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§1. Introduction

We consider the mixed problems for the first order hyperbolic
systems in a quarter space V={(t, x); t>0, x=(xy, ..., x,) =(x', x,),
x'€R" 1, x,>0}

% = L(t)u(t, x)+f(t, x)

(.1 u(0, x)=g(x)

P(t’ x’)u(t, x)lx,,=0 =0

where L(t)= Z": A, x)%+B(t, x), A(t, x) and B(t, x) are N x N matrices,
i=1 i

and P(t, x') is an Ix N matrix. We assume that 4, and B are smooth
with respect to (¢, x), and that P(t, x’) is a smooth matrix of (¢, x').

Assume that the coefficients of L(f) and P are analytic with respect
to (t,x) and (¢, x’) respectively, and that the Cauchy data g(x) and
the second member f(t, x) are also analytic and they satisfy the com-
patibility conditions of infinite order, which we explain in §2. Then
the Cauchy-Kowalewski theorem states that a solution u(t, x) is analytic
with respect to ¢, x for small t. The aim of this article is to show
this property in the large, which we give as Theorem 2 in §2. The
step-by-step reasoning could not be used directly for any t and x, be-
cause the size of each step (with respect to f) in the argument depends



324 Mikio Tsuji

on the radius of convergence of the Cauchy data obtained by the previ-
ous step. Therefore, for the proof of Theorem 2 we need the addi-
tional informations about the solution u(t, x) of (1.1), i.e., we assume
the conditions C.1, C.2 and C.3, stated precisely in §2, which assert
that the solution u(t, x) of (1.1) satisfies the usual energy inequalities
and that it has the finite propagation property. Under these condi-
tions, our proof is carried out by estimating the successive derivatives
of u(t, x). We could mention that this method was already used by
S. Mizohata [4] for hyperbolic Cauchy problems. Compared with
Cauchy problems, the difficulty of the mixed problems is the treatment
of the normal derivatives of the solution u(t, x) with respect to the
boundary. At first, we estimate the tangential derivatives of u(t, x).
Next, from the fact that A, is non-singular, we can estimate the normal
derivatives of u(t, x) from the equation (1.1). In this way we prove
Theorem 2.

In the next section we define our notations and state our results.
In §3, we prove the regularity of the solution u(t, x) of (1.1), which
we state as Theorem 1 in §2. In §4 and §5 we prove Theorem 2.
In §6, §7 and §8, we shall show that the symmetric hyperbolic systems
with maximal non-negative boundary conditions satisfy the above con-
ditions C.1, C.2 and C.3.

The auther wishes to express his sincere gratitude to Professor S.
Mizohata and Mr. S. Miyatake for their valuable suggestions.

§2. Notations and results

Let R% be the set {(x,, X5, ..., X,)=(x', x,); x,>0, x € R""1}. We

. _ 0
put D.=(D,, D,, ..., D,) where Di‘a—x,.’ i=1,2,...,n, and DO_W'
We remark that, although we put Do=—a—, we don’t use x, as the

ot
time variable ¢t in the following sections.

Hs(Rn), s=0,1, 2, ..., is the set of functions defined in R? whose
partial derivatives of order<s (in the sense of distribution) are all
square integrable in R%. For ue HS(R%), we define

llull? = 2 || Dgull?,
ass



Analyticity of solutions 325

lullio= 2 _ [ID5ull*.

|a| <s,a

&P(E) is the set of E-valued functions of t which are p-times
continuously differentiable. For ue&$(L2)N&s '(H) N - NEY(H?), we
define

mu(t)ms=;20 | Dbu(®)]]s-s,

l||“(t)ms,o=i§) 1D5u ()]s, 0.

Cs(R%) is the set of functions defined in R% whose partial deri-
vatives of order <s are all continuous in RZ.

#5(Rn) is the set of functions in CS%(R%) whose partial derivatives
of order <s are all bounded.

Let u(t, x) be a smooth solution of (1.1), then the given data
should satisfy certain conditions. For example, if u(f, x) is in H!
((0, T)x R%), then

1) P(0, x")g(x)|x,=0=0.

We say that (2.1) is the compatibility condition of order zero. Similar-
ly, if u(t, x) is in H™+*!((0, T) x R%), then

DY(Pu)|,.o =0, k=0,1,..., m.
xn=0

If we rewrite these by using g(x) and f(t, x), we get the compatibility
conditions of order m as follows.

Definition 1. The data g(x)e H™(R%) and f(t, x)e H™1((0, T)
x R%) are said to satisfy the compatibility conditions of order m, if

k
2 (PO, x)g P (@)]x=0=0,  k=0,1,...,m,

where PM(0, x’)=gl7}:(0, x"), gO(x)=g(x) and g®*V(x) (p=0) is defined

successively by the formula
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@2 9w 0@ = EO( 550 050+ 580, 0)
or
+200, 2.

Now we state the following conditions C.1, C.2 and C.3.

C.1) A, is non-singular and rank P=I.

We need the former of this condition to prove the regularity of
solutions of (1.1) and the latter to reduce the general case where P(t,
x') is an IxN variable matrix to the constant case P(t, x')=[E, 0],
where E; is an Ix ] unit matrix, i.e.,

1 0.0
1 00 0
(E, 0)= . :
1 0 0
C.2) Let the coefficients of L(t) be in #%(V) and P(t,x') in &°
(RIxR""') where s is large enough. For any g(x)eH!(R%) such
that Pg|, -o=0 and for any f(t, x)e&}(L2)N&L(H'), there exists a
unique solution u(t, x) of (1.1) in &!(L2)N&P(H') which satisfies the
following energy inequalities

t
@3) [0l Seo e gll+do el f(s)]ds,

(2.4) u()lly < cye*llu(0)i] +dls;e‘“("‘)lllf(s)lll 1ds,

where ¢y, c; do, dy; Yo, 1ty are positive constants independent of u(t, x),

g(x), f(t, x) and t.
We use C.2 to estimate the successive derivatives of the solution
u(t, x) of (1.1) for the proof of the regularity and analyticity.

C.3) There exists a convex cone C={(t, x); t<—Ax|, A>0} such
that, for any point (t,, xo)€V, the domain of dependence of the

1) Wz(O)ll; is the value of Ilu(t)ll; at t=0. Therefore, Ilu(O)il,=] g |1+ |L(0)g+ £ (0)],
but [u(0)lll; =gl =] g [l1-
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point (to, Xo) Wwith respect to the equation (1.1) is contained in C+
(to, Xo) =C(to,xo)'

The condition C.3 means that, if u(t, x)€C'(V N Cy, x,)) satisfies

G — Liyu+£G, %)

u(0, x) =g(x)
Pulx"_—_o =0,

and if f(t, X)=0 in VN Cyyr and g(x)=0 in ¥V N Cy x0yN {t=0}, then
u(t, X)EO in V n C(‘nyo)'

We shall show in §6, §7 and §8 that the symmetric hyperbolic
systems with maximally non-positive boundary condition satisfy the
contidions C.1, C.2 and C.3. K. Kajitani [2] and J. Rauch [7] state
that the strictly hyperbolic first order systems with uniformly Lopatinski
conditions satisfy the conditions C.1 and C.2.

We consider the following problem

O Lt Segufi 5 i=1,2, . m,

ot =
(2) 40, x)=g(x) sl .m,
Puy,, -o=0 ,  i=1,2,..,m,

where L(tf) and P are the same ones given in (1.1). This problem will
often appear in the following sections. We put U='(‘uy, ‘u,,..., ‘u,,),
G='('gy, 'g2---» '9m) and F='(fy, 'fs,..., 'f,). Then we have

Lemma 1. Let the conditions C.1, C.2 and C.3 be satisfied for
the problem (1.1). Assume c; ;€ Z'(V) for any i and j. Then there
exists a unique solution U(t, x) of (2.5) which satisfies the conditions
C.2 and C3, i.e.,

(I) For any g(x)eH'(RY) such that Pg, -o=0 and for any f{(t, x)
es(IA)NEY(HY), i=1,2, ..., m, there exists a unique solution U(t, x)
of 2.5) in &HL2)NEP(H') which satisfies the following inequalities
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2.6) IU@IIS ches [T |+ o exoe=2[F(s)lds
2.7 U@y < cher i iUO)Il +dy S;e“"('_s)lllF(S)Ill 1ds,

where [I]U(t)l”k=é}llllui(t)lll,‘ (k=1,2) and cp, ¢4y, dpy, dy, uy and py are
positive constants.

(II) Let C be the cone stated in the condition C.3. The domain of
dependence of the point (ty, x,) with respect to (2.5) is contained in
C+(to, x0) =Co,x0)-

We shall prove this lemma in §3. Concerning the regularity of
the solution, we have the following theorem.

Theorem 1. Let the conditions C.1 and C.2 be satisfied. We
assume that A,;! is bounded in V, and that P(t, x') is constant out-
side a compact set in V N{x,=0}. Suppose that g(x)eH™R%) and
f@it, x)e&m(L?) N---NEL(H™) satisfy the compatibility conditions of
order (m—1) (m=2), then there exists a unique solution u(t, x) of
(1.1) in &n(L2)n---N&L(H™) which satisfies the following inequalities

(2.8) ()l < cxe"<N(0)
+d,{| DNSSlds, k=0, Ly,
0
where ¢, d, and p, are positive constants.

