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Introduction

I t  i s  a  classical resu lt (cf. [ 3 ] )  th a t  a  non-singular projective
v ariety  X c--*PZ ov er a n  algebraically  closed f ield k  m ay  be em bedded
in  p i n + i ,  n =dim (X ), v ia a projection f ro m  IT  (if  N > 2 n + 1 ) .  There
a re  examples which show  th a t i n  g e n e ral th is  c an  n o t b e  d o n e  for

The second best to  a n  embedding induced by a  projection is the
following: A  b iratio n al m odel Y  o f  X  in  Pin, together w ith a  biro-
tional m orphism  /1: X — >Y  induced  by  a p ro je c tio n , an d  s u c h  th at  Y
dif fers f rom  X  by  as  little  as possible.

So the  question  is : How  w ell can one do w ith this Y?
F o r  curves t h e  answ er to  th is p rob lem  is again  c lassica l. The

singularities o f  Y  a r e  at m ost ord inary double  points, and  A  i s  an
isom orphism  at all regular p o in ts  o f  Y  (cf. C hapter I ,  § 1  fo r the
meaning o f "isomorphism at a point").

I n  higher dimensions the problem has been considered by E . Lluis
[4 ] , J. R oberts [7 ] , and the  author [2].

I n  [4 ] , L lu is  proves that Y has at m ost a  finite number o f  singu-
larities, which have linear analytic branches, i.e., Spec o f th e  completions
of the local rings at the singular points are fimite unions of regular schemes.

I n  [ 7 ] ,  R oberts show s th a t i f  t h e  embedding o f  X  into WI is
sufficiently n ice (and all projective varieties can be given such nice
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projective embeddings) th e n  Y h a s  a t  m o s t a  finite num ber of double
points, with linear analytic branches — and moreover, these have normal
crossings. T h is  la s t s ta tem en t is  equ iva len t to  tha t the  tangen t cone
Cy o , (cf. Chapter I I ,  § 2) has two components each o f  which a re  a  I",
in  general position to each other, at all singular points y  o f  Y.

T h e  author has obtained, (cf. [2 ]) a s  a  consequence o f a  certa in
formal projection theorem, that without any condition on the embedding
o f  X , Y  h a s  a t  m o s t doub le  po in ts . B u t a  p rio ri the  tangen t spaces
o f  t h e  analytic branches a t  th e  d o u b le  p o in t y E Y might coincide,
i.e . Cy ,y m ig h t have only one irreducible component (and a s  a  scheme
Cy ,y w ou ld  then  necessa rily  be  non-reduced). A ccord ing  to  Roberts'
theorem above this could, of course, only occur if  th e  embedding o f  X
into Pi: were not nice in  his sense.

F o r  curves we have already m entioned that this does not happen.
T h e  purpose o f  th e  p re se n t w o rk  is  to  ex tend  that resu lt to  h igher
dimensions.

W e first list som e w ell know n facts a n d  establish the notation in
C h a p te r  I . M o st o f  th is m ateria l is m o re  o r  less readily available in
the literature.

T he  reader could g o  directly to C hapter I I ,  a n d  refer back when
needed.

Chapter I I  opens w ith  th e  study of projective embeddings X (-4111.11
N =2 dim (X) + 1, w ith  th e  p roperty  tha t f o r  any tw o non-singular k-
points x  a n d  y  o f  X ,  the  tangent spaces Tx  a n d  Tx o ,  span  a  space<Tx,„, T > o f d im ension  n + 1, n= dim (X). Such subvarieties are
characterized i n  Theorem  1.1. T his  theorem  im plies that i f  X  above
is  n o n -s in g u la r , th e n  it  m u s t be  con ta ined  i n  a  hyperplane i n  P ,
Theorem  1.3. U sin g  th is  information w e finally  sh o w  th e  result an-
nounced above, namely Theorem 3.1.

