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§ 0 .  Introduction

The present paper is concerned with a spectral property of the
Schrödinger operator

(0. 1)
o

L = — E( +ibi)
2 
+ Vax ;

in R", where b;  and V denote the operators of multiplication by real-
valued functions b 3 (x ) and V(x). b 1 (x )  is  the j-th component of
the magnetic vector potential, while V (x ) represents the electric
scalar potential. V (x ) is usually assumed to diminish at infinity,
which corresponds to  the situation in a two-particle problem that
the interaction between the particles dies off as their mutual distance
becomes large.

The spectral structure of the operator L  has been investigated
by many authors with various degrees of the smallness assumption
on V (x ) at infinity. For the sake of convenience of explanation we
consider, for the moment, the case n=3 and b,=-- 0 in (O. 1), so that
L = z i+ V, tl being the n-dimensional Laplacian. A most interesting
problem in the spectral theory for L  is that o f absolute continuity.
Namely, let H  be the unique self-adjoint restriction in L2 (R 3)  of L
(the existence of H  is guaranteed, e.g., by Ikebe-Kato [8] ), and E

-
the associated spectral measure: H 1  2 c1 E (A ). Then the problem
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is: I s  (E G 0 f , f ) ,"  fE L 2 (R 3 ) ,  absolutely continuous (with respect
to the ordinary Lebesgue measure) on (0, 00) ? Or, equivalently, is
H  restricted to E (( 0, 0 0 ))L 2 (W ) an absolutely continuous operator ?
(Here it should be noted that if the problem is affirmatively answered,
then the absence of the singular spectrum on (0, no) follows.) Let
us now assume that V(x)=0(1x1 - " ),  a > 0 . The above problem has
been solved, to cite a few, by Povzner [14] for a>3.5, by Ikebe [7]
for a>2, by Jager [10] for a>1.5, 2 ) by Rejto [15] for a>4/3, by
Kato [11] for a>5/4, and by Agmon [2] and Sait6 [16] for a>1.
For the repulsive potential case (0 V/01x 1 <0) w e  note work of
Lavine [12] and A ra i [3 ] . Attention should also be paid to the
result of Dollard [4] for Coulomb type potentials (a=1 ).

Recently, R. Lavine obtained the following result (lecture given
a t the 1971 Oberwolfach symposium on Mathematical Theory of
Scattering) : I f  V = Vi + V2 with V, (x) = o(1), VdaI xi = 0( x
› . 1 and V, (x) =0(1x1 - Y), r>1, then H  is absolutely continuous on

(0, Do)» His method of proof is similar to the one employed in [12] .

In this paper we shall establish the same result as Lavine's by
a different method, where the condition V, (x) =o(1) will be replaced
by V, (x ) =0( I 8 > 0 ,  h o w e v e r .

The spectral measure E  is, roughly speaking, determined by the
boundary values of the resolvent ( H—z) - 1  on the reals, the resolvent
being well-defined for z  non-real. This leads us to the study of the
asymptotic behavior o f ( H—A-±ie) - 1  as e tends to 0 through positive
values. We cannot, however, expect that the limit o f ( H—,i+ie) - l f
fo r e 0  exists in the L , sense for f  GL2(R 3 ), and, therefore, we
have to choose appropriate classes of functions so that the limiting
procedure in question may be justified. This forms the contents of
the so-called limiting absorption method o r  princip le» Once the

1) (  ,  )  denotes the usual L 2 inner product.
2) He has not directly treated the Schreklinger operator in  R n ,  however.
3) Agmon remarked in  [2 ] that this would be the case.
4) For a general survey of the limiting absorption method see, e.g., Èidus [6].
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limiting absorption method proves applicable, the absolute continuity

of H  on (0, 00) readily follows.
The greater part of the present paper will be devoted to the

justification of the limiting absorption method for the more general

Schrödinger operator (O. 1 ) in which b ,  /  0, but we shall impose on
b  some asymptotic condition at infinity.

Section 1  states and proves all the theorems related with the
limiting absorption method, while several lemmas needed for proving

the theorems are stated without proof. These lemmas are proved
in Section 2. Finally in Section 3  the absolute continuity of the

Schrödinger operator is verified.

§ 1 .  Limiting absorption method

Consider the inhomogeneous Schrödinger equation

Lu — Ic2i u  +  V ( x ) u  —  u  =  f
i= 1

Di  u = (8i  + ibi  (x ))u ( =  .Oxi

b1 (x )  and V (x) are real-valued functions whose more precise pro-
perties will be specified soon. The complex parameter ic is assumed
to vary in the closed upper half-plane. The inhomogeneous term f
is assumed to lie in a suitable Hilbert space contained in L 2 (/?' ).

Equation (1. 1) may be solved rather easily if K  is non-real and
K 2 is not an eigenvalue of L .  Denoting the solution by u ( , f  ) ,  the
following question arises: Does there exist a lim it in some sense
or other o f u(K, f )  when K  tends to  a real limit ( 0 )  ?  I f  such a
limit exists, then it may be easily imagined that the limit function
satisfies (1. 1) also (with K  replaced by the real lim it). We want to
solve the above problem by first establishing some a priori estimates
for solutions of (1. 1) with non-real K ,  and then carrying out the
limiting procedure preserving the obtained a priori estimates. This
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way of constructing solutions (1 . 1 ) for real is w hat is called the
lim itin g  absorption method.

Before giving the assumption on V (x ) and 15(x) we shall list
the notation which will be employed in the sequel without further
reference.

R: real num bers.
C :  complex numbers.

Di = a;  + V —1 bi (x )=0 ; +ib i (x) (0;= , j =  1, 2, • • •, n ) .x
— 2Ỳ ) = D +  n  1 ( x i = x ; / I x l ,  K G C ) .21x1

Du= (Diu, D2u, • • , Du).
2 u=  (2 1u , 2 2 u, • • , g„u).

D,.te =ED ; i t  • ( r
- 1

2 ,u =  E  ,u • ( r  1x1).

Er= { x / I x l > r } ( r > 0 ) .
B,={x/Ixl<r} (r> 0).
B  { x  / r  x  I (0< r< s).

1,2, 0 (G )  (E R )  denotes the Hilbert space of all functions f  on G
such that (1 + 1x 1  )f  is  square integrable over G . The norm
and inner product o f L 2 0 (G ) are d en o ted  b y  I  13,G and
( , ) ,  respectively. W e set L 2 ,  ( R ')  =  L 2 ,1 9  ,  II = II II a
and ( , ) R "  =  (  ) 1 3 .  When [3= 0 , we shall omit the subscript
0  as in L2(G), Il IIG etc.

H 2  is  a ll L 2  functions with L 2  distribution derivatives up to the
second order, inclusive.

C"' is  the class of m-times continuously differentiable functions.

Ci' i s  the class o f infinitely continuously differentiable functions
with compact support in R".