Now we can state our main theorem on the analyticity of the
solution of (1.1). Take a point (ty, xo) in V. Denote by C, the
intersection of the cone C, ., With the initial plane {t=0}n V. Then
we have

Theorem 2. Let C.1, C.2 and C.3 be satisfied. We assume that
the coefficients of L(tf) and P(t, x') are analytic in V and V n{x,=0}
respectively. Suppose that g(x) and f(t, x) are analytic in a neigh-
borhood of Co and Cg, ., NV respectively, and that they satisfy the
compatibility conditions of infinite order, then the solution u(t, x) of
(1.1) is analytic with respect to (t, x) at the point (to, Xo).
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We remark that, although we assumed the coefficients of L(f) and
P(t, x') to be analytic in V and V n{x,=0} respectively, it is sufficient
for the proof of Theorem 2 to assume that these coefficients and P
are analytic in a neighborhood of ¥V NCyqyxp and VN {x,=0}NCe, o)
respectively.

We confined ourselves here to the case of half-space. However,
if we taked account of the finite propagation property and used a
suitable local transformation of independent variables, we could obtain
the same results in a general domain [0, T]xQ, where @ is open in
R" whose boundary is compact and analytic.

§3. Proof of Lemma 1 and Theorem 1

Proof of Lemma 1. We prove this lemma by successive approxi-
mation. Let us construct a series of functions U®(z, x)='("ul®,...,
tuyeg(HYNEN(L?) (k=0, 1,2,...) as follows: Let Uz, x)=0 and
we define UW(¢, x) for k=1 successively by the formula

D =L@up+ Fe s, i=lm
&1

D4 4000, x)=gi(x) o ieliom

Pugk)lx,,=0=0 s i=l1, ..., m.

The existence of U ®)(t, x) (k=1,2,...) is assured by the condition
C.2. The sequence {U®(t, X)};0,1,2,... converges in &}NL2)NEX(HY).
In fact, since

ait( Gk D) _ 00y = I () (bt 1) — (00

3.1y + j_ﬁlci,-(uﬁ-"’—uﬁ"‘“) ,  i=1L2..,m
(ugk+1)_u(ik))(0’ x)=0 ’ l=1, 29 ,ym
P(u{k+V) —u®)|, _o=0 , i=1,2,..,m

for any k=1, the application of the inequality (2.4) to (3.1) gives

et 8 lufer D (0) —uP ()l



330 Mikio Tsuji

gKg;e"'“s f; llee$® (5) — =D (s)||,ds
i=1

for k=1 where K is a positive constant independent of U™(t, x) and
t. From the above inequality, we get

e Hit —i”i ”|u$k+l)(t) _ ug")(t)lll X

k m
B sup e B, k=12,

k! seo,r
which shows the convergence of U®(t, x) in #1(L2)N&2(H'). Denote
its limit by U(t, x)='(u,, *u,,..., 'u,) and pass to the limit in (3.1),
then we see that U(t, x) is a unique solution of (2.5). For the proof
of the energy inequalities (2.6) and (2.7), we apply (2.3) and (2.4) to
each u/t, x) and sum up the obtained inequalities from i=1 to m, then
we get (2.6) and (2.7).

Next, we prove (II) of Lemma 1. Take a point (ty, Xo) in V.
Assume that F(t, x)=0 in VNC,, ., and G(x)=0 in VNC,,,, then
the condition C.3 means that

UB(@E x)=0 in VNCypna k=1,2,3,...,

where UW®)(t, x) is defined by (3.1). As the solution U(t, x) of (3.1)

is the limit of the sequence {U®)(t, x)},_,,.., we see that U(t, x)=0

in ¥ NC,x,) This completes the proof of Lemma 1. q.e.d.
Using the results of Lemma 1, we prove Theorem 1.

Proof of Theorem 1. It will be sufficient to prove our statements
in the case m=2, because we can apply our reasoning to the case m=2
in the same way. We shall show in the appendix that the general case
P(t, x') can be reduced to the constant case P(t, x’)=[E,; 0] by a unitary
transformation of unknown functions. Therefore, we consider (1.1)
under the condition P(t, x’)=[E;0]. We show that Du(t, x) (i=0,
1,..,n—1) is in &(L*)NEY(H'). Then, as A,(t, x) is non-singular,
it follows that D,u(t, x) is also in &}(L2)N&P(HY). Let us put U(t, x)
="'(*u, 'Dyu, *D,u,..., 'D,_,u). Then, by the same reasoning as Lemma
1.1 of Lax and Phillips [3], we see that U(t, x) belongs to &£?(L%(R%))
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N&L (H; (R xR"™1)D (u>p,) and it satisfies

%[{— =L()U+F(¢, x) in distribution sense
3.2) U, x)=G(x) in L2(R1)
PU|,,-0=0 in H7!'(RLxR"1)

where, if we denote by Ey an NxN unit matrix and put Ao(t, x)=
—Ey,

L(2) 0 0 - 0
L(t) A,Dy(4,'B)
z(t) = .°. + )
A,D\(4;'B) M,
L) A,D,(4;'B)
M,=[A,D(4,'4)]osi, jsn-1>
P g f
P L(0)g+£(0, x) A,Do(A43'f)
P= ,G= and F=
' Dyg 4,D,(4;'f)
P D, g A,D,_1(4;f)

Since g(x) and f(t, x) are in H2?(R1) and SXLH)N&HH')NEX(H?)
respectively and they satisfy the compatibility conditions of order 1,
we see that G(x)e HY(R%), PGl,,—-o=0 and F(t, x)e&X(H")N&}(L?).
Therefore, by using the results of Lemma 1, we see that there exists a
unique solution V(t, x)='('v, "0y, ‘0y,..., ‘V,—;) of (3.2) in &}(L*)N&?
(H'). Our assertion is to prove Du=v, for i=0,1,...,n—1. Let us
put w=u—v and w;=Du—v; (i=0,1,.,n—1), then W='('w, 'w,,
Wiy tWy_y) is in #2(L2)NEY,(H,'(RLXR"1)) and satisfies

%TW=Z(t)W in distribution sense

(3.3) W0, x)=0 in L2(RY)

PW|, -0=0 in H;!(RLxR™1),

1) H;}(R}x R is the set of the functions u(¢, x’) such that e **u(s, x’)
eH-'(R*X R*1). H-'(R}xR"') is the dual space of Hj(R}XR"1).
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Here we remark that, for the validity of the inequality (2.3), it
suffices only to be u(t, x)e&?(L?), and that the assumption u(t, x)e
EHLA)NEY(HY) is not necessary. We can prove this fact by using
the mollifier with respect to (f, x’) as the reasoning of M. Ikawa [1],
p. 131. Since we use the same method in the proof of Theorem 4 in
§7, we omit its process here. Applying the inequality (2.3) to (3.3),
we get

W@l eron|W(s)ds

where K is a positive constant independent of W and t. From this
inequality, we have

e | w(0)|| < KD sup (o[ W(s)),  m=1,2,....
m. se[o,t]
Hence we obtain W(t)=0, i.e., v;=Du for any i, which implies u(t, x)
is in £2(LY)NELH)NEL(H?).
Next, we prove the inequality (2.8) for k=2. Applying (2.7) to (3.2),
we have
t

(3.4) WU, < e WU +d3 ' eraeDF(s)l ds
where ¢, d; and u, are positive constants. As it holds

. n—1

Dnu(t9 x)=A;l{D0u(t9 x)_ ZlAi(Diu)(ta X)—Bu(t, X)—f(t, X)},

we have
(3.5) | D2u(2)|| < const.{IUI, + (| D, SO +]ADII}.

And we see easily that it holds

(36 IDSOIIS ! 12D f)lds + DO

< (" 1D,Dof(5) s+ 1D,(LO)g + SO

+ IDLO)9) |
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< So 11D, Do (s)||ds + const. | u(O)l,

and

(3.7 1f)ll= S;IIf’(S)llder IL(0)g + f(O) ||+ ILO)g |

= S; lf'(s)|lds+ const. |l u(0)l;.

Recalling that |[U(D)II3 + ||D2u(1)||2 =llu(t)ll3, and combining (3.4), (3.5),
(3.6) and (3.7), we get the inequality (2.8) in the case k=2. The proof
of Theorem 1 is complete. q.e.d.

§4. Proof of Theorem 2 (I)

As will be seen in the appendix, we can reduce the general case
P(t, x') to the constant case [E,0] by a unitary transformation of un-
known functions which is analytic in a neighborhood of C, . N V.
Hence we can put P(t, x')=[E,; 0] without loss of generality.

We can see from Theorem | that the solution of (1.1) in this case
is C* in a neighborhood of C,.,,NV. The aim of this section is to
define a series of functions v(t, x), vo(t, x), vy(t, X),..., v,(t, x), v;i(t, x),
..., which are equal to u, Dou, Du,..., Du, D;u, ... respectively in a
neighborhood of Cg, ., NV. For this purpose, we extend the set
Cionxoy in the following way; Let S ., be a small ball in V with
center (ty, Xo). Denote by 2 the set

( \J Cux)NV,

(t,X)€S (to,x0)
and by 2, the set 2N {t=0}. Here we take the ball S, ., so small
that f(t, x) and the coefficients of L(t) are analytic in neighborhood of
2 and that g(x) is also analytic in a neighborhood of 2,. We choose
a function «(t, x)e CP(R"*!) which takes the value 1 in a neighborhood
of 2 and whose support is contained in the domains of analyticity of
g(x), f(t, x) and the coefficients of L(f). We denote a(x)=a(0, x).

