J. Math. Kyoto Univ. (JMKYAZ)
13-2 (1973) 373-380

On asymptotic behaviors of analytic
mappings at Martin boundary points

Dedicated to Prof. Y Toki on his 60th birthday
By
Tatsuo FuJI'r’e

(Received, June 8, 1972)

Introduction Let f be an analytic mapping of a hyperbolic Ri-
emann surface R into a Riemann surface R’, and R* and R’* Martin
compactification and a metrizable compactification of R and R’, re-
spectively. For a point p of Martin boundary 4 of R* we consider
the full cluster set C(f, p) on R’*. If a point of R’ is a limit of f
along a path in R tending to 4, we call the point an asymptotic
value of f and the path an asymptotic path. We are going to prove
that each point of the set C(f, pyNR’ is either assumed infinitely often
by f in every neighborhood of p or belongs to one of the following
three kinds of sets:

1) the set of points ae C(f, ppN R’ to which corresponds a Koebe

cotinuum for o on A.

2) the set of points aeC(f, p)N R’ for which every neighborhood
of p contains an asymptotic path.

3) the set of points aeC(f, p)N R’ any neighborhood of which
contains a non-polar set of asymptotic values of f at points
arbitrarily near p.

As a consequence of the above theorem we obtain the follow-
ing: Let Cg(f, p) be the boundary cluster set of f at p modulo E,
where E is a set on 4 of harmonic measure 0 containing no continua.
Then {C(f, p)—Cg(f, p)}NR’ is contained in R(f, p) except a set of
capacity 0, and every neighborhood of p contains asymptotic paths



374 Tatsuo Fuji’i’e

for the exceptional values.

In Section 5 we generalize the main theorem in the small of
Collingwood-Cartwright [2] in the case of a meromorphic function in
the unit circle, which is a generalization of the theorem of Gross-
Iversen.

In Section 6 we consider the case where R’ is the Riemann sphere
and f is a Fatou mapping of a hyperbolic Riemann surface R, re-
fering some results in the author’s previous paper [4].

1. We consider the following three sets of points of C(f, p)NR'.
Every points of C(f, p)N R’ belongs to at least one of them.

1’) the set of points aeC(f, p)NR’ for which there exists a
neighborhood U, of p such that, for any neighborhood V
of a, any connected component of f~!(V) is not contained
in U,. We denote this set by &(f, p).

2’) the set of points aC(f, p)N R’ such that, for any neighbor-
hood U of p, there exists a neighborhood V of a such that
at least one connected component D of f~1(V) is contained
in U and of class SOghz. We denote this set by yxo(f, p).

3') the set of points aeC(f, p)NR’ such that, for any neighbor-
hood U of p, there exists a neighborhood V of « such that
at least one connected component D of f~!(V) is contained
in U and not of class SO,;. We denote this set by yx.(f, p).

2. First, we study the set &(f, p) of 1’). We call a non-degenerate

continuum K on A4 a Koebe continuum for a if it satisfies the follow-
ing conditions for a sequence of arcs K, in R:
lim max d(q, K,)=0,

n=o qekK

lim max d(z, K)=0

n=w zeKn
and

lim max d'(a, f(z)) =0,

n=w zeKn

where d(‘, %) and d'( -, ) denote distances in R* and R’*, respectively.
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Theorem 1. To each point a of @(f, p) there corresponds a
Koebe continuum for o.

Proof. Let {z,} be the sequence for which f(z,) tends to a and
V, the %-neighborhood of a. Let D, be the component of f~-4V,)
which contains the point z, and K, a Jordan curve in D, which joins
z, and a point {, on dU,. Since R* is a compact metric space we
can choose a subsequence of {K,}, which we denote by {K,} again,
converging to a compact set K in the sense that

lim maxd(q, K,)=0

n=wo gekK

and

lim max d(z, K)=0

n=00 zeKn
({17 p. 115). Since K, is connected it is easily seen that K is connect-
ed. K does not degenerate into a single point because z,K, tends
to the point p and the sequence {(,} contains a subsequence converg-
ing to a point on 0U,. And K does not contain a point of R, other-
wise K contains a continuum in R and f reduces to a constant. From
the construction of {K,} and K, it is evident that

lim max d'(«, f(z))=0.