P( x )
 2 dy (a>0).M„(x)=

1.-yisi I x —y I " - 4 - h a
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Q a denotes the class o f  locally L ,  functions P (x )  such that

M ( x )  is uniformly bounded in R".

N100 is the class of all locally N  functions.

Now let us make the following assumption on the coefficients

V (x ) and bi (x ).

Assumption 1. 1.

( V) V (x ) can be decomposed as V (x )=V i(x )+1 72(x) such
that V1, V, are real-valued Qa, lo c  functions fo r  some a > 0 ,

and there exist positive constants C, a, R o such that

OV,(V 1) the radial derivative exists fo r I xl>R0,117-1(x)1_<C1x1 - ',01x1
°

l

171

1
 <C1x1 -1 '  f o r  lx1>R0, and

ax —

( V D  1172(x)1_ Clx1 -1 - 's f o r  lx1>Ro.
(B) b1(x) is  a  real-valued C1 function satisfying IB„(x)I

for I xl>Ro, j, k=1, 2, ••., n with the same C, 6, Ro
as in  (V ), where B,,,(x)=0,k(x)-0,,b,(x).

( UC) The unique continuation property holds for the differ-
ential operator L  in R".

The main results o f this section are summarized in the following
four theorems.

Theorem 1. 2. Let K  be an open set in the upper half-plane
of C of the form

(1.3)K =  { K = E  C / if i E  (a, I)), K2E(0, a)1

where 0<a<b<00 and 0 < a < 0 ..  Choose an  E> 0  sufficiently
small (so that e< a / 2  and e< l ) .  Then under Assumption 1 .1
there exists a constant C=C(K,  ) "  (which is independent o f K,,

5 )  Here and in  the sequel we agree to m ean by C = C ( A ,  B ,  • • • )  that C  is  a
positive constant depending on A, B, ••• . But very often symbols indicating obvious
dependence will be left out. For instance, C = C (K , 6 ), here, obviously depends on
the differential operator L ,  but w e do not insert L  in the parentheses.
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however small it may be) such that the follow ing a priori inequalities
hold fo r  any  u G C 7  and any  K E K :

(1.4) 111111-(i+E)12.<C11(L /c2 )u 1(1+8)/2
(1. 5) (--i+e)12, ei < CII e)ull(i+E)12

(1. 6) I 141 2—(1+E)/2, Ep< C P —E ll (L  — K2 ) u112
( 1+ E) 1 2 ( p > 1 )

Theorem 1. 3. Let A ssumption 1. 1 be fulf illed and let K  and
E be as in T h eo rem  1 .2 . T h en  f o r an y  pair (lc, f) K xL2 ,(i+e )1 2
there ex ists a unique solution u=u(K, f)EL2,_(i+e)12(1H2,,, of

(1. 7)( L — f

Moreover, the solution u  satisfies

(1. 8) 11(i+E)12

(1. 9) Igull(-1+6)/2,E1<clIf 1(1+E)/2 ,

(1 . 1 0 ) II ull (l+E)/2, EP C P—E llf 111+E)I2 (p > 1 )

w ith the sam e constant C = C (K , e ) as giv en in  Theorem  1. 2.

For KE K, where K  is the closure o f K  in C, we can construct
a solution u =  u ( K ,  f )  as the lim it o f  a  sequence of solutions

u(K„,, f )1 (x,, G K, K - .K ) obtained in the preceding theorem.

Theorem 1. 4  (lim iting absorption princ ip le ). Let A ssumption
1 .1  be fulf illed and let K  and e be as in Theorem 1 . 2 . Let K E K

and let fEL2,(i+e)12. Let {K„,} C K  be a sequence tending to K. Let
f ) .  Then { u„,} converges in T2, (i+E)12 t o  a tt E L2, —(1+E)/2

n H 2 , 1 , ,e  which solves

(1. 11) (L — Ic2 )u  = f

The lim it u = u (K ,  f )  thus obtained is independent of the choice of
the sequence {K.} and is determ ined as a unique solution of the
equation (L—K 2 ) u = f  w ith  the boundary  condition at inf inity
lÇDu (-1-1-E),2,E,< 0 .0 •  ( The last condition replaces the usual outgoing
radiation condition; c f . Saiti) [1 6 ] .)  Moreover, u (K , f )  is  L2,_(i+E)12
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strongly continuous in

As is easily checked, the above theorem is an immediate con-
sequence of the following more general assertion.

Theorem 1. 5. Let Assumption 1 . 2  be fulfilled and let K  and
e  be as in Theorem 1 . 2 .  Then fo r  any pair (x ,f )ŒK xL 2,(1+012
there exists a unique solution u =u ( x , f )  G L2, 1 E ) / 2  (-11-4, i„e of

(1.12) (L  — K2 )u = f , gull (- 1+6)12 Ei< .

In  this case the estimates (1 . 8 ) , (1 . 9 )  and (1 . 1 0 ) hold good.
The mapping

(1. 13) k x L2, (1+6)/2 (K , f ) u ( K ,  f )  E L 2 , _(1+e)12

is continuous on KxL2,(1+E)12.

Remark 1. 6. In  Theorems 1 . 2 , 1 . 3 , 1 . 4  and 1 . 5  one may
replace K  by any of the following:

(1. 14) {K= + itc 2 e  C/K,G ( — b, —a), K2 G ( 0 ,  a )}  ,

(1. 15) {x= G  Cbc i  E  (a, b), G  (0 , a )}  ,

(1. 16) { K = K 1 -  i1C2 G Chc i  (  —  b, —a), K2 E  (0 , a ) }

In the latter two cases where one considers in the lower half-plane,
one has to make an obvious change in the definition of .W u, i.e., one
should put

(1.17) 2 5 u =D iu +  n - 1   .X •u+iKi i u.
21x1

W e shall list a series o f lem m as which w ill be used to show
these theorems and will be proved in the following section.

Lemma 1. 7. There exists a constant C =C (K , e) > 0  such that

(1. 18) Ei< C - (1 + e ) /2 ±  CL —K2)010.+E)/2}

is valid fo r  any /4 E C r and any K e  K.



f o r all m =1, 2, • ••.

u  satisfies

(1. 23)

(1. 24)

_Then { u }  has a strong lim it u  in  L 2  _(1+E)12.,

L 2 , _0.+e),2n H2. 10C

(L — e )u = f ,
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Lemma 1. 8. There exists a constant C= C (K, e) > 0 such that

(1.19) Muill (1+6)12 + II (L — x2 )ullii+6)12) (p 1)

holds fo r  any  u E C (7  and any icE  K.

The next lemma shows the uniqueness of the solution of (L—K 2 )u
= f  with KG K  satisfying some boundary condition at infinity.

L em m a 1.9. (j)  L e t  uE112 , 10 c be a solution of (L—K 2 )u = 0
with K E K  such that uEL2,-(i+E)12. Then u  is identically zero.

