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Introduction

In 1950, I.M. Gel’fand defined the generalized “spherical functions”
and studied the connection with the unitary representations in [4].
He studied only the case when the representation of the given compact
subgroup K is k—1.

After that, in [5], R. Godement defined the still more generalized
spherical functions, and studied the connection with the representations
on Banach spaces. For the given representation {9, T,} of the locally
compact unimodular group G, we can define the representation {9, T}
of the algebra L(G), which is the algebra of all continuous functions on
G with compact supports. Then he said that {9, T.} is algebraically
irreducible when non trivial T-invariant subspaces of § do not exist,
completely irreducible when every continuous linear operator T on 9
can be strongly approximated by Ty, and topologically irreducible when
non trivial closed Ty-invariant subspaces of § do not exist.

Now let D(0) be the set of vectors in  which, under k— T},
transform according to 4, and E(J) the continuous projection on $(J),
where 0 is an irreducible representation of the given compact subgroup
K. For the completely irreducible representation {9, T,} on a Banach
space P, he defined the spherical function by

$s(x)=Tr[ E(0) T. ]
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when dim $(0) < + o,

However, he studied only the case of completely irreducible repre-
sentations on Banach spaces, and moreover he assumed on G that

(a) every 0 is contained at most finite times in every completely
irreducible representation of G.

This assumption is automatically satisfied for semi-simple Lie groups
with faithful representations and the motion groups where K are maxi-
mal compact subgroups. But I feel it is rather restrictive for the
general consideration.

The author generalizes the theory for every locally compact unimo-
dular group and its representation on a Hausdorff, complete, locally con-
vex topological vector space which is not completely irreducible in
general but topologically irreducible. = We study the topologically irre-

ducible representations with the following property:

there exists at least one pair (K’, §') of a compact subgroup
(¥*){ K’ of G and its irreducible representation 0’ such that 0<
dim £(0") <+ ee,

and generalize the propositions of R. Godement for the completely irre-
ducible representations. We define the spherical functions for the to-
pologically irreducible representations with the property (), and obtain
a necessary and sufficient condition that a given continuous function ¢
on G which satisfies xsx¢=¢ and ¢=¢°, where x;=(dim¢)Tr[ 0] and
¢°(x)=SK¢(kxk‘1)dk, is a spherical function. In our case, the condi-
tion (a) on G is not assumed and the necessary and sufficient condition
on ¢ is as follows; dim (L(d)/p)< + oo, where p={f € L(0); f'*¢=0},
and there exists a p-dimensional irreducible representation f— Uy of the
algebra L°(0) such that ¢(f)=(dim 0)Tr [Us]. Here, L(0)={f € L(G);
Zsxf = f*%;=f} (%; is the complex conjugate of %;), f'(x)=f(x""),
L°(0)={f"; f€L(0)} and ¢(f)=SG¢(x)f(x)dx. This is one of the
principal results of this paper. To show this, we construct a topolo-
gically irreducible representation which has ¢ as its spherical function,

and this process gives the connection between spherical functions and
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representations. In the case of ¢-compact G, all spherical functions are
obtained from topologically irreducible representations on Fréchet spaces.

Some lemmas in this paper are very similar to those in [5] but
proved under somewhat weaker assumptions, and for the sake of com-
pleteness the author does not omit them.

In §1, we give some definitions and prove some general lemmas
on the irreducibilities.

In §2, we study a canonical irreducible subspace , of ©, and this
is very important for the study of topologically irreducible representa-
tions with the property (k).

In §3, we study the multiplicity of ¢ in completely irreducible
representations or in topologically irreducible representations with the
property ().

In §4, we define spherical functions and prove the necessary and
sufficient condition that a given function ¢ on G is a spherical function.
In general our results are rather weak, but in the case where G is
o-compact or the given function ¢ is positive-definite, they are satisfac-
tory. For spherical functions of height 1, another characterization is
possible.

In §5, analyzing the method of the construction of representations
in §4, we obtain a connection between spherical functions and repre-
sentations.

Finally, the author expresses his hearty thanks to Dr. N. Tatsuuma

and Prof. T. Hirai for their kind advices.

§1. Representations and their irreducibilities

Let G be a locally compact unimodular group, and & be a Haus-
dorff, complete, locally convex topological vector space.

A representation of G on § is a homomorphism x— 7, of G in a
group of non-singular continuous linear operators on © such that

(a) for a €9, 6D x— T,a €Y is continuous,

(b) for every compact subset C of G, {T,; x € C} is equicontinuous.

If © is “tonnelé”, (a) implies (b) [[1], hence in the case of a
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Banach space or a Fréchet space, the condition (b) is not necessary.
And in general, two conditions (a) and (b) are equivalent to

(c) GxH>(x, a)>T,a €D is continuous.

Let L(G) be the algebra of all continuous functions on G with
compact supports (the product is convolution product). For every com-
pact subset F of G, denote by Lp(G) the space of all continuous func-
tions on G whose supports are contained in F, with the supremum
norm. We shall topologize L(G) as the inductive limit of Lp(G). On
the other hand, we shall denote by L(D, ) the space of all continuous
linear operators on &, topologized by the simple convergence, and by
Ly(9, D) the same space, topologized by the uniform convergence on
every bounded subset of 9.

From the given representation {9, T,} of G, let’s define the re-

presentation of the algebra L(G) by
LG) > f— T;:SG T, f(x)dx,

where dx is a Haar measure on G. Then the following facts are
known [37]; the representation {9, T/} of L(G) satisfies

(i) L(G)>D f>Tre Ly, H) is a continuous homomorphism,

(ii) {Tra; f€L(G), a €D} spans a dense subspace of 9,

(iii) for every compact subset C of G, {Ty; f €E} is equicon-
tinuous, where E={f € L(G);supp[ f]CC, || f|
such representation of L(G) is deduced by the above method from a

1-<£1}. Conversely,

representation of G.

In the following definitions, § is not necessarily complete.