n=w zeKn

3. Next we consider a point a of the set yo(f, p) of 2’). For
any small neighborhood U of p, there is a neighborhood V of « for
which at least one component D of f~!(V) is contained in U and
of class SOpp. Then the restriction f, of f on D is of type B/ on
V. So, the set V—f(D) is of (Green) capacity 0 and each point of
which is an asymptotic value along a curve tending to the ideal boun-
dary of D. And we have the following

Theorem 2. The set yx(f, p)=yxo(f, p)—R(f, p) is of capacity O.
And, for a point o of x(f, p), every neighborhood of p contains
an asymptotic path of f for o.
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Proof. Since a does not belong to R(f, p), we can choose a
neighborhood U, of p so that f(U,) does not contain a. And since
o belongs to yo(f, p) we can take a nieghborhood V of « so that there
exists a connected component D of f~!(V) which is contained in U,
and of class SOgp. Then, the restriction f;, of f on D is of type
Bl and assumes every value on V except for a set of capacity O.
Since o is an omitted value and fp(D) is dense in V, it is proved,
by a standard technic, that « is an asymptotic value of f along a
path in U,. And, since a€yy(f, p), this is true for all neighborhood
UcU, Now let {U,} be a sequence of I/n-neighborhoods of p.
Then, x(f, Pp=U@o(f, P)—f(U,). Let a€xo(f, p)—f(U,) and take
a neighborhood "V such that a component D of f~!(V) is contained
in U, and of class SOgp fp, covers V except a set of capacity O.
1o(fs p)— f(U,) is covered by a countable number of such V as above.
Hence yxo(f, p)—f(U,) is of capacity 0. Consequently, x(f, p)=yxo(f, p)
—R({f, p) is of capacity O.

4, Now we consider the set y,.(f, p). Let a be a point of x.(f, p),
then for any neighborhood U of p, there exists a neighborhood V
of a« such that at least one connected component D of f~(V) is con-
tained in U and not of class SOy4z. We consider the set 4,(D) of the
ideal boundary points of R at which R—D is thin. Since D&SOyy
A,(D) is of harmonic measure positive. And since f, is a Fatou
mapping f has fine limits almost everywhere on 4,(D). The set of
those fine limits is contained in V and not polar by the theorem of
Lusin-Privalov. We notice that a fine limit of f at an ideal boundary
point is also an asymptotic value at the point (cf. [3]), and have the
following

Theorem 3. Every neighborhood of a point of x.(f, p) contains
a non-polar set of asymptotic values of f at ideal boundary points
in an arbitrary neighborhood of p.

As a result of the above three theorems we obtain the following
corollary. It is a generalization of Noshiro’s theorem ([7]) generalized
by McMillan ([6]) in the case of arbitrary plane regions (cf. also [5]).
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Corollary. Let E be a set on A of harmonic measure O contain-
ing no continua, and Cg(f, p) the boundary cluster set of f at p
modulo E. Then the set {C(f, p)— Cg(f, p)} N R’ is contained in R(f, p)
except a set of capacity 0. And every neighborhood of p contains

asymptotic paths for the exceptional values.

5. Now we study relations between the sets C(f, p), R(f, p),
x(f, p), x«(f, p) and @(f, p), which are generalization of Collingwood-
Cartwright’s boundary theorems in the case of meromorphic functions
in the unit disk.

First we prove the following Theorem 4 which shows that R(f, p)
is dense in intC(f, p). Operations of closures, interior and comple-
ment are taken in the metrizable compactification R’*.

Theorem 4.
int C(f, p)CR(/, p).
Proof. We prove the relation

int (R(f, p))cC(f, p)*.

Then, by taking the complement of the both sides, we obtain the
theorem. Let o be an interior point of R(f, p), that is, a€ R"*—R(f, p)
and V(x) an arbitrary neighborhood of « contained in R(f, p)c. If
int (R(f, p)¢) is empty, the theorem is trivial. We put X,=f(U,) for
the 1/n-neighborhood of p. Then, X¢ is closed in R’* and R(f, p)°
=UXe. If X¢(=X¢) does not contain an interior point \UX¢ is of
ﬁrs: Baire category. And, since R’* is compact metric nspace, the
set \UX¢ of first category does not contain an interior point. This
contr;dicts our assumption that R(f, p)° contains the interior point a.
Hence there exists X¢§  containing interior points.