( i i )  Let uE112 ,10 2 be a solution of (L—K 2 )u = 0  with ,e K  such
that uEL2,--(1+E)12 and Ilgull(-1+E)12,Ei <00. Then u  is identically zero.

The following two lemmas are related to  the existence of the
solution u(K , f ) o f (L — K z )u = f and the continuity o f u (K , f )  in
and f .

Lemma 1 .  1 0 .  Let K E K .  T hen the set {(L— K 2 )u / u E C ;'}  is
dense in L2,(1+e)12.

Lemma 1 .  1 1 .  Let {u.}  be a sequence in  1.2,_(i + E)12f1H2,1. and
let fic.) be a convergent sequence in k : ( m - - - . ) ) .  Assume
that

(1. 20)f (L — 14)u„, L2, (1-I-E)12

( 1 .  21) f  i n  L 2, (1+E)12 °C ))

and there exists a constant Co such that

ItimII—(l+E)/2.‹Co

(1 .2 2 ) Ig i" '" ) 14.11(-1-1-8)/2,E, _Co

Itt.I1 2—(i+E)12,Ep O p — E( p > 1 )
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(1. 25)

(1. 26) 2(g-)u„,-.2u  i n  L2(E1)1.

Using these lemmas we can now prove Theorems 1. 2, 1. 3, 1. 4

and 1.5.

Proof o f  Theorem 1 .  2 .  Since (1. 5 )  and (1 . 6 ) follow from
(1. 4 ) and Lemmas 1. 7 and 1. 8, it is sufficient to show (1. 4) alone.
Let us assume that (1. 4 )  is false. Then fo r each positive integer

m  we can find Km E  K, u , .  C 0  such that

1 27)
Illu„,11-(i+E)/2=1,

( .  

Since {KO is a bounded set in C , we may assume, with no loss of
generality, that x,”--->qc with K E K  as m  tends to 0 0 . It follows from
(1.27) and Lemmas 1.7 and 1.8 that we have for all m=1, 2, •

1  28)
ilu.t2-(i+E)12, (1+1/ m 2 ) . _2C (p 1),

( .  
1+6)/ 2. E l

1 11 Unt II(- C (1 . ±  1 / M ) - 2 C .

Therefore, we can apply Lemma 1. 11 with f  . =  (L  ic,2„)u. and f  = lim f

= 0 ,  which follows from (1.27), to see that there exists a  limit
u= lim u,. in L2, _( 1 + e) 1 2  which is a solution of (L- K 2 )u= 0  satisfying

112 u 11( -1-I-E)/2. EI< •  Since Mu.li-(i+e)/2-1, 11u11-(i+E)/2= 1. But this is a
contradiction, because we have, on the other hand, u = 0  by Lemma
1 . 9 , ( i i ) .  Thus we have shown (1. 4). Q.E.D.

Proof o f Theorem 1. 3. Let f e L2, (1-Fe)/ 2 • Since {(L -K 2 )u/u
e C n  is dense in L 2 . ( i + e ) / 2  by Lemma 1. 10, there exists a sequence
{u„,} CC, such that

(1. 29) (L -  e )u „ ,= f„ ,- .  f  i n  L2, (1+6)/2

as M ->  co

{Ilu.11-(l+E)/2 01/..11(1-1-E)/2
(1. 30) intmli(-i+e)/2,E1 Cilfm11(1+6)/2

Ep C P - e  If  .112(1+e), (P l )

Applying Theorem 1. 2, we obtain
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fo r  a ll m =  1, 2, • • •. Since it follows from (1. 29) that ill.f.11(1-FE)/21
is  a  bounded sequence, we can see that (1. 2 2 )  is satisfied with

Co =  (C+ V C ) • suPlif.lici+e)/2 and Hence we can apply Lemma
1. 11 to obtain ;  solution u  L2, —(1+E)/2 n H 2, 100 o f  (L —  Ic9 u = f by
taking u to be the strong limit in L2, _(i+E)/z of {u,,}. By Lemma 1. 9,

( i )  the u  is  a unique solution o f (L— Ic2 )u=f, uE L2, _(i+e)1211H2,1..
By letting m---00 in the first and third inequalities o f (1. 30), (1. 8)

and (1. 10) of the theorem follow directly. To show (1. 9 ) let G be
a bounded measurable set in  E 1 . Then we have from the second
inequality o f (1. 30)

(1. 31) 11-Wtt.11(--i+E)/2, G< C  f , n 11(1+6)/ 2 •

Letting m tend to 00 in (1. 31), we obtain

(1. 32) g u  c-i+e)/2, G C1 f

since .0 "- ) u„,---....Ou in L z ( E i ) o e b y  (1 . 26 ) o f Lemma 1. 11. Since
G e E ,  is arbitrary, and the right side o f (1. 32) is independent of
G, we obtain (1. 9). Q.E.D.

Remark 1. 12. Under the assumption o f  Theorem 1 . 3  the
unique existence of the solution in L2, -( i+ e )/2 n  H 2 , lo c  o f (L— K 2 )u = f ,

f EL2,(1+E)12 follows rather easily if one notes that L  determines a
unique self-adjoint restriction H in L 2  (see, e.g., Ikebe-Kato [8] ), and
that K2 is not real. In fact, for any f G L2, (i+E),2(e L2) u= (H— K2 )  1f .

E L 2 is  seen  to  be a unique solution of equation (1. 1) satifying

u  L2, —(1+E)/ 2 n H2, loe • But in the above proof we have had no recourse
to the self-adjointness that does not seem powerful enough to derive
the uniform estimates (1. 8) (1 .  1 0 )  for ir E K.

Proof of Theorem 1. 5. L e t K E K  and f L2,0.+E)12. Take

{ }  e  K  such that x„,--->x as m—.00. By Theorem 1. 3 there exists
a unique solution u„, E L2 , (1+E)/2 rl H 2 , 1 o f  th e  equation ( L  0 u,,, = f

which satisfies
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liu.!!-(i+e)/z.--C ii(1+E)/2

(1 .3 3 ) 112") u. (-1+E)/z, 11(1+E)/2

II U.112—(1+E)/2, E p < C P
-

621If  II (1+e)/ 2

for all m = 1, 2, Then one can see from Lemma 1. 11 with f  f
that {u„,} has a  strong limit u  in  L2. -(i+E)/2, u E L2, _(i+E)/2n

which is a solution of equation (1 .  1 ) .  Arguments similar to those

used in the proof of Theorem 1. 3 to derive the estimates (1. 8) —

(1. 10) from (1. 30) show that the same estimates follow from (1. 33)

in the present case. Since Il g u l ( - i - F E )/ 2 ,  E,< 0 0 , it follows by Lemma
1 . 9 , (ii) that the u  obtained above is a unique solution of equation

(1. 1), 1121,111(-1+E)/2. E<c)*()•
Finally le t u s prove the asserted continuity o f th e  mapping

(1 . 1 3 ). Now that the unique existence has been established, one
can apply Lemma 1. 11 again to the solutions u„,— u(x,„ f ”,) , where
{K.} and { f „ , }  are assumed to be convergent sequences in  K  and

L2, (i+e)/2 , respectively. The required continuity follows from the fact
that {u„,} is  a Cauchy sequence in L2, _(i+E)12 , which is a conclusion
of Lemma 1.11. Q . E . D .

