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When we consider a transitive G-structure go on a compact dif-
ferentiable manifold M/, another G-structure g on M is said to be locally
equivalent to go, if there exists a local transformation f of a neighborhood
U of each point of M such that the G-structure induced by f from go
is equal to g on U, and g is said to be globally equivalent to go, if there
exists a global transformation f of M such that the G-structure induced
by f from go is equal to g on M. The theory of deformations of G-
structures is considered to represent a difference between the local
equivalence and the global equivalence of G-structures. In our paper,
we take note of a certain global property for G-structures and we con-
sider the extent of G-structures which are locally equivalent to go and
have the global property. We represent the extent in the space of G-
structures, using the theory of deformations, and describe a relation
between the global property and the equivalence of G-structures.

We suppose throughout our paper that G is closed and of finite type
and the transitive G-structure go satisfies the following condition.
When g, denotes the lift of go by p on the universal covering manifold
M of M, where p is the covering projection, and A(go) denotes the
sheaf of germs of infinitesimal automorphisms of g, the Lie algebra

of the Lie group of automorphisms of gy is equal to A %M, A(£)).
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Then the G-structures on M correspond one-to-one to the cross-
sections of the associated bundle F#(M)/G of the frame bundle 7 (M)
over M. The set of all G-structures forms a Banach manifold & as
the space of cross-sections with respect to a riemannian metric on the
bundle of jets of cross-sections. We regard the whole set 9 of G-
structures locally equivalent to go as a subspace of &. Then defor-
mations of go are given by curves in 9 through go. Let us take note
of the equivalence of the infinitesimal automorphisms as a global
property. We also regard the whole set J of G-structures having the
infinitesimal automorphisms equivalent to those of go as a subspace
of @. A4 deformation g; of go is said to kave the equivalent infinitesimal
automorphisms, if each G-structure of g has the infinitesimal auto-
morphisms equivalent to those of go, that is, if g¢ is a curve in IN9D
through go. Let & be the subspace of & consisting of G-structures
globally equivalent to go and & be one consisting of G-structures
having the same infinitesimal automorphisms as go. The group Diff (#/)
of diffecomorphisms of M is a transformation group of &, under which
& and Y are the obrits of go and & respectively. Then there exists
a differentiable submanifold €I of & such that YN 9D in a neighbor-
hood Uy, of go is the image of €U transformed by the elements of a
neighborhood U, of ¢ in Diff(#7). The tangent space of €I/ at g is
isomorphic to some subspace K of the kernel of the homomorphism w:
HW (M, Ngo)— H(M,N) induced by the injection A(go)—N, where
A(go) is the sheaf of germs of infinitesimal automorphisms of gy and
N is the sheaf of normalizer of A(go) in the sheaf of germs of vector
fields on M. Thus G-structures not globally equivalent to gy with
respect to the elements of U, but locally equivalent to go and having
the infinitesimal automorphisms equivalent to those of gy, exist in Uy,
to the extent of K. As for deformations of g, infinitesimal deformations
corresponding to elements of K can be extended to deformations having
the equivalent infinitesimal automorphisms, and classes of germs of
deformations having the equivalent infinitesimal automorphisms are

represented uniquely by curves in €/ through go. Then we have the



Deformations of G-structures 327

following proposition as a special case. If the homomorphism w is
injective, deformations having the equivalent infinitesimal auto-

morphisms are trivial.

§1. The space of G-structures and the group of
diffeomorphisms.

Let M be a compact differentiable manifold of class C* with
dimension #. G-structures on M are reductions of the structure group
of the frame bundle # (M) over M to a subgroup G of GL(#), where
we suppose G to be closed and of finite type. They are represented as
submanifolds Bg(M) of F(M). Let F(M)|G be the quotient space of
F(M) by G. Then G-structures are represented as cross-sections of
F(M)|G, where the image of Bg(M) by the quotient projection 7’ of
F(M) onto F(M)|G is the corresponding cross-section of F(M)[G.
In our paper, we represent G-structures by not only submanifolds but
cross-sections.

Remark about the class of differentiable G-structures. If the class
of differentiable G-structures is CT, Bg(M) is of class €7 and the s-th
prolongation of Bg(M) is of class C"™°. Then we take »>£, in order
that the 4-th prolongation of Bg(M) with {e}-structure may be of class
C1, where # is the order of G of finite type. Moreover, we suppose #
to be finite.

Let B, be a finite dimensional vector bundle over M of class CT.
The whole of 7-jets of cross-sections of B is a vector bundle over M
which is denoted by B},. We define a norm on each fibre of BY, which
is continuously dependent to x& M, that is, |¢"(x)]|| is continuous on
x for any continuous local cross-section ¢" of B”. Let us define a norm

llpl| of CT-cross-section ¢ of By by Max || j5¢ll, where 75 is the r-jet
rEM

of ¢ at x and |74l is the norm of j,¢ in the fibre B, (x) of B, over x.
Then the whole of C'"-cross-sections of B is a Banach space with respect

to the above norm. Let us denote this space by I'"(B}).



328 Toshimasa Yagyu

Lemma 1. Let By and By be vector bundles of class CT over M
and n: By—> By be a fibre mapping of class CT such that v is infinitely
partial differentiable with respect to the fibre of By, every partial de-
rivative of m of any ovder with respect to the fibre is also of class CT and
the diffeomorphism of M induced by v is identity. Then, the mapping
7 I'O(By)—>T'N(By) defined by (79)(x)=n(p(x)) is of class C>.

