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§0. Introduction

The present paper is concerned with a spectral property of the
Schrédinger operator

©.1) L=—j2;( 0 +ib,)2+V

0x;

in R", where b; and V denote the operators of multiplication by real-
valued functions b,(x) and V(x). b,(x) is the j-th component of
the magnetic vector potential, while V(x) represents the electric
scalar potential. V(x) is usually assumed to diminish at infinity,
which corresponds to the situation in a two-particle problem that
the interaction between the particles dies off as their mutual distance
becomes large.

The spectral structure of the operator L has been investigated
by many authors with various degrees of the smallness assumption
on V(x) at infinity. For the sake of convenience of explanation we
consider, for the moment, the case =3 and b,=0 in (0. 1), so that
L= —4+V, 4 being the n-dimensional Laplacian. A most interesting
problem in the spectral theory for L is that of absolute continuity.
Namely, let H be the unique self-adjoint restriction in L,(R®) of L
(the existence of H is guaranteed, e.g., by Ikebe-Kato [8]), and E

the associated spectral measure: H= Sm MdEQ). Then the problem
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is: Is (EWS, ), f=L,(R®*), absolutely continuous (with respect
to the ordinary Lebesgue measure) on (0, o)? Or, equivalently, is
H restricted to E((0, o)) L,(R®*) an absolutely continuous operator ?
(Here it should be noted that if the problem is affirmatively answered,
then the absence of the singular spectrum on ((, oo) follows.) Let
us now assume that V(¥)=0(|x|™*), a=0. The above problem has
been solved, to cite a few, by Povzner [14] for «>3.5, by Ikebe [7]
for a>2, by Jdger [10] for «>1.5 by Rejto [15] for a=>4/3, by
Kato [11] for «>5/4, and by Agmon [2] and Saito [16] for a>1.
For the repulsive potential case (@V/2|x|<{0) we note work of
Lavine [12] and Arai [3]. Attention should also be paid to the
result of Dollard [4] for Coulomb type potentials (a=1).

Recently, R. Lavine obtained the following result (lecture given
at the 1971 Oberwolfach symposium on Mathematical Theory of
Scattering): If V=V,+ V, with V,(x)=0(1), 8 V,/81x|=0(|x|™®),
p>1 and V,(x)=0(|x|7), r>>1, then H is absolutely continuous on
(0, =).» His method of proof is similar to the one employed in [12].

In this paper we shall establish the same result as Lavine’s by
a different method, where the condition V;(x)=0(1) will be replaced
by Vi(x)=0(|x|®), 6>0, however.

The spectral measure £ is, roughly speaking, determined by the
boundary values of the resolvent (H—2z)™' on the reals, the resolvent
being well-defined for z non-real. This leads us to the study of the
asymptotic behavior of (H—21+1ie)™ as ¢ tends to O through positive
values. We cannot, however, expect that the limit of (H—214ie)7'f
for ¢} 0 exists in the L, sense for f&L,(R*), and, therefore, we
have to choose appropriate classes of functions so that the limiting
procedure in question may be justified. This forms the contents of
the so-called limiting absorption method or principle.? Once the

1) (, ) denotes the usual L. inner product.

2) He has not directly treated the Schrédinger operator in R”, however.

3) Agmon remarked in [2] that this would be the case.

4) For a general survey of the limiting absorption method see, e.g., Eidus [6].
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limiting absorption method proves applicable, the absolute continuity
of H on (0, o) readily follows.

The greater part of the present paper will be devoted to the
justification of the limiting absorption method for the more general
Schrédinger operator (0.1) in which 5,720, but we shall impose on
b; some asymptotic condition at infinity.

Section 1 states and proves all the theorems related with the
limiting absorption method, while several lemmas needed for proving
the theorems are stated without proof. These lemmas are proved
in Section 2. Finally in Section 3 the absolute continuity of the

Schrédinger operator is verified.

§1. Limiting absorption method

Consider the inhomogeneous Schrédinger equation

(1.1 Lu—u= —éD,D,u—l— Vx)u—ru=sf
in R", where
(1.2) D,u— (0,+ib,(x))u (a,:%) .

b;(x) and V(x) are real-valued functions whose more precise pro- |

perties will be specified soon. The complex parameter ¢ is assumed
to vary in the closed upper half-plane. The inhomogeneous term f
is assumed to lie in a suitable Hilbert space contained in L,(R").
Equation (1.1) may be solved rather easily if # is non-real and
£* is not an eigenvalue of L. Denoting the solution by u(x, f), the
following question arises: Does there exist a limit in some sense
or other of u(x, f) when £ tends to a real limit (%0)? If such a
limit exists, then it may be easily imagined that the limit function
satisfies (1.1) also (with « replaced by the real limit). We want to
solve the above problem by first establishing some a priori estimates
for solutions of (1.1) with non-real #, and then carrying out the
limiting procedure preserving the obtained a priori estimates. This
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way of constructing solutions (1.1) for x real is what is called the
limiting absorption method.

Before giving the assumption on V(x) and b;(x) we shall list

the notation which will be employed in the sequel without further

reference.

R: real numbers.

C: complex numbers.
-
D=0+ v/ =1 b,(x) =0,+ib,(x) (6,-=6—i—,j=1,2,~-,n>.
j

@,=@§“’=D,+%}T—f,—ix£, (x,=1,/| x|, kEC).

Du= (D\u, D,u, -+, D,u).
Du=(Diu, Du, -+, D,ut).

D,u=E"]D,-u-fc', (r=1x1).
j=1

Q,u=§”1.@,~u'x, (r=|x|).

E,={x/1x| >} (r>0).

B,={x/]|x|<r} (r>0).

B.={x/r<|x|<s} (0<r<s).