Even i f  Cy ,y  h a s  tw o  distinct com ponents at all the double points
o f  Y , those com ponents naturally need not be in  general position, as
in Roberts theo rem . The question of whether this remains true without
a n y  c o n d itio n  o n  th e  embedding Xc-)P;" is  s t i l l  o p e n . T h e  essential
po in t h e re  is  to  o b ta in  a classification, analogous to Theorem  1.1, of
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those Xc-4PZ  ̀which satisfy

(*) dim <T > >  2n —1 (n =dim (X ))

for all non-singular x , y  in  X .
Unfortunately, th e  ra the r simple techniques u sed  in  t h e  p roo f of

Theorem 1.1 d o  not seem  to be sufficient fo r  this. H ow ever, recently
th e  au thor has obta ined  som e resu lts w hich  ind icate  that a  different
approach could settle it:

Namely, if  P  denotes the  blowing up o f  PZ x ,}11 with center in the
diagonal, one can define certain generators t, and fo r  th e  Chow
ring A (P ). W e shall not g o  into details here, only say that tN+ 1 =0,
satisfies a n  equation o f  degree N  w ith  coefficients f ro m  Z [t], and
one of degree 2 with coefficients from Z [t,

N o w  let ç :  X (-41I b e  th e  closed em bedding o f  a  non-singular
subvariety (a s  b e fo re  N =2 dim (X)+ 1 ), a n d  le t  X x , X  b e  the strict
transform o f X x k X  in  P .  Then

( x x k A") a i( iD) t i) C +  Ni t  bi (w ) tN+ t - f J

W e  c a n  show  th a t  X  m ay be  em bedded  in to  pnci — 1 via a projection
f r o m  P  if  and  only  if

(**) E 7= — O i ai(f)= 0 .

N o w  th e  n a tu re  o f  th e  generators above seem s to  indicate that
(* )  m ay  b e  tran sla ted  in to  certain algebraic relations am ong th e  a's
a n d  b 's  a b o v e . I f  this can be done, then the  next question is whether
those relations im ply (**). If so, R oberts theorem follows without any
cond itions on  the  embedding w . O n  th e  o th e r  h a n d , if  there exists

: X P f  su c h  th a t the relations h o ld  fo r  th e  a 's  a n d  b 's ,  b u t (**)
does not, then it gives a  counterexample.

I  w o u ld  lik e  to  th an k  th e  referee fo r  several improvements in the
presentation o f this material.

Chapter I. Preliminaries

§ 1 .  Basic definitions and notation. Throughout we use the nota-
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tion o f  E G A . In  p a r t ic u la r , if  0  i s  a  lo c a l  r in g , in ,  d e n o te s  the
m axim al ideal. I f  x  is a  p o in t  o f  t h e  schem e X ,  th e n  0,,x a n d

mx ,  denote th e  lo ca l r in g  o f  X  a t  x, a n d  its  m axim al ideal, respec-
tively. I f  X = Spec (R ) , p (x )  denotes the  p rim e  idea l o f  R  which cor-
responds to x, and  k(x) denotes the field 0  /inx,x, x,.•

L et k  be a field, which we always assume algebraically closed. Put
PZ =Proj (k[X 0 , X , ] ) .  A n  s  dim ensional linear subspace w ill be
denoted by P .  I f  X  a n d  Y  a re  closed subschemes o f  IV , X n Y and

X U Y denote th e  scheme-theoretic intersection and union, respectively:

X n Y is g iven  by  th e  sum  o f  th e  homogeneous ideals I (X ) and 1(Y),

and X u Y is given by 1(X )n /( Y).
F urthe r, i f  X  a n d  Y  a re  p ro je c tiv e  schem es over k ,  f :  Y-0‘ .

a  proper morphism a n d  Z  a  subscheme o f  Y , then f ( Z )  denotes the
closed scheme-theoretic im a g e  o f  Z ,  E G A  I, 9.5. I n  particular the

closure Z  o f  Z  in  Y  is  th e  closed image b y  th e  canonical embedding.

W e say that f  is  a n  isomorphism at x e X  if  x  is contained in an open

subset U  su c h  th a t th e  induced f - '(U )-+ U  i s  an isom orphism . The

(closed) se t o f  a ll points where f  is  n o t a n  isomorphism is denoted by

B ( f) .

I n  som e situations the following notation w ill be  convenient. Let

S =k [Z 1Zi 10 /V] b e  t h e  subring o f  k[Z 0 , . . . ,Z N , Z 0 , ..., ZN ]

generated over k  b y  th e  monomials Zo Zo , Z 0Z 1 , ZN ZN . S is graded

by deg (Z il i ) =1 . Then Proj (S) =PZ x kP Z . Such notation is convenient

for describing products o f grassmanians.