Proof. 7 induces the continuous mapping %" of B, in B}, well
defined by %"(j34)=s7(i¢) for any jLé=B}. Then %' is infinitely
partial differentiable with respect to the fibre and every partial de-

rivative of %" of any order with respect to the fibre is continuous on
BY,. Let ¢ be a fixed element of I'")(B,). We have

(b7 o) — (o) — il (7o) | <51 K

for any element ¢ of I'™(By) such that ||§||(N<e for a fixed €, where
K is a constant independent to x and dnj’, 4o

of " at jydo with respect to the fibre of B, because every 2nd

is the partial differential

partial derivative of #" with respect to the fibre of B is bounded on
an open set U {j3¢E By (x); 75—/ 5ol e} of Bj. Let d7y, be
zEM

a continuous linear mapping of I'(B)) into I'™(By) defined by
cﬁ)¢°(¢)(x)=a’77¢o-(¢(x)), where d7g,: By— By is the partial differential
of n at ¢o with respect to the fibre. Since the mapping of BY into

w induced by &7, is dnj’,% over x, we have

lI7(bo+8)— (o) —dTg($) 11"
= Max |75 (7(o+#)—7(bo) — dng( )
= Max ||/(j % (¢o+ ) —7" (5 (b)) — ], (o)
< 1;/{3; (V21154

=(l¢lM)?*K, for [|$ll" e
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Therefore, we have {lﬁimo 19(bo + &) — (o) — a777¢0(</>) " /gl =0,
1~

that is, 7 is differentiable at ¢o. Next, we consider the bundle Hom
(Bv; Bw) of which the fibre over each x is a linear space of homo-
morphisms of By(x) into By (x). The bundle Hom" (B ; Bw) of r-jets
of cross-sections of Hom (B ; Bw) can be identified with a subbundle
of the bundle Hom (B : Bj,), of which each fibre has a norm con-
tinuously dependent to x& M/ defined by the norm of B%(x) and that
of B, (x). The space I'"(Hom (B ; Bw)) with respect to the above
norm can be identified with a subspace of the Banach space Z(I'®"
(Br); I'M(By)) of continuous linear mapping of I'"(B)) into I'"
(Bw). Let dn be the partial derivative of 5 with respect to the fibre of
By and then it is a fibre mapping of B, into Hom (By; Bw). If we
take the bundle Hom (By; By) instead of By, the mapping dn

satisfies the condition of n in Lemma 1 and we have a differentiable

mapping
dy : TO(By) — 'O (Hom (B ; By))C L(I'N(By) ; I'O(By))

induced from d», such that dn(go) for any ¢ I'")(B)) is the differen-
tial of 4 at ¢o. Following the above argument for any order of the

differential of % in succession, we conclude the mapping % is of class

c™.

Remark. Even if 9 is not a mapping of the whole space of By
into By but a mapping of a fibre subspace B’ of B into By, Lemma
1 is right for I'"(B") instead of I'"(B}).

Let B be a fibre bundle over M of class C* and let us define a
riemannian metric on B of class C*. Let B" denote a bundle of »-jets
of cross-sections of B. Since B” is a C*-bundle over B, we can define
a riemannian metric on B7 of class (' based on the metric on B such
that py(n'é, 776") < p(b, 6") for each x, where 6,46'€ B"(x), n": B"—> B
is the canonical projection and pg(resp. p}) is the distance along each
fibre B(x)(resp. B'(x)). Let I'™M(B) be the whole of C'-cross-sections
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of B with the metric defined by
PO )= Max pL (54, j5h) for 6, 4T O(B),

Applying the notion of the Banach manifold (see [2]) to I'")(B),
under the fact of Lemma 1 which gives the smoothness of the co-

ordinate transformation, we have

Proposition 1. 7%e metric space I'(B) is a Banach manifold
of class C=. The tangent space of I'N(B) at ¢ is the Banach space
IO(Vy(B)), where Vy(B) is the bundle of vertical vectors of B at ¢.

Definition. 7%e space G of G-structures of class CT on M is
the Banach manifold I'(F(M)|G) of class C*=, with respect to a

riemannian metric of the bundle space of 7-jets of cross-sections of

F(M)G.

The tangent space 74(4) at g= & is the Banach space I'®™)
(Vo(F(M)|G)), where Vy(F(M)|G) is the vertical vector bundle of
F(M)|G at g.

Let B and B’ be fibre bundles of class C* over M and ¢ : B—~B’
be a fibre mapping of class CT such that ¢ is infinitely partial differ-
entiable with respect to the fibre of B, every partial derivative of any
order of ¢ with respect to the fibre is of class € and the diffeomorphism
of M induced by ¢ is identity. Let us define the mapping £ : I'™(B)
—T'O(B") by (£d)(x)=€(¢(x)). Since ¢ induces a mapping £ of the
tangent space I'M(Vy(B)) to I'O(V y(B")) for any (€I'M(B), e
Ir'm(B") and £ is of class C* by Lemma 1, we have

Proposition 2. The mapping € is of class C™.
Let us define a riemannian metric of class € on M. The product

mainfold M X M is a trivial bundle over M and the space C") (M) of
C"'-transformations of M/ is the Banach manifold I'")(M X M) of C"'-
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cross-sections of the above bundle with respect to a riemannian metric
of the bundle /™(M X M) of 7'-jets based on the product riemannian
metric of M X M. Any element of the e-neighborhood of identity of
CT) (M) is a C"'-diffeomorphism of M by the definition of the metric
of C™)(M) and then the set of C"'-diffeomorphisms of A/ is an open
subspace of C*)(M). Let p) be the metric of C*)(M). We define
the metric p(f1, f2)=p®(f1, f2) on the set Diff ™)(M) of C*'-diffeo-
morphisms of /. Then Diff™)(M) is a Banach manifold of class €.
The tangent space of Diff®")(M/) at any f is the Banach space I'™)(7'(M))
with respect to the norm of each fibre of /7' (7 (M)) based on the metric
of J7"(Mx M), where 7 (M) is the tangent bundle which is identified
with the vertical vector bundle of the trivial bundle M X M at f.

§2. Infinitesimal automorphisms.

Let 0 be a vector field of class C™! on an open set U of M. For
g€ 3, let g’ be a cross-section of F(M) on U such that ='¢g’=g and
Lyg' be the Lie derivative of a tensor field g’ with respect to 6. If
we set Lpg' =g’ Xa, then a is a gl-valued function on U. Since
F(M)x gl is the bundle of vertical vectors of # (M), g’ Xa is a vertical
vector field of /(M) at g’. The bundle of vertical vectors of #(M)/G
is an associated bundle F(M)Xf of F(M) by the linear isotropy
representation is: G — GL(f), gvhere f=gl/g. Then g'Xga is a
vertical vector field of F(M)|G at g, where ¢ is the projecticon gl —f.
This field is determined by 6 and g, that is, g’ X ¢-a is independent to
a choice of g’ such that ='g’=g. We denote ;’Xq-a by Lsg. Then
6 is an infinitesimal automorphism of g, if and or?ly if Lpg=0.