L;,s(G) (B R) denotes the Hilbert space of all functions f on G
such that (1+ |x|)®f is square integrable over G. The norm
and inner product of L,z(G) are denoted by || |lss and
(,)s ¢, respectively. We set L, s(R)=L,,s, | lls,z"=1 &
and (,)gr=(,)s. When =0, we shall omit the subscript
0 as in L,(G), || |le etc.

H, is all L, functions with L, distribution derivatives up to the
second order, inclusive.

C~ is the class of m-times continuously differentiable functions.

Cr is the class of infinitely continuously differentiable functions

with compact support in R".

M@=\ D4y (>0,

|s-y1S1 |x___y|n—4+a.
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Q. denotes the class of locally L, functions p(x) such that
M,(x) is uniformly bounded in R".
Ny is the class of all locally N functions.

Now let us make the following assumption on the coefficients

V(x) and b,(x).

Assumption 1.1.
(V) V(x) can be decomposed as V(x)= Vi(x)+ Vo(x) such
that Vi, Vi are real-valued Qa,ioc functions for some a=0,
and there exist positive constants C, 8, R, such that

(V) the radial derivative 68| 1;1[ exists for | x| >R,, |Vi(x)|ZClx |73,

Vi ~1-5
3% <Clx|7® for |x|>R,, and
(Vo) [ Ve |=Clx|7? for |x|>R..
(B) b;(x) is a real-valued C' function satisfying |Bu(x)|

<C|x|™° for |x|>R,, j,k=1,2, -, n with the same C, 5, R,
as in (V), where B,(x)=0,b,(x)—0,b;,(x).

Qo) The unique continuation property holds for the differ-
ential operator L in R".

The main results of this section are summarized in the following
four theorems.

Theorem 1.2. Let K be an open set in the upper half-plane
of C of the form
(1. 3) .K= {IC=K1+1.IC2€C/ICIE(a,b), ICQE(O, CY)},

where 0<<a<<b<<oo and 0<<a<loo. Choose an >0 sufficiently
small (so that ¢<5/2 and «<<1). Then under Assumption 1.1
there exists a constant C=C(K, e)® (which is independent of &,

5) Here and in the sequel we agree to mean by C=C(A4, B,---) that C is a
positive constant depending on A4, B, -:. But very often symbols indicating obvious
dependence will be left out. For instance, C=C(K, &), here, obviously depends on
the differential operator L, but we do not insert L in the parentheses.
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however small it may be) such that the following a priovi inequalities
hold for any usCs and any reK:

(1.4 “%“—(1+é)/2§CH(L—'Cz)u”<1+e)/2 ,
(1.5) ”@u”(—ué)/z. E,gC” (L_Kz)u”(u-&)/z )
(1. 6) 2]l 2 cxrerre, e =Col| (L — &) t| S1s6912 (o=>1).

Theorem 1.3. Let Assumption 1.1 be fulfilled and let K and
e be as in Theorem 1.2. Then for any pair (x,f)E KX Ly 1ie2
there exists a unique solution u=u(k, f)E L, _qe:\ Hy e Of

(1.7) (L—)u=f.

Moreover, the solution u satisfies

(1.8) ol —rser e =CI| f lc1se32 ,
(1.9) ”g)u”<—1+6)/2,51§C||f”(1+6)/2 ,
(1.10) 212 ciserse, 2o =Co0 8|l f I 2118302 (o>1)

with the same constant C=C(K,¢) as given in Theorem 1. 2.

For k= K, where K is the closure of K in C, we can construct
a solution #=u(x, f) as the limit of a sequence of solutions {u.,
=u(kn, f)} (£.E K, k,—r) obtained in the preceding theorem.

Theorem 1.4 (limiting absorption principle). Let Assumption
1.1 be fulfilled and let K and ¢ be as in Theorem 1.2. Let re€ K
and let & Ly, cey2. Let {k.; CK be a sequence tending to r. Let
Un=0U(kn, f). Then {u.} converges in L, e 10 @ UE L,y ey
N H,, .. which solves

1.11) (L—Du=f.

The limit u=u(x, f) thus obtained is independent of the choice of
the sequence {k.; and is determined as a unique solution of the
equation (L—k*)u=f with the boundary condition at infinity
| Dutl| 11852, e <<oo. (The last condition replaces the usual outgoing
radiation condition; cf. Saito [16].) Moreover, u(k, f) is L _aieye
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strongly continuous in rEK.

As is easily checked, the above theorem is an immediate con-
sequence of the following more general assertion.

Theorem 1.5. Let Assumption 1.2 be fulfilled and let K and
e be as in Theorem 1.2. Then for any pair (x, f)E KX Ly aiene
there exists a unique solution u=u(x, f)E L, _arey2( ) Ha, 100 OF

(1.12) L—=eDu=f, [ Dullcaron, n<loo.

In this case the estimates (1.8), (1.9) and (1.10) hold good.
The mapping

(1- 13) XX Lz.(u-t?)/z9 ("» f) |_> u('f, f) ELZ. —(146)/2

is continuous on KX L ciee.

Remark 1.6. In Theorems 1.2, 1.3, 1.4 and 1.5 one may
replace K by any of the following:

(1. 14) {IC:IC1+7:IC2€C/IC1€('_b, —d), ICzE(O, CY)},
(1.15) {k=k1—ir.eC/r,€(a,b), r.e(0,a)},
(1.16) {k=k1—ie,€C/t.&(—b, —a), (0, a)}.

In the latter two cases where one considers in the lower half-plane,
one has to make an obvious change in the definition of Du, i.e., one
should put

a.17n) D,u= Du+2| ]xu+zxxu

We shall list a series of lemmas which will be used to show
these theorems and will be proved in the following section.

