)= O. T hen Exthz(M,
-=O.
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P roo f. In the notations of Proposition 1, O M  is  R-projective and

s o  s2nmg,s i s  S-projective. H ence Proposition 2  g iv e s  th e  isomor-

phism T o r (M , S)= E x t(M , S )* . This proves the proposition.

Proposition 9 .  R , S  are com m utative rings, S  being an R-algebra.
A ssum e that S  is Gorenstein of  dim ension < 1 .  L et M  be an  R-module.
Then if Torl(M , S )=0  f o r i >  n  we have Ex tY M , S )=0 f o r i >n +1
and  conversely if E x tl(M , S )=0 f o r i >n  +1 ,  then Torl(M , S )=0  for
i > n +1 .

The proof o f  th is  is  s im i la r  to  th a t  of Proposition 3  and  hence

omitted.

In conclusion I w ish  to  thank Professor R . Sridharan fo r th e  con-

s ta n t encouragement h e  h a d  g iv e n  m e in  m y w o rk , and  for critically

reading the manuscript.
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