
J. M ath. Kyoto Univ. ( JMKYAZ)
13-2 (1973) 373-380

O n asymptotic behaviors o f analytic
mappings at Martin boundary points

Dedicated to Prof. Y Ti3ki on his 60th birthday

By

Tatsuo FUJITE

(Received, June 8, 1972)

Introduction Let f  b e  an  analytic mapping o f  a  hyperbolic Ri-
emann surface R  into a Riemann surface R ',  and R *  and R '*  Martin
compactification a n d  a  metrizable compactification o f R  and  R ',  re-
spectively. For a point p  of M artin boundary /1 of R *  we consider
the full cluster set C (f , p ) on R '* .  If a po int of R ' i s  a  lim it of f
along a  path  in  R  tending to 4 ,  w e  c a ll the po in t an  asymptotic
value of f  and the path an  asymptotic p ath . W e are going to prove
that each point of the set C (f , p )n R ' is either assumed infinitely often
by f  in  every neighborhood of p  or belongs to one of the following
three kinds of sets:

1) the set of points oce C (f , p )n R ' to which corresponds a Koebe
cotinuum  for a on  A.

2) the set of points a EC (f , p)n R ' for which every neighborhood
o f p  contains a n  asymptotic path.

3 )  the set of points oce C ( f ,  p ) n R ' any neighborhood o f  which
contains a non-polar set of asymptotic values of f  a t  points
arbitrarily near p.

A s  a  consequence o f th e  above theorem we obtain the follow-
ing: L et CE ( f ,  p )  b e the boundary cluster set of f  a t  p  modulo E,
where E  is  a set on A  of harmonic measure 0 containing no continua.
Then {C(f, p)— C E (f, p)}  n R ' is contained in  R (f , p )  except a  se t o f
capacity  0 , and every neighborhood o f p  contains asymptotic paths
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for the exceptional values.
In Section 5  w e generalize the main theorem  in  th e  sm a ll of

Collingwood-Cartwright [2] in the case of a meromorphic function in
the unit c irc le , w h ich  is  a  generalization o f th e  theorem  o f  Gross-
Iversen.

In Section 6  we consider the case where R ' is  the Riemann sphere
and f  i s  a  Fatou m apping o f  a  hyperbolic Riemann surface R ,  re-
fering som e results in  the author's p rev ious paper [4].

1. W e consider the following three sets of points of C (f , p)nR '.
Every points of C ( f , p )n R ' b e lo n g s  to  a t  le a s t  one o f them.

1') the set of poin ts a e C ( f ,  p ) n R ' fo r  w hich  the re  ex is ts  a
neighborhood U0 o f  p  su c h  th a t , fo r  any neighborhood V
o f a , any connected com ponent o f f -

1 (V )  is not contained
in  Uo . W e denote this set b y  0(f, p).

2') the set of points a E C (f , p )n R ' such  tha t, for any neighbor-
h o o d  U  o f p ,  there exists a  neighborhood V  o f a  such that
a t  le a s t  one connected component D  of f -

1 (V )  is contained
in  U  an d  o f c la ss  SO H B •  W e deno te  th is  se t b y  xo(f , p).

3 ' )  the set of points a E C (f , p )n R ' such  tha t, for any neighbor-
h o o d  U  o f p ,  there exists a  neighborhood V  o f a  such that
a t  le a s t  one connected component D  o f f -

1 (V )  is contained
in  U  and n o t o f class SOH o . W e denote this set b y  x (f , p ).

2 .  First, we study the set 0(f , p ) o f 1'). W e call a non-degenerate
continuum K  on A  a  K oebe continuum  for a  if it satisfies the follow-
ing  conditions for a sequence of arcs K „ in R:

lim max d(q, K„)=0,
n = o o  qeK

lim max d(z , K )=0
n= co zeK .

and

lim max d'(a, f  (z))= 0,
II

where d( • , *) and d'( • , *) denote distances in R "  and R ''", respectively.
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Theorem 1. T o  e a c h  p o i n t  a  o f  O (f ,  p )  th e re  corresponds a
Koebe continuum  for a.