Lemma 1.7. There exists a constant C=C(K,e)>>0 such that
(1.18) | Dutll —rierre, n SC{l| ]l ccxvere+ | (L — £ ]| crveyse}

is valid for any usCsy and any r= K.
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Lemma 1.8. There exists a constant C=C(K,e)>0 such that
(1.19) el 2 cxrerres o =Co® {lltl|2 cxserre+ |l (L—=eullteey  (0=1)
holds for any usCy and any r= K.

The next lemma shows the uniqueness of the solution of (L—«x*)u
=f with x€ K satisfying some boundary condition at infinity.

Lemma 1.9. (i) Let uH, . be a solution of (L—r)u=0
with k€K such that wu€ L, _q.e.. Then u is identically zero.

(ii) Let ue Hy 100 be a solution of (L—r>)u=0 with r= K such
that uc Ly, .62 and || Dul|iieye, 5,00, Then u is identically zero.

The following two lemmas are related to the existence of the
solution #(x, f) of (L—«*)u=f and the continuity of #u(x, f) in «
and f.

Lemma 1.10. Let k€ K. Then the set {(L—)u/ucsCy} is
dense tn L, iieyz.

Lemma 1.11. Let {#.; be a sequence in L. _iey:(\ He e and
let {k.} be a convergent sequence in K: k,—xS K (m—>o0). Assume
that

(1. 20) fo=(L—K)UnE Ly, 11692,

(1.21) fa>f in Ly e (m—>o0),
and there exists a constant C, such that
”urn“—(ué)/zéco y
(1. 22) ||@(K"')um”(—l+5)/2. EléCO ’
Nt |12 1rr2, £, =Ci00~¢ (o>1)
for all m=1,2,---. Then {u,} has a strong limit u in L, _q.eype.
u satisfies
(1. 23) uELz. _(1+6)/2m Hz, loc »

(1.24) (L=)u=f,
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(1' 25) ”g)u“(—1+5)/2. El<°°}
(1. 26) Dy, ~>Du in Ly(Ewe (Mm—>o00),

Using these lemmas we can now prove Theorems 1.2, 1.3, 1.4
and 1. 5.

Proof of Theorem 1.2. Since (1.5) and (1.6) follow from
(1.4) and Lemmas 1.7 and 1.8, it is sufficient to show (1.4) alone.
Let us assume that (1.4) is false. Then for each positive integer
m we can find x.€K, u,=C; such that

Unl| - =1,
(1.27) {” | —c1eerre

| (L — k) thl| 148521/

Since {x,} is a bounded set in C, we may assume, with no loss of
generality, that r,—x with k€K as m tends to oo. It follows from
(1.27) and Lemmas 1.7 and 1.8 that we have for all m=1,2, ---

{Ilum esere, e, =Co (1 +1/mD<2C*  (o=1),

1.28
A28 ) Dwttyesreyn,n <CCL+1/m)<2C.

Therefore, we can apply Lemma 1. 11 with f,= (L —«})u,, and f=1lim f,,
=0, which follows from (1.27), to see that there exists ami){;lqit
u=3’1_)12 Un in Ly 1,6 which is a solution of (L—«*)u=0 satisfying
| Dutllc-srerj2, <loo. Since |[Unll-cirer2=1, [|%6]_c1rey2=1. But this is a
contradiction, because we have, on the other hand, #=0 by Lemma

1.9, (ii). Thus we have shown (1.4). Q.E.D.

Proof of Theorem 1.3. Let fe&L; 14ey.. Since {(L—x)Du/u
eCq} is dense in L, (1462 by Lemma 1. 10, there exists a sequence
{u.} CCs such that

(1. 29) (L—Icz>um=fm_>f in Lz,(1+E)/z
as m—oo. Applying Theorem 1.2, we obtain

)l 14832 =CI| f mll 148512
(1. 30) | Dkl 148312, s ZC|| fullc1reie
”um“2—(1+e)/2. En§Cp—E|lfmI|?l+5)/2 (Pgl)
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for all m=1,2,---. Since it follows from (1.29) that {||f.|lcirey2}
is a bounded sequence, we can see that (1.22) is satisfied with
Co=(C+ V?)-Sgp”fm”um/z and x,=+#. Hence we can apply Lemma
1.11 to obtain a solution #E L, e Hy e of (L—&>)u=f by
taking # to be the strong limit in L, _¢ey2 of {#,}. By Lemma 1.9,
(1) the # is a unique solution of (L—x)u=f, uc L, _qie2() Ha 0.
By letting m—oco in the first and third inequalities of (1.30), (1.8)
and (1.10) of the theorem follow directly. To show (1.9) let G be
a bounded measurable set in E,. Then we have from the second
inequality of (1.30)

(1.31) | Dol 11632, c=C|| fullc1182s2 -
Letting m tend to oo in (1.31), we obtain

(1.32) | Dot | 1432, ch“f”(ue)/z ,

since D*’u,—Du in L,(E;)w.. by (1.26) of Lemma 1.11. Since
GCE, is arbitrary, and the right side of (1.32) is independent of
G, we obtain (1.9). Q.E.D.

Remark 1.12. Under the assumption of Theorem 1.3 the
unique existence of the solution in L, _q e\ Hz e of (L—£)u=f,
fEL; e follows rather easily if one notes that L determines a
unique self-adjoint restriction H in L. (see, e.g., Ikebe-Kato [8]), and
that #* is not real. In fact, for any f& L, a.e:(C L) u=(H—#*)"'f
€L, is seen to be a unique solution of equation (1.1) satifying
U Ly, 14692V Hs 0. But in the above proof we have had no recourse
to the self-adjointness that does not seem powerful enough to derive
the uniform estimates (1.8)~(1.10) for r€ K.