§ 2 .  Proof of the lemmas

This section is devoted to giving the proof o f  Lemmas 1. 7 —

1. 11.
First we shall prepare a lemma which is a well-known elliptic

estimate for the case that L  has smooth coefficients. I n  our case
where the coefficients are allowed to have certain singularities, an
additional consideration will be required.

Lemma 2. 1. A ssume th at  VEOIa , l o c  w ith som e a>0 and  b. ;

are real-valued C ' functions on R " . L et K  be a bounded set in C.
Then f o r each R >0  there ex ists a constant C =C (K ,R )  such that
the estimate

(2.1)E  I a itt(x)1 2{ I t t ( x ) 1 2 +  I (L—K 2 )u (x ) 12
)  (IX

BR 51
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holds f or any  u E H 2 , 1 . an d  any  ,E K.

P ro o f. Let A,Ir C 'r such that 0. 4p<1 and

(1. R),
(2.2)I k ( x )  =  11

10 (1x1 R +1/2).

Since u E H 2 , 1 .  satisfies

(2.3)( L  —  K 2 ) (*u) 11, , (L — Ic2 )u — fu • zlqp+ 2 E Di  u • a,-0 ,

we obtain

(2. 4)( ( L  — (Iku) , Iku) (L — K2 ) u , lipu) — ((zlik)u, kku)

— 2  ((ai4P)Diu,
5=1

whence follows by integration by parts

(2. 5) 11 D (*u) 112 =  ((x2 - pu) -  (* (L  - e )u , *t )

- ((44p)u, ,p,u) — 2 ( ( 8 5 11p)D j u,l/pu)

= ((,z kW + (*(L — x 2 )u, *u)

— ((thjp)u, *u) —2E (D,(1ku), (0 Ap)u)
5=1

+ 2  E" il(ailk)u11 2.i=1

Hence we obtain the estimate

(2.6)D ( u ) 2 { 1 V(x) 1 1 u(x) 2

+ I CL —x2 )u(x) 12 + 1 u(x) 12 ) dx

w ith  a constant C i  = ( K, R). Since Di = Of + ibi ( x )  and bi  are
locally bounded on R", it follows from (2. 6) that

(2.7)1 1 0 .; (* u )1 1 2 q {I V(x) 1 1, ku(x) 1
5=1 BR+1/2

+ (L— e)u(x)1 1 + u(x) 1 2 } dx

with C, =C 2 (K , R ).  Since VG Q«.1, we can make use of Lemma 2
of Ikebe-Kato [8] to show
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(2.8) I V(x) I I *u (x ) I 2 dx
BR+1/2

E I a; (Jru)(x) I 2 dx+C, Iu (x )I 2 dx,
BR ,11=1 BR+1

where v is  an arbitrary positive number and C3 (72, R )  is  a positive

constant. (2. 1) then follows from (2. 7) and (2. 8). Q.E.D.

For later purpose let us rewrite equation (1. 1)

(2.9)( L — ,2 )u= -E D ,D J u+V u-K 2 u =f

in the form

(2.10)—  ' Di 2 J tt+  n  1   g r u— ita ,u+  V (x )u= f,
2r

where

(2.11)" 1 - 7 ( x )  V(x)+   4r2

1  (n  1 ) (n -3 ) .

Let us proceed to the proof o f Lemma 1. 7. To this end we need
two lemmas.

Lemma 2. 2. L e t  u e C r  an d  le t  f.----(L—Icz)u w ith  KGC.
Further, let 9 (r )  be a  C 1 function on [R 0 , c o )  such that ço(R0 )= 0 ,
and let us put

(2.12)V 2 ( x )  V 2 (x) +  1   (n  1 ) (n -3 ) .4r2

Then we have

(2.13)i ( K 2 Ç 9 -E . : ) Ig t t1 2 ± ( q )6 ç l ( I g U I 2 - 1 2 r U 1 2 ) } ( I X
ERo r

ER01 21 - ( t  V i + aaVir
KoçoIllurdx

ÇoVou•.Wr udx]
ER°

41B ,k . D ,u . d x
1 + R e [

cofD u d x ] ,

E R ,  k =1 ER„
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where K 2 = I M  r =  Ix ! and .13.0 (x ) =6 ) 14(x) —6,bi (x ).

Proof. First note that (2. 10) holds with our u  and f .  Multiply
both sides of (2. 10) by çca s u, integrate over ER° , and take the real
p a r t .  Then we have

(2. 14) R e [  çof 2,u dx1= — R e [  En VD., gj U  • g ,  d X 1
ER0 ER° j

+  R eL  v (  n - 1  

ER 0 \  2r iK ) g ru  zdx ]

+Re[ V iu•grud x l+R eL  yo , V2u•2 s udx]
ER ° E R 0

= 12+  
1
3+  •

Let us compute I. (s =  1, 2, 3) by (repeated, if  necessary) application
of integration by parts as follows: Noting that

(2.15)D i 2 h u — D k 2 J u —  (  n - 1  i t c ) ( +iBiku,\  2r

we have

(2.16)R O  En g i  U • Di gk  U • Vik dX1
E R , .1,k

.
=1

+Re[ u • ( a ,  •  2,u dx]
ER 0 j =1

JE
R

0+\ ReL Z u .  ( 0 .iik)§9-O4udx1
E4 0  j,k=1

f ç 9 n  + 1 
ar 2r ço—K2s0)12rul2dx

g9 — 1  •  N9 +ic 2 v ) Ig u r d x
EE0 1\,  r 2  Or

+Im[ .
E 4 0  j, k 1

(2.17) L—Ç ço (  n - 1 _L

.2E 4 0 \  2 r  - 2) • gru I 2dx.

(2.18)I 3 =  Re[ n -1yo V, u {E ( i i (&A) — ii i b,R )+ tic + dx]
E4 0: 1 = 1 2r
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= Re[ u i i )  • ftdx ]
E 0 ,1 1

A çpv i (   n - 1 
+1C2)1141 2 dX

iERo 2r

=  1 3 _ _ Ç ft9ço
ER0 ar

_HvI paaVIr  ±v ,V in -1
) I u 2 d xJ \

+2
V i ( n 2 r 1  

+ K 2 ) 1 u l z d x

ER0

I IC “ O V I —  21  V1+ÇO 7 1r )11141 2 dX.
E Ro

Thus (2 . 13 ) follows from (2 . 1 4 ), (2 . 1 6 ), (2 . 1 7 ) and (2. 18).
Q.E.D.