Definition 1. Let A be an associative algebra over the complex
field C. The representation {9, T} of 4 on a vector space © over C

is called “algebraically irreducible” if its invariant subspaces are only

{0} and 9.

Definition 2. Let A be an associative algebra over C, and D a
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locally convex vector space. The representation {9, T} of A4 is called

“completely irreducible” if {T,; x € A} is dense in L,(D, D).

Definition 3. Under the same situation as in Definition 2, {9, T.}

is called ‘“‘topologically irreducible” if its closed invariant subspaces are
only {0} and 9.

In the case of finite-dimensional ©, these three irreducibilities are
equivalent by the Burnside’s theorem [8]. And using a theorem on
the extension of a continuous linear functional [9, p. 108], we know
that the complete irreducibility implies topological irreducibility. If
is a Banach space, algebraic irreducibility implies complete irreducibility
[5]. We shall define the irreducibility of a representation of G by that
of the corresponding representation of L(G). The following lemma

plays an important role in this paper.

Lemma 1. Let A be an associative algebra over C, and  a local-
ly convex wvector space. The algebraically irreducible representation {9,
T.} of A is completely irreducible, if every continuous linear operator
which commutes with all T, is a scalar multiple of the identity oper-

ator.

Proof. Let’s show more strong fact that,

(a) for arbitrarily given elements ai, az, ---, @, € and continuous
linear operator T on §, there exists an element x € 4 such that T,a;=
Ta; for 1Li <L n.

We prove this by induction on n. For n=1, this is true. Sup-
pose (a) is true for n—1, and let’s prove it for n. Clearly we may
assume that ai, as, ---, a, are linearly independent. By the assumption
of induction,

(b) for every n—1 elements by, by, ---, b,_1 €, there exists some
x €A such that T,a;=0b; for 1LiLn—1.

Denote by & the subspace of § spanned by ai, az, ---, a,_1. Let’s
show the following fact;
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(c) suppose T,b=0 for every x €& ={x€ 4; T,a0;,=0,1LiLn
—1}. Then €9 is in &.

For every (by, by, -y by 1) EDXOX - xH=H""!, take x' € 4 such
that T,a;=b; for 1Li<Ln—1, and define a linear mapping

0; 19,

by @ (b, by, -y by_1)= T,b(well-defined !). Let I; be the imbedding
from © to the i-component of "}, and set F;=0I; (i=1, 2, ..., n—1).
Then for any x€ A4 and a €9,

FiT.a=01(T.a)="T,b, and T,Fia=T,0l;a=T,T,b, where x,
and x, are elements in A such that T, a;= Ta, T,a;=0 (j7=i) and
T.a;=a, T,,a;=0 (j==i) respectively. Hence T%,,,a;= T,a= T,a; and
Tir0;=0= T, a; (j5i). Therefore xx,—x,€&’, hence T,b= T,,,b.
Thus F;T,=T.F; for all x&€ A. Hence we have F;=2;-1 (};€C, 1L
iLn—1), and

n—1
Tob=0(by, bz, -+, by_r)= 25 4ib;
i=1
n—1
=Y i Tya;= Ty z;m)
i=1

n—-1
Since x'€ A4 in (b) can be arbitrarily chosen, T,.b=T. ,,z}: Aia; is true

for all x’'€ 4. Hence b= Z A;a;, and therefore b €& by the algebraic
irreducibility of {9, Tx}. Thus (c) is proved.

Since a, &, it follows from (c) that there exists some x € 4 such
that

T.a;=0(1LiLn—1) and T,a,50.

Therefore {T,a,; x€&'}=9. Let x0€ A be an element such that
TT.a;="Ta;,1<Li<Ln—1. Then there exists some x; €& such that

T.0,=Ta,— T, a,.

The element x=2x,+ x, satisfies T,a;= Ta;(1LiLn). q.e.d.
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Now, let K be a compact subgroup of G, and 0 an (equivalence
class of finite-dimensional) irreducible representation of K. We shall
denote by Tr[07] the trace of (any element in) §, and put %;=(dim §)
Tr[0]. For every f€ L(G), we define

is*f(x)st SO )T s,

Pas()={ ek D)k,

and put L(0)={f€ L(G); Xs*f=fxXs=f}.
For a given representation {9, T} of G,

EO)={ Tirs(k)dk

is the continuous projection onto the subspace £(0)=E(0)9, and com-
mutes with all T, (k€ K). And for an arbitrary f & L(0), Ty makes
$(0) invariant, Put

Tf= Tf | 9(8) for fe L(6).

The following lemma is essentially due to R. Godement.

Lemma 2. If the representation {9, T.} of G is algebraically,
completely, or topologically irreducible, the corresponding representation
{D(0), Ts} of L(O) is respectively algebraically, completely, or topological-
ly irreducible too.

§2. Maximal ideals in L(G) and topologically irreducible repre-
sentations with the property (*)

Let 4 be an associative algebra, and m a left ideal in 4. m is
called “regular” if there exists an element uw€ A4 such that xu=
x(mod. m) for all x € A. Similar definitions apply to right ideals and

two-sided ideals.
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Here we consider the associative algebra over C for a fixed § such
that

(a) the product of every element f &€ A4 and %; is defined, and
f % (€A,

(b) Zs(fZs)=(Zsf)%s for all f€ 4,

(©) (fxs)g=f(Zsg) for all f, g€ 4,

@) Z(Zsf)=%sf, (fEs)Xs= fs for all f€ 4.

Now we can prove the following lemma as in [5].

Lemma 3. Let a be a regular maximal left ideal in the subal-
gebra AQQ)={fc€ A; Xsf=fxs=f} of A, and put

m={f€Ad; Xsgfis€q, for all g€ A},

then m is a regular maximal left ideal in A, a=mN A(0), and we have
fZs= f(mod. m) for all fe€A.

When a representation {9, T.} of G is given, for an arbitrarily
chosen non zero element a €9, m,={ f € L(G); Tra=0} is a closed left
ideal in L(G). But in general we don’t know whether it is maximal

or not.

