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0. The statement of the theorem.

Let f;: X;— S, (i=1,2,3) be a proper flat S-prescheme of finite
presentation such that f; has a section e; and that f;4(0x,)=0s uni-
versally. Let G be a flat commutative S-group prescheme of finite pre-
sentation. For any subset I of {1, 2, 3}, we denote by X;= HX the
fibre product of X;, i€ I, by s; the immersion X;—> X 2,3 deﬁned by
idx, for i€l and e; for i€{1,2,3}—1 and by s;,; the immersion
X; —X; defined by idx, for j€J and e; for jel—J if JCI

A trivialization of a Gy, , 4 -torsor E with respect to e;, (i=1, 2, 3)
is a set of isomorphisms «;: s}(E)—>Gyx, for any subset I of {1, 2, 3}
such that for JCI, s¥ ;(a)=ca;. The set of isomorphism classes of
trivializable Gy, ,, -torsors forms an abelian group which is denoted by
PH(c, e, (X1 >§Xz X Xs, G).

We shall prove the following

The theorem of the cube. Let f;: X;—S(i=1, 2, 3) and G be
as above. Then PH(«,.e,.e,)(X1>S<Xzi_<X3> G)=0 if G satisfies moreover
one of the following conditions:

(1) G is affine and smooth over S.

(2) G is finite and flat over S.
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(3) G is an abelian scheme, S is quasi-compact and normal and
fi (=1, 2, 3) are geometrically normal.
If G is the multiplicative group prescheme, G, s, this theorem is
the ordinary theorem of the cube (cf. [1], [3],[6]). The notation and
definitions are those of [4] and [5]. The cohomologies should be un-

derstood to be (f.p.q.c.)-cohomologies unless otherwise mentioned.

1. The formal non-ramifiedness of the functor Corr§(X;, X;).

Let fi: X;—S (i=1, 2) be a proper S-prescheme such that f; has
a section e; and that fi4(0x,)= 0s univrsally and let G be a commuta-
tive affine flat S-group prescheme of finite presentation. We define a
(f.p.q.c.)-shveaf of abelian groups, Corr§(X;, X;), on the site (Sch/S),,
by the following split exact sequence,

* *
bryt+pry

0—>PH(X,/S, G) % PH(X,/S, G) ——> PH(X, x X,/5, G)
N (1 s S

—>Corr§(X;, X;)—>0.

Corr§(X;, X,) is called the functor of divisorial correspondences of type
G between X; and X; and satisfies the following properties;

(1) Corr§(X;, Xz)>; S’ =~ Corr§.(X}, X}), where ’ on the shoulders
denote the base change by S—S.

(2) Corr$(Xy, Xz)ffCorrg(Xl, X;)(S) is a direct summand
of PH(X, ?XZ/S, G>diPH(X1>§X2/S’ G)(S) with the complement
PH(X,/S, G) DPH(X,/S, G).

First of all, we shall prove

Lemma 1. Corr§(Xi, X;) is formally non-ramified if G is a
smooth affine commutative S-group prescheme of finite presentation and

f1 or f2 is flat.

Proof. We may assume that S is affine and that f; is flat. Let
S=Spec(A4), let I be a square zero ideal of A and let S=Spec(4/I).
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We have to show that the canonical morphism obtained from the base

change by S—38,
i * Corr§(Xy, Xz)——>Corrg(X‘1, X5

is injective. Let & be an element of Corr§(X;, X;) such that i(¢)=0.
By definition, & is representable by a Gyx . x,torsor E such that sf(E)
S

(resp. s§(E)) is a trivial Gy, (resp. Gx,)-torsor and that EX S is also
s
a trivial Gx,«x,torsor. Then we should prove that E is itself a trivial
5
G x,x x,-torsor.
s

Consider the following diagram,

X1XX2 —£2 X2
S

Je 2 s

1 — S

f1 ’

where g; and g are canonical projections and where &= f1g1= f24.

If # is a quasi-coherent Oy, x,-Module, the Leray spectral sequence for
S

the composite morphism h=f1g; gives an exact sequence,
0—>R' f1:(g14F )—> R'hs(F)—> f14R" g15(F).

If #=h*% for some quasi-coherent @s-Module ¢, this sequence becomes
0——>R'f145(f¥9)—>R'hy(h*9)—>R' f24(f §9),

where we used the flat base change theorem for f, (cf. EGA, III (1.4.15)).