L e t P= (p0 : :  p N )  b e  a  k-point o f  PZ =Proj (k[X 0 , X ,J ) ,  where

P o *
0

. L e t irp : PZ —> PZ b e  th e  blowing up with center P .  W e  have

the diagram

(-- x kPZ- 1  = Proj (k [Z i l i  0 N ,  1  j  ND

np

PZ ppl-1

where n p  is induced by p r i ,  i p  is induced by p i - ,  and is  the  closed

embedding which identifies P r , w ith  th e  closed subscheme defined by
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Z il i — Z A =0 , 1 <i,

=Proj (k [X 0 , X])= Proj (k[Z o , Z a ,  where

Zo = .X0

Z. = p o X i — piX 0 , i  = 1 ,  . . . ,  N.

Moreover, i p  i s  a P 1-bundle, and

np(ip- 1 (Y))

se ts u p  a  1-1  correspondence between k-points of P ' P  r s  in
PZ passing through P.

The morphism i p  induces the projection

p z - { p } , p r i .

I f  X  i s  a  closed subscheme o f  P „  g  denotes th e  s tr ic t  transform
o f  X  b y  7rp ,  i.e ., g  i s  th e  closure in  P r , o f  7rp-  I(X — {P}). This gives
the commutative diagram

j.
X 4 - ) X - { P }  -av  Y ---Ip (g )

L e t  Gk( N ,  r )  denote  th e  grassmanian which parametrizes P r's  in
P Z . R ecall that f o r  a  fixed P s  in  PZ, th e  s e t  o f  p o in ts  in  Gk(N , r)
which correspond to  P r 's containing Ps, form  a  closed subvariety which
we denote by  A ( P ) .  Furthermore, recall that

G ,(N , r)=Proj 4.10 N] I I),

w here t h e  T 's  a r e  indeterminates, a n d  /  is a  c e r ta in  homogeneous
ideal, generated by th e  Plücker relations. P u t  t i = Ti m od /, i =0 0 , ...,
1r)  P r  is spanned by the points

(ao,o: • • • ao,N), • • (ar,o: • • • ar,u),

then  the  corresponding p o in t o f  Gk( N , r)  has homogeneous coordinates
w here p , . . is t h e  m inor obtained from  t h e  io , ir th.
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column of the matrix

a 0 ,0 ,  • • • ,  a O ,N

ar . N

I t  is easily seen from this that

dim G,(N , r)=(r +1) (N  — r),

and

r—s - 1).

W i t h  the n o t a t i o n  introduced a b o v e ,  w r i t e  P Z  x  k Gk (N , 1)=
Proj i = (i 0 , j 1), 0 i„, j  N  ]) ,P x  k ET x k Gk (N , 1)=
Proj (k[Z h Zh ti l (i o , i,), i„, j i, N ]) .  Let F ,  be the  closed subscheme
of PZ x k Gk(N , 1 ) defined by the ideal generated by

where i ,  means "1,, om itted". F  , so  defined has the  following property:

F 1(k)={(x,/)1xE l },

where denotes both a  p o in t  o f  Gk(N , 1 ) a n d  th e  corresponding line.
Similarly one  defines a  closed subset of the second product above,

F 2 ,  for which F2 (k)={(x, y ,  / )  x ,  y e / ) .

T h e  p ro o f  o f  the follow ing proposition is quite straightforward:

Proposition 1.1.. I f  T  is a s u b s c h e m e  o f  G k (N, 1), then

pr i ( p ri i( T ) n r,) c P Z  is  the closure of  the union of  all lines in PZ  which

correspond to points f ro m  T.