Theorem 1. Let G be a locally compact unimodular group, K a
compact subgroup of G, {D, T:} a topologically irreducible representation
of G, and & an irreducible vepresentation of K. If we have 0<dim$H(0) <
+oo, my={f EL(G); Tra=0} is a closed regular maximal left ideal
in L(G) for an arbitrary non zero element a € (0).

Proof. From Lemma 2 and the Burnside’s theorem, there exists
an element u € L(J) such that 7,=1. As is easily seen, a=m,N\L(J)
is a closed regular maximal left ideal in L(0) with the right identity
u.

Next, m={f € L(G); Xs*g*f*%; €a for all g€ L(G)} is a regular

maximal left ideal in L(G) from Lemma 3, so we have only to prove
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mCm, If fis in m, we have
E(6) Tnga: T,,a= T;,azO, h=23*g*f*23 EO,

for all g€ L(G). Now, {Tsa; f €m} is an invariant subspace of 9,
hence {Tja; f€m}={0} since H(0)7#{0}. Namely f is in n1,.
q.e.d.

We shall consider a topologically irreducible representation {H, T,}

of G with the following property:

there exists at least one pair (K’, 0") of a compact subgroup
(x)§ K’ of G and its irreducible representation 0’ such that 0<
dim (") < + oo.

For an arbitrary non zero element a’ € D(0”), we define
QoL K', 0’y @ ]J={Tsa’; f € L(G)}.

Lemma 4. The space D[ K', 0', a’] is independent of K’y 0" such
that 0<dimD(0")< + o and a' €D(0') (denote it by D). The repre-
sentation {9, T} of L(G) is algebraically irreducible.

Proof. Let (K", ") be another pair of compact subgroup K of
G and its irreducible representation 0"’ such that 0 <dimD(0")< + .
Let a” €9(0”). By the topological irreducibility of {9, T}, both D[ K’,
07, a’] and D[ K", 0"y '] are dense in . If we denote by E(0’) the
projection with respect to (K’,d"), we have E(0") D[ K", d”,a"]C
Do[K”,0”,a”]. On the other hand, E(0") D[ K", 6", a"’ ]=9(6").
Hence we have o[ K, ¢0', o’ JCH[ K", 0", a’"].

Next, m,={f€L(G); Tra=0} is a closed regular maximal left
ideal in L(G) by Theorem 1. By the closedness of ni,, we have
L(G)xh ¢ m, for an arbitrary non zero element h& L(G) (we have only
to consider the “delta-sequence” attached to e; i.e., for every neighbour-

hood U of the unit e in G, we take a non negative function ey & L(G)
such that gcey(x)dx:'l and supp[ey JCU), and hence L(G)x*h-+m,
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=L(G). From this fact, we see easily {T,(Tha); g€ L(G)}=9. This
implies the algebraic irreducibility of {$o, T¢}. g.e.d.

Let (K, 0) be a pair which satisfies 0<dim$(F)< + oo, and we
put Ho=Hy[K,d,a]. Let T be a continuous linear operator on &
which commutes with all 7f on §,. From the fact that there exists
u € L(0) such that T,=T,|g;)=1, and that @(6)(3;)6, we have

T.To=T,7(T.b)=T.T,Tb=T.,To=TT; b=TT,d,

for an arbitrary b€ 9(0), where (L,u)(y)=u(x"'y). Noting the fact
that T:b€ (0) for every k€ K, we have

E()( Tb)=SKT,,( Th) s (k) dk= SKT( T,b)zs (k) dk

— TSK Tobs(k)dk= T(E(3)b)= Tb,

i.e., Tbe (). Thus T;Tb=TTsb is valid for all feL(9), ie., T
commutes with every Ty on £(6). Hence T is a scalar operator on
9(0). Therefore the operator T is a scalar operator on £, too. By
Lemma 1, {90, Ts} is a completely irreducible representation of L(G).
Obviously the space $, is invariant under all T,, so we can consider
the “representation” {9y, T,} of G. Of course §, is not complete in

general. Clearly we have the next lemma.

Lemma 5. The algebraically irrveducible represemtation of G with
the property () is completely irreducible.

§3. The multiplicities of irreducible representations of a com-

pact subgroup

Throughout this section, G is a locally compact unimodular group,
and K is a compact subgroup of G. For an arbitrary irreducible re-
presentation 0 of K, we shall say that ¢ is contained p times in the
representation {9,, T} of G if dim$(d)=p-dimJ.
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Lemma 6. (See [5, p. 503, Lemma 17) If an associative algebra
A over C has sufficiently many representations whose dimensions are not
greater than n, the dimension of every completely irreducible representa-
tion of A is also not greater than n. (Here, the representation space is

not assumed apriori to be complete).

Let £ be a set of representations of G. We shall say after
R. Godement that &£ is “complete”, if for every f&€ L(G) we can chose
some representation {9, T} € £ such that T;5=0.

Lemma 7. Let 2 be a complete set of representations of G. If
the irreducible representation & of K is contained at most p times in
every representation in £, we have

(1) 0 is contained at most p times in every completely irreducible
representation of G,

(ii) 0 is contained at most p times in every topologically irreduci-
ble representation of G with the property (x),

(iii) 0 is contained at most p times or infinitely many times in
every topologically irreducible representation of G. In the latter case,
every irreducible representation of every compact subgroup of G is con-

tained either no times or infinitely many times.

Proof. For every representation {9, T.} in £, we make the re-
presentation {9(8), 77} of L(#). All such representations make a
family containing sufficiently many representations of L(J), and always
dim'(0) L p-dimd by the assumption. So, by Lemma 6, we know
that every completely irreducible representation of L(J) has dimension
£Lp+dimd. Now (i) is clear by Lemma 2.

Let’s prove (ii). Let {9, T.} be a topologically irreducible re-
presentation of G with the property (¥). If y=9[K’, 0’, a’], {90, Ts}
is a completely irreducible representation of L(G). Repeating the proof
of Lemma 2, we can easily see that {E(0)Do, Ts} is a completely
irreducible representation of L(d). Hence dim E(0)9o <L p+dimd. But
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E(0)%o is dense in $(0). Therefore dim$9(d) L p-dimd.
(iii) is clear from (i) and (ii). g.e.d.