By the condition of go in Introduction, go is of class . When
6 is a global vector field of class C7*+! on M, Lggo is a global C"-cross-
section of the vertical vector bundle Vy(F(M)|G) of F(M)|G at go.
Then we have a linear mapping 84, of the Banach space I'"+)(7'(M))
of all vector fields of class CT+! on M into the Banach space I'"(1,
(F(M)|G)) of all CT-cross-sections of Vg (F(M)|G), such that 84,0=
Lo go.
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Proposition 3. 7/e linear mapping 8, is continuous.

Proof. Since a vertical vector Lggo(x) is determined by ;748 and
J%g&o, we have a mapping L of the bundle /!(7°(M)) of 1-jets of vector
fields on M into Vg (F(M)[G) such that L(j%0)=_Lygo for any vector
field 6 on a neighborhood of x, and L is a bundle mapping of vector
bundles. Then Z induces a continuous linear mapping Z of I'®
(JNT(M))) into I'O(Vy(F(M)|G)) and a correspondence defined
by 0 — ;0 is an imbedding im of I'™tO(7(M)) into I'"(J!
(T())). Then L-im is continuous linear and 8;=L-im.

Taking the germs of each cross-section, the correspondence 60—
Lygo induces a sheaf homomorphism §;, : €—LB, where T is a sheaf
of germs of vector fields of class C"+! on A/ and L is a sheaf of germs
of CT"-cross-sections of Vy(F(M)/G). The kernel of §,, is the sheaf
A(go) of germs of infinitesimal automorphisms of go. Since G is of
finite type, the sheaf (go) is locally constant and its stalks are finite
dimensional vector spaces. Then the set I'(A(go)) (=H %M, A(go)))
of global infinitesimal automorphisms is a finite dimensional vector
space which is a subspace of I'"+)(7(M)). Thus we have a closed
complement D of I'((go)) in I'™tO(7(M)) and §,, is isomorphic
on D.

A CrHldiffeomorphism f of M induces a C’-diffeomorphism f’ of
F (M) such that f'(6-a)=(f'(6))a for any a= G and b= F(M), and then
it induces a C('-diffcomorphism f* of F(M)/G such that ='(f'(4))
=f*x'() and f(w(6'))=n(f*(6")) where '€ F(M)|G. Let us define
fg by (fe)(x)=f*g(f(x)) for any g&. Then fg is a new C’-
cross-section of F(M)|G and f is a transformation of the space &.
The partial differential of f* with respect to the fibre of F(M)/G is
a diffeomorphism f** of the vertical vector bundle defined by f**y
=f’(b)>c<a, where a vertical vector v is an element b)éa of F(M))éf,

and f** induces a transformation f** of the vertical vector fields # by

(f**0)(x) = f**~(0(f (%))
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Proposition 4. f**(_Log)="Lre(fg).

Proof. If n'g'=g and Lyg'=g'Xa, then

(Ly=o(f "~ gNE) =1""(Log'(f ()
=/""g' (f(x) xa(f(x))],

where /' is a diffeomorphism of vertical vector bundle of #(4/) induced

by f’. Therefore, we have

(L ro(fx) = £~ 1&' (F (@)X gla(f ()]
=/** g (f (@) X g(a(f ()]
=¥ Log(f ()] = (f**(Log))(x)-

§3. Transitive G-structures and associated G-structures.

In our paper, we suppose that the G-structure g is transitive, that
is, the local automorphisms of go act locally transitive on 4/ and more-
over those of every prolongation Bfw of Bs(=go) act locally transi-
tive on Bfw, (see [4], Appendix I).

If and only if # is an element of the normalizer V of G in GL(#%),
the right translation of go by # is also a G-structure, which is called to

be associated to go. By the theory of G-structures (see [1]), we have

Proposition 5. A4 G-structure g is associated to go, if and only

if g has the same local infinitesimal automorphisms as go.

The product space VX M is a trivial C*-bundle over M and then
a mapping of VXM into F(M)|G defined by nX x—go(x)n satisfies
the condition of ¢ of Proposition 2, because go is of class €. Since
N is a closed submanifold of I'™ (/N X M) as the constant cross-sections,
the mapping pg, : N— & defined by pg(#)=gon is of class C* by
Proposition 2. For each x, the set {go(x)7; =N} is a closed sub-
manifold of the fibre of #(M)/G over x. Thus we have
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Proposition 6. Let A be the set of G-structures of class C'
associated to go. Then A is a closed submanifold of G.

If and only if n#' 1€, we have py(n)=pg, (). Then p, in-
duces a C=-imbedding py : N/G— & such that pyg’' =pg, where
7' N— N|G.

We consider a mapping of Diff™+)(M/ )X N/G into & defined by
FXn—fFpg (7). Let JY (M, a) (resp. JY (M, B)) be the fibre bundle of
invertible 1-jets of diffeomorphisms of A/ with the source projection
a(resp. the target projection B) as the bundle projection. Each jet
7Y with source y and target x operates on the fibre of /(M )/G over
y such that (jifF)g(»)=(fg)(x) for each g&&. The product space
JUM,B)x N|G is also a C=-bundle over M with the projection B:
(7Y, 7) = B(jYf). Since go is of class €=, the mapping of /1M, B)
X N|G into F(M)|G defined by (jY71, 72) = (7Y 1) (pg,(2)(¥)) is a fibre
mapping of class €. Then, by Proposition 2 we have a C%-map-
ping 7' : I'M(JY M, B) X N|G)—T'"(F(M)|G). The space I'"
(SN (M, B)X N|G) is C=-diffeomorphic to I'N(JY(M, B))x I' (M, N|G).
On the other hand, the correspondence ;L f—jy /!, where y=f(x),
gives a C=-isomorphism of the bundle /J'(#, a) onto J1(M, B),
which induces a C*-diffeomorphism ¢ : I'"( JY(M, a)) — ' (JY(M, B))
such that «(7Y/)=71. From the definition of the Banach manifold
Diff +D(A/) in §1, we have a C*™-injection ' of Diff *+1(A/) into I'™)
(JUM, o)) such that /(f)=s'f, and we have a C*-injection "’ of Diff
DM ) into I'M(JY(M, B)) such that J/'(f)=u/'(f) =71 The C>-
manifold V/G, of which each element can be considered as a constant
mapping of M into N/G, is a C®-submanifold of I'M(M, N|G) and
then we have a C*-injection «: N/G— I'"(M, N|G). Let = be the

composed mapping of

"' X : Diff CY(MYX N|G— T'O(JN (M, B)x I'"(M, N|G),
the isomorphism: I'N(JY M, B)yx I'"(M, N|G)
— I'O(JY (M, B)yX N|G)
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and 7': I'O(JY (M, B)X N|G)— I'N(F(M)|G).