Lemma 2. 3. L e t K  b e  a s  in  Theorem 1 . 2  and let e> 0.
Then there exists a constant C = C (K ,E ) such that

(2. 19) Ka fllu 1-(1+E)12 +11°W14 1 (-1+E)/2.E1 +  I(L—K 2)u  1(1+E)12}

holds fo r  any  u G Q's and any  fc=ic1+ix, e K.

Pool. F irs t  let us show (2 . 19) for u ECr,' with support in E 1 .
Integration over E ,  after multiplying both sides o f equation (2. 9)
by ço(x )g=  (1 + I x  ) 1 - Eti yields, on taking the imaginary part,

(2.20)— I m go(D; Di u) • t i c d x  2/citc2 ç o lu l 2 d x = h -ri çofFiclx,E, E1 E1

where we put f =  (L— K2) u .  The first term on the left-hand side of
(2 . 20 ) being integrated by parts, we obtain

aço —(2. 21) u 12dx—  n

1

O r  
udx—Im yoftildx}E, hx,. E,

1   {inS
(

Oço u  
n - 1  

 u+iKuYtidx—Im çefFtdx},
JE1 ar 2r E,

where we should note Ki4 0 . Since

Ocp (2.22)=  ( 1  e )  ( 1  +  r ) - E —  1 — e q ,,Or 1 + r

it follows from (2 . 21 ) and Schwarz' inequality that
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(2.23)X 2  Ç O I Z  1 12 dX _< ÇOIUI2dX
2 j / , j Ei

1112

X (19 ( 1  e ) 2  I  g ,t1 I 2 dX 1
1 1 2

E j ( 1 + r ) 2

112 112
- FIÇOIX 11 2 • + ; ) 2)2 It€1 2 d X 1  + [ EIÇO1f 1 2 d x ]

Hence, noting that u is supported by the set E 1 , we have

1 (2. 24) K2iitelici-e)/2 -
2 I

{ ( 1 'O W L - 0 + 6 ) 1 2 . E l
X11

±  (1 —  E) X 1I Iltill-(1+E)12+11f 11(1+E)121.

Thus (2. 19) follows with

(2.25) C=  1   { (1— e)(1+T )+1)2t
(t = inf  X 1I T =  SUP I X 1I)KEK

for u GCÔ with support in E 1 .
Next let us proceed to the general case, where no restriction is

made on the support of u E Q ° except it is compact. Let a (x ) be
a C-  function such that O cr . 1 and

(2. 26) a(x) 
= 110

lx1
(1x1. 2).

Then we can decompose u  as u= (1 — a)u + a u .  For (1— a )u  the
estimate

(2. 27)j  (1 — a)ull(i-e)/2 B E a (1 + Ix ) 1 - 8 1u12 dx] 
1/2

is valid with a positive constant C =C (e). Let us estimate the term
a u . a u  is a CÔ function with support in E „ and we have

(2. 28) ( L —  ( a u )  a (L— K2 )u— (ila)u — 2 E (0.1 a) (D i u)

------ a f + g.

Therefore, by what we have proved for Cô functions with support
in E 1 , it follows that
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(2.29) x2attila-Ev2 C{iiull-(i+e)/2+11g(au)11(-1+6)/2.Ei

+ 11f110+e),H- ,

where C is as defined by (2 . 25 ). Notice that

(2. 30) i (a u ) = ±  a )1 4

and the support of g  is contained in B 2 , 3 .  Then, using Lemma 2. 1,

we obtain

(2 31)
iiig(au) ii(-1.+E)/2,E,_1121411(-i+e)/2, E l +  C 111U11 —(1+8)12 ,

. n

II g
n 

(i+E)/2_ C2 ull _( i --E)/2 + I f 11(1+8)12)

where C,=C,(K , e) ( j = 1 , 2). (2.29) together with (2.31) yields

(2. 32) rc2tIaUll(i_e)12 C3 {iltell-ci+E)12 + 112U11(-1-1-e)12 • F i +1f11 0.4,)/2,

with C 3 = C 3 ( K ,  e) . Now (2. 19) follows from (2. 27) and (2. 32).
Q.E.D.

Proof o f  Lemma 1.7. L e t  u s  p u t  ç9(x) = a ( x1)(1 + 1 x1) 6 ,
where a( r)  is a C1 function on [Ro, 00) such that 0 Ç a 1 ,  a '(r )> 0

and

(2.33)
(r = R 0 ),

a(r)
11 (r R0 +1) ,

Ro being the constant specified in  (V ) o f Assumption 1. 1. Then
we have

(2. 34) 40 N9 1 + r   (1 + r) - 1 1 6  e ( 1 +rr r
(1 — e) (1+ r) - H-E>0 (r R 0 +1) ,

and
1  açoe(2.35)
2  r  —  2 • a(r) (1+ r) - 1 ' + a' (r) (1 + r)'O 2

a(r) (1 + r) - 1 ±6 0 (r R 0 ) .

With the ço defined above we can apply Lemma 2. 2. Taking note of
(2. 34), (2. 35) and Assumption 1. 1, fo r  u  C (;'" and f  (L —  K 2 )u
(K K )  we obtain from (2. 13)
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(2. 36) • a(1+ r) - 1 "Igu z dx C, I _WW2 d x
z ER0 ER0, R0+1

(1 + r ) - 1 - quI 2 dx+x2 (1 + r) - E lul 2 dx
ER,, ER,,

a ( 1 + r ) -1 -6 1-Ottl a ( 1 ±  r r f l  I g U ld X
EROE R , ,

with a constant CI =  ( 6 ) ,  whence follows by Schwarz' inequality

(2. 37) lIgull 2(-11-E)12, E RC, 2  a g ttlil- Rp, R0+1+

11± 211 1,111(1-e)1211U11_(1+6 :2+
11( 111 f+E) ILE)12}

w ith  a constant C2 =  C2 (e). T h e  third term on the right-hand side
of (2. 37) is estimated by Lemma 2. 3 to get

(2. 38) liguirc-i+e)/ 2BRo, R0+1+2, ER0 + , 1174112-(1-Fe)12

11U11-(1.+E)12112 U11(- 1.-FE)12, El +  II f
with a constant C3 C 3 (K, e). Thus one can derive from (2. 38)

(2. 39) ligull2(-1+e)/2.E..,-5-C4{11guilli,Ro,+ iitIV-(i+E)/2+ II f  1.+5)12)

w ith  a constant C4= C4(K, e). Now Lemma 2. 1 can be applied to
estimate the first term on the right-side of (2. 39) as follows:

(2. 40) Ilgulll„Ro+,.5_C5(11u111„,+2+ Ilf I1R 0 ,2 )

<C8(11u112--(1+6)12+ II f
where Ci = C, (K, e )  ( j= 5, 6), which together with (2. 39) completes
the proof. Q.E.D.