Lemma 8. Let G, be the intersection of the kernels of all finite-
dimensional representations of G. Then the set of all finite-dimensional

representations of G is complete if and only if Gy={e}.

Proof. Assume G,{e}. Then of course G, contains a non
trivial closed abelian subgroup, say Z. If zp€Z is not the unit e,

there exists a neighbourhood U of e in G such that
UZoﬂ U': Sj .

Now we chose a non zero function ¢ € L(G) such that supp[ ¢ ]C U,

and define
¢(x) for x=U,
f(x)=1 —o@(xz,) for x € Uz,,
0 otherwise,

then f€ L(G), f#0, and we can see
Szf(xz)dz=0 for x€6.
From this, we have
SGO(x) F(x)dx=0
for an arbitrary matrix element 6(x) of every finite-dimensional repre-
sentation of G.

The converse is proved in [5, p. 506, Lemma 5. q.e.d.

Lemma 9. Let G be a connected semi-simple Lie group. The set

of all finite-dimensional irreducible representations of G is complete if
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and only if G has a finite-dimensional faithful representation.

Proof. Using the notation in Lemma 8, Go={e} is equivalent to
the fact that G has a finite-dimensional faithful representation [6]. On
the other hand, every finite-dimensional representation of G is complete-
ly reducible. Therefore this lemma follows from Lemma 8.

q.e.d.

Using this lemma and Lemma 7, we obtain the following

Theorem 2. Let G be a connected semi-simple Lie group with a
finite-dimensional faithful representation, K a compact subgroup of G,
and 0 an irrveducible representation of K. If 0 is contained at wmost
p times in every finite-dimensional irreducible representation of G, 0 is
contained at most p times in every completely irrveducible representation
of G and in every topologically irreducible representation of G with the
property (x).

Let N be a closed subgroup of G, and n—>a(n) a one-dimensional
representation of N. Let % be the set of all continuous functions f
on G such that f(nx)=a(n)f(x) for n€ N, and T the operator on
9% such that (T%f)(x")=f(x'x), and denote by £y the set of all
such representations. If G=NK (not necessarily semi-direct), where K
is a compact subgroup of G, we may consider *CL(K), and in this
case every irreducible representation & of K is contained at most dim ¢
times in every representation in 2.

If the closed subgroup N is connected and solvable, every finite-
dimensional irreducible representation of /N is one-dimensional (Lie’s

theorem, [5, p. 549]). Now we have the next lemma.

Lemma 10. (R, Godement [5]) Let G be a locally compact uni-
modular group, and N a connected solvable subgroup of G. Then every
JSinite-dimensional irreducible representation of G is contained in some

representation in 2.
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Let G be a connected semi-simple Lie group with a finite-dimension-
al faithful representation. It is well-known that there exists a connect-
ed solvable subgroup N such that G=NK, NN\K={e}, where K is a
maximal compact subgroup of G. Therefore we know that £y is com-
plete from Lemmas 9 and 10, and also we immediately obtain the fol-

lowing theorem from Lemma 7.

Theorem 3. Let G be a connected semi-simple Lie group with a
Sfaithful representation, K a maximal compact subgroup of G, and 0 an
irreducible representation of K. Then 0 is contained at most dim O times
in every completely irreducible representation of G and in every topolo-

gically irreducible representation of G with the property (x).

Theorem 4. Let G be a connected complex semi-simple Lie group,
K a maximal compact subgroup of G, 0 an irrveducible representation of
K, and I' a maximal abelian subgroup of K. Then the multiplicity of
0 in any completely irrveducible representation of G and that of 0 in any
topologically irreducible representation of G with the property (x) are not
greater than the maximum of the multiplicities of irreducible representa-
tions of I' in 0.

The proof of this theorem is essentially the same as for Theorem
3 in [5, p. 5097.

Theorem 5. Let G be a locally compact unimodular group, and
K a compact subgroup of G. If there exists some abelian subgroup N
such that G=NK, every irreducible representation 0 of K is contained
at most dim0 times in every completely irreducible representation of G

and in every topologically irreducible representation of G with the proper-
ty ().

We have only to show that £y is complete, but this is done in

[5].
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Lemma 11. The set of all completely continuous linear operators
on 9 is closed in Ly(D, D).

Proof. Let T, be an element of the closure of the above set.
Assume the subset B of © is bounded. For any given neighbourhood U
of zero in §, there exists a neighbourhood U; of zero in © such that
U,+U,CU. Moreover, there exists a completely continuous linear

operator T such that
To—Tbe U, for every b€ B.

On the other hand, there exist some elements ai, ag, ---, @, € such
that

The \jl( Ui +ay).

Thus TyBC \fj(U—I— a;). q.e.d.
i=1

Using this lemma, we can show the following theorem in the same
way as [ 5, p. 515, Theorem 7.

Theorem 6. Let G be a locally compact unimodular group, and K
a compact subgroup of G. If every irreducible representation & of K is
contained at wmost finite times in the given representation {9, T.} of
G, Ty is completely continuous for any f € L(G).

§4. Spherical functions

The notations are same as in the preceding sections. Let {9, T.}
be a topologically irreducible representation of G, and let 0<<dim$(5)<
+ oo, Then we define

¢s(x)=Tr[E(®)T,] for x €G.

If dim(d)=p-dimd, we call ¢; the spherical function of type 0 of
height p. R.Godement treated the spherical functions only for the com-
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pletely irreducible representations on Banach spaces.

We denote by L°(G) the space of all functions
f°(x)=SK flkxk™Ddk  for fe L(G),

and by L°(0) the space of all functions f° such that fe& L(d). It is
clear that L°(0)=%s;*L°(G)*Xs. From now on, we shall use the nota-
tion f/(x)= f(x™1).