Proof of Theorem 1.5. Let r&K and fE€L,q.e0.. Take
{tny CK such that x,—r as m—oo. By Theorem 1.3 there exists
a unique solution #,E L. _ey2( ) Hy 10 Of the equation (L—kl)u,=f
which satisfies
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||um||-<1+£>12§C||f|](1+e>/z

(1.33) | D“® s 14802, &, SCN F Mlcxserre
tall2 ctrerpe, 2, =Co™8l f ltsere (0=1)
for all m=1,2,---. Then one can see from Lemma 1.11 with f,=f

that {#.; has a strong limit # in L, e, %S Ls ey He, o,
which is a solution of equation (1.1). Arguments similar to those
used in the proof of Theorem 1.3 to derive the estimates (1.8)~
(1.10) from (1. 30) show that the same estimates follow from (1.33)
in the present case. Since | Du|(_iiery2 <0, it follows by Lemma
1.9, (ii) that the # obtained above is a unique solution of equation
(1. 1), [|1Dull_1sey2, 5, 0o

Finally let us prove the asserted continuity of the mapping
(1.13). Now that the unique existence has been established, one
can apply Lemma 1.11 again to the solutions #,=u#(x., f.), Where
{c,} and {f.} are assumed to be convergent sequences in K and
L, 1,82, respectively. The required continuity follows from the fact
that {u.} is a Cauchy sequence in L, _.ey2, Which is a conclusion
of Lemma 1. 11. Q.E.D.

§2. Proof of the lemmas

This section is devoted to giving the proof of Lemmas 1.7~
1.11.

First we shall prepare a lemma which is a well-known elliptic
estimate for the case that L has smooth coefficients. In our case
where the coefficients are allowed to have certain singularities, an
additional consideration will be required.

Lemma 2.1. Assume that VEQa . with some o>0 and b;
are veal-valued C* functions on R". Let K be a bounded set in C.
Then for each R=0 there exists a constant C=C(K, R) such that
the estimate

@n | Suwira=c| (uwir 1 @-dummas



524 Teruo Ikebe and Yoshimi Saito
holds for any ue H,, .. and any t K.

Proof. Let ¢yr=C{ such that 0<y,<{1 and

1 (xI=R),

(2.2) V(%)= {0 (12| =R+1/2).

Since u€ H, .. satisfies
(2.3) (L—) () =4r(L— k) et — {u-mp+2§"1D,u-a,.¢},
we obtain
2.4 ((L—=&) (), puw) = (Y (L—r*)ut, Yu) — ((dr)u, e
~233(@) Dyt ),
whence follows by integration by parts
(2.5) I DCyrte) [P = ((&* — V)bt rtn) — (Yo (L — &*d s, ras)
— (), 1) ~ 233O Dyt )
= ((&*—= V)ypu, yu) + (Y (L — &>, yrr)
— (4, ) ~2 33D, (), (0,9)u0)

+2 33 @ull

Hence we obtain the estimate

@6  IDGIPSC, (Ve lyu )
T L —=Du(x) |*+ |u(x) [y dx
with a constanf C,=C.,(K,R). Since D;=9;+ib;(x) and b; are
locally bounded on R, it follows from (2.6) that
@1 BeGwPSCS, (V|
1 (L—u(e) |+ ()| da

with C,=C,(K, R). Since VEQ, 1., Wwe can make use of Lemma 2
of Ikebe-Kato [8] to show
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@8 | V@l

=, Som@rde+Cl u@ i,

Bgy1i=1

where 7 is an arbitrary positive number and Ci(», R) is a positive
constant. (2.1) then follows from (2.7) and (2.8). Q.E.D.

For later purpose let us rewrite equation (1.1)
@9  (L—#u=—-3D,Du+ Vu—ru=f
in the form
210 -39t 2 LD u—ix@ut Viou=7,
where
@1 V)= V@) +ps (i D (—3).

Let us proceed to the proof of Lemma 1.7. To this end we need
two lemmas.

Lemma 2.2. Let usCy and let f=(L—k)u with x=C.
Further, let o(r) be a C* function on [R,, o) such that ¢(R,)=0,
and let us put

@12 Viw=V@+ oD 03,
Then we have

(2.13) S{( f—éﬂ)wmz (i—g—‘;’)u@uv—up,uP)}dx

r
L2 v 255 o s

—Re udx:|

6
[§,,0 i
Iml:gm %(pB;;,g) u- x,.udx]JrReI:S ef @,—udx:' ,

ERo
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where r,=Imek, r=|x| and Bu(x)=0,b,(x) —8,5;(x).

Proof. First note that (2.10) holds with our # and f. Multiply
both sides of (2.10) by ¢9,u, integrate over Ex,, and take the real
part. Then we have

(2.14) Re[SEkuqof _-@,—udxil= —Re[g anaD,@,u'g)—,udx:l

Enof=l

+Re[$£ko¢< "l —i:c) |@,u|2dx]

+Re|:SE <pV]u-.@,udx:|+Rel:gE ¢I72u~£7),udx]

=Il+lz+13+l4.

Let us compute I, (s=1, 2,3) by (repeated, if necessary) application
of integration by parts as follows: Noting that

2.15) D, Duti—D.D,u— ( ”2;1 —i/c> (%D u— 3, Do) +iB i,

we have

(2. 16) L=Re[g Z”@ju'Dj@hu'(/)ihdx}

Epoi k=1

+Re|ig "lm,u- 0;0) -mdx]

Epoi=

+Re[g > Dy (a,fc'oqomdx]

Epgirk=1

:SE (%—_ nz':’l ¢_”2¢> | D,u|*dx

¢ _1 0o > :
+Sam<r 2 gy TR | Dul*dx

+Iml:8 > an,,,(g),u)jc,,ﬁdx:' :

Epyiik=1

.17 A:S%(o( " 1 +x2)' | D,u|*dx.

