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O .  The statement of the theorem.

Let f i : S , (i= 1, 2 , 3 ) b e  a  proper flat S-prescheme o f finite

presentation such that f i  has a section ei and that fi*(ex,)-:11"—= C s uni-

versally. Let G  be a flat commutative S-group prescheme of finite pre-

sentation. For any subset I  o f {1, 2, 3 }, we denote by X l= H  X i the
ie f

fibre product of X i ,  i E I ,  b y  s1  the immersion Xj--X{1,2,3} defined by

fo r i E I  and e • f o r  i E {1, 2, 3} — I  and by s j a .  the immersion

Xj --.7(1 defined by id x 1  for j E J  and ei  f o r  j E I— J if .1( I.
A trivialization of a  Gx ,1,2,3 ,-torsor E  with respect to e i , ( i= 1, 2, 3)

is a set of isomorphisms c e s l ( E ) - - G  x  for any subset I  o f {1, 2, 3}

such that for J (  I ,  4, 1 (ceD=aj. The set of isomorphism classes of

trivializable Gx,,,,. 3 ,-torsors forms an abelian group which is denoted by

X X2 X X 3 , G).
s sWe shall prove the following

The theorem o f th e  cu be . L e t f i : ( i= 1, 2, 3) an d  G  be
as  abov e. T hen PH ( e i ,,,, e 3 ) (X 1 x X2 X X 3 , G).= 0  i f  G  satisfies moreover

s s
one of  the follow ing conditions:

(1) G  is  affine and  sm ooth over S.
(2) G  is f inite and f lat ov er S.
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( 3 )  G  is  an  ab elia n  schem e, S  is quasi-com pact an d  norm al and
f  ( i =  1, 2, 3) are  geometrically normal.

I f  G  is the multiplicative group prescheme, G„,,5, this theorem is

the ordinary theorem of the cube (cf. [1], [3], [6 1). The notation and

definitions are those of [4 ] and [5]. The cohom ologies should be un-

derstood to be (f.p.q.c.)-cohomologies unless otherwise mentioned.

1 .  T h e  form al non - ramifiedness o f  th e  functor Corr,(X -1 , X 2 ).

Let f i : X i —*S ( i= 1 , 2 ) be a  proper S-prescheme such that f ,  has

a section ei  and that fi* (0x ,),  univrsally and let G  be a  commuta-

tive affine flat S-group prescheme o f  finite presentation. W e  d e fin e  a

(f.p.q.c.)-sheaf of abelian groups, Corr .(2(1., X 2 ) ,  on the site (Sch/S) p ,

by the following split exact sequence,

Pr;-Fprl
O PH(X -

1 / S, G) xPH (X 2 / S, G )   PH (X ix X 2 / S, G)

- ->Corr,q(Xi , X2 ) .

Corr.g(X i , X 2 )  is called the functor of divisorial correspondences of type

G  between X1 and X 2  and satisfies the following properties;

(1) Corr,(X1, X2) x X i), w h e r e  on the shoulders

denote the base change b y  S'—>S.

(2) Corr,(X1, X2)=—Corr ,Ç(Xi ,  X2 ) ( S )  is a  d i r e c t  summand

o f  P H (X j. x X2 / S, G)=-ciP fH(X i x X2 /  S , G ) (S )  w ith  t h e  complement
d e f

PH(X i / S, G)(1) PH (X2 / S, G).
First of all, we shall prove

Lemma 1. Corrg, (X 1 , X 2 )  is  f o rm ally  n o n -ram if ied  if  G  i s  a

smooth a ffin e  com m utative S -g ro u p  p r e s ch em e  o f  f inite presentation and

f i  or f 2  is f lat.

P roo f. W e  m ay  assume that S  is affine and that f i  is  flat. L e t

Sz-----Spec(A ), let I  be a square zero ideal o f A  and let S=Spec(A//).
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The theorem of the cube

W e have to  show th a t  th e  canonical morphism obtained from the base
change b y  S — >S,

i  : COTT X2)-->COrr(X1) X2)

is  injective. L e t  $  be an element of Corr,(X i , X 2 )  su ch  th at i(e )= 0 .
By definition, $  is representable by a  Gx ,xx,-torsor E  such that st(E)

(resp. 4 (E )) is  a  tr iv ia l Gx, (resp. Gx 2)-torsor and th a t E x S  is also

a triv ial Gy 1x x 2 -torsor. Then we should prove that E  is  itse lf a trivial

Gx, X x2-torsor.

