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Introduction

Let 7 be an arbitrary scheme, S a smooth 7-scheme and M a
quasi-coherent Os-module. A 7-connection on M is by definition a

homomorphism of Os-modules:

V: Dero(Os, Os) —> Endo (M)
which satisfies the ‘‘product formula’:

P(D) (sm)—=s7 (D) (m)+ D(s)m

for sections D of Deo(Os, Os), s of Os and m of M over an open
subset U S. A section m of M over U is called horizontal if
V(D)(m)=0 for all D’s, derivations on open subsets of . Both
Der0,(Os, Os) and  Endo (M) are O,-Lie-algebras via the com-
mutator bracket. The connection is called integrable if it is a Lie-

algebra homomorphism. The obstruction to a connection being
2

integrable is the curvature homomorphism K: A Deo(Os, Os)

— Endoy(M) defined by K(DN\D')=[V(D), V(DI-F(D, D).

Henceforth we will deal only with integrable connections.

A horizontal morphism ¢ between modules with connection
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S (M F)—>(M,V’) is by definition an Os-linear mapping satisfying
oV (D)Y=V'(D)ed. Taking as objects quasi-coherent Os-modules with
7-connections (M, F) and as morphisms the horizontal morphisms
we obtain an abelian category.  This category has a partially
defined internal Hom obtained by defining Hom ((M, F), (M, F"))
as being (Jomo (M, M), V) where V(D) ($)=F'(D)odp—¢oF(D). In
particular ,ﬁ;l=ﬂ[omos(ﬂ4, Os) is the wunderlying module of

Hom((M, F), (Os, standard)) and hence has a ‘“dual” connection V

which satisfies the “product formula”
<P(DY@), m>—+ <, V(DYm)>—=D <¢, m>

where ¢ is a local section of M, m of M and D of Dero,(Os, Os).

The category also has an internal tensor product (M, V)@ (M, V")

which by definition is (M & M, F) where F is defined by
Os

V(D)(m Q@ m"=V(D)(m) @ m'+m @ V(D)(m'). As a result, we can
define “induced” connections on the exterior powers of a module with
connection and hence can speak of the determinant det ((H, F))
provided M is locally free of constant (finite) rank.

If 7 is a scheme of characteristic p then both Deo,(Os, Os)
and Endo (M) are p-Or-Lie-algebras (by D i— D?, ¢ — ¢P). We
can then ask if ¥ is a homomorphism of p-Lie-algebras, i.e., if F(D?)
=W (D))?. The “p-curvature’’ (introduced by Deligne) is the mapping
¥: Do (Os, Os) — Endo (M) defined by ¥ (D)=F(D))P—V?(DP?).
It is known, [3], that the p-curvature ¥ has the following properties:
1) ¥ is additive
2) ¥ is p-linear ie. ¥ (sD)=sP¥(D)

3) for each D, a section of Der0,(Os, Os) over U, ¥ (D) is a hori-
zontal endomorphism of (M, F)| U (in particular ¥ (D) is Oy-linear).

If for every section D of Deo(Os, Os) (over an open set U),
Y (D) is a nilpotent endomorphism, then we say the connection is
nilpotent (a notion introducted by Berthelot [2], in the context of crystal-

line cohomology).
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We observe that there is defined a notion of “inverse image” for
modules with connection. Namely, if 7, S, (M, V) are given as above

and if we are given a base change 7' — 7, then there is associated
with 7 a 7”-connection, F’, on the S’=Sx 7’ module M = HRQOs".
T Os

Locally we can give an explicit description of F':
If we choose affine open sets Spec(A), Spec(A’), Spec(B) of 7'(resp.