Now we define uv(t, x) by the solution of
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g_‘t’ =L(o+a(t, x)f(1, x)

.1 (0, x) =a(x)g(x)

Plen=0 =0

We know from the conditions C.1 and C.2 that the solution u(t, x)
of (4.1) exists uniquely in &!}(L2)N&Y(H!) with the property that
v(t, x)=u(t, x) in 2, because the initial value of o(t, x) coincides with
that of u is a neighborhood of 2,.

Next, we operate D, (i=0,1,...,n—1) on the both sides of the
equation (1.1), then

%(D,u) —L(YDw)+(DL®)u+D,f,  i=0,1,...,n—1

@2 (D)0, x)=g,x) =0, Lt

P(Du)|x,=0=0 , i=0,1,..,n—-1

where (D,~L(t))=zn:l(DiAj)£+(D,~B) and g,(x) is an initial value of
= j

(Du)(t, x), ie., go(x)=L(0)g+f(0) and g(x)=Dyg(x), i=1,2,..,n—1.
D,u(t, x) does not satisfy (4.2), because P(D,u)|,,-o is not necessarily
equal to zero. However it is represented by a linear combination of
u, Du (i=0, 1,..., n—1) and f as follows

4.2y Dyu=A;1{Dgu— i;: A(D)—Bu—f).

Taking account of these, we define vy(t, x) (i=0, 1,..., n) in the follow-
ing way: v(t, x) (i=0, 1,..., n—1) are solutions of

%vir.[(t) v; + a(t, x)jil(DiA Pvj+alt, x)(D;B)v

(4.3) +a(t, x)D;f, i=0,1,...,n—1
v,(0, x) =a(x)g(x) ,  i=0,1,..,n—1
Pv;,,-0=0 , i=0,1,...,n—-1

where v,(t, x) which appears in the lower order terms of the right
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hand side of (4.3) is replaced by a function
n—1

4.3y a(t, x)A; H{ve—a(t, x) .ZlAjvj—a(t, x)Bv—a(t, x)f }.
=

This is a system of equations for unknown functions vg, vy, ..., Uy—1.
Now we can apply Lemma 1 to such a system. For this purpose it is
necessary to be

a(x)g(x)e HY(RY) , i=0,1,..,n—1,
4.9
P(a(x)gi(x))lx"=o=0, i=0,1,..,n—1.

The former of (4.4) is trivial. The latter is shown in the following
way. As the compatibility condition of order 0 means Pg|,,-o=0, it
follows

P(Dg)lx,=0=0, i=1,2,..,n—1
The compatibility conditions of order 1 assert moreover

P(L(0)g +f(0))!+,=0 =0.

From the definition of g«(x) (i=0, 1, ...,n—1), we get the latter of
(4.4). Hence we see by Lemma 1 that there exists a unique solution
{vos V15 ..., Uy} of (4.3) in &}(L?)NEP(H') which satisfies

v(t, x)=Du(t, x) in 9, i=0,1,..,n—1.

Now we define v,(t, x) by the function (4.3). It is easy to see that
v,(t, x)=D,u(t, x) in 2 and v,(t, x) is in &} (L2)NEL(H).

We operate D;D; on the both sides of (1.1). If i#n and j#n,
then

%{Dib 4) =L(£)(D;D ju) + (D;L(£))(D u) + (D ;L()) (D)
4.5) +(D:D;L(1))u +(D;D; f)

(D:Du)(0, x)=g;;(x)

P(D;Dju)l¢,=0 =0
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where g;(x) is an initial value of (D Dju)t, x), i.e., goo(x)=g?®(x),
gio(¥)=9goi(x)=Dig ™V (x) (i=1,2,....,n—1), g;(x)=D;D;g(x) (i, j=1, 2,...,
n—1). The functions g(V(x) and ¢g®(x) are defined by (2.2) in §2.

If i=n or j=n, DDju(t,x) does not satisfy (4.5). However D;
D,u(t, x) is represented by a linear combination of u, Du, ..., Du,
D:Dyu, D;D,u,..., D;D,_yu and D;f. In fact, operating D; to (1.1), we
get

n—1
4.5y DD, = Ay {D:Dou— ¥, A(D;D )~ B(Dw)

—(DL(O)u—D,f},  i=0, 1,.., n.

We remark that D;Dju=D;Du in a neighborhood of C, .. ,NV.
Taking account of these, we define v;;(t, x) as follows: vt x)
(i, j=0, 1,..., n—1) are solutions of

0 n
a—tvij = L(t)UU + Ot(t, x)kzzl (D,-Akvjk + DjAkvik)

+a(t, x) 33 (DD Avy +at, XXD;B)y;
(4.6) +a(t, X)(D;B)v;+a(t, x)(DiD;B)v+a(t, x)D;D;f
;;(0, x) =0a(x)g;(x)

Pvijlx,.=0 =0

where each v,,(t, x) (i#n) which appears in the lower order terms of
the right hand side of (4.6) is replaced by a function

@GO alt VAT {vo—alt, X)L Awi—at M) 3 (DA
—o(t, x)Bv;—a(t, x)(D;B)v—a(t, x)D;f}.

This is a system of equations for unknown functions v; (i#n and
j#n). Now we can apply Lemma 1 to (4.6). For this purpose it is
necessary to be a(x)g;;(x)eH'(R:) and P(a(x)g;{(X))|x,=0=0 (,j=0,
I,...,n—1). This fact is seen by the compatibility conditions of order
2 which mean concretely
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Pu = P(Dgyu)
t=0
xn=0

= P(D3}u) =0.
t=0 t=0
xn=0 xn=0

Moreover we see that v;;(0, x)=(D;D;u)(0, x) in 2 and v;;}(0, x)=v;(0, x)
in ¥V n{t=0}. Therefore, by Lemma 1 we get a unique solution {v;
t x); i, j=0,1,...,n—1} of (4.6) in &(L2)Nn&(H"') which satisfies

v;(t, x)=D;Dju(t, x) in 9, i, j=0, 1,..., n—1,
vij(t, x)=vj,-(t, x) in ‘/, i, j=0, 1,..., n—l.

Now we define v,(t, x) by (4.6); for i=0, 1,..., n—1. Next, we define
v,(t, X) (i#n) by v,(t, x)=0v,,(t, x), v,,(t, x) by (4.6)! replaced i by n.
We see that any v;(t, x) is in &/(L2)N&P(H') and satisfies

v;(t, x)=D;Du(t, x) in 2,
vij(t3 x) = vﬁ(t, x) in I/.

Assume that we could construct v; . (t,x) in &}(L?)Nn&(H)
(ig,ees, 3,=0,1,..., n; k=1,2,..., m—1) with the properties that

Uiyt X)=D;, Dy u(t, x) in 9
and
vil..‘ik(t’ x)=vj1...jk(t9 x) in |4

where (jy,..., ) is a permutation of (i,..., ). Under these assump-
tions, we construct v;, ; (¢, x).

In general, we operate D; ...D
If n&{iy,..., i,,}, we have

. on the both sides of (1.1).

Tt—(Dil e Dimu)=[4(t)(Dll “en Dimu)
n m AN\

+k21 Zl(DipAk)(Di[ ee Dip . Dikall)
=1 p=

k A\ N\
4.7 + 23 DD, D AYD,, ... Dy, ... Dy, ... Dy, Do)
n=1p,q

ip~iq ip

+ +k§1(Di’ ... Dy, A)(Dyu)
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m N
+ Zl(DipB)(Dil “ee Dl' cen Dimu)+ """
p=

14
+(D;, ... D, Bu+(D,, ... D, f)

(Dy, ... D;, u)0, x)=g;,_.;,(X)
P(D;, ... D; u)|,,=0=0

where g;, ; (x) is an initial value of (D;, ... D; u)t, x), ie., if we use
functions g®(x) (k=0, 1, ..., m) defined by (2.2) in §2,

gg....gh...im-J(x):Dil LEX Dim_Jg(j)(x) (i19"'9 im—‘l#;O; j=0, 19“'9 m)'
J

If n€{iy.e, im}» (Di, ... D u)t, x) don't satisfy (4.7). However such
(Dy, ... D, u)(t, x) have the following properties. Let the number of
n contained in {iy, ..., i,} be r. We take out the index i; of the r

N
indices which are equal to n, and operate D;, ... D D;, on the both

l'j e
sides of (1.1), then we get

N\

(Di1 ...Dimu)(t, x)=A;1{D0Di1 e Di cee D

j im

n—1 N
= ZAUD;, .. Dy, .. D, D)

n A\ N\
(4.7), _kgl p;l.(DipAk)(Dil cee Dl'p “ee Dij vee Dikau)— b

n AN\ N\
- Z (Dil oo Dij sen DimAk)(Dku)—B(Dil cen Di

K=1 J

...D; uw)

A\

N
—p§j(DipB)(Dil “ee Dip e Dij e Dimu)—
/N N
—(D;, ... Dy, ... D; Byu—(D;, ... Dy ... D; f)}.

The equality (4.7)’ shows that D;, ... D, u(t, x) in the right hand side of
(4.7 have the following properties

(1) if k=m where k is the number of the indices i,, ..., i\, then the
number of n contained in {iy, ..., i} is r—1,

(2) if 0<k<m—1, then the number of n contained in {iy, -0 i} is
r at most,
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Here we remark that (4.7 holds for any iy,..., ij_15 ijepseees im
and that D; ... D; u(t, x) is invariant by permutation of (iy,..., in), i.€.,

D;, ... Dy u(t, x)=Dj, ... D; u(t, x)

if (jyeers jm) is @ permutation of (iy,..., in)-

We will construct v;, ; (¢, x) as invariant by permutation of (iy,

Lovsim
.ory im). Therefore, it is sufficient to construct v;, ;. ’<'i'/"(t’ X) (igyeees im—j
#n; j=0, 1,..., m).