Consider the following diagram,

where g i  an d  g2 are canonical projections and w here h = f ig i= f 2 g 2 .

If g "  is  a  quasi-coherent Ox 1 „x 2-Module, the Leray spectral sequence for

the composite morphism f i g i  g ives an exact sequence,

13- - - > k f i* ( g i* .F ) - - ->R 1h*(F) - - - >fi*R i gi*(F).

If .F = h * g  for some quasi-coherent e s -Module g, this sequence becomes

0 >R 1f1*(f ig ) - - - - ->R 1 h*(0g) - - R i f2 *(f

where we used the flat base change theorem for f 2 (cf. EGA, III (1.4.15)).
Since S  is  affine, this sequence is equal to an  sequence,

0- >111 (Xi, f  tg ) - >I1-1(X1 x X 2 , h*g)---).11'(X 2 , f i g ) .

Moreover this sequence splits because X 1 an d  X2 have sections from S.

On the other hand, w e  have the following commutative diagram
from Lemma 2  below:
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0— >H 1 (.2f1 L ie  GOlexc s
111(X1, G) C)

*s

x X 2 , Lie GO /0x, „x2)- -/r1 (X j. x X 2 , G)--1 1-11(ffi X  1 2 , C)
Cs

*S2

0--->H 1 (X 2, Lie GO /ex )  i 2  >1/1(X 2 , G )  i H 1-(X 2 G )
s

where the lines are exact and the left column splits, e  defines an ele-
ment $' o f  1/1(X 1 x X 2 , G ) such that i i ,2(n =  0  and $=0  if and only

if  $'=0.
Then the diagram chasing shows that $=0. q. e. d.

Lemma 2 .  L et G be a smooth affine commutative S-group prescheme,
let f :  X — ' S  be a  S-prescheme quasi-compact and quasi-separated over S
an d  le t S  be a  closed subprescheme def ined by  a square-zero Ideal .fir of

Cs . T h e n  w e  hav e an ex act sequence.

0--->f* (Lie G O  i r Ox) - - - - >f*(G) - - +f*(C) - - >
g

R l f * (Lie GO Ste x )--->R V V G)--->R 1 * (G).

If  f  * (0 x ):".- = ' s  universally , then  f ( G ) > J ( G )  i s  surjec tiv e . Moreover,

if  S  i s  affine, w e hav e an ex act sequence,

0--> H 1 (X, Lie GC)..f0 x )--->H 1(X, G)- - > R 1(X , G).
Os

P ro o f. We shall show that i f  S  is affine, we have an exact sequ-

ence,

0- -  >  (X , Lie G ® .1 0 x )-- ->G (X )- - -G (X )- ->
Os

H 1(X , Lie GO .10 x )--->H 1(X , G)- - > H 1 (k , G).
o s

The first exact sequence is obtained by localizing the above sequence.

An element $ of 111 (X , G ) can be given by a  Cech-cocycle. Since



T he theorem of  the cube 5

we are dealing with the (f. p. q. c.)-topology, E is given by a  6ech-coc y cle

giJ EG (Uu) for U = { Ui} E Cov(X), where Ui is  an affine scheme which

is faithfully flat over an  affine open set V i  o f  X, V V 1 =-X  and where

(Ai = U 1 x U p  The image of e  in  H i (X, G ) is zero if and only if  {

is a  Cech-coboundary. Then replacing II by a  finer open cover of X,

we may assume that there exists hi E G(C7i )  for a ll i  such that gu=
on Chi for all id.

L et Ui -= Spec (A i )  an d  le t rii = Spec ( i l i //i), I  being a square-zero
ideal of A .  S in c e  G  is smooth over S , there exists h 1 EG(U 1)  for all

i  such that hi =h i modulo I .  Let g i = g — h id - h 1 .  Then eu  = 0

modulo h.