Then 7 is of class C* from Diff t+)(M) X N/G into & such that 7(fX #)
= fpg,(7%). By the definition of Lygo, the partial differential of = at
(identity X &) with respect to Diff *+)(M/) is a continuous linear mapping
8¢, in Proposition 3. The partial differential of r at (identity X &) with
respect to V/G is a continuous linear mapping of 1t/g into I'N(Vy (F(M)/
()) defined by h—>g6>6<7'¢, where go=7'gy. Thus we have

Proposition 7. The mapping v is of class C°. The differential
of T at (identity X &) is a continuous linear mapping of I'"V(T(M))
xu/g into I'O(Vy (F(M)|G)) defined by 0X7’z—>5g00—|—(g(’)>éh) where

'8 =&o-

§4. Transformation of the infinitesimal automorphisms.

Proposition 8. Lez f be a local diffeomorphism of class CTH1
with domain U. A local isomorphism of the sheaf ¥ induced by f
maps a potion N(go)| U of W(go) over U onto A(go)| f(U), if and only
if a G-structure fgo induced from go by f has the same infinitesimal
automorphisms as go on f(U).

Proof. By Proposition 4, we have f(A(go)l U)=U(fgo)lf(U).
Then A(go)| f(U)=FA(go)l U), if and only if A(go)lf(T)=A(fgo)l
F(U).

Proposition 9. Let f(¢) be the l-parameter diffeomorphisms
(exp t0) generated by a local vector field 8. If and only if each f(¢)
satisfies the condition of Proposition 8, the germs of 0 belong to the
sheaf W of normalizer of U(go) in X.

Proof. Let U be an open set of M and 6 be a vector field on U.
For an open set V' C U, each f(¥) is diffeomorphism with domain V" for
a suitable small interval of |#| such that f(z)- V' CU. If f(&)(A(go)l V)
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=A(go)|f(®)V, then [6, 2] is an infinitesimal automorphism for any
infinitesimal automorphisms A on V. Since I is any open set of U,
the germ of # at any x& U is in M.  Conversely, let 7 be a vector field
on U such that its germs belong to M. Then 2" is an infinite-
simal automorphism on U for any A. Local diffeomorphisms (exp
tn)-(exp sA)-(exp tn)™! for a small fixed |#| are local automorphisms
a(s) of go for a suitable small |s| and on a suitable domain such that
the above compositions are considerable, because (exp #72)-(exp sA)-

exp 1)~ = exp (e2d(t™s)). By Proposition 4,
p P P
L(exp m)rgo = (exp tn)**_L3((exp tn) o).

On the notation ( )’ in §2, we have
v A\ —1 4 i r—1 -1
Li((exp tn)~'go)' (x)=| g (exp sX)""!(exp )

£4((exp m)(exp sN)2) |

= [—(%(exp ) ~ta(s)' "1 g o(a(s)(exp tn)x)):l

—[(exp try 1 S-g/(5) (exp 1))

s=0’

where g'(s):;G)"‘go. Here 2'(s)(y)eG, if we set g'(5)(¥)=go(»)

(@'(s)(¥)) and then a(y)Eg, if we set [—dd?g'(s)(y)]s=0 =go») é< al y).
Therefore,

L 1((éxp tn)go)(x)
= (exp tn)**~ [ go((exp tn)x) X a((exp tr)r)] = 0

and then (exp ##)X is a local infinitesimal automorphism.

Proposition 10. Tle dimension of the stalk of N is finite and
constant for every x=M.

Proof. For a point xoE M, the adjoint representation of M(xo)
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on A(go)(xo) defines a homomorphism X from an additive group (xo)
into an additive group Hom(2(go)(x0)), where (xo) (resp.A(go)(x0))
is a stalk of M (resp. A(go)) at xo. Each element of kernel of K is the
germ of vector field # on a neighborhood of x at xo such that [z, A]=0
for any infinitesimal automorphisms A on U. Since go is transitive,
there exist # independent infinitesimal automorphisms A; (=1, ..., %)
on U. The condition [#, A]=0 (=1, ...,%) is a system N(n!)=
p n’”c’}d (Z j=1,...,n) ... (*¥) of linear differential equations, where
7522 nid; and A, ]=3 ckAp. By the uniqueness of solution for
the iinitial condition n(x:), the dimension of the solutions is finite.
Therefore the dimension of kernel of X is finite. Since dim. (Hom
(A(go)(x0))) is finite, dim. N(xo) is finite. Since g is transitive, there
exists a local automorphism f of a neighborhood of x onto that of x’
for any x, ' of M and f induces an isomorphism of J(x) onto N(x").
Then, dim. N(x)=dim. N(z").

Proposition 11. 7/e sheaf N is locally constant.

Proof. Since dim. N(xp) is finite, N(xp) is the germs of vector
fields # on some common neighborhood U of xp such that [#, A] are
infinitesimal automorphisms on U for any infinitesimal automorphisms
Aon U. Let (N, U) denote the whole of such vector fields » on U and
let 7y, noe(R, U). If ny=mn, on an open set I of U, then [r#;—n,, A]
=0 on U for any A. Then n;—#n,; is a solution of the system (*) in
Proof of Proposition 10 and then »;=#, on U. Therefore each vector
field of (N, U) has a respectively different germ at any x= U. Since
dim.M(x) is constant, the whole of germs of vector fields of (N, U) at
every point of U is the portion | U. Therefore N is locally constant.