Proof o f Lemma 1. 8. Let u EQ'' and KE K .  The definition
of 2 , enables one to write

(2.41) I gru(x ) 12 = 1 Dr U ( X )  11 U ( X )  i ( K i +  i K 2 ) U ( X )  12

2r

Dru(x )+  n -

1 
 u(x) + x2u(x)1 2

2r

+4 I u(x) 12
— Im [D, u (x) •u(x)],

which, integrated over the sphere S, gives
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(2. 42) KT 12 ,u (x )2 d Ss,

D ,u (x )•u (x )dS .

Multiplying equation (2. 9) by u ( x ) ,  integrating over the ball B„

and taking the imaginary part yield

(2. 43)
s r

D ,u •ftd S -2 K ,K 2  lu Izd x=1 4  fftc lx .
B r B r

Employing (2. 43) in the last term of (2. 42), one obtains

(2. 44)
s œ

Iul 2 ds ig ,u  z c/S -4/c/c2 IttI 2 dx-2K, ra d x
S r B r B r

Igrul 2dS+ 2 11C1111f11 11 11(1+E)12 „U „- (1+E)12 •
S r

Now one can multiply (2. 44) by (1+ r ) - 1 - 6  and integrate from p( 1)
to co with respect to r to obtain

(2. 45) Kfljuli2-(i+E)/2, EA  (1  +  rY1  I g ,u1 2 dx

filP  E II J 11(11-E)1211"' II - ( 1+5)/ 2

1
1-0 1 1 11(-1+8)12, Et +  

2 1  
p 5 JI 11(1+5)1211u11-(1 +E)12 ,

from which follows (1. 19) by the use of Lemma 1. 7 and Schwarz'
inequality. Q.E.D.

The following lemma will be used to prove Lemmas 1. 9 and
1. 10.

Lemma 2.4. ( i )  Let KEC, j E R. L e t  vEL2,5n H 2 ,  l o c  satisfy
(L—K 2 ) v = 0 .  Then we have DveL2.s•

(ii) L et K  = K i+ iK2 IC2+  0  and  (3 R .  Let v H 2 , 1 satisfy
(L—x 2 )v = 0  and v, D v E L , , , .  Then we have vGL2,s+112.

P ro o f. Let us first show ( j ) .  M u lt ip ly  (L — Ic2 )v=  0  b y  q'T)
= (1+ i x  i ) 2 3 ii and  integrate over B RoR  with Ro<R<00. Then we
have by integration by parts
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(2.46)ç o i D v 1 2 d x + °,.,ça (D,v)iidx
BR,R BRo R dr

— [ 5 R
— Ss j o çO (D ,V )ii d S çO( V — K 2 )  1 V1 2 d X = 0,

BRoR

where

(2. 47) dS=Lf dS —  fdS.

Here we should note that the surface integrals in (2. 46) make sense
and are continuous in R  and Ro. This is because, on account of y be-
ing a locally Hz function, y and D,v can be regarded as L, (S')-valued
continuous functions of r=  x ,  where S- 1 denotes the (n-1)-sphere:

= {x E R"/ I x = 1} . By taking the real part of (2. 46) we have

(2. 48) Dv I' dx+ Re 28ço(1+ r) - 1 (Drv)Vdx
BRoR Ro R

_R e[ ]y9(D,x)V dS+ ( V -4 +4 )1  v i 'd x =0 ,
SR 5R0 SRoR

whence follows the inequality

(2.49)1 v iD v I2dx _R e[ 19 (D 4 ) -1) dS2  13RoR SR S00

ÇO[ I (4IV + 4112)12 dx,
BRoR

where 72> 0  has been chosen so small that 1 —1.19172>1/2. Since, as
can be easily verified by partial integration,

(2. 50)
1

Re ço(D,x)f)dx= 4 S 101 v I 2 dSBR o R L , SR SR°

_ i f   ( n -1
+  

 a 
2 J B R , R \ r ur

it follows through differentiation in R  that

(2.51)R e  Yo(D,V)i) dS 2 ddR[sRV I V1
2 dS1

SR

_ i r  (  n -1  
2 .3sR\s` r  )1vI2

for R > R 0 .  Since ço I vI 2 is integrable over R", w e  have
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(2.52) liM

method

n -1 ,  aq)
9 —

and absolute continuity

102dS=0.

533

r Or

Further, we have

ddR
vl2c/S1 0,(2.53)

I R ac. Is

because it follows from

(2 54) d  rç. v 2 d S ld  >0 (R > R i )dR L3s!
with some d > 0  and some R 1 .120 that

(2.55) çolvi2dS d(R— Ri)+
SR SR I

which contradicts the fact that coi v1 2 is in tegrab le over R". Thus
from (2. 51), (2. 52) and (2. 53) we obtain

(2. 56) Fan Re co(D ,v)dSO .

Therefore, it follows from (2. 49) that

(2.57) Dv! zdx<00,
ER °

which implies that Dv E L2. s •

Next we shall show (ii). Put (1+  x i )Z5+1 i n  (2. 46),
is true in  the present case, too, and take the imaginary part.
we have

which
Then

(2. 58) Im
8ç°Fir — I n a L  j  19(D,.v)T) dS

SR 'SROB R o R  ur

—2Ki Kzç o I V I 2 dX=0.
135 D R

Since y, D,y E. 1,2, a a n d  aço / Or =0(1 x1 2 3 )  (I xl - - ->°°) , w e  h ave  that
8g' (D

'  0
-0 is absolutely integrable over R" andar 

(2.59) dS = O.
R - - > .  S  R
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In view of tc,/c2 * 0  it follows from (2. 58)

(2.60)ç o i v I 2 d x < 0 0 ,E,0

i.e., y L2, C3+1/2 • Q.E.D.

Proof o f Lemma 1. 9. Let us first prove (j). S ince Ice K,
(L— Ic2)u = 0, and u -(i+e),2 , we can apply Lemma 2. 4, ( j )  and
( i i )  (repeatedly, if necessary) to see that u, DuEL2. Hence, multi-
plying (L—  2 )u = 0  by u and integrating over R", we have

(2. 61)( D u ,  D,u)+ ((V—  K2)u, u) =0.

By taking the imaginary part it follows that — 2KiKdull 2 = 0, i.e.,
0.

Next let us show ( i i ) .  Since ( i )  has been shown, we have only
to consider the case of Im ic= O. W e  note that we have the in-
equality

(2. 62) Dui 2± x 2I u  I 21 d s < 2 l i g u . 2 
+  ( n 4—r

)

 2 
U  2} CIS.

Sr Sr

In fact, recalling the definition of D u and ..0u, we obtain

(2. 63)I g u l 2 = 1  Du r + K 2 iu iz +  ( n  1)2 I u2
4r 2

n - 1  + Re [ ( D r U )  •  n] —2x lin [ ( D r U )  •  rt],r

 D 1 2 ± K 2 U  I 2 (n
4 ,1

)2 I U I 2 — 2rc Irn [ (D ,u ) • n] ,— 2

where we have made use of

(2. 64)
r

1   Re[D,u)•fdl< ( n

2 r
) 2  411 2 + 2 --11),,u1 2

2

<  ( n  1 ) 2 i u r  + 1 1Dtt12.
2r 22

Putting f 0 and I2 = 0 in  (2. 43), which is true in the present case,
we have
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(2.65) s, 
D r u•tildS=0.