Since S is affine, this sequence is equal to an sequence,

0—>H (X4, f¥9)—>H' (X, >§Xz, h*@)——H'(X,, f§9).

Moreover this sequence splits because X; and X, have sections from S.

On the other hand, we have the following commutative diagram

from Lemma 2 below:
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0—>H'(X; Lie 6®I0x)  —IH'(X1,6) —1>H'X1, 0)
S

I ]

0—> H(X; X X3, Lie G® I0,, x )22 H'(X; % Xy, G)—25 HY(X; X X5, G)
S [ s S 5

| | l

0—>H'(X,, Lie GQ I0x,) L HY(X,, G) —H'(X,, G)
Cs

where the lines are exact and the left column splits. ¢ defines an ele-
ment & of HY(X;X X,, G) such that i;,2(¢’)=0 and £€=0 if and only
if &=0. °

Then the diagram chasing shows that £=0. q.e.d.

Lemma 2. Let G be a smooth affine commutative S-group prescheme,
let f: X—>S be a S-prescheme quasi-compact and quasi-separated over S
and let S be a closed subprescheme defined by a square-zero Ideal £ of

Os. Then we have an exact sequence.
0—>fx(Lie CQ FOx)—>f1(C)—>]+(E)—>

R'f(Lie Ggf)s F0x)—>R [ (G)—>R'f«(G).

If fx(0x)=0s universally, then f,(G)— f«(G) is surjective. Moreover,

if S is affine, we have an exact sequence,

0—>HY(X, Lie GR £0x)—>H (X, G)—>H'(X, G).
Us

Proof. We shall show that if S is affine, we have an exact sequ-

ence,

0—>7'(X, Lie G ® £0x)—>G(X)—>G(X)—>
Us
H'(X, Lie G(®.¢0X)——)H1(X, G)—>H\(X, G).

The first exact sequence is obtained by localizing the above sequence.

An element & of H'(X, G) can be given by a éech-cocycle. Since
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we are dealing with the (f.p.q.c.)-topology, & is given by a éech-cocycle
g€ G(Uy) for U={U;} € Cov(X), where U; is an affine scheme which
is faithfully flat over an affine open set V; of X, \/V;=X and where
U;j=U;>; U, The image of ¢ in H'(X, G) is zero iif and only if {gi;}

is a 6ech-cob0undary. Then replacing 11 by a finer open cover of X
we may assume that there exists k;€G(U;) for all i such that gii=
hi—h; on Uy for all i, j.

Let U;=Spec(4;) and let U;=Spec(4,/I;), I; being a square-zero
ideal of A;. Since G is smooth over S, there exists h; € G(U;) for all
i such that A;=h; modulo I;, Let g}j=gij—hi+h; Then gi;=
modulo I;.

Now we shall use the following

Sublemma. Let G be an affine smooth T-prescheme and let T be
a closed subprescheme of T defined by a square-zero Ideal S of Or. Then

we have the following exact sequence,

0——>I'(T, Lie G(? £)—>G(T)—>G(T).

Proof. Since G is affine over T, G is given by a quasi-coherent
Or-Algebra & and & is the direct sum of ¢r and the augmentation
Ideal #,i.e.,, # =07D#. Let g be an element of G(T) such that
&=0 modulo #. Let g be defined by an @r-Algebra homomorphism
¢: &—>0r. Then ¢ sends # to S since the composite homomorphism
& —2>07—07 factors through &/ ¢. Since f is square-zero, ¢| ¢ de-
fines an Or-Module homomorphism ¢: ¢/ #*—>#.  Conversely, if
¢: g/ 92> is any Or-Module homomorphism, we can construct an Or
-Algebra homomorphism ¢ by ¢|c,=id¢, and ¢| F=¢ composed with
the canonical projection #— ¢/ #% Then it is easy to see that y=¢
and §=¢. On the other hand, Hom,(#/ 2% #)=Hom,(#/ 7% #)
(T)=I(T, LieG((E?J) since ¢/ #? is locally free O7-Module.

q.e.d.
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Now we shall go back to the proof of Lemma 2. From the sub-

lemma, there exists an element 7; of I'(Uy;, Lie G®#0y,) determined
Us

uniquely by gi;. Then 7;; is a (V:ech-cocycle of C'(, Lie GRILOy),
Us
hence defines an element £ of H'(X, Lie G®R.£0x) which goes to &.
Os