(2.18) A:Re[SE ¢I/§u{12”(£,(a,ﬁ)—i£,b,17)+ ”2;1ﬁ+im}dx]



Limiting absorption method and absolute continuity 527

~—re | S, Viui)-udz]

Epoi=1

+, on(%,

— -1~ (aq’vl f"’lel"‘l)mwdx
Egq /4

+xz>[ulzdx

or o7
+2§E <le< —I—x2>|u|2dx
_ _1(0¢ 3V1>} .
—Sb_m{wal 2<6r Vite or |ul*dx.

Thus (2.13) follows from (2.14), (2.16), (2.17) and (2.18).
Q.E.D.

Lemma 2.3. Let K be as in Theorem 1.2 and let <>0.
Then there exists a constant C=C(K,¢) such that

(2.19) k|| e ZC { ot cxverre + | Detl| cavrre, 5+ | (L= &) %l arerre)

holds for any usC; and any t=r;,+ir,€ K.

Poof. First let us show (2.19) for (s with support in E;.
Integration over E, after multiplying both sides of equation (2.9)
by ¢(x)u= 1+ |x]|)*"*% yields, on taking the imaginary part,

(2. 20) —Img Zga(D,D,u) Tadx— 2ng <p]u|2dx=ImSE<pfﬁdx,

Eij=1

where we put f=(L—«*)u. The first term on the left-hand side of
(2.20) being integrated by parts, we obtain

| "
(2. 21) ngsl(pml dx—— {ImSmZﬂD,u 72

1 I O _
=5 {ImSEl By (.Q) u 2r u+z;cu>udx Iisfpfudx}’

where we should note #,%0. Since

00 Gax— Img o fﬁdx}

(2.22) g‘/’ — (-1 +r)E= 1;:

it follows from (2.21) and Schwarz’ inequality that
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(2.23) ngmgolulzdxé el [S (a]u|2dx:|w

[t mura]”

. (1 E) . 1/2 S 1/2
R e P R AR T
Hence, noting that # is supported by the set E;, we have

(2.24) el e < 2| {(1 ) | Dull sz, &,

+(1 _5) [k o)l —civeye + 1| f Nlcazersel -
Thus (2.19) follows with

(2.25) C-—{(l—e)(l—!— ) +1}
(t=12£|xxl, T=§g’glxll)

for uCy with support in E,.

Next let us proceed to the general case, where no restriction is
made on the support of #=Cy except it is compact. Let «(x) be
a C= function such that 0<<a<<1 and

1 (=x1=3),

(2. 26) a(x)={0 (aieo.

Then we can decompose # as #u=(1—a)u+au. For (1—a)u the
estimate

@2D)  |—aulasss] |, A+ 15D ul*dz | ZClul e

is valid with a positive constant C=C(e). Let us estimate the term

au. au is a C7 function with support in E,, and we have
(2.28) (L—,f)(au)=a<L—x2)u—(Aa)u—zii(a,a)(p,u)
=
=af+g.

Therefore, by what we have proved for C§ functions with support
in E,, it follows that
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(2.29)  rllattlla-e=C {||u|l _cxser2+ | D(att) | 1182 5

I f Narer+ 18 llaserz)
where C is as defined by (2.25). Notice that
(2. 30) @,(au) =a@,u+ (0,a)u

and the support of g is contained in B,;. Then, using Lemma 2.1,

we obtain

| D(aw) || c-14852, Elé||@u”<—1+6)/z.m+Cl”“”-(1+6)/z ,
| gllcrsere=Co {4l _crseye+ | f lcaserre »

where C;=C;(K,¢) (j=1,2). (2.29) together with (2.31) yields
(2.32) mllestlla-ep=Cs{l#l-aiepn+ |Dull 1o, 2+ || f laseye}

with C;=C;(K,¢). Now (2.19) follows from (2.27) and (2.32).
QE.D.

(2.31) {

Proof of Lemma 1.7. Let us put ¢(x)=a(lx|)A+|x])¢
where a(7) is a C* function on [R,, o) such that 0=e=<1, o' (») >0
and
0 (r=R,),

(2.33) a(r)= {1 (r=R,+1),

R, being the constant specified in (V) of Assumption 1.1. Then
we have
@ _0Op _ 1+7 —1+E —1+€
(2.34) " "y ; A+ e(1+7)
=1 —e)(1+7r) >0 (r=R,+1),

and

1. 9
@35)

or

La() A+ d (N A +7)°

z%-a(n A+7)7=0  (r=Ry).
With the ¢ defined above we can apply Lemma 2.2. Taking note of

(2.34), (2.35) and Assumption 1.1, for #€C; and f=(L—x)u
(ke K) we obtain from (2.13)
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a(1+r)‘”fl.@u|2dxgcl{g | Du|*dx

) BRo, Ro+1

+§ (A+7r) "¢ u| 2a’x+x28
ERo

(2. 36) % SER

A+r)¢lu|*dx

R

—I—SE a(1+7)7¢| Du| |u|dx+SE a(1+7)éf| | Du|dx

with a constant C,=C,(¢), whence follows by Schwarz’ inequality
(2.37) | Doall ¢ sserie. mog s =Co{l| Dtt|| 3y, gy + 28] 2 sz
+rollttla-exell ]l —cuseret L f lserre}
with a constant C,=C,(¢). The third term on the right-hand side
of (2.37) is estimated by Lemma 2.3 to get
(2.38) | Dullt-srere, Enméca {”—@u“%m,nm"' ll2]|2 corerre
+ ol -crerrel Detllsserre, s+ L f [ sersed

with a constant C;=C;(K,¢). Thus one can derive from (2. 38)

(2.39)  [1Dulltssore, 20y SCalll Dbl 3, g, + 1] 2 i+ [ f [ serre)

with a constant C,=C,(K,¢). Now Lemma 2.1 can be applied to
estimate the first term on the right-side of (2.39) as follows:

(2.40) 1 Dull3,, poni =Csl%]l 3y, + 1 f |34,
ZCollll e+ L f 1),

where C;=C;(K,e) (j=5,6), which together with (2.39) completes
the proof. Q.E.D.