By the direct calculations, we have the following functional equa-
tions;

1) ds=43,

(2)  x5*ds=@s*%s = s,

3) SK¢3(xky)Zs(k)dk=SKqﬁs(ykx))'cs(k)dk for x, y€G,

@ SKqu(kxk“y)dk:SK¢3(kyk‘1x)dk for x, y€G,

(5)  fxps=gs*f for fe L°(G).

Let ¢ be a continuous function on G such that ¢°=¢ and xs*¢
=¢. Are the following two statements on ¢ equivalent or not?

(I) ¢ is a spherical function of type § of height p,

(A1)  dim (L(0)/p)< + oo, where p={f € L(0); f'*¢=0},
and there exists a p-dimensional irreducible representation f— Uy of L°(0)
such that ¢(f)=(dim0)Tr[ Us] where

8= H) f ().

The (I)=>(II) part is proved in general. The (II)=>(I) part is, in
general, solved in somewhat a weaker form (cf. Proposition 1), but, for
a o-compact G, it is completely solved and moreover we know that
every spherical function is obtained from topologically irreducible repre-
sentation on Fréchet space. And for positive-definite ¢, it is also com-

pletely solved and we know that every such spherical function is
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obtained from irreducible unitary representation of G. These are the
main results in this paper.

First, we show (I)=(II). Let {9, T,} be a topologically irreducible
representation of G such that 0 <dim9(0)< + oo and g=¢s.

Lemma 12. Considering only on 9(0), the set of the linear opera-

tors which commute with all Ty is
{Ty=Tslge); fEL(O}.

Proof. For every linear operator 4 on $(J), there exists at least
one function f €& L(0) such that Ty=A by the Burnside’s theorem.

If A commutes with all T, we have

A= SK Ty T, T dk= SKSG Ty T, Tt f(x)dxdk= Ty

The converse is clear. q.e.d.

Since the representation {9(d), Tx} of K is equivalent to the p-
times direct sum of 0, the set {Ty; f€ L°(0)} is identified with M (p)
by Lemma 12, where M (p) is the set of all pX p-complex matrices.

And also we may write
T;=U;QI (Ur e DU p)),

where I is the unit matrix of degree dim . This representation f—>
U; of L°(0) satisfies the condition in (II). The first part of (II) fol-

lows at once from
Lemma 13. P equals to {f< L(0); T;=0}.

Now let’s consider (JI)=>(J). We need some lemmas which are

essentially same as those in [5].

Lemma 14. The set {L.f; k€K, f€ L°(0)} is total in L(0).
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Lemma 15. Let ¢ be a function on G such that ¢=¢°, 2sxp=¢.
If a finite-dimensional irreducible representation f— Uy of L°(0) satisfies
the relation ¢(f)=(dim 0)Tr[ Uy, we have

(@) flrp=gxf" for every fe L(0),

() b={f€L(0); fxp=0} is a closed regular two-sided ideal in
L(9),

(© L'@)Np={feL(0); Us=0}.

The proofs of these two lemmas are essentially same as those of
Lemmas 11, 12, and 13 in [5].
Of course we were very happy if we could show (JI)=> (1) without

any more assumptions. But the author cannot do it.

A. General case

At first, we consider without any more assumptions. Let’s denote
by a the maximal left ideal in L(0) containing p. a is regular and
closed since dim(L(0)/p)<+ 0. The right identity modulo a and the
identity modulo p is the function u € L°(0) such that U,=1. If we set

m={f€ L(G); ZsxgxfxX; €a for every g€ L(G)},

nt is a closed regular maximal left ideal in L(G) by Lemma 3, and the
right identity modulo m is also u. Considering the delta-sequence e,y
attached to x, we easily see that LanCm. Thus we can consider the

“representation”

{9, L.}, where $=L(G)/m,

of G. We induce the quotient topology in § from L(G), and therefore
9O is locally convex and Hausdorff, but we don’t know whether 9 is
complete or not. Even if © is not complete, we can define the repre-
sentation {9, L;} of L(G) by integration, and we have L;=jfx. More-
over, since m is invariant under the operation X;*, we can also define

the projection
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E(6)=SKLkis(k)dk,

and we have E(0){f}={%Zs*f} for every {f}€®, where {f}=f+m.
Since nt is a maximal left ideal, the representation {9, L;} of L(G) is
algebraically irreducible.

From Lemma 3, we also have f*X;— f€m for every f & L(G).
Thus E(0){f}={Xs*f*%s}, and therefore we obtain that

D@ ={{f}; fe L@}
Moreover we have a=mNL(J0) from Lemma 3. Thus
{Sf}; fe L)} = L)/ a.

Since pCa, it follows from our assumption dim (L(0)/p)>+ oo that
dim $(0)< 4+ eo. Therefore the finite-dimensional irreducible representa-
tion {D(8), Ly=Lys| gyt of L(6) is equivalent to {L(d)/a, L;}. Now,
if we set ¢s(x)=Tr[E(0)L,], we have

#:(N)= fTrIE@LIdx=Tr[L=T L,

for every f€ L(0). From Lemma 15 (c), we can see that Us=0 im-
plies L;=0, if fis in L°(0). Let dim 9(0)=dim (L(0)/a) be g-dim 7,
then in the proof of (I)=>(II), we construct a g-dimensional irreducible
representation f— V; of L°(§) such that V,;=0 is equivalent to L;=0
or Ly=0, and that @s(f)=(dim &) Tr[ V] for every f& L°(d). There-
fore Us=0 implies Vy=0. Thus the mapping ¢: U;—V; is well-
defined and ¢ is a homomorphism from the algebra (p) onto Wi(q).
From this, we have p=gq and ¢ must be equivalent to the identity 1
[8, p. 429]. Consequently Uy is equivalent to ¥ and ¢(f)=¢s(f) for
every f€ L°(0). This implies ¢=gs.