P ro o f .  L e t  {z „ } be th e  sequence for which f ( z )  tends to  a  and
1V„ th e  

-i- - n e ig h b o r h o o d  o f  a .  L e t  D „ b e  t h e  component o f  f - '(V„)

which contains th e  po in t z„ a n d  K„ a  Jo rd an  curve in  D „ which joins
z„ a n d  a  p o in t  C„ o n  auo .  Since R *  is  a  com pac t metric space we
can choose a  subsequence o f  {K „}, which we denote by {KO again,
converging to a  c o m p a c t se t  K  in  t h e  sense that

lim max d(q, K,,)=0
n = co  q e K

and

lim max d(z, K)=0
n = co  ze K „

([1 ] p. 115). Since K„ is connected it is easily seen that K  is connect-
e d .  K  does not degenerate into a  s in g le  p o in t because zn e K „  tends
to  th e  p o in t p  a n d  th e  sequence { ( „ }  contains a  subsequence converg-
ing to a  p o in t o n  OUB . A nd K  does not contain a  p o in t o f  R , other-
wise K  contains a continuum  in R  and f  reduces to a  c o n s ta n t. From
the  construction of {K „} a n d  K , i t  is evident that

lim max d'(œ, f(z ))=0.
n = o o  zeK „

3. Next we consider a  p o in t  a  o f  th e  s e t  xo ( f ,  p ) o f  2 ') .  For
any small neighborhood U  o f  p , there is a  neighborhood V  o f  a  fo r
which at least o n e  component D  o f  f - '( V )  is contained i n  U  and
o f  class SO H . Then the restriction f ,  o f f  o n  D  is  o f  ty p e  B I  on
V .  S o , th e  s e t  V —f(D) is  of (G reen) capacity 0  a n d  each point of
which is a n  asymptotic value along a  curve tending to th e  ideal boun-
dary o f  D .  A n d  w e h a v e  th e  following

Theorem 2. T h e  s e t  x(f, p)=x 0 (f, p )— R (f, p ) i s  o f  capacity  0.
A n d ,  f o r  a  p o in t  a  o f  x (f, p ), ev ery  neighborhood o f  p  contains
a n  asy m ptotic path o f  f  for Œ.
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P ro o f .  Since a  does not belong to R (f, p ), we can choose a
neighborhood U0 o f  p  so that f (U 0 )  does not contain Œ. A n d  since
a  belongs to xo (f, p ) we can take a nieghborhood V o f  a  so that there
exists a  connected component D  o f f - 1 (V )  which is contained i n  U,
a n d  o f  class S O " .  Then, the restriction flo, o f  f  o n  D  i s  of type
B1 and assum es every v a lu e  o n  V  except f o r  a  s e t  o f  capacity O.
Since a  is  a n  omitted v a lu e  an d  L A D) is  d e n se  in  V , it is proved,
b y  a  standard  techn ic , that a  i s  a n  asymptotic v a lu e  o f  f  along a
path in  U o . A n d ,  since a G zo (f, p ), this is true f o r  all neighborhood
U c U o . Now let {  U „ }  b e  a  sequence of 1  in-neighborhoods o f  p.
T h e n , x(f, P) ----u(xo(f , P)—  f(u„)). L e t  a  z o (f, p)—  f(U „) a n d  take
a  neighborhood V  such that a  component D  o f  f - 1 (V )  is contained
i n  U „ a n d  o f  class S O  FIB . A ,  covers V  except a  s e t  o f  capacity O.
xo (f, p)— f(U„) is covered by a  countable number o f  such V a s  above.
Hence xo (f, p)—  f(U„) is  o f  capacity O. Consequently, x(f, p)=Zo(f, 13 )
—R(f, p) is  o f  capacity O.

4 .  Now we consider the set x* (f, p). L e t a  be a  po in t o f x,(f, p),
then f o r  any neighborhood U  o f  p ,  there exists a  neighborhood V
o f  a  such that at least one connected component D  of f - 1 (V )  is con-
tained i n  U  and  not o f  class S O " .  We consider the set .4 i (D) of the
ideal boundary p o in ts  o f  R  at which R — D is thin. S in c e  D S O „
A1(D )  is o f  harmonic measure p o sitiv e . A n d  since f  i s  a  F a to u
mapping f  has f in e  limits almost everywhere on 1(D ) . T h e  se t  o f
those fine limits is contained i n  V  a n d  not po la r b y th e  theorem of
Lusin-Privalov. We notice that a  f in e  limit of f  a t a n  ideal boundary
poin t is also  a n  asymptotic value a t  the  poin t (cf. [3]), and  have the
following

Theorem 3 .  Ev ery  neighborhood o f  a  p o in t  o f  x ( f ,  p )  contains
a n o n -p o lar se t o f  asy m ptotic v alues of  f  at id e al b o u n d ary  points
in  an  arbitrary  neighborhood of  p.