Corollary 1.2. L e t  S c P , x — Apr: /k b e  a subschem e of  dimen-

s i o n  n .  F o r  an y  k - p o in ts  p e S , d e n o te  b y  L ( p )  t h e  line passing
th ro u g h  th e  p o in t s  p r i (p), 1 = 1, 2. L e t  L ( S )  b e  t h e  c lo su re  of

Then dim L (S )._n+1.
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P ro o f. D e n o te  t h e  morphisms in d u c e d  b y  th e  p ro je c tio n s  by

• Y2 1 2
a n d  F2

x kPZ

'12 Gk (N, 1) P3 Gk (N, I)

L e t T =p 3 (p il(S )). T hen  L (S )=q,(q -2- 1 (T ))  b y  the  p roposition . Hence

it s u f f ic e s  t o  sh o w  tha t d im (T)< n + 1. A s  q2 i s  a P '-b u n d le

([1], Proposition 1.3), this will follow if dim T But since S n 4/4R  =
0, dim p ( S )  n ,  a n d  th e  proof is complete.

The following proposition is well known and easy to prove.

Proposition 1.3 L e t  X  b e  a n  n-dim ensonal subv ariety  o f  PZ.
T hen there ex ists an  o p e n , d e n se  s u b s e t  U  o f  X  a n d  a  morphism

U—+Gk (N, n),

su c h  th at  f o r  e ac h  k - p o in t  x  i n  U, y)(x) corresponds to T , x . (T x ,x
denotes the tangent space of  X  at x .)

F in a lly , w e  tu rn  to  th e  c o n c e p t o f  generic subspace which will
b e  u se d  h e re . I n  th e  follow ing all U's w ill denote n o n  em pty, open

subsets o f PZ.

1) See for instance [ 1 ] :  Let be defined by as in  [1 ] , Chapter
V I I .  I f  th e  ideal I  (X )  which defines X  in  P;/=-Proj (k[X o , . . . ,  X N ] )  is genera-
ted by F 1 , . . . ,  F „ „  then m>N— n and we may choose U  and number F 1 „ .„  F„,
such that the matrix

/ aF, aF, 
axo ( x) -- ax , ( x)

aF aF 
\ a a X : ( z )

has the same rank as

aF,aF
1 (x)a xoX N

a F N _ . a F N _ „  
a xo ( x) ' a ( x)x ,

(1)

(2)

Then th e  morphism U-->Gk(N, n )  is given by

w(x)=.- iN - n)

is the minor obtained from the i i th„ i N ..„th. columns of (2).where p t . • • . ,
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S ta r t w ith  a  U 1 . F o r  a l l  k-points a ,  i n  U ,  we give ourselves
a  U 2 ( ; ) ,  fo r each k-point a 2  i n  U 2 (a 1 )  a  U3 (a 1 , a2 ) ,  etc. W e  g e t  the
system

U2(Œ1), a,E U,

U 3 (ot1 , a2 ),  a, E U 1 , a2 E U 2 (a 1 )

Ur ( ,, a, e  U 1 , ...,E  U r _ ar-2)

A  system  o f  non-em pty o p e n  subsets a s  above  w ill be  deno ted  by
g N - r (p lin, g N - r  or f  w h e n  no  confusion  i s  possib le . W henever the
relation between U 's  a n d  a 's  a r e  a s  above, a n d  a r e  U,.(a l , ..., . 1
write

Ge_(cei, . . . 5  a r ) e g N-r .

Moreover, making some o f  th e  o p e n  subsets smaller, i f  necessary,
one  m ay assume th a t th e  subspace Pc,  defined by

al,oZo+ ••• 4 - ai,NZN- 0

a ,, 0 Z 0  -I- • • • -I-CX, , NZN =0

is  of dimension s = N — r .  This will always be assumed in  th e  following.

Definition. A  linear subspace P s  o f  PZ is  s a id  to  b e  a  Vs-space
if Ps=13 8  f o r  some Œ E .

T h e  following proposition follow s easily  from  Bertinis first and
second theorems:

Proposition 1.4. I f  X  i s  a  non-singular subvariety o f  P;c1, of  di-
mension r > 2 .  T hen there ex ists g N - r + 1  s u c h  t h a t  xnP„ i s  a  non-
singular, reduced and  irreducible curve f o r all ŒE 1 .

Definition. A  projective curve X  i n  P Z  is  s a id  to  b e  s tra n g e  if
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i t  i s  n o t  a  P ',  a n d  there exists a  k-point p  o f  PZ' su ch  th a t p E Tx ,x

for all non-singular k-points x of X .