Since the dimension of the space I'(|R, M) is finite, we have by
Palais’ theorem ([5])

Proposition 12. Let N(go) be the group of CT+-diffeomorphisms
of M which map all the local infinitesimal automorphisms of go onto
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themselves. Then N(go) is a Lie group.

Let & be the lift of go on the universal covering manifold 47 of M.
We have a Lie group N(g) in the similar way to NV(gy). We denote
by £ the sheaf of germs of vector C™*+-fields on 47 and by 2A(gy) that
of infinitesimal automorphisms of Z&. The Lie algebra of N(g) is a
subalgebra of I'(R, A7), where R is the sheaf of normalizer of ¥(2p)
in &.

§5. Deformations of a transitive G-structure.

Definition. Let g; be a l-parameter family of G-structures of
class CT parametrized by ¢ of a neighborhood 7 of 0 in R. A family
gt is a deformation of go, if there exist an open covering {U;; i/}
of M and a family {fi(x,?); i€/} of local continuous transforma-
tions of M X 7 such that (i) the domain of f;is U;X /, (i) fi(x, £) for
each fixed # is a local C"t+!-transformation of A x¢, (iii) partial deriva-
tives of fi(x, ¢) of any order (<r-+1) with respect to x are continuous
on UixI, (v) fi(r, & 'golf(x, ) =gix) for x€Us () A(0)=
identity for each 7 and (vi) {fi(U;, ¢); €/} for each # is an open
covering of M. Each G-structure of a deformation of gy is called to be
deformable to go.

Two transitive {e}-structures are locally equivalent, if they have
the same constant structure function (see [6]). When we follow the

proof of the above fact, while parametrizing by #, we have

Lemma 2. Zez {0%(x, £); aEN} be a system of independent
continuous l-forms on RN X I such that each l-form is of class C*' on
RY X t for eack t, partial derivatives of 0%(x, t) of any order (<r") with
respect to x are continuous on RYx 1, < 6%, *82—>=0 and ¢, are con-

stant, where d 0% = 6"57, 0B N\ O and dy is the exterior differentiation
B.r

with respect to x. Then there exist a neighborhood U of each point of
RY and a homeomorphism ¢(x, t) of UX I into RY X I such that ¢(x, t)
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for any fixed t is a CT't\-diffeomorphism of UX¢, partial derivatives
of ¢(x, &) of any order (Xr'+1) with respect to x are continuous on
RYX I, ¢*(x, £)~10%(0(x, &), 0)=0%(x, t) and ¢(x, 0)=7identity.

Since gy is transitive, the 4-th prolongation of go is an {e}-structure
with a constant structure function, where £ is the order of G. Let 9
denote the subspace of & consisting of G-structures of which 4-th

prolongations have the same constant functions as that of go.

Proposition 13. A4 deformation of go is a continuous mapping
g(8) of a neighborhood I of 0 in R into 9 with g(0)=go and conversely.

Proof. From (ii) and (iii), a correspondence x—;j%(fi(£)go) for
x& Uj defines a continuous cross-section of /7(F(M)|G) X [ over U; X I,
by the application of arguments in Proof of Proposition 7 on fi(¢) Us,
where {f;, Ui; i</} defines the deformation g¢ and

(fit)go)x) =f(x, &) 'go(fil, ©))-

Since fi(¢)go=gt, jTg+ is a continuous section of JT(F(M)|G)X 1.
Therefore g; is a curve in &G. Since g¢ is locally equivalent to go, each
£t has the same structure function as go. Therefore g; is a curve in 9
through go. Conversely, let {V;; i€/} be an open covering of M
such that the restriction of the bundle #(4#/) on each I; are the
product ViXGL(x%). Since a curve g(¢) in 9 through go is an 1-
parameter family of G-structures continuously dependent to # and
£<r by remark of §1, a set of the portions of the manifolds of £-th
prolongations of g(#) on V; for all & 7 constructs a domain VX VX7
on R¥x I, where NV is the dimension of the manifold of A-th prolonga-
tion, and the {e}-structures of A-th prolongations of g(#) construct a
system {0%(x, ¢); a& N} of l-forms which satisfies the condition of
Lemma 2 with #»'=#»—4. By Lemma 2, we have a neighborhood
Us(CV3) of each point x of V; and a homeomorphism ¢z(x', £) of
Uz X VX7 into RYX 7 such that they satisfy the condition of the
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conclusion of Lemma 2.  Since local automorphisms of the prolongation
of the G-structure induce those of the G-structure, ¢5(x’, £) induces a
diffeomorphism ¢z(x"', £) of UzX 7 into ViX 7 such that ¢(x", £) is a
Cr+l-diffeomorphism of UzX ¢ into ViX¢ for any fixed ¢, partial de-
rivatives of ¢z(x"’, £) of any order (<»+1) with respect to " are con-
tinuous on UzX/ and ¢3(x", ) 'go(dz(x", £))=g(#)(x""). Then for
a suitable index /, {U;; A€/} and {¢sz(x, £); A€/} define a de-
formation gy of go such that g(#)=gy. This fact holds good, even if
we use any one of g(#) in place of go. Then we have Propostion,
extending the above proof on 7 successively.

Two deformations g} and g of go is said to have the same germ
of deformation at 0 if there exists a positive number f such that
gi=g% on (—#, t). If there is a positive number #{ and a continuous
family {f;; te(—1¢, 20)} in Diff t+)(M/) through e=/fo such that
figt=g} for any r&(—¢(, ¢{), the germ of g} at 0 is said to be
equivalent to that of g2. Thus we have the equivalence class of germs
of deformations. Let ¢(x, #) be a local transformation of 4 X 7 such
that ¢(x, 0) is identity and ¢(x, ¢) for any fixed # is a local automorphism
of go. Let [A(go)X¢] denote the whole of germs of such ¢(x, #) at
every point of #/X0. Then [A(go)X¢] is a sheaf of group on A/ and
we have the l-chomology set A1(M, [A(go)X¢]). It is well known
that AWM, [A(go) X ¢]) is one-to-one correspondent to the whole of

equivalence classes of germs of deformations of go(see [3] or [7]).