A s  a  result o f  th e  above three theorems we obtain th e  following
corollary. It is a  generalization of N oshiro's theorem ([7 ]) generalized
by McMillan ([6 ])  in  the case of arbitrary plane regions (cf. also [5]).
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Corollary. L e t E  b e  a  s e t  o n  d  o f  harm onic m easure 0  contain-

in g  n o  c o n tin u a, an d  CE ( f ,  p ) t h e  boundary  c lu s te r s e t  o f  f  a t  p

modulo E .  T h e n  the set {C(f, p)—C E (f, p )} n R ' is contained in  R(f, p)

ex cept a  s e t  o f  capacity  O. A nd ev ery  neighborhood o f  p  contains

asy m ptotic paths f o r th e  exceptional values.

5. N o w  w e  s tu d y  relations betw een t h e  s e t s  C(f, p), R (f, p),

X(f, p), x * (f , p ) a n d  0 (f, p ), which a re  generalization o f  Collingwood-
Cartwright's boundary theorems in  th e  c a s e  o f  meromorphic functions

in  th e  u n it  disk.
F irst w e prove th e  following Theorem 4  which shows th a t  R(f, p)

i s  d e n s e  in  int C (f, p ). Operations o f  closures, interior a n d  comple-

m ent a re  taken in  th e  metrizable compactification  R * .

Theorem 4.

int C(f, p)c R(f, p).

P ro o f . W e prove the relation

int (R(f, p)c)c C(f, p)c.

T hen , b y  ta k in g  t h e  complement o f  t h e  b o th  s id e s , w e  o b ta in  the

theorem . L et a  b e  an interior point of R(f, p)c, tha t is , a e R' * — R(f, p)
a n d  V (a) a n  arbitrary neighborhood o f  a  contained i n  R(f, p)c. If
int (R (f, p)e) is  e m p ty , th e  theo rem  is  trivial. We p u t  X n =f(U n)  for
the 1 /n -neighborhood o f  p .  Then, Xf, is c losed  in  R '*  a n d  R(f, p)c

=U_Kfi . If X (=  X )  d o e s  n o t c o n ta in  a n  interior p o in t  U.Xf, i s  of

f irs t Baire category. A n d , since R '*  i s  com pact m etric  space, the
s e t  u.Xf, o f  first category does not contain  a n  in te rio r point. T h i s

contradicts our assum ption that R(f, p)c contains th e  interior point Œ.
H ence there  ex ists X f,. containing interior points.

W e m ay assume Xf,, n V(a) contains a n  interior point b y  th e  same

w a y  a s  a b o v e  b y  ta k in g  ao E V(a) n R' a n d  V(a 0 ) as R * .  T h e n ,
X„ o n V(a) contains a  dom ain D , and
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C(f , p)c =UX `,D X,ci o D D.

Every neighborhood o f a  contains a  dom ain such as  D .  We conclude
a e C (f , p )c . This proves the theorem.

A nalogously to Collingw ood-Cartw right, w e obtain th e  following

Theorem 5.

f rR (f , p)U frC(f , p)=R (f , p)c n C (f , p), and

R(f, n C(f , P)nR ' P)U X*(f, P)U (P(f, 13 ).

w here X c an d  f rX  m eans respectively  the  complement and the frontier
o f  X  w ith  respect to  R '*.

P ro o f . B y the preceding theorem,

int (R(f , p)c)c C(f , p)c =C(f , p)c u frC(f, p)

and so,

C(f , p)n int (R (f , p)c)c frC(f, p).

Since int (R (f , p)c)c (frR (f , p))c w e have

(*) C (f , p)nint(R (f , p)c)c frC(f, p)n(frR (f , p))c.