Taking account of these, we define v;, ; (¢, x) as follows: v; ;,
(t, x) (iy, -or im=0, 1, ..., n—1) are solutions of
a n m
31 Viteim =L(v;,...,, +olt, x)kgl p;l(Di,,Ak)vil.‘.?p...imk

n
+a(t, x) 25 2 (Di,Di, A, 5, Rgimk
k=1 p,q

.o +a(t, x)k=zl(D"| e Di.,.Ak)Uk
(4.8)
+a(t, x) Zl(Di,B)”i,...?,,...i,..“*' """

=
+a(t, x)(D;, ... D, Byw+a(t, x)(D;, ... D;, )(t, x)

0,00, X)= a(x)g;,...i(X)

Pvi,...i,,.|x,.=o =0

where each v;, ; _ .t x) (iy..., im—y#n) Which appears in the lower
order terms of the right hand side of (4.8) is replaced by a function

n—1
(4.8)2 l...im— 1 a(t) x)A; 1 {vix...l.m— ‘0 - O((t, x) kglAkvil"'im" lk
n m—1
—oft, x)kg1 p;l(DipB)vh-..?p...im- e
—a(t’ x)k_an (Dil tee Dim- IAk)vk—a(t3 x)Bvil”.,-m_ '

m-— 1
—a(t, x)p§l(DipB)vix...?p...im- e

—a(t, X)\D;, ... D, Bw—alt, x)(D;, ... D, _, f)}.
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This is a system of equations for functions ov; ; (t, x) (iy,..., i,y #n).
Since g(x) and f(t, x) satisfy the compatibility conditions of order
(m—1), and since g(x) and f(0, x) are analytic on the support of a(x),
we see that

a(x)g;,..i.(x)e HI(RY), iy, o 0,=0,1, .., n—1,
P((x)g;, .., () x,=0 =0, ipy cony iy=0, 1, ..., n—1.

Hence, applying Lemma | to (4.8), we can get a unique solution
{010, X)5 ifsers iy #=n} of (4.8) in &}(L2)NEX(H') which satisfy

Uity X)=D;,...D; u(t, x) in 2

and
vi|...im(t’ x)=vj1...jm(t’ x) in V

where (jy, ..., j,) is a permutation of (i, ..., i,). Now we define ;..
imegn(ts X) (iy5ees iy y#n) by the function (4.8); ; |, and define
vi....iknik+l...im_1 (I‘=0* l: sevy "1_2) by

D, D,

Tgendicit toodm=1 — Yigeodp—1n*

Then we see by (4.8);, ; _, that v, . (¢t x) is invariant by permu-
tation of (iy, ..., ip_q)-
If iy, ...,i, ,#n, we define v; ; ., by the function (4.8); , |

replaced i,_, by n. Any v (t, xX) whose number of n contained in

Tgenim

{iy; .o iy is 2 is defined by v, ; (t, x)=v;

J1eejm=-2nn

(t, x) where (j,,
weos Jm—2, 1, M) is a permutation of (iy,...,i,). Since (4.8);

ifeeim=1

shows that v, ; .., is invariant by permutation of (i,,..., i,,—,), the

above construction of v, is well-defined.

ifeaiim
Similarly, by induction on the number of n contained in {ij,...,
iny, and by using (4.8);, ; ., (t,x) in &}

(LH)N&2(HY) which satisfy

we can construct all v;

feerim

vt x)=D;, ... D; u(t, x) in 2

and
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Uiyt X)=0;, 5 (8 X) in |4

where (ji,..., j,,) is a permutation of (iy,..., iy).

§5. Proof of Theorem 2 (II)

In this section we estimate a series of functions v, vy, vy,..., U,
vyj, ..., defined in §4. Before we proceed to the main Sl;bject, we state
the notations. For any u and v in C¥, we write u-v= > uy; and |u[=
Ji#u. For any NxN matrix C=[c;], we denote =

|C|=§uP|Cij|-
L
Then there exists a positive constant ¢ depending only on N such that
|Cu| < a|C|"|ul, any ueCh.

At first, we recall that the coefficients A(t, x), B(t, x) and the
second member f(¢, x) are analytic on the support of a(t, x), and that
A,(t, x) is non-singular, then it follows

la(t, X)D;, ... D; Ai(t, x)| < pla*K, p=0,1,2,...,

(5.1) la(t, x)D;, ... D; B(t, x)| < p'a’K, p=0,1,2,...,
lle(t, x)D;, ... Dy, f(t, x)||,_2(R.b§p!aPK, p=0,1,2,...,
lo(t, x)A;1(t, x)| <K

for any (¢, x)eV. Let us 2Ko=y; and assume y,=2 by taking K
large.
Next, we set

(5.2) bo(®) = [|u(®)]l,

o=, 3 Ibra O m=12,..

wim
and

n-1
5-3 - = i i nys =Y, L,..., .
( ) ¢m p,p(t) i Z 0”vl1...1,..-,,!{;}(0“[_2(,;*) p 0 1 m

1seesim=p=
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Since g(x) and f(¢, x) are analytic in a neighborhood of the supports
of «(x) and a(t, x) respectively, (D,,...D; u) (0, x)=g;,. ; (x), defined in
(4.7), are analytic in a neighborhood of the support of a(x). Hence
we get

n—1
(5'4) ¢m,0(0)= ) Z o ”a(x)gl'l...im(x)”gm!pmA’ m=0’ ls 2’"' .

Liyeey Im™

Under these conditions, we want to prove

Lemma 2. Assume that po=1, co21, do=1Y, an =1 and A=1,
and take a positive constant p as larger than 2an{andyy,(1+y})*+7y%},
then we have

(5.5) P (D=<mlpBA,, m=0,1,2,...,

where  Ag=3(1+73)(coA+doy,)e*t and po=2(1+3y})p(1+ exp{and,
y1(1+y)e}.
Hereafter we put 0=and,y,(1+7y2) and &=3(1+92%) (cod+doyy).

Remark. When all or some of the positive numbers py, ¢o, do,
an and A are smaller than 1, we can replace them by 1.
The proof of this lemma is divided into three steps.

The first step. We state an elementary fact without proof. Let
o(®), () and h(t) be non-negative continuous functions defined on

[0, o). If they satisfy
¢(t)§h(t)+S:)t//(s)ds+dgz)<p(s)ds, any 1>0,
where d is a positive constant, then we get
go(t)gh(t)+dS;e"("‘)h(s)ds+S;ed““’lﬁ(s)ds
for any t>0.

The second step. Under the same assumptions as Lemma 2,
we obtain the following estimate

1) The positive numbers g, ¢, and d, are already determined in (2.3) in §2.
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(5.6) oD+ P11 =M p(1+De*)" Ao,  m=1,2, ...

We prove (5.6) by induction on m. First, we consider (4.1).
Applying the inequality (2.3) to (4.1), we get

t
|lv(t)llécOe""'Ila(x)g(x)H+dogoe“°""’lla(8)f(8)IIdS-
Substituting (5.1) and (5.4) into this inequality, it follows
(5.7) bo(1) < koeho, k0=c0A+%<coA+doyl.
0

Next, we proceed to the equations (4.3) and (4.3). We consider
in (4.3)

£(t, x)=a(t, x) j};:l(D,-A Jo,+a(t, x) (D;B)
+a(t, x) (D;f), i=0,1,..,n—1,

as the second members of (1.1). Applying (2.3) to (4.3), we obtain
t
o)1 coero o))+ dof exa=2 ()]s

S coero|0O)]1+do | et (o 33 Dy |
+olaD;B|[[v]|+ [laD:f |[}ds
< coers [00) |+ aKado | e#t=( 3} o1+ o] + )ds.
Summing up these inequalities from i=0 to n—1, we get

59) b1, oS Coer' 0+ andoy, | 40 (8,9

+ ¢o,1(5) + do(s) + 1}ds.

From (4.3) we have

n—1
o D)l olodz {llvoll+0 2 lad;l-lloy || +olaBl [[o]] + llaf |1}
j=
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S (Ke)2 (5 losl1+ loll+ 1},
which implies
(5.9) bo,1(D=¥H{$1,0(0) + do(1) + 1}
Combining (5.8) and (5.9), and substituting (5.7), we get

D1,0(0)+ G0, 1 (D=1 +7Dd1,0() +71do() +71

S +r3)coero'dy,0(0) + (1 + kolero!

t
+andgyy (147D || e#ot{1 +kyerso+ 6, o5)

+¢o,1(s)}ds,

from which it follows

(5.10) e hot{, o(D)+ do,1 (N} (1 +yDcodp +73(1 + ko)
+ BS;e‘"OS(l + koenos)ds+0S;e-uos{¢,,o(s)+ o ()} ds,

where 0=and,y,(1+7y%). Applying the result of the first step to (5.10),
we get

$1,0(0)+ o, (D= e @10t {pe A1+ +93(1 + ko) }

+ og' oot 0)t=)(1 4 koeros)ds
0

Se@rro(1+y3) (1+p)kos

which means the inequality (5.6) in the case m=1.
Now we pass to general m. Assuming that the inequality (5.6)
is true for ¢, o()+ o 1(D), ..., Pm—1,0(t)+Pm-2,1(t), we show that (5.6)

is true for ¢, o(t)+ Ppn—1,1(1).
From (4.8), we have

(.11 194,...0.. (DI = coere* [lv;

iteeeim Leerdm

O]+do evot=2 x
0o
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n m
x{aKo 35 2 i, 5k |
k=1 p=1

n
+21a2Ka 35 2 vi,. 5. Bgrimkl [0

k=1 p,q

+m!amKe|v||+m!amKo}ds, iy,..., i,#n.