7', resp. S) so as to obtain a commutative diagram

B—»B':B(?A'
[
A—A’

and if M is a B-module with connection F: Dera(B, B)—Enda(M)
then the connection ¥’ on the module M'=M @A’ is defined as the
canonical mapping F @1 : Derar(B’, B) —i- Dera(B, BIQ A" —
EndA(M)(%A' — Enda(M"). *

Now let 7=Spec (A), where A is a ring of finite type over Z
and S=Spec (B) when B is a smooth A-algebra. If M is an S-
module with connection, we say M is globally nilpotent if for each
closed point p of 7  the induced connection on the module M &) £(p)
is nilpotent.

Let us recall that if X is a smooth S-scheme 7: X — S, then the

De-Rham cohomology p £ (X/S) def. Rmy (82 x,s) has a ‘““canonical”

integrable connection: the Gauss-Manin connection [3,4]. If 7T
is of characteristic p, Katz and Berthelot [2, 3] proved that the Gauss-
Manin connection is nilpotent. Using this result Katz [3], gave a

beautiful arithmetic proof of the local monodromy theorem:.

Let a, 6, c& Q, » be a common denominator, T=Spec<Z[%]>,

S=Spec Z[/\, Wll—ﬁ] where A is an indeterminate. Associated to

the hypergeometric differential equation

2
ML=N S e (@t b+ DN — abu—0
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is an S-module, Mgy,p,e, with integrable 7-connection: It is the free

rank 2 module with base {e;, ¢2} where

B 0y

() o) Vg iy e

We refer to Mg,p,c as the hypergeometric module.

Katz has conjectured that the hypergeometric module, Mg,p,c,
is globally nilpotent. In the first section we prove that for a ‘‘large
class” of {a,6,c} Mg,p,e occurs as a direct factor (as module with con-
nection) in the De Rham cohomology of a suitable family of curves.
As a corollary, each of these hypergeometric modules reduces (for
almost all primes p) modulo p to a nilpotent module. In the second
section we prove the conjecture. The proof is based on the observation
that in characteristic p, any hypergeometric equation has a nontrivial
polynomial solution.

I wish to thank N. Katz for his help and encouragement during
both the research and preparation of the manuscript. Also, several

discussions with Professor B. Dwork proved invaluable.

Relation to De Rham Cohomology

Let # be a positive integer, {, a primitive #** root of 1 and A an
indeterminate. Assume a,6,c are positive integers such that (#, @)
=(n, b)=(n, c)=(n, a+b+c)=1 and n>a+6+c¢c. Let X be the curve
defined over Q({n, A) which is the normalization of the projective closure
of the affine curve y?=x%(x-1)’(x-A)°. The group g, of n!* roots
of 1 operates on X. Explicitly g, operates on the function field
Qln, N (x, y) via o-(x, y)=(x, oy) where c&E y, because (cy)?=0"y"=
yr=x%(x—1)0(x—A)°. Thus g, operates by functoriality on Hp z(X),
the De Rham cohomology of X. Since we are in characteristic

zero we may calculate H} (X) as the factor space of differentials of
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the second kind modulo exact differentials. If we extend the action of
M to Q% by defining o'(udx)=(o-u)dx, then this mapping preserves
both differentials of the second kind and exact differentials, and hence
by passage to the quotient gives the action of g, on H} z(X).

Let us explicitly construct the Gauss-Manin connection on

H} z(X). Let D denote the unique derivation of the function field of

X which extends the action of T?X on Q(Lu, A) and kills x. Extend D

to a derivation of Q3 by defining D(fdg)=D(f) « dg+ fd(Dg).
Under this derivation the differentials of the second kind and exact

differentials are stable. The induced action of D on H}z(X)

. d
=d.s.k./exact is V(_a’T)

We observe that for o= g, Doo—oe D is a derivation of the function
field of X. Since it kills A and =, it is zero. This means that g, ac-
tually operates via horizontal automorphisms on H} z(X). Let us
denote by y the inverse of the principal character of g, and by
H} z(X)* the sub-module consisting of elements which transform

according to y.

Proposition 7/e module M, grv+e |, ate s isomorphic (as module
n n 1w

with connection) to Hp x (X)X, and hence is a direct factor of H} p(X).