Now we shall use the following

Sublemma. L et G  b e  an af f ine sm ooth T-preschem e an d  le t  T  be
a closed subprescheme o f  T  defined by a square-zero Ideal .fi" o f  O T . Then
w e have the follow ing exact sequence,

0- ->T (  T , Lie GO 5 )--> G (T )---> G (1 ).cr

P ro o f. Since G  is affine over T , G  is given by a  quasi-coherent

CT-Algebra d  and d  is  the d irect sum of O r and the augmentation
Ideal o f ,  e., 0 7 ,  C V .  L et g  be an element of G( T) such that

g =0  modulo 5 . L e t g  be defined by a n  CT-Algebra homomorphism
:  d—*9T. T h e n  go sends to 5  since the composite homomorphism

OT— Z 'T  factors through s i f / / .  Since 5  is square-zero, go of  de-
f in e s  a n  07-Module homomorphism i / o f Conversely, if

: a f / j r
2 —.5r is any CT-Module homomorphism, we can construct an CT

-Algebra homomorphism b y  Cfil rr = id o r  a n d  Cfil , f  =  composed with
the canonical projection j r — > j/ j .2 . Then it is easy to see that =
and $ -= 0. On the other hand, Hom or ( i / f  2 1  J O  HOM O rC itl 2 ,

(T )=T (T , Lie G ® 5 )  since /Le is locally free CT-Module.
( 7,

q. e.d.
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Now we shall go  back to the proof o f Lemma 2. From th e  sub-
lemma, there exists an  element vu of T (  U ,  L ie GO fe u , i )  determined

Os

uniquely by 6 .  T h en  v u  is  a  C- ech-cocycle o f  C (U,  Lie Gas/Ox),
Os

hence defines an  element C o f H 1 (X, Lie GO.F0x) which goes to E.
Os

E is  a  Cech-coboundary if and  only if  C comes from an  element of
C (X ) b y th e  following morphism 6 : L et geG (g) and let { Vi l  be
an  affine open cover of X .  Then gly , comes from g i  of G(V 1), since
G is sm ooth over S. T hen fo r an y  i ,  j ,  g i — gi corresponds w ith  an

element vu  o f  F( Vu , Lie GOE5 0x) and Iv u l is  a  C' ech-cocycle of C1 ( ,
Os

Lie GO.s/ex). Hence fo u l defines an element C of H 1 (X, Lie G(D.SI0x).
Oso s

Then 6  is  a  morphism which sends g  to C. I f  E defines an  element C
which comes from g EG(X) by the morphism 6 above, we can see easi-

ly from  the definition that E is  a  Cech-coboundary. Conversely, if Ç  is

a  C' ech-coboundary, replacing 2I by finer cover, th ere  ex ist g ' i EG(U i )
for a l l  i ,  w hich is in  turn coming from T (U i , Lie (G)®J 5- 9x), such that

Os
g i i.i= e i — g l;  o n  U15 fo r  a l l  i, j. Since g i u(= g i i -  g ';)=  0  modulo I,

g i fo r a l l  i, j. Hence {g' i }  defines an  element g '  of GM , which
is easily  seen  to  g ive C by 6 .  Here we note that 1-Pig (X, Lie G®5(9x)

Os
H L ,(X , Lie Go fo x ). g  comes from a n  element o f  G (X ) if and

os
only if  6( g)= O. The remaining parts follows from the sublemma.

If f  * (e  s  universally, G(X)—>C(X) is  surjective since G(X )=
Horns (Spec( f  * 0 x ), G ), C ( X )  Hom3(Spec(f * ex), G )  an d  since Spec

( f * ( ) )  is  a  closed subprescheme of Spec(f* (e x ) )  defined by a square-

zero Ideal. q. e. d.

Lemma 3 .  Let G, X 1 an d  X 2  b e  a s  in  L em m a 1. T hen the unit

section e  o f  Corr,(X 1, X2)  is representable by  an open immersion.

P ro o f.  Let T  b e an y  S-prescheme and  let Z2- =( T, a ) x  ( S ,  e )
Cor, :§(Xl, X 2)

fo r a n y  S-morphism T--Corr,(Xi, X 2). W e have to prove that
ZT is  an  open se t o f  T. Namely, i f  t  is  a  po in t o f T  such that a(t)
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= 0, then Spec (Or, t) E ZT* ) . Since ZS pe c (CT, ,)-7= Z1- x Spec (CT, t )  and t E

Zsp e c(Or , ,), w e m a y  replace T  by Spec (CT, t ). L et A = OT, t . Then a
defines an  element $  o f  Corr,NX i , T, X2, T). F in a lly  w e  m ay  assume
th a t  T =  S .  B y  (f p. q. c.)-descent, w e m ay replace A  by its completion

w ith respect to  its  maximal ideal nt. In  fact, if g  is Spec (4 ) ,  the
morphism

Corr,ç(Xi, X2)(S)---Corr,(Xi, X2) (S')

is  injective because :S."  is  fa ith fu lly  flat and quasi-compact o ver S  and
Corr, (X i, X 2 ) i s  a  (f. p. q. c.)-sheaf. L e t  A n =  A/Inn -1-1 a n d  l e t  Sn=
Spec(A .). Then by virtue of Lemma 1, the canonical morphism

COrll Z(Xl , n 3  X 2 ,  n) - ÷ Corr (X13 X2)

i s  injective, w h ere  S -= Spec (A/nt) an d  C=G x  s S• S i n c e  t  i s  zero,
E„ = $ modulo (at ' )  i s  z e r o .