Summation of (5.11) with respect to iy, ..., i, from 0 to n—1 gives

(512) Gl o2 o(0) + o erstt=?
X { Ko 35 k@) (P 1-10(5) + Bnosr())
+ K‘Q‘i k (1) (@n)<d,, -y ofs)+m!(an)y"Ka}ds
< coehoty o(0)+doyy S;euou-s)

X {kglk (M) (@n) (Pm+ 1 —k,O(s) + ¢m—k,1(s))
+ml(an)™(1+ ¢o(s))}ds.
On the other hand, from (4.8);, .., we have
n—1
(5.13) l0i,...im- wmll = Ka{llvon...t,,._.“ + Kak;:l 0,00 ,k”
n m—1
+aKo D, X 0i 5pime il £
k=1 p=1
+(m=1)1a" Ko 3 [0yl +Kooy,...,,, |
m—1
+aKo Zl”vi,...?,,...im_ e
=

+(m—1)la" 1Kal|jv|| +(m—1)!la™ ' Ka}.

Summing up (5.13) with respect to iy,..., iy—; from 0 to n—1, we get
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(5'14) ¢m—l.1(t)§Ka{Ka¢m,0(t)

+ K0 K NE ) @) Do)+ B 1,1(0)

+KOE kT @n) i 11(0)
+(m—1)an)"" (1 +¢o(1))}.
Combining (5.12) and (5.14), we have
(515) ¢m.0(t)+¢m—l,1(t)§(1+‘Y%)¢m,0(t)
+yi(m—1)(an)""(1+ ¢o(1)
915 K E @) Dok o0+ B 1,40
<co(1+7})ero!dp 0(0) +(m—1) (an)™ (1 + o(1))ri

FITE KT @ B ko0 F B 1,10
+doy, (149D exo={m (amy(1 + §o(9)
+ D@ (Gnor1.06) + Gir($))ds

+anmd gy, 1+ 90 (1 0(6) + 1,1} ds -
We apply the result of the first step to (5.15) and use
' )e—s)
[! etmotomie=i(gy,_o(s)+ -1 51N

Sewotomif. pm=k(] 4 fym~k+t1(m—fk—1)!, k=1,2,...m—1,

which is lead by the fact that ¢, _, o)+ Ppm_r-1,1(t) (k=1,2,..,m—1)
satisfy (5.6). And moreover, using the estimates (5.4) of ¢, 4(0), we
finally get
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(5.16) o)+ D1 (DS mI(p(1+ el )mEerot K,

where

2 m k
K"'=COA(1€+Yl)+(?%+0ﬁ+9)k§1 % .

As
pz2an{andgy,(1+y1)*+71} =2an(y1 + 671 +0)
and
&=3(1+y}) (cod+doy1)s
we see that

1 1 an \¥

kz0

This completes the proof of (5.6).

The third step. Let 1 be a fixed positive integer, and r, R be
functions of t which satisfy r=p(1+1)e® and RzA,=Leto'. Assume
that

-1
(5.17) S S ()SmImR,  m=1,2,...,
i=0
where ¢;{(t)=0 if i<0 or j<O, then we get
1
(5.18) 2 P (=(14397)m!rR, m=1,2,....
i=0

For this proof, we return to the inequality (5.13). From the
definition of v, (1, x), we see that (5.13) is true for any iy,...,ipn—y.
So we put i,_j.;=-=i,-;=n and sum up (5.13) with respect to
i1, izseees im—; from O to n—1, then

(5.19) P18 =VH P 1-1,1- 1O+ (m—=1) 1 (@an)" (1 + (1))

+ TR @ bl =120 m.
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Put
A1y =Pm—1 ()M !r"R, 1=0,1,..., m.
and, if i<0 or j<O,
4,;=0.

Since

m'r’"R Z¢m u(t)SI"')‘m —Lb

it follows from (5.19)

1 /an\™
(5.20) A’m Ilsy1{1+m 'T)

+'5 e @R (14, )

A

Al () E (Y

anm\ r

S E (i)

§2'y +YIZ:< )Am-k L

IIA

because p>2an(y?+0y%+0)>2an.
We solve (5.20) by induction on m—I, then

m m=—1
G20 oSt ()t 2t S 1+DH( G

On the other hand, we put m=I in (5.19) and substitute (5.17) into
(5.19), then

G0 (D <Y3{!r'R+(I—1)(an)'~ kqerot

+,:Z:i"’('1‘)(an)"(l—k) Ir1-kR}
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k
<yHIFR Y ﬂ) <2y IFR,
k=0\ 7
which means
(5.22) Jo S 23,
Substituting (5.22) into (5.21), then we have
m an k L] 1 k
b5 208 5,0+ 521 5 (55)
’ k=0 p K=o\ 26
=31
which implies

Om—1 (D=IyIm!rmR.

Thus we get (5.18). This completes the proof of the 3rd step.

Proof of Lemma 2. Using the results of the 2nd and 3rd steps,
we have

é‘od’m—i,i(t) <m!(1+392)"(p(1 4+ t)e?)mA,

§ m !('%p 0>mA 0°

Since
Du(1)= 5 (Vbn-1s)<2" 2 S,
we have
Pn(t) <m!pgA,.
This completes the proof of Lemma 2. q.e.d.

Now we prove Theorem 2. For this purpose we mention Sobolev’s
well known lemma: There exists a positive constant c(n) depending
only on the dimention of the space such that
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sup lu(x)|sc(n) 2 |IDzull

lals[5]+1
where ||*|| denotes the norm of L2(R").

Let S be the ball with center (ty, x,) whose radius is so small
that S is contained in 2. Let f(t,x) be a function in Cg(R"*!) with
the properties that 0< (¢, x)<1, and that it takes the value 1 on the
set S, and that its support is contained in V, then

sup [u(t, x)|< sup [B(t, x)u(t, x)|
(t,x)eS (t,x)eB

<C 3 IDliae,
lels[231]+1

where B=the support of f(t,x) and C depends only on f and n.
Since v;,. ; (t, x) coincides with D;,...D;

*Fim

u(t, x) in 2, we have

feeeim

Zn: sup|D;,...D; u(t, x)|
im=0 S

P1yees im=

<const. 2, 2 | DF «D;,...D;mt|lL2(p)

il"“’i"‘l |a|§["%]+l

10, i 1eneim s ["*2“1]+ l L2(B)

<const.
F s iy it 10 Dt [ 251 ] 41

gconst(m +[n—;—l:|+ l> ot [254]* ! 4,

This inequality shows that u(t, x) is analytic with respect to (¢, x) in S.
The proof of Theorem 2 is complete. g.e.d.

§6. Symmetric hyperbolic systems I

From now on, we consider the symmetric hyperbolic systems with
maximally non-positive boundary conditions, stated below, which are
the typical examples to which we can apply our preceding results. We
prove in §6 and §7 that the solutions of these problems satisfy the
condition C.2, and in §8 that they satisfy C.3.

We consider the mixed problems (1.1) under the following condi-
tions,
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B.1) The coefficients of L(f) are in BXV). At x), i=1,2,..,n,
are hermitian and |det A,(t, x)|=6>0 where & is independent of t and
X.
B.2) P(t,x’) is an Ix N matrix which satisfies the following properties
1. P(t, x') is in #%RIxR" ') and it is constant outside a com-
pact set in RLx R"1,
2. rank P(t,x')=I1 for each 120, x’ €R""!,
3. kerP(t,x’) is maximal non-positive for L(t) at each t=0,
x'€R*1, x,=0, i.e., we assume that

w(-A,u)<0, uekerP, t=20, x’ €R"" 1, x,=0,
and that kerP(t,x') is not properly contained in any other

subspace having this property.

In this section we treat only the case where the coefficients of
L(t) and P(t, x’) are independent of t, and in the next section the case
where they depend on t.

We define the domain 2(L) of L by the graph norm closure of
the set {u(x)e H'(R%); Pu|,,.o=0} where the graph norm of u is
defined by ||Lu|/+|lu|l. As kerP is maximal non-positive for L, there
exists a positive constant p, which satisfies

6.1 (Lu, u)+(u, Lu)<2pollul?,  ue2(L),

because for any ue H'(R%)N 2(L) it holds
n 0A;
L 4 aL =\, B B*——- ~—t
(Lu, u)+ (u, Lu) (u( + i;ax)“)
- SRH- ‘u(x’, 0)'mdx’

n 0A;

<go- *_ oy 2400, 2,
=¢ xes}zl»gl\B+B i§l axi‘ el

Using Theorem 3.2 of Lax and Phillips [3], we see that L generates

a unique semi-group T(f)=el*, t=0, in L2(R%) which satisfies

IT(H)||<ero!,  any t20.
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Using this fact, we prove

Lemma 3. If g(x)e2(L) and f(t,x)e&l(L?), there exists a
unique solution u(t,x) of (1.1) in &NL*)N2(L) which satisfies the

following inequalities

62) ()| exotg |+ exo=0 1 (s) s,
(62y @S eso[Lg+1O] + st f(s)ds.

Proof. The solution u(t, x) is represented as follows

(6.3) ut, x)=T(t)g+S;T(t—s) £(s)ds.