Proof: Consider X as lying over P! via the morphism induced by the
inclusion of function fields Q({n, A) (x) > Q({n, A) (x, ). The assump-
tions made on the four integers %, a, 4, ¢ imply that lying over each of
the four points 0, 1, A, co of P! there is exactly one point of X(denoted
respectively Po, P1, Pi, Yw). We have ordp(x) = #, ordp(y) = a;
ordp(x) = n, ordp(¥) = &; ordp,(x) = %, ordp,(y) = ¢; ordp.(x) = —=,
ordp=>(y) = —(a+6-+¢). This implies that both % and %Jx have
poles only at p, and hence are differentials of the second kind

(because the sum of the residues of any differential is zero). Let wy
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xdx

and w, denote the classes of % and in H} z(X).

The proof breaks up into three parts;
1) We show w; and w, span H} p(X)*
2) We define a surjective horizontal homomorphism

1
Mg, at+b+ec Hatec —> HD.R.(‘X)x
n ~n 1gp

3) We prove this horizontal morphism is injective.

1) Represent H} z(X) as a factor space of the space of differentials
having poles only at p,, and of some bounded order </ (by Riemann-
Roch Theorem this is possible). Then g, operates on this space in
a manner compatible with its action on H} z(X). Both this space
of differentials and H} z(X) decompose into direct sums where the
summands are the spaces of differentials (resp. cohomology classes)
which transform according to a given character of g, Thus any
cohomology class which transforms according to y is represented by

a differential, regular except at p., which transforms according to .

Since SpecQ({x, )\)[x, ¥, %] (where y"*=x%(x—1)b(x—A)°) is non-
singular any differential regular except at P, can be written

%%dx, where  R(x, ¥) € ({n, A) [#, ¥]. By the division

algorithm we can write it as (Ro(x)—f—RlT@—l—...—}—R#,:l_(iQ)dx where
the Ri€Q(lyn, A)(x). It can transform according to y if and only if

Rl(X)

y
must be a polynomial. To conclude the first part, it remains to

it is dx. Because this differential is regular except at pe, R1(x)

prove the following lemma.

Lemma: 7he differentials xl—@’yi(l >2) are linearly dependent on
a;_x and f;‘:_x modulo exact differentials.
Proof: (By induction on /). We have

dx dx dx
— 142 -1.4% -2 8%
)-(1—1—1);\7 Y (14X Y +({—DAx Y

a’( 2 x—1)(x—A)
y
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—é dx
ot a—D(x— )0( n(x— )\) + n(x 1) +5 nx )—y—
Z(Z+1_a+é—|—c) —}—P(
where P(x) is a polynomial of degree <{/—1. As l—l—l—g—}_—éﬂ-%()

”
we are done.

2) The existence and the surjectivity of a horizontal morphism

M, a+b+e X a+e —> I-I},.R.(A’)’C will follow immediately from the following
n n - n

three lemmas. Explicitly the mapping will be defined by e; — wj,
e; — w] where ““’”’ stands for the action of V(%)

[gp—)

Let us write to denote congruence modulo exact.

Lemma: D(Li’i_ )EK ekt

( c+A+a(l1+A)—n(1+A) \1dx
g )5

+

_I_

1

A

l( 2n—(a+b+c) ) xdx
A ” ¥

Proof: We compute:

D(y")= —cx?(x—1)b(x—A)°!
nynLD(3) = —ex (— 1)P(— N
—c x2%(x—1)b(x—A)°!