Consider a topologically irreducible representation {9, T.} of G,

where the space © is not necessarily complete. If the integrals
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Tf:SG T.f(x)dx (f € L(G)), E(6)=SKTk7-Cs(/€)dk
converge in  and 9(0)=E(0)P is of finite-dimension, we set

$s(x)=Tr[ E(0)T%]

as before. And we shall call this “the spherical function in the gener-

alized sense”. Then the above consideration shows

Proposition 1. Let G be a locally compact unimodular group, K
a compact subgroup of G, and 0 an irreducible representation of K. If
the continuous function ¢ on G satisfies ¢p=¢° and xsxd=¢, the follow-
ing two statements are equivalent;

(1) & is a spherical function in the generalized sence of type 0
height p,

A1)  dim(L(0)/p)< + oo, where p={f€ L(0); f*¢p=0}, and there
exists a p-dimensional irreducible rvepresentation f— U; of L°(0) such

that ¢(f)=(dim0)Tr[ Us].

B. Case of g-compact G

Assume that G is 0-compact, i.e., G is the union of the denombr-
able compact subsets K, of G: G=NK,. We may assume that K;C
K,C---CK,C--, and that every compact subset of G is contained in

some K,. Then,

1£1n=sup | 18Gn 1 -1 f DIy for n=1,2, -,

are semi-norms on L(G), and [|f|/,=0 for every n is equivalent to
f=0. We shall denote by ¥(G) the Fréchet space which is the com-
pletion of L(G) by these semi-norms.

Lemma 16. The linear operators L, f*, Xs*, *X;5, defined on L(G)
are continuous with respect to the topology in ¥(G). Moreover {L,; x €

C} is equi-continuous for every compact subset C of G.
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Proof. By a simple calculation, we have

IL:flln £l flln - (x€C),

where m is an arbitrary integer such that K,CCK,. For fx, we have

the inequality
lf*hlla <l fllollhlln  for he L(G),

where m is an arbitrary integer such that K,-supp[ f]CK,. The

same is true for Xzx and *¥;. q.e.d.

By this lemma, we can extend L., f*, X;%, *¥; on the whole of
2(G) by continuity. Let’s denote them by the same notations respec-
tively. If we denote by £(J) the completion of L(4) in ¥(G), we have
Z5%2(G)*%s =L(0).

Lemma 17. The linear operator ¢(f) on L(G) is continuous with
respect to the topology in L¥(G).

This is clear.

Lemma 18. Let p be the completion of v in L2(G). Then, (a)
PSQ(0), (b) p is L(0)-invariant, i.e., f*ﬁ(ﬁ for every fe L(0), (c)
w¢ D, where u is a function in L°(0) such that U,=1.

Proof. (a) If fep, we have ¢(f)= f'*¢(e)=0. Thus ¢=0 if p
is dense in £(0). (b) Easy. (c) Since fxu—fepCh for every f€
L(d), we have f €p if uep. This means p=2(F), and hence contra-
dicts to (a). q.e.d.

As is easily seen, PNL(0)=yp. Therefore it can be considered
that L(0)/p is densely contained in £(#)/p. Thus by the assumption
dim (L(0)/p)< + oo, we have

dim (2(8)/p) < + 0.
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Therefore we can find a closed maximal L(J)-invariant subspace a, of

2(0) containing . ap does not contain u.

Lemma 19. Set mo={f € 8(G); Zsxg*f*is€ao for every g€
L(G)}, then

@ mepu,a=meN\L(0), and fru—femy for every f &< L(G),

(b) my is closed and is maximal in the set of all closed L(G)-

invariant subspaces of ¥(G).

Proof. (a) If u€my, we have Xsxg*f*¥; €qay for every g€ L(G),
and also (Xs*g*¥s)*u €qao, since u€ L°(d). Thus L(0)Cay and the
completion ¥(0) of L(J) is contained in a;. This is a contradiction,

and hence u ¢ .  Next,
Zok gx( fru— f)xks=(Zek g*f*¥s)xu— (Xgx g* f*%s) € ao

for every g€ L(G) since pCap. Therefore fxu—fem, ao=u1,N\&(0)
is a consequence of the maximality of a,.

(b) We have only to show the maximality of m,. Let n be a
closed L(G)-invariant subspace of ¥(G) such that iy C1t & &(G). Since
L(G){ 1, u must not be contained in 1. Therefore a,=nNL(J), from
the maximality of ap,. For arbitrary fen, g€ L(G),

Kok gxfads — Xk gxf=(Zsx g)*(f*X;— flemeCn,

since f*Xs—fE€mo As Zyxg*fEn, we have Xyxg*f*X; € nN\LE(d)=a,.
Hence fe€mg. This proves that nCni,. q.e.d.

Take the delta-sequence e,y attached to x, then e.y*f converges
uniformly to L,f on G when U—e for every f& L(G). Thus, for fe
L(G), e,u*f also converges to L,f in £(G).

Lemma 20. Let x be an arbitrary element of G. When U—e,
e.uxf converges to L.f in R(G) for every fe€R8(G). Therefore m, is
invariant under the operation L,.
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Proof. For f€&(G), there exists a sequence f;€ L(G) such that
fi—>f in &(G). 1In the inequality

HexU*f_foHnéIlexU*(f_fi)||n+”exU*fi_foi“n
+||fo1“fo“m

we may assume that xU is always contained in a fixed compact subset
C of G. Take i large enough, and then let U—>e, we see that the
left hand side of the inequality becomes small enough. q.e.d.

To see {8(G), L.} is a representation of G, it rests only to show
that x—L,f is continuous for every f&8(G), since the space Z(G) is
a Fréchet space. Take a sequence f; in L(G) which converges to f in
2(G). We have

”fo_f”n—é ”Lx(f_fi)un+ ||foi_'fi”n+ ”fi_f”n:

where we may assume that x belongs to a fixed compact neighbour-
hood C of e in G. If m is an integer such that CCK,,

Take i large enough at first, and let x—e, then we see ||L,f— fl/,—0.
Therefore {¥(G), L,} is a representation of G.

The representation {&(G), L;} of L(G) which corresponds to {2(G),
L,} is given by Ly=jf*. This can be seen by the direct calculation.