§6. G-structures having the same infinitesimal
automorphisms

Let No(£o) (resp. Ae(£o)) be the e-component of N () (resp. A(£o)).

On the notation and the argument of §4, a G-structure 7570 on M
for f € No(&) has the same infinitesimal automorphisms as Z. By
Proposition 6, there exists an element a of &V such that fgoz Soa.
If fgozgo-a=g0-a’, then aa’'e(G. Thus we have a mapping o: N,
(go) = NG defined by o( f)=¢'(a) where_]:‘:go=go'a and ¢' : V— NJG.
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Proposition 14. 7The mapping o is an anti-homomorphism and
of class C= from the Lie group N(go) into N|G.

Proof. Since (Fif2)do=rfi(f280) = (§oaz)a1 = Zo(a2a1), the map-
ping ¢ is an anti-homomorphism. Since N,(g) is a Lie transformation
group of M, the correspondence f— f(%) for a fixed £ M defines a
C=-mapping y: N¢(go)— M. Moreover, N(g) is a Lie transformation
group of F(M)|G, that is, the correspondence yXf—>f*(y) defines a
C=-mapping of F(M)|Gx Ne(gs) into F(M)|G, where f* is a trans-
formation of F(M)/G induced by f. Since f(y(f))=#%, the composed
mapping

o 1 f —> ff) —> 2y(F) —> TN & ()

is of class C* from N(g) into the fibre #(M)|G|% of F(M)|G over .
By the right translation of F(#)/G|% by N, we have an imbedd-
ing vz of N/G into F(M)|G|% such that vz¢'(a)=go(£)a for aEN.
If fg(,:go-a. we have

o' (F) =F* 8o F (%)) = F4o(£) = Go(%)a = viq'(a).

Then we have a C*-mapping vzlo’ of N(Zo) into N/G, which is o.

Proposition 15. For cach f € No( o), the G-structure pg,-o(f) is
deformable to go and has the same infinitesimal automorphisms as

go, where py, is the C-imbedding of N|G into G in §3.

Proof. Since Ny(go) is arcwise connected, we have a curve f(#)
of Ne(&) for ¢ of an interval 7 such that f(0) = identity and f(z)=f
for some #. There exists an open neighborhood ; of each #=M/
such that the covering mapping p: #/— M is diffeomorphic on F(2)
(U3) for every t1. Then the correspondence (p(), £)—(p(F(©)), £
is a continuous transformation fz(x, #) of an open neighborhood
p(Uz)x I into M x I such that fz(x, #) for any fixed £ is a local CT+!-
transformation of M X¢ and a system {fz(p(Uz)x1; €M} is an
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open covering of Mx 7. If fz(p(Ux)X&)N fz, (p(Tz)Xt)=V=£¢
a diffeomorphism fz(x, £)71f3/ (x, ) is a local automorphism of go
on (f3)1V, because F(1)g = fva(t) = Hgoa(t)) and then (f30)(V)
= (feg)(V) = (goa(t) (V) where o(f(9)=g'(a(t)). Since M is
compact, there exists a finite index / such that {p(Uz,); j €/} and
{fz;; 7 €]} satisfy the conditions of definition of deformations. Since
Fa180= (@0t (#(Uz,) X ) = oo FENI(ATz) X 1), the  family
pgoo(f(2) is a deformation of go. Since each G-structure of gg,'a(f(#))
is associated to go, it has the same infinitesimal automorphisms as go.

By the condition of go in Introduction, H°(M, A(gy)) is the Lie
algebra of the Lie group A(go) of automorphisms of g. Then, if f,(2)
is a l-parameter family of local automorphisms such that fy(£)(%) is
continuous on I x 7 and f(0) is identity, each of f7(£) can be extended
to a unique element of 4¢(&). Let g be a G-structure locally equivalent
to go. Let 5 be a local bi-G-mapping of & into g, on an open neigh-
borhood U, satisfying the condition that there exists an 1-parameter
family J7(2) of local bi-G-mappings such that i5(#)(£) is continuous
on Ux 1, §5(1)=i7 and 7(0) is identity. Then the germ of a local
bi-G-mapping at any y of U, satisfying the similar condition to ¢z,
is the germ of fiz at y for some f of A¢(Z). Therefore the portion of
the sheaf of germs of local bi-G-mapping which satisfies the above
condition on {7, is isomorphic to & X A¢(g). Since Mis simly connected,

the 7 can be extended to a global G-mapping of Z into g.

Proposition 16. If g is a deformation of o such that A(g)
=A(Zo) for each t, then g is trivial.

Proof. There exists a continuous mapping #5(¢) of U X7 into
M for some {7 such that for each fixed #, §5(2) is a local diffeomorphism
of U into M and a bi-G-mapping of g into g on 7. Then $5(¢) can
be extended to a continuous mapping i) of # x 7 in M such that for
each ¢, )(#) is a G-mapping of g into g. Because A(g)=4(Z) and
Z: satisfies the condition of g, we have a G-mapping #/(¢) such that
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&' O U=§z(). Since §()'(¢) : M— M is a G-mapping and 0)
J'()| U=identity, ('(?)=identity, that is, §(z) is a diffeomorphism
of M such that §(£)go=g:. Therefore g is trivial.

We denote by & the go-component of the space of G-structures which
are deformable to go and have the same infinitesimal automorphisms

as go, that is, the go-component of AN9.

Proposition 17. 7The C*-mapping pg,0 (=p) maps No(go) on S
and the differential dp of p at e satisfies a formula p(dp)i= L;g,
for "€ T (W &), M), where p is the mapping from T'(Vy(F(M)|G))
onto T'(V (F(M)|G)) induced by p and W o) is the sheaf of vector fields
of the Lie algebra of N(g).