D)=,

-l
D<i>—— ¢ 2%(x—1D)P(x—A)°! _ cxt(x— 1)2(x—A)° _c 1
vy n yn+l ny®t(x—A) n (x—X)y
Therefore D(ﬂ)_—.—a("——l— )ﬂ, D(fﬂ—):i( x \dx and
¥ n\x—A| y y x—A| ¥y
dx dx c[x—1\dx
hence DX~ )= L3 )
ence p Y e



376 William Messing
Now writing f(x)=x%(x—1)%(x—A)° we have:

Ay =F (R)dx =[x (2 — 1) P+ b2 — o1z — A
Fax® 1 x—1)0(x—A)%)dx

Yt S 1) e

y y nyn-!—l - %y" y
—c —b —a\dx
=<n<x—A>+n<x—1>+ " )7
x—1 dx —c b a \dx
"( y )=7+<"_l)<n<x—h)_n(x—1) —7,;)7

e _c(rzl)dr b dr afe-l)dr
- y y

y  mn\x—A ny n\ =z
_(1 até)dx L(x—l)ﬁ a dx
T\ on oy T u\x=A)y +% xy

I dx
In order to eliminate (modulo exact) oy Ve calculate

x=D@E=1))\_ dx
d( P )—[23:—(1-}—)\)] 5 —G=D@E=Y

c b a \dx
X(n(x—)\) Toaa—nt ;;)7
e O e

(=D E—Xa dx

nx ¥
_i( 22— (14+)x+A )ﬂ
»n x y

__[ 2n—(a+b+c) ] xdx

= - 7

c+A0+a(14+-X)—n(14X) ]ﬁ _a_/\ﬁ
n y  nxy

+
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c[x—1\dx a+b\dx  a dx x—1
Therefore ;(x—h)—)_/_:(l_—n )y +n oy —a’( 3 )

a+tb 1r2n—(a+6+c) xdx

(1_ ) y +7[ Z y
( c+A6+a(l+X)—n(l+A) )ﬂ
” y

i

+
BICEDICE Y
Yy

<a+c—n\a’x (2%—(a—l—b+c))xdx
n )y + nA y

Lemma: D(ix_)=< n—(a+c)+cA )ﬂ (a—l—b—{—c—Zn)xdx

y #A(1—2X) y nA(1—2) y
o= ) S )

x dx c /) a \dx
Proof: d(‘7)=‘7+ o ne—X) T aa—1 T )y

nx
a dx dx b 1 \dx
oy S (L

Il

1)y
I e R
d(x(_xy /\)_):@ _p
e sy )
=(2x——/\)a;—x T‘Zx%—i@c—»—x
—{era—n4 =)
st 2 0D e

n
412 )
n\x—1) y
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Therefore _%( 1 )a’x 1 [( atb4¢ _2\ xdx

x—1)y — 1-A n )y
aX | b(1—X)\dx
+()‘— P E ) y }
But we have
ploE) (1)
y n\x—A/ y
_1 a-tb4c\dx i 1 dx
=) - 1)y]
_rl a—l—b—{—c é(l A)
=[3{1- )ﬂa I
<a+b+£—2n)xa’x
* A<1 Y y

Combining this expression for D(f;—j:—) with the result of the preceeding
lemma, we find the desired formulae.
Let us denote by “’”’ the action of V(a%) on H)z(X). Then

we have the following

a—l—é—{—Zc) , (a—HH—c—n) c
Vi (zHben) e,

7 1 n

Lemma: Ml—Nw i’—{—[a_l-c (
=0

Proof: Using the previous lemma we find:

, n—a n—(a+c)+cA _c
i s v e Sl T

n
, a at+b+4c—2n
o on={ Ty o 5 Ee= A>_>‘“Z

nAw] 4 cw; _( (n—a)X ) (a+b+£—2n)
" w(L—A )T =)@

—X(ndwi~cw)) =n—a)dw;+(a+b+c—2n)Aw,
(R — 1w =[(n—a)d— c(A—A) w4+ (@a+ b+ c—2n)Aw,
(MA—n®)wi=[n—a—c(1—N]w1+(a+b+c—2n)w,
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Therefore (n—2nd)wi+#A—N)w{’=cw1+[n—a—c(1—AN)]wi+(a+b+c

c .
—2n)w;. But wé:;wl—{—)\wi. Therefore we obtain:

(A1 =Ny’ +[n—2nA—(n—a—c(1—A))]w] —cw;
—(a+b+c—2n)()‘w'l—|—%w1)=0

and hence

/\(1_)0‘0;,_'_[ a;i—c __( a+b+2¢c ),\]w;—(ﬁﬂi‘iﬁ)im:o

n n n

3) We now show that our mapping is injective.