£ is a (Viech-coboundary if and only if { comes from an element of

G(X) by the following morphism 0: Let g€ G(X) and let B={V;} be

an affine open cover of X. Then g|y, comes from g; of G(V;), since

G is smooth over S. Then for any i, j, gi—g; corresponds with an

‘element 7 of I'(Vy, Lie G(@J(DX) and {7;;} is a éech-cocycle of C(,

Lie G%@J@X). Hence {7;;} fieﬁnes an element & of H(X, Lie Gg@.ﬁ'@x).
S N

Then ¢ is a morphism which sends g to {. If & defines an element {
which comes from ge& G(X) by the morphism 0 above, we can see easi-
ly from the definition that § is a éech-coboundary. Conversely, if & is
a éech-coboundary, replacing U by finer cover, there exist g’;€G(U;)
for all i, which is in turn coming from I"(Uj, Lie(G)g@J@X), such that
g'ii=g'i—g'; on Uy for all i,j. Since g’;,-(=g’;—gs’j)=0 modulo 7,
g'i=g; for all i, j. Hence {g';} defines an element g’ of G(X), which
is easily seen to give £ by 0. Here we note that H},q(X, Lie GO®SJ(9X)
~H}, (X, Lie G(@J@X). g comes from an element of G(X) if and
only if 6(g)=0. S;I‘he remaining parts follows from the sublemma.

If fx(0x)=0s universally, G(X)—G(X) is surjective since G(X)=
Hom g (Spec( fx0x), G), G(X)=Homz(Spec(f+0%), G) and since Spec
( f «(0%)) is a closed subprescheme of Spec(fy(Ox)) defined by a square-
zero Ideal. q.e.d.

Lemma 3. Let G, X, and X; be as in Lemma 1. Then the unit

section e of Corr$(X,, X;) is representable by an open immersion.

Proof. Let T be any S-prescheme and let Zr=(T, a)X , (S, e)
Corrs(X1, X2

for any S-morphism «a: T—Corr§(X;, X;). We have to prove that
Zr is an open set of T. Namely, if ¢ is a point of T such that «(t)
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=0, then Spec(0r,;) CZ7r®. Since Zspe(0, )= ZT>T<Spec(0T,,) and t€
Zspecoy,» We may replace T by Spec(Or,:). Let 4=0r,; Then «
defines an element & of Corr§7(Xy,r, Xp,7). Finally we may assume
that T=S. By (f.p.q.c.)-descent, we may replace 4 by its completion
A with respect to its maximal ideal m. In fact, if S is Spec (Af), the

morphism
Corr§(X,, X2)(S)—>Corr§(X;, X2)($)

is injective because S is faithfully flat and quasi-compact over S and
Corr§(X,, X;) is a (f.p.q.c.)-sheaf. Let A,= A/m"*' and let S,=
Spec(A,). Then by virtue of Lemma 1, the canonical morphism

Corr§n( X1, n Xon)—> Corrg_- (X1, X3)

is injective, where S=Spec(A/m) and G=G X sS. Since & is zero,
&,=& modulo (m"*!) is zero.
& is representable uniquely up to isomorphisms by a Gy .x,-torsor
s

E such that sfE and sfE are trivial. Then E= lim Ex S, is trivial.

—_— S

n
The sections ¢, : (X1 X X3),— E xS, which trivialize EX S, can be
s s s

chosen so that the following diagram is commutative for any n _>m,

(Xl X .Xz),,—‘r"—-)E X S,
S S
1 1
(X1 X Xp)p—22>E X S,
N s

Then there exists a section 0: X; X X;—F by virtue of EGA, III (5.4.1.).
s
Therefore E is trivial. Thus Spec(4)CZ. g.e.d.

Lemma 4. Let f;: X;—S (i=1, 2, 3) be a proper flat S-prescheme
such that f; has a section e; and that fi*(th);_ms universally and let

G be a smooth affine commutative S-group prescheme of finite presenta-

(*) In fact, Corr§(X,, X,) is a functor of finite presentation since PH-functors
are so and Corr§(X,, X;) is a direct summand of a PH-functor, (cf. [4] or SGAD,
Exp Vg (10. 16)). Then the fact that Spec(0r,,) € Z; implies that there exists an
affine open set U of ¢ such that Uc Z.
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tion. Then any S-morphism f: X3—>Corr§(X1, X;) which sends the sec-
tion ez to the unit section e of Corr$(X,, X;) factors through the unit

section, i.e., f=e-f3.