Proof of Lemma 1.8. Let #u=C; and x=K. The definition

of 9), enables one to write

n

2.41)  1D.u(x)|*=|D,u(x)+ 2';1u(x)—z'(x1+i;c2)u(x)[2

=|D,u(x)+ nz—rl u(x) +r,u(x)|?

+ e |u(x) |*— 25, Im[D,u(x) u(x)],

which, integrated over the sphere S,, gives
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(2. 42) xfgs (%) |2dsgSQ 1D, u(x)|2dS
2 ImSS D,u(x) - #(x)dS.

Multiplying equation (2.9) by u(x), integrating over the ball B,,
and taking the imaginary part yield

(2. 43) —IrnSS'D,u-ﬁdS—Z;cl "ZSB,‘ u|tdx= ImSB' fadx.

Employing (2.43) in the last term of (2.42), one obtains

(2. 44) xfgq’lulzdsggs'l.@,ul2dS—4x§x2SB’]u|2dx—2x1ImSB’fﬁdx
<\ 19.u1*d5+2lm 11/ lawolul o

Now one can multiply (2.44) by (1+7)7*¢ and integrate from p(=1)
to oo with respect to » to obtain

@45) Al =\ A0 Dl dx
2 _
+ 2L ) flseallal cosens

- 2 -
<Dl sio o+ 2L ) sl s

from which follows (1.19) by the use of Lemma 1.7 and Schwarz’
inequality. Q.E.D.

The following lemma will be used to prove Lemmas 1.9 and
1. 10.

Lemma 2.4. (i) Let keC, BER. Let vEL, s\ H, 10c Satisfy
(L—e)v=0. Then we have Dvel, .

(i) Let k=ki+ik,, k1x:x0 and BER. Let vE H; 0o Satisfy
(L—£)v=0 and v, Dvel,s. Then we have vE L, g2 .

Proof. Let us first show (i). Multiply (L—x>)v=0 by ¢v
=(1+|x|)*®? and integrate over Bg;r with R,<<R<<oo. Then we
have by integration by parts :
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(2. 46) S ¢|Dv|2dx+SB g—‘;(D,v)Tidx

_[Ss,,_ Ssko:l‘”<D'”)’7dS +SBM¢( V—i)|v|*dx=0,

where
@[5, Jras] pas{ gas

Here we should note that the surface integrals in (2.46) make sense
and are continuous in R and R,. This is because, on account of v be-
ing a locally H, function, v and D,v can be regarded as L,(S"*)-valued
continuous functions of »= | x|, where S** denotes the (#—1)-sphere:
S"'={xeR'/|x|=1}. By taking the real part of (2.46) we have

(2. 48) S ¢IDv|2dx+ReSB 280(1+7)*(D,v)vdx
—Re[g —S :Igo(D,v)idS+S o(V—£+i) |v|*dx=0,
Sr Sro Bror
whence follows the inequality

(2. 49) %SBRM(pI Dol degRe[SSR - SSRJ"’(D' »)5dS

-I-S (p[l—@l— V—i-/cf—/c%]l v|tdx,
Bror 7

where =0 has been chosen so small that 1—|B|»>1/2. Since, as
can be easily verified by partial integration,

(2. 50) Regamrp(D, v)i)dx=%|:SSR— SSRO]Q)] v|2dS

_1 n—1 6_¢) :
ZSBM<¢ 7 +6r lol*dx,

it follows through differentiation in R that

2 dR

A g ores

(2. 51) ReSSR¢(D,v)T)dS=~1— d [SSR(o]vlzdS]

for R>R,. Since ¢|v|? is integrable over R", we have
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(2.52) limS ¢"_1+a—""|v|2d8=0.
R>w JSp or

Further, we have
m [ iovas]e

(2.53) }Tl:_ng SRgoIvI ds <0,

because it follows from
d
(2. 54) ﬁ[gsxwlv]2d8]2d>0 (R>R)
with some d>0 and some R,=R, that
@55 | olo'dSz=d(R-R)+{ olol'ds  (R=R,

which contradicts the fact that ¢|v|? is integrable over R’. Thus
from (2.51), (2.52) and (2.53) we obtain

(2.56) lim Re_o(D,)3dS=o0.

R->c0

Therefore, it follows from (2.49) that
(2.57) S o Do|*dx<oo,

which implies that Dve L, ;.

Next we shall show (ii). Put ¢= 1+ |x])** in (2.46), which

is true in the present case, too, and take the imaginary part. Then
we have

(2.58) Imgymg—i(D,v)ﬁdx—Im[SSR—gsunjlgo(D,v)z“)dS

_21C1IC28 ¢Iv|2dx=0.

Bror
Since v, D,vEL, s and 8¢/or=0(|x|**) (|x|—c), we have that
%‘;j—(D,v)z_) is absolutely integrable over R" and

(2. 59) tim{ 10D, 0)3145-0.

R->c0
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In view of ky£.%0 it follows from (2.58)

(2. 60) Ssxowl v|2dr<<oo,

ie., vEL, g . Q.E.D.

Proof of Lemma 1.9. Let us first prove (i). Since r€K,
(L—&)u=0, and u<€L, .63, we can apply Lemma 2.4, (i) and
(ii) (repeatedly, if necessary) to see that #, DucsL,. Hence, multi-
plying (L—«)u=0 by % and integrating over R", we have

(2.61) Z:‘{(D,-u, D,u) + ((V—r2)u, u) =0.

By taking the imaginary part it follows that —2ks.|%]*=0, ie.,
u=0.