If not, there exist a, BE Q({y, A) such that (ax—l—ﬁ)% is exact.
Then at po ord(ax—l—ﬁ)%’izn—l——a; at p, ord((ax—l—ﬁ)%{)Zn——l—
b; at by ord(ax+ﬁ)%zn—1—c. But at P, ord(ax+ﬁ)~i’£=a+b+
c—n—1 if a=0 and ord(ax—l—B)%:a—l—b—[—c—.?n—l if a0, Let g
be a function such that dg=(ax—|—ﬁ)a;—x. Because (ax—l—ﬁ)% has
a pole at P. (as 7>a-+tb+c), either ordp.(g) = a+4b+c—n or
ordp(g)=a-+b+4c—2n depending on whether a=0 or a=¢0.

Just as in part 1) above we have g& Q({y, /\)[x,y, %] because
P
Y
with Pyx)eQ(la, A, ) and using the projection 7y=

(ax—l—ﬁ)% is regular except at p.. Writing g=~Po(x)+ +...
Pn_l(x)

Ty
% 3 %(e)+c on the relation dg = (ax—l—,B)% we find a’(fi;x—)> =

(ax+;3)%. Thus we may assume g = ﬂﬁ

y
P;(/x)—, hence also Pi(x) and therefore P;(x)

As (ouc—l—ﬁ)ﬁi£ is

regular except at Po, so is

is a polynomial.
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Now ordp.(x)=—n and thus ordp.(Pi(x))=—n-deg(P1(x)). Thus

Py(x) has degree <{2. As *61}({)— is regular at o, p1, P2 we find

2(x—1) (x—A) divides Py(x). Thus P;(x)=0 and (ax+ﬁ)d—:=0
which implies a=f=0. This concludes the proof that M, a+bt¢’1 atc
n n " on

— H} z(X)* is injective.

Let S be a principal open set of Spec Z[Cn, A, T(ll——_}\j} over

which there is a proper, irreducible, smooth S-scheme X with
XXs Spec Q({n,A)=2X. We assume that S has been chosen suffi-
ciently small so that HEQR_(A;/S) is locally free and commutes with

base change. Furthermore we assume the horizontal isomorphism

Me, atbte | ate— H}x(X)* extends to S. Thus we can state:
e

n n ’

Theorem: 7here is a non-empty open set S of Spec Z[ln, A, _n)\—(ll——/\)]

and a horizontal isomorphism Mc, at+b+c . ate! S=>H },.R.(X’ [,
- n

n n ’

Corollary: For all but finitely many primes p, Me, a+b+e . at+e @ Fp
& atbte , aie’c
is nilpotent. v

Proof:. 1If a prime ideal (p)(540) of Z belongs to the image of S, then
Me, aipre | ate| S®Fp is a sub-module of H L (XQF,ISQF,).
- n

n n ’
By the theorem of Katz and Berthelot: the Gauss-Manin connection

(in characteristic p) is nilpotent, we see that M| SQ® F; is nilpotent.

This implies Mg, a+b+e
n n -

a+c @ Fy is nilpotent.
n

)

The Theorem

Let us return momentarily to the general situation of the intro-
duction; 7 arbitrary, S a smooth 7-scheme, M a quasi-coherent S-
module with a 7-connection V, ... We note the following elementary

facts:
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1) If (M, V) and (JI, Vg) are two S-modules with connection,
D, m, n are sections of Der9,(Os, Os), M, Jl over an open subset U

cS and [ is a strictly positive integer, then we have the Leibniz rule:
O u (DY @)= (7 5 DYon) ®F D)\ ~r) (proved as usual
by induction on /)