Proof. Let Z=(Xj;, f)x (S,e). Then by Lemma 3, Z is an

Corrg(xl'Xz)
open subprescheme of X3 which contains e3(S). To complete the proof,

we have to show that Z=X;. If Z5~X;, take any closed point x of
X3—Z and let s=f3(x). Then f,: X3 ,—>Corrg,(X1,,, Xz,) does not
factor through the unit section e; of the latter. Therefore we are re-
duced to consider the case where S =Spec(k), where k is a field. By
(f.p.q.c.)-descent, we may assume that k is algebraically closed. If G
is connected, Corr§(X;, X;) is representable by a S-group prescheme
locally of finite type over S. In fact, Corr§(X;, X;) is the kernel of
the S-homomorphism (s¥, s%): PH(X,; x X;/S, G)—>PH(X,/S, G)xPH
(X,/S, G), where PH(T/S, G), T:X1§< Xz, X; or X, is represerftable
by a S-group prescheme locally of ﬁniie type over S. If G is etale,
Corr§(X,, X;) is representable by an etale S-group prescheme. (For
these results, see [4].) In general, G has a connected component G,

such G/G, that is etale and satisfies the following exact sequence,
0——>Corr$(X;, X;)—>Corr§(X;, X;)—>Corr§/6(X;, X,),

whence the connected component Corr$(X;, X,)" of the unit section of
Corr$(X,, X;) is representable and coincides with Corr§(Xi, X;)°.
Therefore Corr$(X;, X,)° is separated over S. Then the unit section
e is a closed immersion. Then Z is a closed and open subprescheme
of X. However since f34(0x,)=0s, X; is connected by Zariski’s con-

nectedness theorem. Therefore X3=2Z2. q.e.d.

2. The proof of the theorem. The first case.

Let E be a Gy, ,, -torsor representing an element of PH, ., .,
(X1 % Xy% X3/8,G). Then E defines a S-morphism
s s

&: Xz3—Corr§(Xi, X»)
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which sends the section es to the unit section e of Corr$(Xi, X»).
Then ¢ factors through the unit section e by virtue of Lemma 4.

Moreover E considered as a G(Xlg Xs)),;s(ng xy-torsor defines an element
7 of PH((X1>§X3) >)§3(X2>§X3)/X3, G) which is in turn isomorphic to

the direct sum,
PH(X; x X3/X3, G)@PH(XZ X X3/X3, G)@Corrg(Xl, Xo)(X3).
s s

The components of % by this decomposition are s¥,(E), s¥;(E) and ¢

which are all zero. Hence 7 is zero. Then FE is trivial. q.e.d.

As this proof shows, if Corr$(X;, X;)=0, the proof of the theo-
rem becomes almost trivial. The following result shows that the diffi-

culty of the proof of the theorem comes from the torus part of G.

Proposition 5. Let f;: X;— S(i=1,2) be a proper flat S-pres-
cheme of finite presentation such that f; has a section e; and that
[isx(Ox )= 0s and let G be a smooth affine commutative S-group pres-
cheme of finite presentation. Suppose that the semi-simple rank of G is
zero at every point of S. Then Corr§(X;, X;)=0.

Proof. It is sufficient to prove that Corr§(X;, X;)=0. We may
assume that S is affine, S=Spec(A4). Since Corr$(X;, X;) is a functor
locally of finite presentation (cf.[4]), we may assume that 4 is a local
ring. By (f.p.q.c.)-descent, we can replace 4 by its completion 4 with
respect to the maximal ideal m. Let k=A/m and let s=Spec(k).
Suppose we have shown that Corr$s(X; , X )=0. Then by Lemma 1,
Corr§n(Xy,4, X;,,)=0, whence one deduces Corr§(X;, X;)=0, using the
argument of the proof of Lemma 3.

Now we shall show by induction on the unipotent rank of G, that
Corr$:(Xy,s, Xz,)=0. By (f.p.q.c.)-descent, we may assume that % is

perfect. Then G, has a composition series,

0=GOCG1C"'CGn=Gs
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such that G;,1/G;=G,, the additive group prescheme over k for i=0,
1,..., n—1.
For an exact sequence, 0—>G;—>G;.;—>G,—>0, we have an

exact sequence of group functors,
0—> Corr§i( X, Xz, s)—>Corrli-i(X, 5, Xz,5)
——-—)COI‘I‘?“(XLS, Xz‘s).