The following theorem is due to  E. L luis (cf. [5] and  [8]):

Theorem 1.5. I f  k  i s  o f  characteristic  * 2 ,  th e n  th e re  are  n o
non-singular strange curv es. I n  characteristic 2, the  only  non-singular
strange curv es are  th e  p lan e  conics.

§2. Birational unramified projections. T he proof o f  th e  following
proposition is straightforward:

Proposition 2.1. If  Pe4 X , th e n  the m orphism  A p : X—)Y  is finite.

F o r  a l l  y  in  Y ,  denote (() )*(0 x)/ y b y  Ox ,y . L e t  U=Spec(A) be
a n  o p e n  affine o f  Y  which contains th e  k-point y , a n d  le t  my  b e  the
maximal idea l o f  y .  T hen  4 1 (U)= V =Spec(B), w here  B  i s  a  finite
A-algebra (since p  is finite).

Identify A m y  with L9 B  w ith Ox ,y  b y  th e  canonical isomor-
p h ism s . T he semilocal r in g  (9x ,y is  f in ite  o v e r the local ring L9
iii,l(y )= x,.}  c a n  b e  p u t  i n  1 -1  correspondence with
{tn i , in,.} o f m ax im a l ideals in  6,, y  i n  s u c h  a  w ay that
(0 x ,y ) , .  L et ny  b e  th e  ideal in  e x  generated by my ,y .

Recall that th e  af f ine tangent cone of Y  a t  y  is

Cy ,  y = Spec(gr. y  y  (0 y , y )).

the  se t

Ox,x, —

L ater Cy ,y w ill be  identified  w ith  a  dense  open  subset of a projective
scheme C y  i s  the closure o f  th e  u n io n  o f  a ll lin e s  in  PZ- '
tangent to Y.

F o r  X  w e shall need the  un ion  o f all lines tangent a t so m e  point
o f .1.,,- 1 (y). Define

CX, y = Spec(gr n  y  ( 0 x 0)5

which is the  un ion  o f a ll tangent cones o f  X  a t  th e  p o in ts  o f  4,'(y ).
T here  is a  canonical morphism cy:
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Now p u t  e x ,y =R, c ,= 0 , ny =n, m y ,) ,--m and i =1, r.
Since R  is finite over 0 , the  n-adic completion 11 o f  R  is isomorphic

to  R 0 ,  in particular th e  canonical çø: 0—>R is  injective. Moreover,
a s  is easily seen, there is a  canonical isomorphism

such that the composition

is compatible with the  canonical homorphisms

spi : 0 —3. O i .

T he  next proposition describes th e  ac tion  o f a  p ro jec tion  on  Cx ,y

and

Proposition 2 .2 .  A ssum e th at  X  is non-singular an d  that is
unramified a t  a l l  po in ts  o f  4 1 (y). T hen cy i s  surjectiv e , and each
irreducible com ponent Ti o f  Cs ,y is  m ap p e d  o n to  so m e  irre d u c ib le
com ponent Ci o f  C y ,,. M o re o v e r, cy induces an isom orphism

ci : ci.

P r o o f . ç in d u ce s  th e  graded homorphism 41: gr ( )--4 g r ( ) . I t
suffices to prove the  claim for c=Spec(i/i): Indeed, the following diagram
commutes

Spec(grA(S)) Spec(gra(P))

Spec(gr.(0)) Spec(gr„(R))

where the vertical arrows are the canonical isomorphisms.

Lemma 2 .2 .1 . L et ni ---Ker(ço,). Then

i) n i i s  a  p rim e  ideal, i =1, r.
ii) ni  n n n,.=(0)
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L e t tki : gr a (b) —* gr,10 ( -0',) b e  th e  graded homomorphism induced by  soi .
Then

iii) tki i s  surjective

a n d  i f  p i =Ker(C).

iv) p • • • • • Pr =(0 ).(0).

T he lemma implies th e  propositions : Since X  is n o n - singular,
g r (0 7 )  is isomorphic to a  po lynom ia l r ing  in  n = dim X  variables, so
p =  K er(0,) i s  a  m in im a l p r im e . T hus by i v )  Spec(gr A (S) = V(p ,)

U O n the  other hand, the homomorphisms kk i can be factored
as follows:

g r ( ) g r ,  (k) gre, (S i )  - - 0  g r A ,( )

a n d  hence Spec (1//,) i s  th e  re s tr ic tio n  o f  t  t o  Ti =Spec(gri t ,(6)), i =
1, r .  A s 0 1 i s  surjective, one thus gets a n  isomorphism o f  Ti onto
its image V(p i)  in  Spec(gr(S)).