2) Suppose M free of a fixed finite rank #», with base {ej,....en}.
If D is a section of De(Os, Os) and if V(D)(eil)zAD(efl) where

én én
ApE My(Oy) is the so called ‘“‘connection matrix”, then ¥ geg( ) (D)(e1/\

. Nen)=tr(Ap)ei/\.../\en. We suppose in the next four statements
that 7 is of characteristic p.
3) bupn(D)=¢pu(D)Qidy+idyQpn(D)
(because (F gy gi(D))P(m @ n)=F qy(D)P(m) @ n+m @V 5(D)P(n) by
Leibniz)
4) If ¢: M— Tl is a horizontal morphism, $g(D)ed = $oih (D)
5) Suppose M free of finite rank. A necessary and sufficient
condition that (M, F) be nilpotent is that for every section D of
Dero,(Os, Os), every coefficient except the leading one of the charac-
teristic polynomial of (D) is nilpotent in Os.
6) If M is free of finite rank, then ¢ges(gn(D)=tr( u(D))

Having completed these preliminaries we turn to the main result.
To fix notation again let 4, 4, c=Q, n be a common denominator and
S=Spec Z[A, n—)\(ll——)\_)] Let Mg, », ¢ be the hypergeometric S-module

defined in the introduction.
Theorem: My, p, . is globally nilpotent.

Proof: Fix once and for all a prime p which does not become invertible

in Z[A, nA—(ll-T)] Consider the Fp[)\, m}_—)‘)]-module (with con-

nection) Mg, p,¢ Q@ Fp. We must show that it is nilpotent. By
z
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statement 5) above this is equivalent to showing that the determinant

and trace of 1/:(%:\) are zero. It suffices to show this at the generic

point of Spec Fpl:A, mng] and therefore we shall work with the
module M = Mg, 5,¢Q FpQA).
First we shall deal 'jvith the determinant.

Denoting by M the dual module, it is immediately checked that
the mapping ¢ — <$, e1>> establishes an Fy(AP)-linear isomorphism

between the horizontal elements of M and the solutions in Fy(A) of the

differential equation:
* A=A +[c—(a+b+1)A)o’ —abu=0.

Suppose for the moment that there is a non-zero solution in Fy(2)
of this equation, i.e., that M possesses a non-zero horizontal section.
Then 1/:161(%) has determinant=0. Applying 3) and 4) above to
the canonical horizontal morphism M @M — F,()) we see that
—1/11\71(%) is the transpose of z,bM(‘%\) and hence that det(ng(—a%—)):O.

In order to find a non-zero solution of (*) we may assume that

a,b,ceZ, —(p—1)<a<0; c<a; b,¢540 (in Z). Asis “well-known”
[1], the differential equation

NL—Xw"+[e—(a-+b+ DN]u'—abu=0 over 2], ,/,\,(“1,1_.,8,]
has a non-zero solution in Q[A], namely
6)o=1
F(a, b, ¢; /\)=§%§f~i—2’—?\’ where 3 (6),=6(641)...(0+—1)
for 7»=£0.

By multiplying F(a, 4, ¢; A) by the least common multiple of the de-
nominators of its coefficients we obtain a primitive polynomial in Z[A]
which is still a solution of this differential equation. The reduction

mod p of this polynomial is the desired polynomial solution of (*).
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This completes the proof that det<¢<§—))=0.

In order to show that tr(gl:(—d‘%))zo we use statement 6) above,ﬁ

tr(nﬁ(%)) = gbdet(M)(%). We observe that ¢det(M)(%)=0 if and only

if det(M) has a non-trivial horizontal section. By 2) above
Vdet(M)(%)=%+(a+AA?i'__1;3—t. Thus it suffices to find g€ F,(A),

£=0 such that %-l—(g—_%%li_lgé—_[)gzo, But g=A,(1—X)a+b+1-¢ g

a nonzero solution of the equation, whence tr(xﬁ(%))———o; which

completes the proof of the theorem.
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