Therefore if Corr$e(Xi ;, X;,;)=0, we are done by induction on .

In the case where G,=G,, Corr«(X, ;, Xz ;) =PH(X;,,x Xz, /s, G,)/
PH(X, /s, G,) x PH(X;, /s, G,)= Lie (Pic(X;,, X Xz,s))/Lsie (Pic(Xy,5))
x Lie (Pic(X,,5))=0 (cf. [4]). ° g.e.d.

Corollary 6. Let G, X, and X, be as in Proposition 5.

Then we have
PH(X:/S, G) x PH(X,/S, G)=~PH(X; X X;/S, G).
s s
Therefore

H' (X1 X X», )= H'(Xy, G)@H' (X, G)/H'(S, 6),
N

where H'(S, G) is considered as a subgroup of H' (X1, G)@H' (X, G)
by the injective homomorphism E—(f%E, — f3E).

Proof. Obvious by definition. See [4] and [5].

Corollary 7. Let G be as in Proposition 5 and let A be an abelian
scheme over S. Then we have

H'(A, G) = Exts_, (4, G)® H(S, G).

Proof. Let fa and es be the structure morphism and the unit

section of A respectively. Then we have,
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HY(A4, G)=PH(A4/S, G)®H'(S, G).

Therefore it is sufficient to show that PH(A/S, G)=Ext_,, (4, G).
Take any element & of PH(A/S, G). £ is representable by a Ga-torsor
E such that eXE is trivial. Let 7 be the multiplication of 4. Then
the Ga,a-torsor O(E)=n*E—priE—prfE is trivial since Corr§(4, 4)=0
from Proposition 5. Then FE has a structure of commutative group
S-prescheme with a section of eXE as unit section £ and is an exten-
sion of 4 by G (cf.[2], (1.3.5.)). The extension class of E is deter-
mined uniquely by &  Sending & to the extension class of E, one can
define a homomorphism @ which is the inverse of the canonical homo-
morphism i: Ext}_,,(4, G)—>PH(A4/S, G). g.e.d.

3. The proof of the theorem. The second case.

Let fi: X;—S(i=1,2) be a proper flat S-prescheme of finite pre-
sentation such that f; has a section e; and that f;,(0x )=0s universal-
ly, let G be a finite flat commutative S-group prescheme of finite pre-
sentation and let D(G) be its Cartier dual.

We shall recall the following

Lemma 8. ((5]). Corr§(X:, X;)=~Homg;_,,(D(G), Corrgr
(X1, X3)).

Lemma 9. Corr$(X,, X) is formally non-ramified.

Proof. Let S be an affine scheme and let S be a closed sub-
scheme of defi S ned by a square-zero ideal. We have only to show

that the canonical morphism
Corr§(X1, Xz)—> Corr(Xy, X3)
is injective. This follows from the commutativity of the diagram,

Homs_z,(D(G), Corrs(X;, X.))—>Homs_,,(D(G), Corrs(Xi, X,))

I [

Corrs(X1, X2)(D(G))—>Corr(Xy, Xo)(D(G)),
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where Corrs(X;, X;)=Corr~(X;, X;). q.e.d.

Lemma 10. The unit section e of Corr$(Xi, X;) is representable

by an open and closed immersion.

Proof. It is sufficient to show that if u: D(G)—Corrs(Xi, X;) is
any homomorphism of S-groups and H is the kernel of u, then the set
Z={se S; Hs=D(G)}is an open and closed set of S.

However since the unit section of Corrs(X;, X;) is representable
by an open and closed immersion (cf. [1]), H is an open and closed
subgroup prescheme of D(G), hence it is finite and flat. Then the rank
of each fibre of H is locally constant, whence the required result fol-

lows easily. q.e.d.

Now Lemma 4 is an easy consequence of Lemma 10 if G is under-
stood a finite flat commutative S-group prescheme of finite presentation
in Lemma 4. Then one can prove the second case of the theorem fol-
lowing word for word the proof for the first case.

Proposition 11. Let G, X; and X; be as above. If both f, and

[z are geometrically normal, Corr§(X,, X;)=0.