$ is representable uniquely up to isomorphisms by a  Gx, x x2-torsor

E  such that s tE  and . 1 E  are trivial. Then E = lim  E x  Sn i s  trivial.
S

The sections 6 „ : ( X 1 X E x  S n w h ic h  tr iv ia liz e  E x  Sn c a n  b e

chosen so that the following diagram is commutative for an y  n > m,

( X 1 X X  S n

(X i  x X2)m E  x S .

Then there exists a section 6: X 1 X by virtue of EGA, III (5. 4. 1.).

Therefore E  is  trivial. Thus Spec(A )( Z.q .  e .  d .

L e m m a  4 .  Let f i : S  (i= 1, 2, 3) be a proper flat S-prescheme
such that f i has a section e i  an d  th at  f i* (e x i ) - 0 s  univ ersally  and let
G  be a smooth affine commutative S-group prescheme of finite presenta-

( I') In  fact, Corrg(X i , X 2 )  is a functor of finite presentation since PH-functors
are so and Corrfsl( X i , X 2 )  is a direct summand of a PH-functor, (cf. [4] or SGAD,
Exp V / ,  (10. 16)). Then the fact that Spec (0 2% 0 c Z T  implies that there exists an
affine open set U  o f  t  such that UOEZT.
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tion. Then any S-m orphism  f: X 3 -->Corr,q(X1 , X 2 ) which sends the sec-
tion e 3 t o  the unit section e  of Corrg(X i , X 2 )  factors through the unit
section, i.e., f  = e •f 3 .

P r o o f .  Let Z =(X 3 ,  f ) x  (S, e). Then by Lem m a 3 , Z  i s  an
C orr (s; ( X I, X2)

open subprescheme o f X3 which contains e3 ( S ) .  To complete the proof,
w e have to  show th a t  Z = X 3 . I f  Z * X 3 ,  take any closed point x  of

X3 — Z  and let s = f 3 ( x ) .  Then f :  X3, 5
 - 4C ortl(s )(Xi, „ X 2 , 5 )  does not

factor through the unit section e  of the latter. Therefore we are re-

duced to consider the case where S  Spec (k ), w here k  is  a field. By

(f.p.q.c.)-descent, w e m ay  assume th a t k  is  a lgeb raica lly  c lo sed . I f  G
is connected, Corrg(Xi, X2) is represen tab le by a  S-group prescheme

locally o f finite type over S. In fact, Corrg(Xl, X2) i s  the kernel of

the S-homomorphism (sr, st) : PH (X 1 x X 2 / S, G).— PH (X 1 / S, G) x PH

(X 2 / S, G ), where PH(T  / S , G), T =X 1 x  X 2 , X 1 o r  X 2 is representable

b y  a  S-group prescheme locally o f fin ite type over S. I f  G is  etale,

Corr,(X i , X2) is  rep resen tab le  by an  etale S-group prescheme. (For

these results, see [41.) In  general, G  h as  a  connected component G o

such G/G o  th a t  is  etale and satisfies the following exact sequence,

0- - - )•COrr,Tj a i , X2)—*Corr.qIG°(X15 X2))

whence the connected component C orr(X -1., X2)
°
 of the unit section of

C o r r (X i , X2) is representab le and coincides w ith  Corrg(Xi, X2)
°
.

Therefore Corr,(X 1 , X2 )
°
 is  sep ara ted  o ver S. T hen the unit section

e  is  a  closed immersion. Then Z  i s  a  closed and open subprescheme

o f X .  However since f3 * (0 x 3 ) .1--: es, X3 is connected by Zariski's con-
nectedness theorem. Therefore X3=Z. q. e. d.

2 .  The proof of the theorem. The first case.