The representation {(G), L.} of G is not irreducible in general.
Now we set 9=28(G)/n1g, and denote by T,, T; the continuous linear
operators on § induced by the natural way from L,, Ly respectively.
Then © is a Fréchet space [ 2, p. 57, and the representation {9, 7.}
of G is topologically irreducible (Lemma 19 (b)). And as in general
case A, E(0){f}=1{%s*f*%s} for every {f} € 9. Therefore

2@ =1{{f}; f € )} =L(0)/av,

since ap=mnty N\ L(J). Thus the condition dim H(F)< + oo is of course
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satisfied. Hence, by the same way as in general case 4, we have the

following

Theorem 7. Let G be a locally compact, d-compact, and unimodu-
lar group, K a compact subgroup of G, and 0 an irreducible representa-
tion of K. If the continuous function ¢ on G satisfies ¢°=¢ and Asx¢p=
@, the following two statements ave equivalent;

(I) ¢ is a spherical function of type 0 of height p,

(A1) dim (L(0)/p) < + o0, where p={f€ L(0); f'*¢=0}, and there
exists a p-dimensional irreducible representation f— Uy of L°(d) such

that ¢(f)=(dimd)Tr[ U]

Corollary. In the case of 0-compact G, all spherical functions are
obtained from topologically irreducible vepresentations of G on Fréchet

spaces.
C. Case of positive-definite ¢
If the given function ¢ is positive-definite.
$(e)=0, |d(x)| Ld(e), $(x")=6¢(x).

Set f*¥(x)=f(x""). Then (f*)*=f, (fxg)*=g*xf*, (Xprf)*=f*xXs;,
¢(f*)=@(f). We define an “inner product” in L(G) by

(f, =8(g**f),

and set ||f||=V(f, f). Of course ||f||=0 does not mean f=0 in

general.

Lemma 21. The inner product is invariant under the operations
L. And |frgll <)l gl fllos & fl VGm a1l for every f, ge
L(G).

Proof. The first inequality follows from the positive-definiteness



Spherical functions on locally compact groups 79

of the function
SGSG¢(xzy)f*(x)f(y)dxdy.

The other properties are clear. q.e.d.

Set N={f¢€ L(G); || f||=0}, then N is invariant under the opera-

tions L,, f*, Xs*, and *X;. Thus we can consider L., f*, Zs*, *Xs, (, ),

and on

H'(G)=L(G)/N.

Let H(G) be the completion of H'(G) with respect to the norm |[|+||,
and extend L, f*, X;*, and %s;x on H(G) by continuity. The linear
operators L, are unitary on the Hilbert space H(G). Since L(0)N\N=

%;xNxXs, the quotient space
H'(0)=L(0)/L(6)NN

is identified with X;% H'(G)*%s;, and the completion H(J) of H'(d) is
is*H(G)*)_Cs.

Lemma 22, p=L(0)NN.

Proof. If fe L(6)NN,
|f*p(x) | = |dxf" ()| = [d (Lo f)| = | g(uxL, f)]
= |(Ls f5 u)| L L fll[[w*]| =1 fIlllu*||=0,

where u is a function in L°(0) such that U,=1. Conversely for every
fED,
IfIIP=g(f** f)=Loxf*(f*)T(e)=[f'*d+(f*)](e)=0.
q.e.d.

By Lemma 22, the space H'(0) is equal to L(d)/p and is finite-
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dimensional from our assumption, hence H’(J) coincides with H(J). Let
by be a maximal L(0)-invariant proper subspace of H(#). Of course by
may be equal to {0}. In any case, u ¢ b,.

Lemma 23. Set wo={f¢€ H(G); X;sxg*f+X; Eby for every ge
L(G)}, then (a) u ¢ g, bo=1eNH(0), and fxu—feEny for every fe€
L(G), (b) 1y is closed and is maximal in the set of all closed L(G)-

invariant subspaces of H(G).
The proof is formally same as that of Lemma 19.

Lemma 24. When U—se, e.uxf converges to L.f in H(G) for

every f € H(G). Hence 1y is invariant under the operations L,.

Proof. If f is in L(G),
llexuxf— Ly flI2=d( f *xev*xeuxf) —¢( f *xeu*f)
—¢(f**keuxf)+d(f*%f).

The right hand side converges to zero if U-—>e. Therefore for every
f€H(G), |le;vxf—L,f||—>0, when U—e. Now, for any f in H(G),
there exists a sequence f;€ H'(G) such that f;— f in H(G), and we

have
lexv*f— L fl|=lleoxf—fll
= |levf —evxfill +llewxfi— fil [+ || fi—f ]
2|l f=fill +llewxfi—fill.

The last two terms become arbitrary small if we make i large enough

and then U—e. q.e.d.

To see {H(G), L.} is a representation of G, we have only to show
that x—L,f is continuous for every f & H(G), since H(G) is a Hilbert
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space. Suppose that a sequence f;€ H'(G) converges to f. In the in-
equality

Wf—Lafll £ fi— Lafill + 211 f = fill,

the right hand side can be small enough if i is large enough and x is
in a sufficiently small neighbourhood of e in G. Thus x—L.f is con-
tinuous.

The representation {H(G), L.} is not irreducible in general. Hence
we consider the Hilbert space §=n¢ and the operators T,=L,|e, where
ng is the orthogonal complement of 1ty. This representation {9, T,} is,

by Lemma 23 (b), an irreducible unitary representation of G. As be-
fore, E(0)f =Z%sxf*%; for f€9, and

©(9)=H(9)/b,

and therefore dim9(0)< +oo. By the same argument as in general

case A, we obtain the following

Theorem 8. Let G be a locally compact unimodular group, K a
compact subgroup, and 0 an irreducible representation of K. If the con-
tinuous function ¢ on G satisfies ¢=¢° and xsx¢=q, the following two
statements are equivalent;

(I') ¢ is a spherical function of type 0 of height p obtained from
an irreducible unitary representation of G,

(I1"”) ¢ is positive-definite and dim (L(0)/p)< + oo, where p={fe€
L(0); f'*¢=0}, and there exists a p-dimensional irreducible representa-
tion f—>U; of L°(0) such that ¢(f)=(dim0)Tr[U;].