Proof. Since Corr§(X;, X,) is a (f.p.q.c.)-sheaf, we have only to
show that Corr§(X;, X;)=0 if S is an affine scheme. Moreover since
Corr$(X;, X;) is a functor locally of finite presentation over S (cf. [4]),
we may assume that the affine ring 4 of S is a local ring. We may
replace A by its completion with respect to the maximal ideal m. If
we could prove that Corr§(X;, X;)(k)=0, where k=4/m, the proof
will be completed, using the argument of the proof of Lemma 3.
Therefore we shall show that Corr§(X;, X;)=0 if S is the spectrum
of a field k. We may assume k algebraically closed. In this case
Corrs(X;, X;)=Hom,_,,(Alb(X}), Pic%,:) which is torsion free (cf.
[37], p. 155). Then Corr§(X;, Xz)=Hom;_,,(D(G), Corrs(X;, X;))=0.

q.e.d.
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Corollary 12. Let G, X; and X; be as in Proposition 11.
Then

PH(X: x X;/S, G)=PH(X,/S, G)®PH(X,/S, G).
s
Therefore

H'(X, >§ X,, G)= H' (X, &) ® H'(X,, G)/H\(S, G)

where HY(S, G) is considered as a subgroup of H (X1, G)@HY Xz, G)

by the injective homomorphism defined as in Corollary 6.

Corollary 13. Let G be as above and let A be an abelian scheme
over S. Then

H'(A, G)=Ext}_,,(4, G)@H'(S, G).

Proof. The same reasoning as for Corollary 7.

4. The proof of the theorem. The third case.

We shall prove the following

Proposition 14. Let S be a quasi-compact normal prescheme, A
be an abelian scheme over S and let f;: X;—S (i=1, 2) be a proper flat
geometrically normal S-prescheme such that f; has a section e; and that
fix(0x,)=0s universally. Let Corr§(X1, X3) be the set of all isomor-
phism classes of A Xix x,torsor E such that sTE and s3E are trivial.
Then Corrg(X;, X;)=0.

Proof. From our assumptions on S and f;, we have an inclusion,
COI‘I“g(Xl, Xz) CHI(Xl g( Xz, A)rcp= Hl(Xl ;(.Xz, -A)tor

(cf.[6]). If € is an element of Corr4(X;, X;), there exists an integer
n>0 such that n£=0.

Consider an exact sequence of (f.p.q.c.)-sheaves,
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00—, A— A2 A—0,

where ,A4 is a finite flat commutative S-group prescheme.

Denote by Ao(T), Hy(T, ,A) and H(T, A) the kernels of A(T)-¢
A(S), H\(T, ,A)-<-HY(S, ,A) and H'(T, A)-<>H'(S, A) respectively,
where T should be replaced by Xi, X, or X; x X, and where e* is the
homomorphism canonically deduced from e; ansd e;. Then we have the

following commutative diagram.

0 0

Ao(Xy) —IsHYXy, .4) —2>HY(Xy, A) ——H)(X;, A)

st] |t st [t Jst I

Ao( Xy X X)L HY( Xy % Xy w2 HY(X X X,y A)—"HY(X: % X;, A)
S S

S S
1] o st Jrt & l
Af(Xy) —Z~HY( Xy, nA) —2>HY(X;, A) —"—HY(Xy, 4)

|

0 0

where the lines are exact and two left columns are split exact.

Since n&€=0, §=1i,5(y) for some element 7 of HL(X;x X, ,4). Let
pi=st(r) and 7a=sf(r). Then ix(p)=s¥ira()=0. Also is(n)=0.
Therefore 71=/1(§1) and 7,=/2({2). Put {=prf (€1)+pr¥(£z). Then
j12(8)=%. Hence §=0. Thus Corr4(X;, X3)=0. q.e.d.

Corollary 15. Let S and f; (i=1,2,3) be as in the statement
of the theorem and let A be an abelian scheme over S. Suppose moreo-
ver that S is a quasi-compact normal prescheme and that f; (i=1, 2, 3)

is geometrically normal. Then

PH(el,ez,e;,)(Xl ;( X, ;( Xs, A)=0.

Proof. Easy from Proposition 14.
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Corollary 16. Let S be a quasi-compact regular prescheme and let

A and B be abelian schemes over S. Then
H'(B, A)=H"'(B, A)cc; = Exts_z(B, ADH'(S, A).

Proof. The first isomorphism is due to M. Raynaud ([6]). The
second isomorphism is proved as in Corollary 7 and Corollary 13, using
Corollary 15 and [27], Exp. VII, (1.3.5).
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