Integrating (2. 63) over S r , with (2. 65) in regard, we obtain (2. 62).
On the other hand, it follows from 112ull(-i+e)/2.Ei<00 and II u ( 1 )/ 2

Goo that

(2.66)l i m r J DuI 2 + ( n - 1 ) 2

4r5

Thus (2 . 62) and (2 . 66) are combined to give

(2.67) 1im21{1Dul 2 +/c2 1u1 21dS=0.
ar

Now we can apply Lemma 2. 5 to be stated below to see that (2. 67)
implies that the solution u  vanishes identically in E R ,  with some
R 1 > 0 .  Hence by the unique continuation property (U C ) u O  on

. Q.E.D.

Lemma 2. 5. I f  u  1 -12,10, i s  a  so lu tion  o f th e  equation
(L  — Ic2 )u = 0 with K  real non-zero, and if u does not vanish iden-
tically  in  a  neighborhood of the point at inf inity , then fo r  any
e> 0

(2. 68) lim { IDul 2 + K2  U  I dS= 00.

Remark on the proof. I f  w e assume that V(x) = o ( x1 - 1 ),
which case occurs, for instance, when V1 -=0, then the lemma reduces
to Theorem 1 . 1  o f Ikebe-Uchiyama [9] . Even in the present case,
however, we can carry out the proof without essentially modifying
the argument given in [9] . A  remedy comes from techniques used
by Odeh [13] , Simon [17] or Agmon [1] utilizing the differentiability
o f  Vi ( x ) .  Namely, when one encounters an integral of the form

(2. 69) V1(x)1 x lau (x )i i (D i u)dx,
j = 1  Bar

this is estimated by the integrals
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if one assumes only that V, (x) = 0 (1 x 1 ') ,  but not the differenti-
ability o f  Vi (x). However, if it is assumed that VI (x) = 0( i x 11 - 1 )

0 V and 
6  I x

1
1 

= 0(lx I ' ) ,  by carrying out integration by parts one may

be convinced that the re al p art o f (2. 69) can be still estimated by

x l" - '1u1 2 dx and additional surface integrals. (Here one should

note that what is actually needed is not the estimation of the integral
(2. 69) itself but the one of its real part.) Roughly in this manner
one can follow the line laid in [9 ] without drastic alteration.

We also remark that recently K. Masuda obtained a result (not
yet published) of which our lemma is a consequence.

Proof o f Lemma 1 . 10 . Let tc= Ici+iK,GK and let vo EL2,-(1+6)/2
satisfy

(2.70) (y0, (L- - Ic 2 ) 0 =0

for all 'p  E C . It suffices to show v0=0.

Let V =  L2, ± (1 + e )/2 , and note that the adjoint spaces (V)* can be

identified with X' by taking as the pairing between them the usual
L 2  inner product. Define an operator A from V  to r by

(2. 71)D  (A ) = Cr , Aço= (L- x 2 )g9 f o r  Ç2 E D (A ).

A  is densely defined in V ,  and its adjoint A* is  an operator from

3 =  (V )*  to  V =  (V ) * .  By definition vED (A*) if and only if

(2. 72) (y, Aso) =  (w,, go)

for all ç9G D (A ) and for some w e r .  Thus looking at (2. 70) one

can see that vo ED(A*).
Now it is possible to imitate the argument in Ikebe-Kato [8] ,

which has been used for proving Lemma 3  of [8] ,8 ) to  show that

y0 G /12, loC . Then it follows from (2. 70) that Vo satisfies the equation

(L -  r 2 )vo = O. Therefore, with the aid of Lemma 2. 4 one can show

6 ) Lemma 3 o f  [8 ]  asserts that D(77)C.1/2.10e, where To is the Schrklinger
operator restricted to Cr, but is regarded as acting in Lz.
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vo E H2, locn L2. Hence, proceeding a s  in  th e  proof o f Lemma 1. 9,
( i ) ,  we have v0=0. Q.E.D.

Finally we shall prove Lemma 1. 11.

Proof o f Lemma 1 . 1 1 . Apply Lemma 2. 1  with u= u„,. Then
we have

(2.73)E "  lai u .(x ) 12 dx _C { I u.(x ) I 2 + If .(x ) I 2 } dx,
BR 1=1 BR ,i

which, together with the condition (1 . 2 1 ), and the first relation of

(1.22), implies that {E u.11 BR +litt”,IIBR }  is a  bounded sequence for

each R > 0 .  Therefore, {u„,} is relatively compact in L2,10e, and hence
there is a  subsequence {u„,p }  of {u. }  such that

i n  L2, lee ,
i n  K

as with uEL 2,1«.. It follows from (2 . 74 ) and (1 . 21) that

(2. 75) (u, (L — i 2 )0 = s, )( C i ) .

Therefore, as we have remarked in  the proof o f Lemma 1  1 0 , u is
seen to be an H 2 ,1 ,2 function and satisfy (L— K 2 ) u - - - f .  From the
convergence of {u„,p )  to u in  L 2 ,1 0 c and the third relation of (1.22)
we have

(2. 76) u„,p--->u in L 2 ,  _( l ) / 2

Thus we have shown that u satisfies (1 . 23 ) and (1. 24).

Let us show that {.0 ( K.P) u„,p )  converges to g u  in  
L , ( E i ) i . e •  T o

this end we have only to verify 8, u--->6,u in  L2,10c . Since we have

(2. 77) g  ( L  K2 ) (u — u„, p )
(K 2 (f  — f„,„)--0 in  L2, —(1-FE)12

as p - - > c o ,  applying Lemma 2. 1  with u= u — u„,p  and f= g ,„  we obtain
for R > 0

(2. 78) Ella3(u— te.p)111„ C{Ilu— u.,111„1 + gp111R + i }
i l

(2 .74 )



538 T eru o  Ikebe and Yoshimi Sait5

with C= C(K , R ) ,  which implies that u  in  L2,1„c for each
j = 1, 2, • • •, n , and hence {0"-P ) u . ,}  converges to  .Du i n  L2 ( E l )  loC •

Now let us show (1 . 25 ) : g u  EL2(-1+6)/2(Ei). By the use of the
third relation of (1 . 22 ) it follows that