Proof. By Proposition 15, u(N(£))CS. For any g S, let
g(¢) be an l-parameter continuous family in & for #&[0, 1] such that
2(0)=go and g(1)=g. Then the lift Z(/)=pg(?) of g(¢) is a defor-
mation of g on #. By Proposition 16, we have an 1-parameter f(Z)
of Cr+l-diffeomorphisms of # such that ;(t)g*oz £ and F(O)(%) is
continuous on M x /. The G-structure g(#) for each # has the same
infinitesimal automorphisms as g. Since A(g(#)) = A(;(t)go) =
F()A(%), each f(2) transforms A(go) onto itself and then f(£)& Ny(2).
Therefore, u(f(#))=g(¢) and the image of u is S. Moreover, for
AT (N(g), M) we have

pdpti =] paurae)] =i ayae]
| ST @],_=rane),
where p(£) =z, f(¢)=-exp ti, o(f())=q'a(?) and p* (resp. p**) is
the mapping of F(M)|G (resp. Vg (F(M)|G)) onto F(M)|G (resp.

Vi (F(M)|G)) induced by p. Then p(du(#))=L; .

Theorem 1. 7he subspace S is an immersed submanifold of G.
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Proof. 1f and only if u(fi)=pu(F) for f1, LE Ne( o), then fi go=
fzgo, that is, fi f31€ A(&). Now, Ne(&)NA(Z) is closed in N o).
The differentiable mapping p induces a differentiable injection @ from
a factor space No(go)/[Ne(Zo) N A(Z)] into the space &. Here, the
image of 2 is & and the image of its differential da at ¢ is that of dpu,
of which the rank is equal to the dimension of N(g)/[Ne(£o) N A(Lo)]-
Then Jg is injective and split. Therefore § is an immersed sub-

manifold in &.

Corollary. T7he tangent space of S at go is the wvector space
I'(84,p'W(80), M) of all the sections of the subsheaf 84,p"N(Zo) of V,
where p' is the sheaf mapping induced by p.

Proof. A diagram of sheaves

W) —» M) — % — T —

B
|7 |7 |7 VA
B

Ago) —> P N(g0) - N — T

90

is commutative, where 7 is the injection. Since N(Zo) is a constant
sheaf, we have I'(85 N(Zo), M) = 85, (M%), M). Since Lize
85,0 (N(2o), M) for an meT'(R(g), M) and p'85.R(2o) = 8¢, T &0),
we have du@)el (84,09 Z), M) by Proposition 17. Conversely,
we have pgeI'(85,(0( o), M) =8, (W(&o), M) for an 2T (W g0, M),
where ¢ is the lift of ¢ by p. Then g=du(#).

§7. Equivalence of G-structures having the same
infinitesimal automorphisms.

Since M is compact, there is a positive number e such that the
covering mapping p is diffeomorphic on each connected component of
p (U (x)) for the e-neighborhood U(x) of any point x of M. For
this €, each diffeomorphism f belonging to the e-neighborhood D.(e)
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of ¢ in Diff *+D)( /) induces a diffeomorphism f of M such that p(f(£))=
F(p(®)) for any £& M and f (&) belongs to the same connected component
of p~Y(U(p(%))) as £. The correspondence f— f defines a continuous
injection p of D.(e) into the topological group Diff (M) with the compact-
open topology, because the topology of Diff *+)(A/) is stronger than
the compact-open topology. Since the topology of the Lie group
Ae(go) (resp. Ng(go)) is the modified compact-open topology (see [5]),
the identity component of A.(go) N De(e) (resp. Ne(go) N De(e)) is an
open neighborhood of ¢ in A«(go) (resp. Ne(go))-

The Lie algebra A (resp. V) of A(g) (resp. N(£o)) is T'(A(go), i)
(resp. T(M(&o), M7)). Let N be the lift "p(I'(N, M)) of the Lie algebra
'R, M) of N(&). Then N and 4 are respectively subalgebra of the
Lie algebra V of N(g). Take a complement V of the sum N+4 in
N and a complement N'of 4 in N+A. Then, N= V@ N' @ A.
Since A¢(Zo) is closed in Ne(go) and p(Ae(go) N De(e)) is locally closed
in Ny(£Zo), we have

Lemma 3. There exist open neighborhoods Ao, N§ and Vo of 0
in A, N and V respectively, such that the mapping

D: (a, b, c) —> (exp a)(exp b)-(exp ¢)
for ac Ay, bENG, c=V,

is a diffeomorphism of Ao@ No@ Vo onto an open neighborhood U
of ¢ in N(Fo) and PN g+ Vo) N Ae(Zo)=c.

Let ¥ denote the submanifold {exp #; & & Vo} of Ne(gy). The
restriction of w on V is an imbedding and then its image w(¥) is a
differentiable submanifold of § which we denote by €U/,

Proposition 18. 7f f(:)g(?) is a curve in CU for a curve f(¢) in
Diff t*O(M) through e =f(0) and for a curve g(t) in UV through go—=
&(0), then there exists to>0 such that f(2) for t[—to, to] is in Adgo).
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Proof. We have curves #(¢) and #'(¢) in V with #0)=7#'(0)=-¢
such that u((¢))=g(¢) and (@' (¢)=Ff(Hg(?). jince F(@®)cDee),
where |#|<# for some # >0, we have 7'(¢)go= (pf(£))#(£)&o, that is,
# ) Bt = 5t) C A o). Then (&) — 7 (BB C N 20).
Taking a smaller # if necessary, we see that the curves 3£ (%), 6(¢), #'()b(£)
:}nd ' (Ob()7 (£t =8'(¢) are in U. ) Since ?( F@OY(t) =i (Hb(t) =
&' (@), p(f()T U NP(De(e),#(t)CV,7#'(£)C V and &'(#) C U N Ao £0),
we have p(f(£)=24'(t) and #(¢)=#'(f) by Lemma 3. Therefore,
BUF(2) C B(Aa(go) N Do), that is, F())C Aulgo).

Proposition 19. If we take a suitable connected neighborhood
Uo of go on S, then for each g of Uy there exist a unique g€V and
an € No(go) N\ De(e) such that g=fg', and the correspondence g— g’
is a differentiable mapping of U, onto V.

Proof. If we set Up=p(0), then we have Proposition from the
definition of &/ and by Lemma 3.

§8. Deformations having the equivalent infinitesimal
automorphisms.