Proof of the lemma : ç o i is  in d u ced  b y  th e  canonical unramified
: —> 0, which induces

/In 4-  ( 9/M2
 4 -  4 -  (9/mi  4 —

f  t, t , i l I t , J I

ihn, eihnt 4-  eihni 4-

In  fac t, all is known except that f i j  is  o n to . B u t a s  f i is  unramifi-
ed, the restriction of

m j /

is onto  f o r  a ll j. Using this th e  claim follows by induction  on  j.
Hence ço, a n d  (pi a r e  o n t o .  Further, since 0 ,  a n d  0  have the
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same dimension, Ker(ço i) a re  m in im a l p rim es o f (9, i =1, r. Since
th e  canonical (9c-4Ti =  i e i sends a  to one  gets
ii). For iv), note that

p= 0 (n , n mi + mi+ imi+ 1).

So (p i  ••• .Pr) ;  = a rv = 1  (n 0 n InG + 1 1 , G -Fi i m iv+i ) ) ) / m p-1 .

Thus as It= (n,, n m i + ')  ç • • • - It, + Ini + 1 , (P • • • • • 14); = (0), and
the proof is complete.

L et x  be a  k-point o f  X .  With notation from § 1 , define

C X ,x
=  7rx(1-x- 1 (1 (1 ) ) )  a n d  C X ,(x i,...,x ,}

=
 U

r
i= 1 C X ,x t

fo r a  se t o f k -p o in ts . W hen Ai,'(y)= {x 1 , ..., x,.},  p u t Cx ,,,

Proposition 2.3. T here  is an open em bedding i x : C x , x c - - > C x , x  which
identif ies C,, x  w i t h  an open dense subset o f  Cx,x•

Rem ark. I f  x —(1: O: :  0 ) ,  th en  ix  m a p s  Cx  onto  D ( Z 0 ) fl

C X ,x ,  a n d  is induced by th e  isomorphism Cp7,, x  D + (Z 0), defined by
the  k-algebra isomorphism

k [Z 1 /Z 0 ,..., Z N / Z o]-= ,gr(z /z0,...,zN/z0)(k[Zi / Zo , . . . ,  Z N /Z o ] )

which maps Z./Z 0 to  (Z/Z 0 mod (Z 1/Z0 , ZN /Z0 ) 2 ).

Proof o f remark. 2 ) T h e  blowing up diagram  o f  §1  induces

-"Zfr = 1 (A - ( Z 0 ) )  C - )  Proj(k P i, • • • , trd [Zi, • • •, ZN])

=Spec(k [t tiv ])=  D+ ( Z 0 ) =  P rn i(k [Z i,..., ZN])

where ti =Z i/Zo . is defined by the  ideal

({t i
-Z;  — ri l i ll j  N}).

hence Â  n Da )  i s  t h e  closed subschem e o f  Spec(k[t i , •, tN,ni, • •
1,10 ) ,  u; d e f i n e d  b y  th e  id e a l ({t iusi —  1 5 j  N } ) .  Thus ;t1I, n
D + (Z)=Spec(k[t i , tar i , tN /rJ ), a n d  moreover, the restriction rcx j  o f

2 )  This proof can be found in  [6], p. 319.
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7rx  is defined by the inclusion k[t,, tNIti].

Note that the above proves the following lemma:

Lemma 2 .4 .  T he projection

7 (1.0. .0): D+(Z0) — {(1 : 0: ...:

m aps th e  k-point (1: oc,:...: aN) to  (Œ1:••.: otu).

Now le t a  be the ideal in  k [t 1 , tN ]  which defines the subscheme
X 0 =X  n D + (Z 0) in  D + (Z 0 ) = Spec(k[t i , ..•, ta •
Then 7r;(X 0 )  is defined by the ideal

ai=ak[ti, t i /ti , tN /ti ].

Define

a7={FE k[t i , t i lt,, tN It i ]I 3 m  such that /V ' e a i }.