The differentiation of (6.3) with respect to t gives

6.3y w (1, x)=T(t) (Lg +£(0)) + S;T(t —$)/(s)ds.

We obtain (6.2) and (6.2)" from (6.3) and (6.3)". q.e.d.
Theorem 3. For any g(x)eH'(RY)ND(L) and for any f(t,x)

eSHLY)NEXHY) there exists a unique solution u(t,x) of (1.1) in

EHLANEAHY)YN2(L) which satisfies (6.2), (6.2) and the following
inequalities

(6.4) Nu(@)lly, o < e llu(0)ly, +d8;em"-s)mf(s)u|,,ods,
(6.5) (@l < ¢ et luO)ll, + dlg;em“-s’mf(s)m \ds,

where u,, c;, d and d, are positive constant independent of u(t, x),

g(x), f(t, x) and t.

Remark. 1In (6.4), the coefficients of e*:*[Ju(0)ll,,, is 1. This fact
is indispensable to use the method of the Cauchy's polygonal line for
the proof of the existence of the solution of (1.1) in the case where
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L(t) depends on t. In §7 we shall give this reason in detail.

Proof. As in the preceding sections, we proceed with our discus-
sions under the condition P(t', x)=[E, 0]. As A,(t, x) is non-singular,
we investigate the differentiability of the solution u(f, x) with respect
to t and x'=(x;, ..., X,_(). At first, we assume the following addi-
tional condition
(A) g(x) and f(t,x) are in H?(R?) and &2(L2)Nn&!(H') respectively

and they satisfy the compatibility conditions of order 1.

Since the condition (A) implies that Lg+f(0)e 2(L) and f'(t)e&l(L?),
we see from (6.3) that Dyu(t,x) is in &}(I?)n2(L). Differentiating
(1.1) with respect to x(i=1,2,...,n—1), and using Lemma 1.1 of Lax
and Phillips [3], we see that (Du)(t,x) (i=1,...,n—1) are in &H™!
(R%)) and €2 (H-%(R""1')) at each t=0, and that they saitsfy

5Dw) =LOW+ 3, (Did ,.)57‘2 +(D.B)u

(6.6) . +(D;f), i=1,2,...,n—1
(D;u) (0, x) =(D;g) (x) R i=1,2,...,n—1
P(D;u)ly, -0 =0 ,  i=1,2,...,n—1

where the first of (6.6) holds in the distribution sense. Let us put
U(t, x)="("u, *Dou, *Du,..., *D,_,u), then U(t, x) is in £&O(H '(Rr) and
&2 (H"2(R"~1!)) at each t=0. Substituting the relation

n—1
(6.6)' D,u(t, x)=A,; ' {Dou— ;§1A jDju—Bu—f}

into (6.6), we see that U(t, x) satisfies

aa_lt] =LU+F in the distribution sense

(6.7) U®©, x)=G(x)  in H-!(R%)
PU|,,_o=0 in H-2(R"~1)
where L, P, F and G are defined by (3.2) in §3.
Similarly, we define the domain 2(L) of L by the graph norm
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closure of {u(x)e H!(R%); Pul,,_o=0}. Since the condition B.2 assures
that ker P is also maximal non-negative for L, [ also generates a

semi-group T'(t)=el*, t=0, which satisfies

T @ Serrt, any t=0.
The above positive constant yu, is determined by the relation
(6.8) (Eu, w)+(u, Lu)<2p,|u]|2, any ue 2(L).

As the condition (A) implies that G(x) is in H!(R%)N2(L) and F(t, x)
is in &!(L?), we get a unique solution V(¢,x) of (6.7) in &X(L?)N
2(L), which satisfies

(69) IVl sessGl+ [ e 1Fs) s

Our assertion is to show U(t, x)=V(t, x). For this purpose we apply
the method used by K. Kajitani [2]. We put U—V by W, then W
is in #2(H-'(R1)) and €2 (H-2(R"*"!')) at each t=0, and it satisfies

Xn

a—W=f.W in the distribution sense

ot

(6.10) W(0, x) =0 in H-'(RY)

PW|, _o=0 in H-2(R"").

We write the Laplace transform of u(t, x) with respect to t by
i(z, x), i.e.,

f(z, x)=S°oe‘"u(t, x)dt, t=u+ioc, u>0.
0

If we take the real part u of t as larger than u,, we can perform the
Laplace transform of u(t, x), Dou(t,x) and V(t, x) because (6.2), (6.2)
and (6.9) hold. Moreover, since

IDu(O) |- l(R1)§ ”“(t)”umiy i=1,2,...,n—1,

we can also perform the Laplace transform of Du(t, x) (i=1,...,n—1)
in the distribution sense. Hence we can perform the Laplace transform
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of W(t, x) and from (6.10) we get
(6.11) (t=LD)W(r,x)=0  in H-'(RY).

We define A4, by (|1:|2-A,')'%, where A, =D3}+---+D2_,. Then
we see that A W(r, x) is in 2(L) and satisfies

(6.11y (t—L) (4. W)=[4,, )W  in L*(R2)

where [A4,, []1=A,L—LA..
Using (6.8), we get

(6.12) = DU zRet—p)|IU|l, UeD(L), Ret>p,,
because
(x—D)U|||Ul|zRe((e - DU, U)
=Ret(U, U)—Re(LU, U)
z(Ret—p)||U|2
Applying (6.12) to (6.11), we have
(6.13) (Ret—u)) |4 W@ (4. LWL
Moreover, we get
(6.14) 4. LIWE@|| S KA F @)l
where K is independent of t. We explain this fact. If we put
L= g}lz,(x)DﬁE(x):El+Z,,(x)D,,,
we see that
(6.15) [A,, LIW=[4, L,W+[4,, 4,1D,W.
From (6.11), we have
(6.16) D, W(z, x)=A,"'(r— L) W(z, x).

Substituting (6.16) into (6.15), we get
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(4. LIW=[A, LIW+[A, 4,14, - L)W.

Calculating the commutators [A,, L;] and [A4, A4,], we get (6.14).

Accordingly, taking the complex number t as Ret>p,+K and using
(6.13) and (6.14), we have

(A, W) (1, x)=0, ie., W(r, x)=0,
which implies
vt, x)=Du(t, x) in V, i=0,1,..., n

Hence we see that u(t, x) is in &} (L) N&EL(H?L).
Next, we prove the inequalities (6.4) and (6.5). Since U(t, x)
is in &ML N 2(L), it follows

L vor=21ve| L]l

=2Re(LU(1), U(t))+2Re(U(t), F(1)
=2p UGN+ 21U [F®

from which it follows
617 U@ e U+ e P s

As [[U®I=Nu@®)ll;,0, (6.17) means the inequality (6.4).
From (6.6)" we get

(6.18) IDuu(r)]| < const. (lu()llly,o + 1/ 1D

Combining (6.17) and (6.18) and using (3.7), we get (6.5).

At last, we remove the additional assumption (A). Let g(x)e
HY(RHN2(L) and f(, x)e&(L)NEP(HY). Then we can choose
the functions g,(x) and f,(t, x), m=1,2,..., such that g,(x) and f,(t, x)
satisfy (A) and

In—9 in Hl(Ri)a

fo—f in &ILHNEXH").
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Denote by u,(t, x) the solution of (1.1) for the Cauchy data g,(x)
and the second member f,(t, x). Then the energy inequality (6.5)
gives

et m(2) = e ()l < €y €111, (0) — 14, (Ol
+d,[| e N () ~fw (Dids,

which shows that {u,(t, x)} converges in &}(L)N&P(H'). Denote
its limit by u(t, x), then we see that u(f,x) is the required solution
of (1.1). This completes the proof of Theorem 3. g.e.d.

§7. Symmetric hyperbolic systems II

In this section we consider the case where the coefficients of L(t)
and P(t, x') depend on t. Of course, we assume the conditions B.1
and B.2 stated in §6. Using the results of Theorem 3, we prove

Theorem 4. For any g(x)e H'(R%)N 2(L(0)) and for any f(t, x)
e L2>)NE2(HY), there exists a unique solution u(t,x) of (1.1) in
SHLY) N €XAHY N 2(L(1)) which satisfies the following energy in-
equalities

an  lsesgl+{ eoelss
(7.2) llu ()l < c et w0l +d, S;e‘“('"“)lllf(s)lll 1ds.

Before the proof of Theorem 4, we state the lemma which is
necessary for the following discussions.

Lemma 4. If u(t, x)e&(LY)NEXH)N2(L(Y)) is a solution of
(1.1), then u(t, x) satisfies the energy inequalities (7.1) and (7.2).

Proof. Assume that u(t,x) is in S2(L)NSI(H)NEP(H?), then
we can prove (7.1) and (7.2) in the same manner as §6. Next, we
remove the additional condition by using the mollifier with respect to
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(t, x’). As we shall use the same method in the proof of Theorem 4,
we omit this process here. g.ed.

Proof of Theorem 4. We prove only the existence of a solution
of (1.1) in &}M(L?)N&E(H'). Similarly we discuss under the condition
P(t, x')=[E, 0]. Assume that, if g(x)=0 and f(t,x) is in &}(L?)n
¢?2(H') and f(0, x)=0, there exists a unique solution of (1.1) in &}!(L?)
N&Y(H'). Then we see that Theorem 4 is true. We explain this fact.
First, we assume that g(x)eH3(R%) and f(t, x)ef2(L)NEL(H)N
£9(H?), and that they satisfy the compatibility conditions of order 1.
Put o(t, x)=u(t, x)—g(x) —(L(0)g +£(0, x))t, then wv(t, x) satisfies

g_’t’ =L(fo+F(1, x)
.3 o0, x) =0
l Pol;,-0=0
where

F(t, x)=f(1) + L(t)g +tL(1) (L(0)g +/(0)) — L(0)g —f(0).