Definition. A deformation g(¢) of gy is called to kave the equiva-
lent infinitesimal automorphisms, if each g(¥) have the infinitesimal
automorphisms equivalent to those of go, that is, if there exists a con-
tinuous curve ¢(#) in Diff ™+)(A7) through ¢ such that ¢(0)=e¢ and
H(1)A(go)=A(g(?)) for each z

The composed mapping 7’ of o : Ne(go)— N|G and 7 : Diff *+D (A1)
X N|G—G is a C*-mapping of Diff +D(M )X Ne(Zo) into &. More-
over, 7' defines a C®-mapping 7’ of Diff(+)(M)x S into & by
formula 7''(¢d. X w)=1', such that 7''(f, g) = fg¢ for f < Difft+1)(M) and
g=S.

Proposition 20. 7/ere exists an open neighborhood U, of e in
Diff (M) such that, if and only if a deformation g(t) of go have
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the equivalent infinitesimal automorphisms, g(t) is a curve through
go in the image of Uy X <V by the C-mapping v'' for t of some neighbor-
hood of 0 in R.

Proof. The differential of 7 at (¢, go) is a continuous linear
mapping 0-+g—8g,0-+¢ for 0= T(Diff T+D(M)) and ge Ty (S). If
¢ is tangent to €U, we have & I, such that du(?)=g and pg = L.
If §40+¢ = 0, we have

Pg0+18= Lrpsgo+Ls80=0

and then s A+ V, where ‘p denote the lift of vector fields on .
Since "p0= N, we have p=ANN and then §=I'(A(go), M). Since
there exists a closed complement D of I'(U(go), M) in Te(Diff +O(I)),
we have an open neighborhood U, of ¢ on Diff ™*1)(A/) and a submanifold
C tangent to D at e in U, such that 7"(U,X CV)=7""(Cx €V’) and 7"’
is diffeomorphic on CX V. If g(¢)is a curve in 7"'(Cx V) through
go, then we have a curve f(¢) in C and a curve »(¢) in ¢}/ such that g(¢)=
F(@®uv(#). Therefore,

A(g(#) = AF(O)(@) =F (O A(w(®) = (H)A(go),

that is, g(¢) is a deformation having the equivalent infinitesimal auto-
morphisms. Conversely, if for a deformation g(#) of go there exists
f(#) such that A(g(¥)) =/(¥)A(go) and f(0)=1identity, then A(go)=
A(F(®)'g(®)). By Theorem 1 and Proposition 19, f(#)~'g(¢) is a curve
v(#) in €V for a sufficiently small |#]. Then f(#) is in U, for # of some
neighborhood of 0 in R and g(¢) =F(H)v(?) is in 7"'(UgX V).

Taking germs at #=0, the above facts are represented in the
cohomology with coefficient sheaf as follows. Let {f(#), Ui; i€/}
be a system of an open covering {U;} of M and local diffeomorphisms
Jfi defining a deformation g(¢) of go. For 7, j& / such that U;N Uj
¢, a local transformation fi(#)71fj(#) is considered as a l-parameter
family of local automorphisms of go continuously dependent to # and

its germ at #=0 is a section of the sheaf [4(go) X ?] over U; N Uj.
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Let #(x, #) be a local transformation of A/ X/ such that ¢(x, 0) is
identity and (x, ¢) for any fixed # is a local C"-transformation of
M x t which transforms A(go) onto itself and such that partial derivatives
of Y(x, ¢) of any order (<7-+1) with respect to x are continuous on
Mx1I. Let [N(go)X¢t] denote the whole of germs of such local trans-
formations at every point of M X0. Then [N(go)X¢] is a sheaf of
group and [/N(go) X #]D[A(go) X ¢]. Therefore, a system

{germs of fi(#)71f;(¢) at t=0; ¢, j & J such that U;N Uj5=¢}

is a [NV(go)Xxt]-valued l-cocycle of the nerve of {U;}. This cocycle
is coboudary, if and only if the germ of g(#) is equivalent to a defor-
mation having the equivalent infinitesimal automorphisms. Let £

denote the correspondence
HY(M, [A(go)x#]) —> H (M, [N (g0)x?])

induced by the injection A(go) — N(go). Then we have

Theorem 2. A cokomology class g of H'(M,[A(go)X¢t]) corre-
sponds to a class of germ of a deformation having the equivalent
infinitesimal automorphisms, if and only if 2-g is coboundary in H\(M,
[N(go)Xt]). Any such class is represented by a unique germ of a

curve in V.

Since &7 (Te(C)+ Ty(CV)=1{84,0 + 01; 0 € To(C), v = Tg(V)},
the tangent vector of a differentiable curve in 7'(Ux C) at £=0 is
85,0-+9. Conversely, for any 0& T,(C) and any #& 7,,(SV), a vector
84,07 is tangent to a differentiable curve in 7 (Ux <) at ¢=0.
Here, from the definition of C and CV,

{8g,0+0; 0= To(C), 1€ Tg (V) ={84, () +T' (8,2 N(£0))}-

Each element of 8, I'(X)+T' (84,0 N(&o) is called an infinitesimal
deformation of go having the equivalent automorphisms. Thus we

have
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Theorem 3. Fuwery infinitesimal deformation having the equiva-
lent infinitesimal automorphisms can be extended to a deformation

having the equivalent infinitesimal automorphisms.

The whole of equivalent classes of infinitesimal deformations of
go is a linear space I'(8,,%)/84,'(T) which is isomorphic to A (M, A(go))-
Since A(go) C p'N(&o), we have a homomorphism w’ : H1(M, A(go)) —
HYM, p'N(g)). Ker w'(=.K in Introduction) is the whole of equiva-
lent classes of infinitesimal deformations having the equivalent infini-
tesimal automorphisms and this is a linear space with the dimension
of the manifold <{/, which is equal to [dim.N(gy)—dim.A(Z)—
dim. NV (g¢)+dim. A(go)]. Then we have

Theorem 4. [f o' : H'(M, A(go))— H (M, p'N(Lo)) s injective,
that is, if [dim. N(Zo)—dim. A(go)—dim. N (go)+dim. A(go)]|=0, then
every deformations of go having the equivalent infinitesimal auto-

morphisms arve trivial.

Kyoto University
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