Since

(frR(f, p))c c int R(f, p)U int (R(f, p)c)

C int C(f, p)U int (R(f, p)c),

w e have

(**) frC (f , p)n(frR (f , p))c c frC(f, p)nint(R (f , p)c)

c C(f , p)n int (R(f, p)c).

B y (*) and (**) w e have

C(f, p) n int (R (f , p)c)=frC(f , p)n (frR(f, p))c.
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Therefore,

R(f, n C(f , p)= {frR(f, p) u int (R(f, p)c)1 n C(f, p)

= { frR(f, p) n C(f, p)} U {int (R(f, p)c) n C(f, p)}

= frR(f, p)u {int (R(f, p)c) n C(f, p)}

=frR (f , p) u {frC(f, p)n (frR(f, p))cl

= {frR(f, p) u frC(f, p)} n {frR(f, p) U (frR(f, p))e}

= frR(f, p)U frC(f, p),

which proves the first equality of the theorem.
By Theorem 1, 2  and 3  we obtain

R(f, P)` n C(f, n R ' c P)U Z*(f, P)U 0 (f , P)

hence, we have

R(f, n C(f , p)n R ' c x(f , p)U x * (f , p)U 0(f , p)

which completes the proof.

Corollary.

in t  R (f , P)D C(f, P) — X (f, P)UX *(f, P)U 0 (f, P)

th a t  is, i f  oce  C(f, p ) — ( f ,  P )ux*(f, p)u o(f, I))  th en  a  i s  a n  interior

point of  R (f , p).

6 . In the case where R ' is the Riemann sphere S  we have proved
[4 ]  that if f  is  a  F a to u  mapping C(f , p)— C*(f , p) is  open and con-
tained in  R (f , p )  except a  s e t  o f  capacity 0 ,  where C *(f , p ) i s  the
essential cluster set of the fine boundary function of f .

First we prove the following

Lem m a. L e t  p  b e  a  regu lar m in im al po in t o f  J .  If  S — R (f , p)

is  of  positiv e capac ity , then  f  is  a Fato u  m apping i n  a  neighborhood
U  o f  p , th at is, restriction o f  f  o n  each connected com ponent of  R n U
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i s  a  Fato u  mapping.

P ro o f . Let E„ be  the  closed set of points which f  does not assume
in  th e  neighborhood U„ o f  p .  T hen  R(f, =  U E n . I f  R (f , pY  i s  of
positive capacity there exists a n  En of positive  capacity a n d  th e  restric-
tion f „„ of f  o n  each component o f  Rn LI„ is  a  Fatou m apping . And
f ,  i s  a  Fatou m apping because U c Un .

A s stated above, C(f , p)— C*(f , p) is  open and contained in  R(f, p)
except a  s e t  F  o f  capacity 0, a n d  each p o in t a  F  belongs either to
x (f , p) o r  t o  cf, p). I f ,  f o r  a  sufficiently small neighborhood V  o f  a,
there exists a  component D  of f - q V )  which is contained i n  U  o f  p,
th e n  a  belongs to x (f , p ), otherw ise to  0 ( f ,  p ) .  I f  f  i s  n o t  a  Fatou
mapping, R (f , p

)C i s  o f  capacity 0 a n d  C (f , p )  i s  to ta l b y  th e  above
lemma.

L e t E  b e  a  se t o n  4  o f  harmonic measure 0 containing n o  con-
tin u a  a n d  J  th e  fam ily o f  th e  s e ts  a s  E .  P u t  C* 1 ( f , p )= r\C E (f , p),

EeJ
where CE ( f , p )  i s  th e  boundary cluster set m odulo E .  T hen  frC(f, p)
c C * (f , p )c C * '( f , p ) , a n d  C(f , p)— C*'(f , p) is o p e n  a n d  C(f, p)—
C*'(f , p)cC(f , p)— C*(f , p)cR (f , p) except a  se t o f capacity 0 .  C*(f, p)
i s  th e  u n io n  o f  x * ( f ,  p )  a n d  th e  subset o f  4)(f , p) f o r  each  point of
which 4 1( f -  1 ( V )) i s  o f  harmonic measure positive  for a n y  sm a ll V.
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