We may assume Xg N V(x) contains an interior point by the same
way as above by taking a,eV()NR’ and V(a,) as R’*. Then,
Xc,NV(x) contains a domain D, and
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C(f, p=(NX,)=UX;D>X; DD.
n n

Every neighborhood of o contains a domain such as D. We conclude
ae C(f, p)¢. This proves the theorem.
Analogously to Collingwood-Cartwright, we obtain the following

Theorem 5.

frR(f, p) U frC(f, p)=R(f, p)*N C(f, p), and

R(f, p¢nC(f, p)NR cx(f, p)U x«(f, D) U @(f, p).

where X¢ and frX means respectively the complement and the frontier
of X with respect to R'*.

Proof. By the preceding theorem,

int(R(f, p))c C(f, p)*=C(f, p)* UfrC(f, p)

and so,
C(f, p)nint(R(f, p*)cfrC(f, p).
Since int(R(f, p)°) C(frR(f, p))c we have
(»  C(f, p)nint(R(f, p)9)c frC(f, p)N(frR(f, p))°.
Since
(frR(f, p))* cint R(f, p) Uint(R(/, p)°)

cint C(f, p) Uint (R(f, p)°),
we have
() frC(f, pNUIR(S, p)<frC(f, p)Nint(R(f, p)°)
cC(f, pnint(R(f, p)°).
By (+) and (s+) we have

C(f, p)nint(R(f, p)°)=£frC(f, p) N (frR(f, p))°.
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Therefore,

R(f, p)* n C(f, p)={frR(f, p) Uint(R(f, p))} N C(f, P)
={frR(f, p) N C(f, P} U {int (R(f, p)°) N C(/, p)}
=frR(f, p) U {int (R(f, p)9) N C(f, p)}

=frR(f, p) U {frC(f, p) N (frR(f, p))°}

={frR(f, p)UfrC(f, p)} N {frR(f, p) U (frR(f, P))°}
=ftR(f, p)U frC(/, p),

which proves the first equality of the theorem.
By Theorem 1, 2 and 3 we obtain

R(J, p)* N C(f, p)N R cx(f; P)U x(f, P)U D(f, P)

hence, we have

R(f, p)* N C(f, PR cx(f, P U xx(f, DU S, )

which completes the proof.

Corollary.

int R(f, p)>C(f, p)—x(f, P U x«(f, P)U @(f, p)

that is, if aeC(f, p)—x(f, P)Ux«(f, p)UDP(f, p) then a is an interior
point of R(f, p).

6. In the case where R’ is the Riemann sphere S we have proved
[4] that if f is a Fatou mapping C(f, p)—C*(f, p) is open and con-
tained in R(f, p) except a set of capacity 0, where C*(f, p) is the
essential cluster set of the fine boundary function of f.

First we prove the following

Lemma. Let p be a regular minimal point of A. If S—R(f, p)
is of positive capacity, then f is a Fatou mapping in a neighborhood
U of p, that is, restriction of f on each connected component of RNU
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is a Fatou mapping.

Proof. Let E, be the closed set of points which f does not assume
in the neighborhood U, of p. Then R(f, p)¢=\UE,. If R(f, p)° is of
positive capacity there exists an E, of positive c::pacity and the restric-
tion fy, of f on each component of RNU, is a Fatou mapping. And
fv is a Fatou mapping because UcU,.

As stated above, C(f, p)—C*(f, p) is open and contained in R(f, p)
except a set F of capacity 0, and each point «€F belongs either to
1(f, p) or to @(f, p). If, for a sufficiently small neighborhood V of «,
there exists a component D of f~!(V) which is contained in U of p,
then « belongs to x(f, p), otherwise to &(f, p). If f is not a Fatou
mapping, R(f, p)¢ is of capacity 0 and C(f, p) is total by the above
lemma.

Let E be a set on 4 of harmonic measure 0 containing no con-
tinua and J the family of the sets as E. Put C*(f, p)=nN Cg(/, p),
where Cg(f, p) is the boundary cluster set modulo E. TheidfrC(f, D)
cC*(f, pcC*(f, p), and C(f, p)—C*(f, p) is open and C(f, p)—
C*(f, pyc C(f, p)— C*(f, p)C R(f, p) except a set of capacity 0. C*({, p)
is the union of x.(f, p) and the subset of &(f, p) for each point of
which 4,(f~'(V)) is of harmonic measure positive for any small V.
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