The following remark and corollary are applicable to the whole
cases A, B, and C.

Corollary. If the algebra L°(0) is commutative, & is contained in
every topologically irreducible representation of G either at most once or

infinitely many times.
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Remark. In the case of §=1, we have L°(0)=L(0)={f< L(G);
flkyxky)=f(x) for ki, k€ K}. Therefore the condition dim(L(0)/p)<
+ co is automatically satisfied by Lemma 15 (iii).

The next theorem in the case B is also verified in the cases A4

and C with some trivial modifications.

Theorem 9. Let G be a locally compact, ¢-compact and unimodu-
lar group, ¢ a continuous function on G such that dim(L(5)/p)< + oo,
where p={f€ L(0); f'x¢p=0}. Suppose there exists a compact subgroup
K of G and its irreducible representation 0 such that xsx¢==0, then the
Sfollowing two statements are equivalent;

(i) ¢ is proportional to a spherical function of height 1,

(ii) ¢(e)SK¢(kxk‘1y)dk=¢(x)~¢(y) for every x, y€G.

§5. Correspondence between representations and spherical func-

tions

It is well-known that the given two irreducible unitary representa-
tions are unitary equivalent if and only if the corresponding spherical
functions coincide with each other [5]. But in general case, such a
rigid correspondence does not exist.

Assume G is 0-compact. Let a and a, be the same as in the cases
A and B respectively, i.e., a is a maximal left ideal in L(d) containing
p and ap is a maximal L(0)-invariant subspace of 2(8) containing P.
Denote by U the set of all such a, and by 2, the set of all such ay.
Then, if a€, the completion 4 of a in ¥(d) belongs to W, and a=d
NL(J0), and conversely if ay€ Wy, a=apN\L(J) belongs to A and ao is
the completion & of a in ¥(d). If ae and d=ay€ W,

m= {fE L(G); is*g*f*is €a for every g€ L(G)}
and

my={fE€8(G); Xsxgxf*xX;€qy for every g€ L(G)}
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are combined by the relation myN\L(G)=m. Thus we know that
2(G)/my is the completion of L(G)/m by the ‘“suitable” topology.
Similarly, in the case of positive-definite ¢, we can see that H(G)/n, is
the completion of L(G)/m.

Now, take a topologically irreducible representation {9, T} of G
and a corresponding spherical function ¢;. By Lemma 13, p={f¢€ L(9);
f*¢s=0}={f€ L(0); T=0}. Moreover we have the following

Lemma 25. For every non zero element ac$(0), a={fec L(0);
Tia=0} is a maximal left ideal in L(O) containing p. Conversely, for
every maximal left ideal a in L(0) containing b, there exists a unique
non zero element a€9D(0) up to scalar multiples, such that a={fe
L(0); Tra=0}.

Proof. The first half of the lemma is clear. Let’s prove the latter
half. Suppose, for every non zero element a€9(J), we can find an
element f€a such that T;a=<0, then the correspondence f— T is an
irreducible representation on 9(J) of the algebra a. Then, by the
Burnside’s theorem, there exists an element v€a such that 7,=1. It
follows that L(0)Ca, but this is impossible. Thus there exists some
non zero element a € () such that {f € L(0); Tya=0}Da. This
implies {f€ L(0); Tya=0}=a by the maximality of a. There exists
a f€L(0) such that Tra=0 and T;b=~0 provided that a and b are

linearly independent. Therefore the uniqueness of such a is proved.

q.e.d.

Now let a be a maximal left ideal in L(J) containing p, and «a
a corresponding element in 9(d), then

m={fe€ L(G); Xsxg*xfxX;ca for every g€ L(G)}
={fe L(G); Tra=0}.

Therefore the mapping ¢: Tya—{f} from D,=9,[K, 0, a]] onto L(G)/m
is linear, bijective, and
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o(T:Tra)=AL.f}, @(E@0)Tsa)={Zsxf*%s}.

The given spherical function ¢; is realized as a spherical function in
the generalized sence on ¢(,)=L(G)/m. This realization is exactly
the one used in the proof of (II)=>(I) for the case 4. From this con-

sideration, we obtain the following

Theorem 10. Let G be a locally compact unimodular group, and
K a compact subgroup of G. Suppose that two topologically irreducible
representations {9, T}, {®', T.} contain some 0 at most finite times.
Then ¢s=¢5 if and only if there exists a bijective linear mapping ¢:
D09} such that

oT,=TLp for every x €G, and pE(0)=E'(0)e,

where Do and Oy are the spaces given in Lemma 4.

Especially, if both of the two representation {9, T,}, {9, T.} are
algebraically irreducible, ¢ maps 9 onto 9.

We may say that two topologically irreducible representations {9,
T.}, {9, T.} are “equivalent” if the corresponding spherical functions
s, 5 coincide with each other for some J. In the terminology of
R. Godement [5], ¢; is said to be ‘“quasi-bounded” if there exists a
positive function p on G such that ¢;/p is bounded and that

(a) p is lower semi-continuous, (b) o(xy) < p(x)o(y),

(c) p is bounded on every compact subset of G.

An “equivalence’ class of topologically irreducible representations con-
tains a representation on a Banach space if and only if one of (or all
of) the corresponding ¢; is quasi-bounded, and moreover we can find a
completely irreducible representation on a Banach space as a representa-
tive element (cf. [5]). And an “equivalence” class contains a unitary
representation if and only if one of (or all of) the corresponding ¢; is
positive-definite. Particularly, if ¢; is bounded, the corresponding “equi-

valence” class contains a representation on a Banach space such that
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the operator norms of all T,(x €G) are equal to 1. If G is ¢-compact,

we can always find a representation on a Fréchet space as a representa-

tive element.
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