Since F(t,x) is in &ML*)N&E2(H') and F(0, x)=0, we see by the
assumption that there exists a unique solution v(t, x) of (7.3) in &}!(L?)
N&2(H'). Hence there exists a unique solution wu(t, x) of (1.1) in
EHLY)NEO(HY) for the above-mentioned g(x) and f(f, x). Next, we
remove the additional assumption on g and f. For any g(x)e H!(R%)
N 2(L0)) and f(t, x)e&(L>)NEY(H'), we can choose the sequences
{gn(x)} in H3(RL) and {f(t x)} in X (LHNE}H)N EX(H?) such
that g,(x) and f,(¢, x) satisfy the compatibility conditions of order 1
and

In(X)—9(x) in H'(RY),
Iult, )— f(t, x)  in EXLA)NEXHY).

Denote by u,(t, x) the solution of (1.1) for the Cauchy data g, and
the second member f,(t, x). Using (7.2), we see that {u,(t, x)} con-
verges in &£H(L2)NEY(H'). Denote its limit by u(t, x), then we see
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that u(t, x) is the required solution of (1.1). Therefore it suffices to
prove the existence of a solution of (1.1) in £NL2)N&Y(H') on the
assumption that g(x)=0 and f(t,x) is in #ML)NEPH') and f(O,
x)=0.
The reason why we reduce the general case to the case where
g(x)=0 and f(0, x)=0 will be explained at the end of this proof.
We use the method of the Cauchy’s polygonal line. Let

Ak: 0=t0<t‘<t2<"'<tk=T

be the subdivision of [0, T] into k parts of equal length. wu.(t, x) is
the Cauchy’s polygonal line for this subdivision, which is constructed
as follows: Let u,(t, x), defined for te[t;, t;,,], be the solution of

Lw =L 4 x) =0, 1, k=1

(7'4) uk,i(ti)=uk,,_l(t,-) i=0, 1,..., k—l

Puk'i|xn=0=0 i=0, 1,..., k—l
where u, _((to)=u,,_,(0)=0. We define uy(t, x) for t€[0, T] by
u(t, x)=u, (t, x) for tet;, tiy ]

The existence of such u, (¢, x) (i=0, 1,..., k—1) is assured by Theorem
3, because the compatibility conditions of order 0 is satisfied at each
t;. Consequently we see

u(t, x)e €2(H?), te[0, T]
and
u(t, x)e &H(L?), L+t (i=1,2,.., k-1,
which means
u,(t, x)e H*((0, T) x R%).

We show that the sequence {u(t, x)} is bounded in H!((0, T)
x R%). For this purpose, it is sufficient to prove that {Du(t, x)}
(i=0,1,..., n—1) are bounded in L2((0, T)x R}), because A, is non-
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singular. Applying (6.4) to (7.4), we get

(7.5) Mg (DMl ,0 < €1~ Dy (240

+ dg: et =9I f(s)ll; ods, tet, tivql,

Substituting into (7.5) the following inequalities
Metr (4D 1,0 = Nt Iy 0 + ILCtYui(t:) +£(2)
= k- 1@l ,0+ L - - 1 (1) + (2D
+ L) — Lt - Dui- 1 (8]

S ;- 1 (8,0 +const(t;— ;D lug i ()]

(i=1,2,..., k=1)
and

1Dy, 1 (8| < const.(lluy ;- ()Mo + 1)) (i=1,.,k-1),

we get from (7.5)

(7.6) Metye, (Ol 0 < e#1 =1+ K (8 — ;- Dlllug ;- (DN 0

+ Kper | f() |t — 1~ 1)
+dg: e N FSyods, €[t tias],

where K; and K, are positive constants independent of f, u, and t.
Taking account of g(x)=0 and f(0, x)=0, and making the induction
from (7.6), we get

D IOl S Ks 3 et 0 (1= 1)

t
+ de""Soe‘““'s’ £ ()4 ods, teft,, t,e,].

As A, is non-singular, it follows
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(7.8) [ Dyui()|| = const.(llu (Dl 1,0 + 1 FDID-

Combining (7.7) and (7.8), we get
t
(7.9) llup (D)l < const.eX "goe‘“““’lllf ()l 0ds

+const. || f(D)]| + &,

where ¢, is non-negative and by the definition of the definite integral
it tends to zero when k increases infinitely. The inequality (7.9) shows
that {u,(t, x)} is bounded in H'((0, T)x R%), i.e., weakly compact there.
Therefore there exists a subsequence {k,},-;,.. of {k}is,,.. and
u(t, x) in H'((0, T)x R%) such that

u,(t, x) — u(t, x), weakly in H'((0, T)x RY)
when p increases infinitely. Tt is easily seen that u(f, x) satisfies

%’;_=L(t)u(t, N+ftx)  in 20, TYxR?)

(.10 u(0, x)=0 in L2(R%)
1
Pul;,-0 =0 in H2((0, T)x R 1),

At last, we prove that u(t, x) belongs to &}(L2)N&2(H'). For
this purpose we use the mollifier with respect to (t, x’). Let p(f) be a

non-negative function in C%(R') such that its support is contained
in [—2, —1] and

S‘” p(Odi=1.
We define a mollifier ps*,.+) for u(t, x)e H'((0, T)x R%) by
us(t, x) =(ps(txu)t, x)

n—1
= (s T patydut—s, x =y, x)dsdy

where py(1) =%p<§> Let 6 be 0<d<d, where J, is a small positive
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constant. Then wu4(t, x) is defined for te[0, T—25,] and belongs to
&*(H'(R%)) and satisfies

2 =L+ Cu+ fi(t, %)

(7.11) 150, X)=g4(x)

Pug|;,-0=0
where
Cou=[psitxry LOIU,  fot, x)=(pstx 1, X)
95(x) =(ps¢s%x )0, x).
Applying (7.2) to (7.11), we have

(7.12) llus(t) — us (DIl < el 5(0) — u ()l
+ dlS‘oe" ! (t—s)["C';u +f6 - C&'u —fy I”lds.

We prove that the right hand side of (7.12) tends to zero when 6 and
¢’ tend to zero. Since it is well known that

S;|1|C.,u(s)1|11ds——»0,

[\ usi)—fesynsds—0

when 0 tends to zero, we show only
lllus(0)ll, —0

when 6—0. Using the assumptions that f(t, x)e&}(L?) and f(0, x)
=0, we see from (7.9) that

s
(7.13) Soulu(s)ul%dséKoé’,
where K, is a positive constant independent of 4. Since

lus()112= st s 12ds,
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we get
A1) MO = w1+ 5 0w 12
< pusue=s)17+ & 1w —5)12)ds

= {putt—9nzds.
Putting t=0 in (7.14) and substituting (7.13) into (7.14), we have
e O3 S (o)~ 9l 2ds

1 (28
<const.——{ lu(s)zds
]

<const. J,

which means that [Ju,(O)|l, tends to zero when §—0.

Consequently we can see that {us(t, x)} is a Cauchy’s sequence
in #1(L2)N&XH?), therefore its limit u(t, x) is also in &/(L*)N&?
(H') and u(0, x)=0. ,

We state the reason why we reduce to the case where g(x)=0
and f(0, x)=0. For the boundedness of {u(t, x)} in H'((O, T)xRY}),
it is not necessary to be g(x)=0 and f(0, x)=0. But, when we prove
that the solution u(t, x)e H'((0, T)x R%) of (l1.1) belongs to &}(L?)
N&Y(H'), we need in (7.12) that

lllu 5(0) — u,,(0)ll, -0

when 8 and &’ tend to zero. For this purpose, it is not sufficient only
to be u(t, x)e H'((0, T)x R%), i.e., we need tha additional informations
for u(t, x). So we reduced to the above-mentioned case. This com-
pletes the proof of Theorem 4. g.e.d.

§8. Finiteness of the propagation speed

In this section we show that the solution given by Theorem 4
has a finite speed of propagation. Let A,(t, x; £)<A,(t, x; H= ... =
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An(t, x; &) be the roots of the characteristic equation of %—L(t)

det[ A1 — ;;lei(t, x)¢]1=0
for (t, x)eV and £=(&,, &,,..., £,)ER". Denote

(81) )'max= sup |)‘i(t’ X3 é)l'
|{|= 1.(l,x)§V

i=1

2 2yeeny

By the condition B.1, we see that A,, is finite. For each (¢, x,)€V,
we denote by C, ., the backward cone with a vertex (t,, x,) defined
by

{(t’ X); Ix_x0|<)‘max(t0_t)}'

Then we have

Theorem 5. Let u(t, x) be a Cl-solution of (1.1) defined in VN
Cioxo» If 9(x) is zero in Cy,,.,N{(0, x); x€RL} and f(t, x) is zero
in VN Cqyxo)» then u(t, x) is identically zero in C,, ., NV.

The proof is divided in two parts.
Lemma 5. (local uniqueness) Let u(t, x)C' defined in D,={(t,

x)EV; t+|x—x,|2<e, t=0} where xo€R%. If u(t, x) satisfies

Ou _ .
—a—t—-L(t)u in DNV

u(0, x)=0 in D,nVn{t=0}
Pu|,, =0 in D.nVn{x,=0},

then u(t, x) is identically zero in D,NV.