Let E  b e  a  Gx 1,, 2,3 ,-torsor representing an elem ent o f  PH ( ,,,,,, e 3 )

(X 1 X  X2 X X 3 / S ,G ). Then E  defines a  S-morphism
s S

:  X 3 — > Corrg(X1, X2)
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which sends the section e 3 t o  the unit section e  o f Corr.(X1, X2).
T h en  e  factors through the unit section e  by virtue o f Lemma 4.

Moreover E  considered as a G(x, x 3 )x(X2 xx3)- torsor defines a n  element
s  x 3 s  

o f PH((X i. x X3 ) x (X2 X X 3 )/ X3 , G ) w h ich  is in  turn isomorphic to
X , S

the direct sum,

PH(X i x X3/ X3, G)OPH(X2x X3 / X3, G) scorrg(Xi, x2)(x3).

The components o f  77 by this decomposition are st3 (E), s 3 (E )  and e
which are a ll zero. Hence is  zero . Then E  is  trivial. q. e. d.

As this proof shows, if Corr,g(Xi, X2) = 0, the proof of the theo-
rem becomes almost trivial. T h e  following result shows that the diffi-
culty of the proof of the theorem comes from the torus part of G.

Proposition 5 .  Let X 1 —* S(i =1, 2 )  b e  a  proper f la t  S-pres-
cheme o f  f inite presentation such that f i  h a s  a section e 1 a n d  that

fi* (X iY :=  e s  and le t G  be  a  smooth affine commutative S-group pres-
cheme of finite presentation. Suppose that the semi-simple rank  of  G is
zero at every Point o f  S .  Then C orr(X i , X 2 ) =-0.

P ro o f .  It is sufficient to prove that Corr (X 1 , X 2 ) = O. W e  m a y
assume that S is affine, S= Spec(A). Since Corr,q(Xi , X2 )  is  a functor
locally of finite presentation (cf. [4 1 ), we m ay assume that A  is  a local

rin g . By (f. p. q. c.)-descent, we can replace A  by its completion Â with
respect to  the maximal ideal ni. L e t  k= A / in  and let Spec (k).
Suppose we have shown that Corr sG(X i ,„  X 2 , , ) = 0 .  Then by Lemma 1,
C orr(X i,n , X 2 , ) =  O, whence one deduces Corr,g (Xi, X2) = 0, using the
argument of the proof of Lemma 3.

Now we shall show by induction on the unipotent rank of G, that
C o r r (X i ,„  X2 8 ) = O. By (f. p. q. c.)-descent, we may assume that k is
perfect. Then G, has a composition series,

0  =G oC  • • • G,, G ,
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such that Gi, i/Gi Ga , k the additive group prescheme over k  for i = 0,
n — 1.

For an exact sequence, 0--->G 1 --> G i + 1  0 ,  w e have an
exact sequence of group functors,

0— > Corr Gs  1 (X1 ,  s 5  X2 , s ) - - - - >COrr s
G i +I (XL s) X2, s)

- - - > C o r r ( X i s )  X2, )•

Therefore if  Corr .9
6 .(X i , „  X 2 , 5 ) = 0, w e are done by induction on n.

In the case w here G, -= Ga , Corr.NXi, s, X2, s) = -  PH (X1, x X2, 5/s) Ga)/
PH(Xi, WS, Ga ) x PH (X 2 , 5 /s,L i e  ( P i c  (X 1 , x X2, s ))/L ie (Pic (X1, s ) )
X Lie (Pic (X2, s)) = 0  ( c f .  Da. q. e. d.

Corollary 6 .  L et G, X 1 an d  X 2  be as in Proposition 5.
Then we have

PH (X 1 / S , G) xPH(X 2 / S, PH(X i x X 2 / S , G).

Therefore

111(X 1 x  X 2 , G)1"---=' G)( D H1 (X2, G)/H 1 (S , G),

where H 1 (S , G ) is considered a s  a  subgroup of H i (X i, G)C)11-1 (X2, G)
by the injective homomorphism E— qf —  ftE).

P ro o f. Obvious by definition. See [41 and [51.

Corollary 7 .  L et G  be as in Proposition 5 and let A  be an abelian
scheme over S. Then we have

H 1 (A, Extis_ g r (A, G)C111 1 (S , G).

P ro o f. Let fA  and eA b e  the structure morphism and the unit
section of A  respectively. Then w e have,
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H 1 (A, PH (A / S, G),0 H l (S , G).