Next let us show (ii). Since (i) has been shown, we have only

to consider the case of Imxk=0. We note that we have the in-
equality

(2. 62) S {IDul2+/cz|u|2}dS§28 {lg)u|2+ (=10 |y }
Sr Sr
In fact, recalling the definition of Du and Qu, we obtain

(2.63) l@u|2=|Du]2+x2|u|2+(—n4—_rTl—)i]ulz

1 Re[(D,u) 7] —2¢ Im[(D,u) -],
—;—IDuI )t (” 1) ] —2¢ Tm [(D, %) 7],

where we have made use of

2.64) |2= lRe[D wy-al|< =D ey 1 ]D ul?
27

<Dy 1 Dul®

Putting f=0 and #,=0 in (2.43), which is true in the present case,
we have
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(2. 65) ImS D.u-udS=0.

Integrating (2.63) over S,, with (2.65) in regard, we obtain (2. 62).
On the other hand, it follows from | Du|(_iseyz, ;<<oo and ||#|| ey
<Coo that

(2. 66) @rég&{lg)u|2+("4—;})2—|u|2}ds:o.

r>e00

Thus (2.62) and (2.66) are combined to give

@67 limr| (I Dult+e|u|nds—o.

7> 00 Sr

Now we can apply Lemma 2.5 to be stated below to see that (2. 67)
implies that the solution # vanishes identically in E, with some
R,>0. Hence by the unique continuation property (UC) #=0 on
R". Q.E.D.

Lemma 2.5. If ucH, ... its a solution of the equation
(L=—)Du=0 with « real non-zero, and if u does not vanish iden-
tically in a neighborhood of the point at infinity, then for any
e=0

2.68)  lmr\ (1Dul+alulaS= o,

Remark on the proof. If we assume that V(x)=o0(]x|™),
which case occurs, for instance, when V;=0, then the lemma reduces
to Theorem 1.1 of Ikebe-Uchiyama [9]. Even in the present case,
however, we can carry out the proof without essentially modifying
the argument given in [9]. A remedy comes from techniques used
by Odeh [13], Simon [17] or Agmon [1] utilizing the differentiability
of Vi(x). Namely, when one encounters an integral of the form

@69 3| viwixwws@was,

i=

this is estimated by the integrals S ]xI“"’IuIde,S ||| Du|*dx
Bgsy Bsr
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if one assumes only that V;(x)=0(]|x|™"), but not the differenti-
ability of Vi(x). However, if it is assumed that V:(x)=0(]|x|*™)
oV
0|x|
be convinced that the real part of (2.69) can be still estimated by

and

=0(]x|™), by carrying out integration by parts one may

SB |x|* " u]|*dx and additional surface integrals. (Here one should
n(;’;e that what is actually needed is not the estimation of the integral
(2.69) itself but the one of its real part.) Roughly in this manner
one can follow the line laid in [9] without drastic alteration.

We also remark that recently K. Masuda obtained a result (not
yet published) of which our lemma is a consequence.

Proof of Lemma 1.10. Let k=#,+ir, €K and let 0, L,, 146912
satisfy

(2.70) (v, (L—£%¢) =0

for all p=C5. It suffices to show 2,=0.

Let ¥*=L, .62, and note that the adjoint spaces (X¥*)* can be
identified with X7 by taking as the pairing between them the usual
L, inner product. Define an operator A from X~ to X" by

(2.71) D(A)=C7, Ap=L—)e for o=D(A).

A is densely defined in ¥7, and its adjoint A* is an operator from
¥ =(XF)* to ¥'=(¥)*. By definition v&D(A*) if and only if

(2.72) (v, Ap) = (w, @)

for all p€D(A) and for some weX". Thus looking at (2.70) one
can see that v,eD(A*).

Now it is possible to imitate the argument in Ikebe-Kato [8],
which has been used for proving Lemma 3 of [8],” to show that
€ Hy 1. Then it follows from (2. 70) that v, satisfies the equation
(L—#*)v,=0. Therefore, with the aid of Lemma 2.4 one can show

6) Lemma 3 of [8] asserts that D(T¥)CHzloc, where T, is the Schrédinger
operator restricted to Cg, but is regarded as acting in L..
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€ H,1c(1L,. Hence, proceeding as in the proof of Lemma 1.9,
(i), we have v,=0. Q.E.D.

Finally we shall prove Lemma 1. 11.

Proof of Lemma 1.11. Apply Lemma 2.1 with #=wu,. Then

we have

@73 S0 2dr=Cl| (o) 1fu@) 1) dx,

Bg
which, together with the condition (1.21), and the first relation of
(1.22), implies that {jE‘,II@;u,,,IIBR+|lu,,,IIBR} is a bounded sequence for
=1

each R>0. Therefore, {u,} is relatively compact in L, .., and hence
there is a subsequence {#,,; of {u.; such that

(2.74)

{u,,, U in L,

Km,—>K in K
as p—oo with u=L,; . It follows from (2.74) and (1.21) that
(2.75) (u, (L=%De)=(f, ¢) (peCP).

Therefore, as we have remarked in the proof of Lemma 1.10, # is
seen to be an H, . function and satisfy (L—#*)u=f. From the
convergence of {#,,} to # in L, 1. and the third relation of (1.22)
we have

(2.76) Un, > in Ly ey (p—>o0).

Thus we have shown that # satisfies (1.23) and (1.24).

Let us show that {9~ u,} converges to Du in L,(Ey)ie. To
this end we have only to verify 9;u,,—0,% in L, .. Since we have
.77 g=UL—r)(u—u,,)

= (& =&, ) Un,+ (f—fn,)=0 in L _ciieys
as p—oo, applying Lemma 2.1 with #=u—u,, and f=g,, we obtain

for R>0
(2.78) jZ;Haj(u—um,) 13 =C {ll6—thm, |5, + 1| Zol| 3.}
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with C=C(K, R), which implies that 8%, —8;# in L, . for each
j=1,2,--,n, and hence {9“~’u,} converges to Du in Ly(E)ie.
Now let us show (1.25): DuesL, 1.e:(E;). By the use of the
third relation of (1.22) it follows that

(2.79) | D s, | 1462, 6<C

for any bounded measurable set G in E;. Letting p—oc in (2.79)
we have || Du|| _14e2,¢<C,, and hence Duc L, _i,e:(E.).