Proof. 1t suffices to prove for the case x,=0=R". After Holmgren
transformation

s=t+|x|?

y‘=x‘ (i=1, 2, ceey n),
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ii(s,y)=u(t, x) satisfies
o #, .\~ . ~
[ Aos. 5o =La in D,
(8.2) S o
]» Pﬁ|yn=0=0 in Dsn {yn=0}

whete  Aq(s, D=1-23 A, L= 5 Al +B and D,={(5»); e2
s>|y|2, y,>0}. By extending (s, y) by zero in [0, g]x R1—D,, we see
i(s, y)e &1 (L2)N &(H?), because (s, Y)=0 on s=|y|?<e. We extend
also the domains of the coefficients of (8.2) to [0, ¢]x R%, keeping the
properties that Aq(s, y) is positive definite and Ag(s, y) (i=1,..., n) are
hermitian., Then (s, y) satisfies

AL =L@ in [0, 1% Rs
1 (0, y)=0 in R%
Pil,,-o=0 in [0, e]x R*~1.

l. . ., .
Here we define the norm |[|ii]| 4, by (Ao(s)d, #)2. As A, (s) is hermitian,
there exist positive constants B’ and B suh that

d |- TR T 04y ~ =~
() o= E)a, )+ (@, Loy +( %o, i)
<281|i(5))1 S 2B13() | Zacor
which implies

NG () || a0y = eBlE(0) || 460y =0-

This completes the proof of Lemma 5. q.e.d.

Proof of Theorem 5. We use the method of sweeping out of
F. John. Define for 0<0<A2,, 3

polt, ) =(1— 1)+ 5 — ¥ =g +0

and
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K?lo,xo)={(t’ x); 909(1, x)=0}°
After the change of variables
s=$00(t’ x); YVi=X; i=1’ 2"-', n,

the equation (1.1) is transformed to

dii N
A,,%=L9u
Pﬁly"=0 =0

where (s, y)=u(t, x), Ly(s, y; D,)=L(t, x; D,) and

Ag=I—— L g 3R
} lmax =1 \/T)?——XOTZ-FG
We see that A, is positive definite and hermitian. Lemma 5 implies
that, if u(t, x) is zero on K¢, ..., then u(t, x) is zero in S, N {pe>0},
where S, is a certain neighborhood of K ..,. On the other hand, we
see that

% ng'o,xo)D rn C(to.

2 .
0<0<)’max 0

xo)*

Step by step using the result of Lemma 5, we can show that the solu-
tion is equal to zero in Cg,,,,NV. q.e.d.

Appendix

In the preceding sections we discussed the mixed problems (1.1)
under the condition that P(t, x')=[E,0]. In this appendix we show
that the general case where P(t, x’) is an [x N variable matrix may be
reduced to the constant case P(t, x’)=[E, 0] by a unitary transfor-
mation of unknown functions.

Theorem A. Let Py(x)=(p;;(x), ..., pin(x)), i=1,2,...;1, be given
complex N-vectors depending on the parameter x which varies in R".
Suppose that P(x) all belong to #™(R"), and that they are constant
outside a compact set in R", and that P;P;=0;; where 6; is Kro-
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necker’s delta. Then we can add to them complex N-vectors P, (x),
..y Py(x) € #™(R") such that {P,,..., P, P,yy,..., Py} constitutes an
orthonormal basis of CV.

We state two lemmata which are necessary for the proof of The-
orem A.

Lemma A.l. We assume the same conditions as Theorem A.
Suppose that there exist vectors P, ..., Py in #°R") such that
{P,,..., P,, P,y y,..., Py} constitutes an orthonormal basis of CN. Then
Theorem A holds, i.e., we can take P,,,,..., Py as in Z&™(R").

Proof. As P,,..., P, are constant outside a compact set in R",
we can reconstruct P,,,..., Py so as to be constant outside a compact
set K in R". Here we put

Pi(x)=(pil,"" Puv), i=l, 2,..., N.

We take a function a(x)eCg(R") which takes the value 1 in a neigh-
borhood of K. By Weierstrass’ approximation theorem, we get the
sequences of polynomials {p{P(x)},=y.,... (i=I+1,..., N; j=1,2,...,N)
such that, when n increases infinitely, p{”(x) converges to pii(x) in
#°(B) for any i and j, where B is the support of a(x). We write
PO(x) =a(x)(p, Py YD)+ (1 —a(x))Py(x) (k=I+1,..., N). Then we
can choose n, large enough so that

p 1(_x)
Py(x) .
det gT in whole R".
P{19)(x)
P(n'o)(x)

Applying Schmidt’s orthogonalization to P, P,,..., P, P{9),..., P, we
get P,.4,..., Py with the required properties. q.e.d.
Next, we get an elementary lemma by Hadamard’s inequality.

Lemma A.2, Let C=[c;]and C'=[c};] be Nx N matrices. Assume
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that |c;;—c;;|<e for any i and j, and that

e

1

N
lesl?= S lepl? =1, i=1,2,, N,

J

Then it follows
|det[C]—det[C’]|<eN3/2,

Proof of Theorem A. By Lemma A.l, it suffices to construct
Py, Prygy..y Py in B°(R"). Since it is easy to construct {P,,;,
..., Py} locally, we proceed to the global construction of them. We
prove that, if we assume that P.,,..., Py exist in Cp={xER"; |x|<R},
then we can extend the defineition domain of them to Cg,; keeping
that they belong to #°(Cg4;) and {Py,..., P, P,,q,..., Py} constitutes
an orthonormal basis of C¥ there, and, moreover, that we can take
such 6 as independent of R. As P, (x),..., P(x) are constant outside
a compact set, their components p;(x) (i=1,...,/;j=1,2,.., N) are
uniformly continuous in R". Therefore, for any &>0, there exists a
positive constant & such that, if |[x—x'|<J, then

(A.1) |pi(X) — pif(x)] <t (i=1,2,..,1; j=1,2,.., N).

Here we introduce polar coordinates (r, w) in R". We extend the do-
main of Py(r, w) (i=I[+1,..., N) to Cg.s by

P(r, w)=P{(R, w) in R=Zr<R+5.
Then it holds

(A.2) PiPi=1 in Cprss i=1,2,.., N.

Now we put ¢=1/2N3/2 and determine a positive constant & for such
¢ by the uniform continuity of p;(x), i.e., (A.l). Then, by Lemma
A.2 we get

Py(x)

Py(x) |

det —_—
P || 2

v

in whole Cg .

Py(x)
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Applying Schmidt’s orthogonalization, we obtain Py, y,..., Py in Cpys
with the required properties. From the method of the construction,
we can easily see that § is independent of R. Hence, repeating this
process, we finally get P,,y,..., Py in whole R". q.e.d.

Corollary of Theorem A. If P(x),..., P(x)e#Z™(R") are analytic
in a bounded open set K in R", then we can construct P, ..., Py

so as to be analytic in K.

If we apply the method used in Lemma A.l, we can prove this.
Although we considered Theorem A in R", if we restrict x to Rj%,
we obtain Theorem A4 replaced R" by R:.

Now we return to the mixed problem (1.1). Put

Pl(t’ x,)
P(t, x")=
P,(¢, x')

where P(t, x')=(Pi1> Piz»---» Pin)s i=1,2,..., . Applying Schmidt’s or-
thogonalization to P,,..., P, we obtain the orthonormal vectors Q,,
..., ;. By Theorem A, we can add to them vectors Q. ,..., Oy so
that the system {Q,,..., Q;, Q4y,..., Qy} constitutes an orthonormal
basis of C¥. Denote by T(t, x’) a unitary matrix

[Q?a ’ Q’Ik, Q=lk+l9"" QI,'\‘I]

where Q¥=7Q;, i=1,..., N. We perform the unitary transform of the
unknown functions u=Tv, then v(t, x) satisfies

5T A,-Taxi+(T BT-1L 11 i;IAia—xi>u+T*f

=
(A-3) 1 o0, x)=T*(©, x)g(x)
(PT)o]s,0=0

From the method of the construction of T(z, x’) it follows
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(P1, Q1) 0 .. 0
PT = (P2, Q2) 0 0 ... 0
* : :
(P,Q) 0 ... 0
=[M, 0].

As M, is non-singular, (PT)v|,,_o=0 is equivalent to [E, 0]v|,,-o=0.
Therefore, we can consider the mixed problem (1.1) under the con-
dition P=[E, 0] without loss of generality.

At last we remark on the compatibility conditions. If g(x) and
f(t, x) are in H™*!'(R%) and &r'(L2)N---NEXH™ ) respectively, and
if they satisfy the compatibility conditions of order m with respect
to the equation (1.1), then §(x)=T*(, x')g(x) and f(t, x)=T*(, x')
f(t, x) also satisfy the compatibility conditions of order m with respect
to the .equation (A.3) replaced (PT)v|,,-.o=0 by [E;0]v|,,-0=0. In
fact, since the compatibility conditions of order m mean concretely
that, if u(t, x) is a sufficiently smooth solution of (1.1), then

D% (Pu) =0, k=0,1,..., m,

t=0
xn=0

we see that a sufficiently smooth solution o(t, x) of (A.3) satisfies

DY(LEQ]v)| _ =Di(M;*Pu)
xn=0

t=0
xn=0

=0, k=0, 1,..., m.
=0

k . .
= 2, ()DL M) DY (Pu)
This means that §(x) and f(t, x) satisfy the compatibility conditions of

order m with respect to (A.3).
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