T h ere fo re  it  is  su ff ic ien t to  show th a t  PH(A/S, Exes_gr(A, G).
Take any elem ent C o f PH(A/ S, G). Ç  is representable by a  GA-torsor

E  such that e'IlE i s  trivial. L e t  7r be the multiplication of A .  Then

the GA.A-torsor 6(E)=7 -c*E— prIE— prE is  trivial since Coril(A , A )= 0

from  Proposition 5. T h en  E  h a s  a structure of com m utative group

S-prescheme w ith a section of e'AE as unit section E  and i s  an  exten-

sion of A  b y  G (cf. [21, (1.3.5.)). The extension class of E  is deter-

mined uniquely by Ç. S e n d in g  Ç  to  the extension class of E , one can

define a  homomorphism 0  w h ich  is  the inverse of the canonical homo-

morphism Extls _„(A , G)---->PH(A/ S, G). q. e. d.

3 .  Th e proof o f  th e  th eo rem . The second case.

Let x i ,s ( i= i ,  2 )  b e  a  proper flat S-prescheme of finite pre-
sentation such that f i h a s  a section e i and that f i * ((9x)=C s  universal-
ly ,  le t G be a  fin ite flat commutative S-group prescheme of finite pre-
sentation and let D(G) b e  its  Cartier dual.

W e shall recall the following

Lemma 8 .  ( [
5 11). C o rr  (X1, X2)..1._' Horn s_g r (D (G ), Corr

(X 1 , X2)).

Lemma 9 . C o r r , (X -1, X2) is f orm ally  non-ramified.

P ro o f . L e t S  b e  an affine schem e an d  le t S  b e  a  closed sub-
scheme of defi S  ned b y  a square-zero ideal. W e  have only to show
that the canonical morphism

C orr(X i, X2) - >  Corr s
G (X i , X 2 )

is  in jective. This follows from the commutativity of the diagram,

Homs_„(D(G), Corr s (X i , X2)) --->lIoms, _„(D (C ), Corr -,,(Xi., X2))

f
corrs(X„ x2)(D(G))--->Corr(X1, X2)(D(G)),



12 Masayoshi Miyanishi

where Corr s (X i , X 2 ) = C orrg . , (X i , X2). q. e.d.

Lemma 1 0 .  T he un it sec tion  e  o f  C orr (X i , X 2) is representable
by  an  open and closed immersion.

P ro o f. It is sufficient to show that i f  u: D(G)—>Corr s (X i , X 2 )  is
any homomorphism o f  S-groups and H  is  the kernel o f u , then the set

Z = Is E S; H s =D(G),} is an open and closed set of S.
However since the unit section of Corr s (XI, X 2 )  is representable

b y  an open and closed immersion (cf. [1 1 ) , H  i s  an open and closed
subgroup prescheme of D(G), hence it is finite and flat. Then the rank
of each fibre of H  is locally constant, whence the required result fol-
lows easily. q. e. d.

Now Lemma 4  is an easy consequence of Lemma 10 if G  is under-
stood a finite flat commutative S-group prescheme o f finite presentation
in Lemma 4. Then one can prove the second case of the theorem fol-
lowing word for word the proof for the first case.

Proposition 1 1 .  L et G, X 1 a n d  X 2  be as  abov e . I f  both f i  an d

f 2 a re  geometrically  norm al, C orr(X i , X 2 ) = 0.

P ro o f .  Since Corrg(Xl, 2(2) is  a (f.p.q.c.)-sheaf, we have only to
show that Corrg(Xi, X2)=0 i f  S  i s  an affine scheme. Moreover since
C oril(X i , X 2 )  is  a functor locally of finite presentation over S  (cf. [41),
we m ay assume that the affine ring A  o f S  is  a local ring. We may
replace A  by its completion with respect to  the maximal ideal m . I f
w e could prove that Corr,(X1, X 2 )(k )= 0 , where k = A /m , the proof
w ill be com pleted , using the argument of the proof o f  Lemma 3.
Therefore we shall show th a t Corrg(X i , X 2 ) = 0  i f  S  i s  the spectrum
of a  fie ld  k. W e m ay  assume k  algebraically closed. In  th is case

Corrs(X i, X 2 ) = Homk_„(Alb (X i ), Pie9r2 / k )  w h ich  is  torsion free (cf.