Finally we shall show that the sequence {u,} itself converges
in L, _a.e2 to the u obtained above, which in turn implies that
{D*my,} converges to Du in L;(E ). In fact, let us assume that
there exists a subsequence {m,} of {m} such that

(2° 80) ”u_umq||—(l+5)/2gr (q: 1’ 2) ”')
with some y=>0. Then, proceeding as above, we can find a subsequ-
ence {m,} of {m,} which satisfies

(2.81) U= in L _aiee,

u’ being a solution € H,, 10c[\ Ls, _iey2 of (L—eD)t'=Ff, (D' ||(_1ser2, &1
<Coo. By Lemma 1.9, (ii), asserting the uniqueness of the solution
for (L—e)u=f, || Du| iz 5, UE Hy 1001 L2, 14652, # and #’
must coincide. Hence we have from (2. 81)

(2.82) U, —>U in Ly _aieye,

which contradicts (2.80). Thus we have shown that {#n} converges
to # in L, _q.ey2, which completes the proof. Q.E.D.

§3. Absolute continuity

First let us define a symmetric operator H, acting in the Hilbert
space L, by
(3.1 D(H)=Cy, Hu=Lu for ueD(H,).

According to Theorem 1 of Ikebe-Kato [8], H, admits a unique self-
adjoint extension H. Let E(B) be the spectral measure associated
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with H, where B varies over all Borel sets of the reals. In the
present section we shall study a typical spectral property of H, that
is, we shall show that E((0,o0))H is an absolutely continuous
operator.

A characterization of D(H), the domain of H, follows directly
from Lemma 4 of [8]. Summarizing, we have the next

Lemma 3.1. H, is essentially self-adjoint, and thus possesses
a unique self-adjoint extension H. We have

(3.2) D(H) = (ue€ L,/uc H, 1. and LucLy).

Let R(2)=(H—2)"" denote the resolvent of H, and recall that
for k=g, +1ik, with £,%0 and x>0, and for f&L; .e,., there can
be determined by Theorem 1.5 and Remark 1.6 a unique solution
u(k, f)ELs, _aie2( ) Hy,10c of the equation (L—£)u=f.

Lemma 3.2. Let f€L, .6, and let z€C—R. Then

(3.3) RRDf(x)=u(Vz,f)(®)" ae.

Proof. Since f necessarily belongs to L., R(z)f makes sense
as an element of L,, and #=R(2)f satisfies

(3.4) (L—2)u=f.

Moreover, the fact that R(z)feD(H) implies by Lemma 3.1 that
R(z)feL,N H;, ., and hence R(2)f €L, -2 Hz 1. On the other
hand, since vz lies in some K, where K is an open set of C of
the type considered in Theorem 1.2 or Remark 1.6, it follows by
Theorem 1.3 that equation (3.4) with f&L, (1.6, has a unique
solution #(V'z, f) €L, _aseye(VHy1e. By the uniqueness, therefore,
R(2)f must coincide with %(v/z,f) as an element of L. _q.eye,

which implies that they are equal to each other almost everywhere.
Q.E.D.

7) By V'z is meant the branch of the square root of z with ImV/z =0.
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Now let 2>0. It follows from Theorem 1.4 (cf. also Theorem
1.5) that for any f&L, .. a unique solution #(V2,f) of the
equation
(3.5) (L—Du=f

can be constructed as the limit
(3.6) u(V/T,f)=liIr01 u(Va+ip,f) in L _epe.
*

Similarly, if Remark 1.6 is taken into consideration, another unique

solution #(—v'2, f) of the same equation can be obtained:
(3.7 u(—l/f,f)=li&)1u(1/l—iu,f) in Ly, _cieye .
In
(It may be also noted that u(+1/1, f) can be determined as unique
solutions of (L—Du=f satisfying [ D=V ull_irerz 5,<<0.)

Let 4= (4, 4.), where 0<{4,<4,<Zco. Employing the well-known
relation®

3.8)  (EWf,f)=lmlm 1

wi0 21

[ (RG+i0 ~RO=iw)f, £da
(fELZ)’

we can represent E(4)f in terms of u(+v2,f) (h<i<k) as

follows.

Lemma 3.3. Let 4=k, %) be as above. Then for any
fE-LZy.(1+€)l2

@9 (EW =g\ WO/T, ) ~u(=VE, ), dr

Proof. Since by Lemma 3.2
(3.10) RO+in)f(x)=u(V1%in, f)(x) a.e.
for 2#0, x>0, (3.8) can be rewritten in the form

(3.11)  (EWDS.f)

8) See, for example, Dunford-Schwartz [5], p. 1202.
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—lim lim -1 S“‘"(uo/ﬁi ) —u(Vi5m, ), da

a0 g0 278 IAtn

By the use of the continuity of #(x, f), which has been stated in

Theorem 1.4 or 1.5, it follows that (u(V'A+ipu,f)—u(Vi—iu,f),f)
is uniformly bounded for (1, #) € [, 4] X [0,1] and

(3.12)  lim (u(v Atip, ) —u(Va—ip, [, 1)

for 2[4, .]. With the aid of the Lebesgue dominated convergence
theorem, therefore, (3.9) can be obtained from (3.11) and (3.12).
Q.E.D.

Noting that L. c.ey. is dense in L, and (w(V'2,f) —u(—vV'4,f),
f) is a continuous function of 1€ (0, e=), we obtain from Lemma 3. 3
the following

Theorem 3.4. Let Assumption 1.1 be fulfilled. Then E((O0,
o)) H is an absolutely continuous operator.
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