(2.79) g (K " 'P )I lm i, 11(-1-FE)/2,G C 0

for any bounded measurable set G in E 1 . Letting in (2. 79)

we have I.Du  M -(1+6)/2, G CO3 and hence .Wu E L2, (-1+E)/ 2 (E1) .
Finally we shall show that the sequence {u „,} itself converges

in  L z , _(2,E) / 2 to  the u  obtained above, which in  turn implies that
{g ( " ) u„,}  converges to  Du in  L 2 (E 1 )1 .. In fact, let us assume that
there exists a subsequence {m g }  o f {m } such that

(2. 80) — u.,11_(1+6)/2_r (q= 1, 2, •..)

with some r > 0 .  Then, proceeding as above, we can find a subsequ-
ence { 1,4 }  o f {m , }  which satisfies

(2 .81 ) in  L2, —(1+5)/

u ' being a solution G 11
2, n L2, _(1+6)/2 o f (L— Kz)ui f ,

< Q .. By Lemma 1 . 9 , (ii), asserting the uniqueness of the solution
fo r  (L— f , gu il(_2+E )12 ,E ,<00 ,  ioe n L2, —(1+6)/2 , and u'

must coincide. Hence we have from (2. 81)

(2 .82 ) in  L2, —(146)/2 y

which contradicts (2 . 8 0 ).  Thus we have shown that {um} converges
to u  in L2, -(1+6)/2, which completes the proof. Q.E.D.

§ 3 .  Absolute continuity

First let us define a symmetric operator H , acting in the Hilbert
space L., by

(3.1)D ( H 0 ) = C r  ,  H o u= Lu f o r  u E D (1 -10).

According to Theorem 1  of Ikebe-Kato [8], Ho admits a unique self-
adjoint extension H .  Let E ( B )  be the spectral measure associated
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with H , where B  varies over all Borel sets of the reals. In the
present section we shall study a typical spectral property o f H, that
is , we shall show that E( (0 , 0 0 ))H  is  an absolutely continuous

operator.

A  characterization o f D ( H ) , the domain o f H , follows directly
from Lemma 4  of [8] . Summarizing, we have the next

Lemma 3. 1. Ho is essentially  self-adjoint, and thus possesses
a unique self-adjoint extension H . W e  have

(3.2)D ( H ) =  { u E L d u  G H ,,, 0 0  and L u E L }.

Let R (z )= (H — z ) - 1  denote the resolvent of H , and recall that
fo r K= i l C z  w ith  # 0  and K2 > 0 ,  and for f  G L 2 ,  ( i+ e ) / z ,  there can
be determined by Theorem 1 . 5  and Remark 1. 6  a unique solution
u  f ) L 2 ,  — ( 1 + 0 ) 12 f l  H 2 ,  i 0  of the equation (L—K 2 )u = f.

Lemma 3. 2. Let fEL2,(1+E)12, and let z E C — R . Then

(3. 3) R (z )f (x ) = u (i/  ,  f )  (x) a . e .

Proof. Since f  necessarily belongs to L 2, R ( z ) f  makes sense
as an element of L 2  and u = R (z )f  satisfies

(3.4)( L — z ) u — f .

Moreover, the fact that R (z )fE D (H ) implies by Lemma 3 . 1  that
R(z)fEL2 nH21, and hence R(z)f E L2, --(1+E)/ 2 n 11

2, loc . On the other

hand, since V z  lies in some K , where K  is  an open set of C  of
the type considered in  Theorem 1 . 2  or Remark 1 . 6 , it follows by
Theorem 1 . 3  that equation (3 . 4 )  with f  L 2 , ( i+ e ) ,2  h a s  a  unique
solution u (V i , f )  L 2 ,  — 0 + 8 ) /  2  n H 2, loc  . By the uniqueness, therefore,
R (z ) f  must coincide with u(V z  , f )  a s  a n  element o f  L2, --(1+E)/ 2

which implies that they are equal to each other almost everywhere.
Q.E.D.

7 ) B y V z  is meant the branch of the square root o f z with I m i/ iO .
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Now let 2 .> 0 .  It follows from Theorem 1. 4  (cf. also Theorem
1 .5 ) th a t fo r any f G L2, (i+E)/2 a unique solution u( VT, f )  of the
equation

(3.5)( L  A ) u  =  f

can be constructed as the limit

(3.6)u ( V A  ,  f  ) =Ern u(1/ A- if i , f ) in —2, _(i+e)/2 •
f<4, 0

Similarly, if Remark 1 . 6  is taken into consideration, another unique

solution u ( - 1 / 1 ,  f )  of the same equation can be obtained:

(3.7)( —  V  ,  f )  = lim  u(V i,u , f) i n  L2 , -(1 .+E )/2  •
A4,0

(It may be also noted that u( ± -t/ 2  f )  can be determined as unique

solutions of (L— A)u =f  satisfying 11g P si-A-) uli(-i+e)/2,Ei< °°•)

Let A= (2 1 ,  A 2 ) ,  where 0 < 2 ,< 2 2 < c o . Employing the well-known
relation' )

(3. 8) (E (d )f , f )=1 irn lim  ( {R(2+ ii2) R(A — ip)}  f, f)612
7 7 ,0  /4 0 A 1-01

( f  L 2 ),

w e can represent E ( J ) f  in  term s of u (  ± VA, f ) (21_<.7112) as

follows.

Lemma 3. 3. L e t zl= (A 1 , A2 )  b e  as above. T h e n  f o r  any

f L 2 ,, (1+)/2

(3.9)( E ( 4 ) f ,  f  )  2 f )  — u(— VA, f ), f )dA .

Proo f. Since by Lemma 3. 2

(3. 10) R(2 ± (x )=u(i/ ± i,c2  , f )(x ) a.e.

for 2 * 0 ,  /2> 0 ,  (3 . 8 )  can be rewritten in the form

( 3 . 11) (E (4 )f , f )

8) See, for example, Dunford-Schwartz [5], p. 1202.



Lim iting absorption method and absolute continuity 541

1  =lim lim . (u(i/ 2-Fip , f )— u (V  —  ,  f ) ,
nyoo  hirt

By the use of the continuity o f u (K , f), which has been stated in

Theorem 1.4 or 1. 5, it follows that (u ( -VA + i,u , f ) —u( -1/2— ip,f),f)
is uniformly bounded for (A, /2) E 2 2 ] x  [0 , 1 ] and

(3. 12) lim (u ( + ip , f ) — u(1/2— iit,f),f)
4, 0

= ( t t  ( f ) — u ( — -1/ , f ) , f )

for 2 E  [2 1 , 22 ]. With the aid of the Lebesgue dominated convergence
theorem, therefore, (3. 9) can be obtained from (3. 11) and (3. 12).

Q.E.D.

Noting that L2, (1.+E)/ 2 is dense in L, and (u(1/2 , f  ) — u( — V T ,f ) ,
f )  is  a continuous function of 2 E  (0, 00), we obtain from Lemma 3. 3

the following

Theorem 3. 4. Let A ssumption 1 .1  be fulfilled. T h e n  E((0 ,
00))H  is  an absolutely continuous operator.
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