DJ, P. 1 5 5 ) .  Then Coril(Xi, X2)=Hom1_ g r(D(G), Corr s (X l , X2))= 0.
q.e.d.
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Corollary 1 2 . L e t G , X i.  and 2 ( 2  be as in Proposition 11.
Then

PH(X i x X 2 / S, S, G),CDPH(X 2 / S , G).

Therefore

/ P ( X l  X  X 2 , G)a...-  H 1 (X 1 , G)(DH 1 (X 2, G)/H1 (S , G)

where IP(S , G ) is considered as  a  subgroup of  H 1 (X 1, G)0H 1 (X2, G)
by  the injective homomorphism defined as  in  Corollary 6.

Corollary 1 3 . L et G be as above and le t A  be an abelian scheme
ov er S. Then

H 1 (A, G):_s---=' Ex t _g r (A, G)011 -
1 (S, G).

P ro o f. The same reasoning as for Corollary 7.

4 .  The proof of the theorem . The third case.

We shall prove the following

Proposition 14. L e t S  be a quasi-compact normal prescheme, A
be an abelian scheme over S  and le t f i : X 1->S  (i= 1 , 2 ) be a proper f lat
geometrically normal S-prescheme such that f  has a section e i an d  that

f i*(0 x i )- = s universally. Let Corri
s

1(X 1 , X 2 )  be  the  se t o f  all isom or-
phism  classes of  A x  x x  -torsor E  such that $<E  an d  s tE  are  triv ial.

s  2

T hen CorrI(Xi, X 2 ) = O.

P ro o f. From our assumptions on S  and f ,
 w e  have an inclusion,

Cord(Xi, X2) C H 1 (X1 x X 2 )  " e p .=11-1
(X 1  X  X 2 )  " O r

(cf. [ 6 ] ) .  If E is an  element of Corrl(X j. , X 2 ) ,  there exists an  integer

n > 0 such that ne = O.
Consider an exact sequence of (f. p. q. c.)-sheaves,
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where „A  is  a  finite flat commutative S-group prescheme.

Denote by A 0 ( T ), H ( T ,  „A ) and I-4(T , A ) the kernels of A ( T ) - -
A (S ), H 1( T „A ) H 1(S , ,A )  and H i ( T, H1(S , A )  respectively,

w here T  should be replaced by X i, X 2  or X1 X  X 2  and where e*  is  the
homomorphism canonically deduced from e l  an d  e2 . Then we have the
following commutative diagram.

I I
A0(X1) ---L-11--*Hô(X i, „A) >H10(X1, A) A)

s4 s I I p r t 1st

Ao(x, x x2) H (x1 x X 2 , nA )- - - J/ 10. (X 1 X  X 2 , A ) .11(.X 1 X  X 2 , A)

$.1 ïpr*2s 2 *

 In(X 2, „A) ---11 --*H 1
0
-(X 2, A )  n  >- .1 1 1,-(X 2 , A)

t
o

where the lines are exact and two left columns are sp lit exact.

S ince ne-=0, i i 2 ( )  for some element 77 o f H 1
0
-(X 1 x X 2 , R A). Let

s777 =-- s i(V ) and  772 =4(77)• T hen ii(V1)==eiii2(72)— O. A lso i 2 ( 7 7 2 ) —  O.

Therefore 771= j i (C i )  and 772 = j2(C2). Put C=prt (C 1 )-1-prt(C 2 ). Then

j12(C)=- 17. Hence e=  O. T h u s  Corrt(Xi, X 2 ) =0. q.e. d.

Corollary 1 5 . Let S  and f i  ( i = 1 ,  2, 3 ) be as in  the  statement
of the theorem and let A be an abelian scheme over S. Suppose moreo-
v er that S  is  a quasi-compact normal prescheme and that f i ( i=1 ,  2, 3)

is geometrically norm al. Then

PH (e,,e2 ,e3)(X 1 X  X 2 X  X 3, A )=0.

P ro o f. Easy from Proposition 14.
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Corollary 1 6 .  L e t S  be a  quasi-compact regular prescheme and let

A  an d  B  be abelian schem es over S. Then

11 1 (B , A )=H 1 (B, A)„,27_'- Ex tls _g r (B , A ) 0 , 11 1 (S , A ).

P ro o f .  T h e  first isomorphism is d u e  to  M .  Raynaud ([6]). T h e

s e c o n d  isomorphism is proved a s  i n  Corollary 7 a n d  Corollary 13, using

Corollary 15 a n d  [2 ],  Exp. VII, (1.3.5).
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