Clearly a7  i s  an  ideal, and since E = ir; 1( x )  is given in  .-4, D.,(2,)=
Spec(k[t i , t 1 /t1, tN /ti ] )  b y the ideal (t 1) ,  it follows that

Ye, n n D 4.(Z Spec(k[ti, t 1 /t1, tN It i ] )

is defined by the ideal a r .  Moreover,

g i ,x = g x n D + (Z 1)

is defined by the ideal generated by a 7  and the im age of (t 1 , t,),
i.e. by the ideal

bi=a7+(ti).

Hence .g i ,x  is  g iv e n  a s  a  subscheme o f  E i = E iz  D . , (Z i ) ] x =Spec(k[t i ,
t i lt i , ..•, tulti]/(ti))=Speck[tliti, •••, t ,/ t ]) by the ideal

=b igt i)=a7+(t i)/(t i).

To describe the ideal -17),, w e use the following notation: If

F(t i , tN)=-.- F,,+ • • • +Fy,

where F y i „.., F t h e  homogeneous parts of F  of degrees v1<...<v„
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we pu t in(F)=F,,,.
It is then readily seen that

= {i0/tril = in (F ) where F E a  and  v, = r}.

Thus ix ( x )= D + (z i)n  V± (in(a)*), where in(a)* is  the  homogeneous
id e a l i n  k[Z 1 , ..., Z N ] o b ta in ed  fro m  in (a )  b y  rep lac in g  ti  b y  Z .
This gives

71(/;1(/x(gi,x)))=

I ; l (V + (in(a)*)) U {x} = V(in(a))

by m eans o f  Lemma 2 .4 .  This completes th e  proof of the proposition.

Corollary 2.5. I f  x  is  a  non-singular k-point o f  X, then C =

T X ,x '

P ro o f. Im m ed ia te  from  t h e  rem ark  fo llow ing  P roposition  2.3.
T h e  following proposition describes how a projection a c ts  on the

tangent space:

Proposition 2.6. A ssume P k X ,  an d  that .11, is  unram if ied. Let
y e Y  be a k -p o in t. Then 2.  induces a morphism  which
makes the following diagram commutative:

C X ,y  C Y , y

i t
CX, y y

R em ark. F o r  e a c h  x i e 4, 1 (y ) th e r e  is  a n  o p e n  embedding

Cx.x ic-)Cx,x ,• Since Cz y  i s  th e  d is jo in t u n io n  o f  a l l  Cz x i 's ,  a n d  by
definition Cx ,x  = U Ç 1CXXt, 1

,  . . . ,  i , .  induce a  morphism Cz y  C z y .
Proof of the proposition. E n o u g h  t o  s h o w  t h a t  t h e  following

commutes

C X ,x t  q i
p . j

CY, y

J J
C Y ,y
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where c i is induced by the canonical f i : (91, -+Ox ,x ‘ . One may assume x, =
(1: 0: 0: ...: 0), P =(0: 0: 1) a n d  hence y =(1: 0: ...: 0). P u t  Z i /Zo  =

Z i lZ o =l i . Then the projection / :  D  4.(Z 0 )- >D + (Z o )  is g iven by the
homomorphism k[1 1 , i N _ jc- ilc[t i , t N ]  which m aps t to 11. The
maximal ideals which correspond to  x i a n d  y  a r e  m = (t 1 , ..., tN )  and
n =(1 1 , • • •, 4 1 -1 ) 9 respectively. L e t  a  a n d  b  b e  t h e  ideals i n  k[ti,

tN ]  a n d  k[l i , 1 N _ 1 ]  which define X n D+ (x0 )  a n d  Y n D+ (Z 0 ).
Finally ul , UN a n d  1711 , ..., a p i _ i  denote th e  im a g e s  o f  th e  t ' s  and
l's in  m/m 2 a n d  n/n2 ,  respectively. T he  following diagram commutes:

gr„(k[t])= k[ii] ,7,=---,,, k [  =gr.(k [t])

I 9 I
k[a]/gr„(b) - 0  > k [u ]/ g r (a )

I I
gr ill y . y (62y , y) gr.,,,,.„,g i 

where the ideal (:),
i 0 a n nv + mi+ 1 /m1+1 i n  gr,n (k[t]) is denoted by gr,n (a).

If in  is  th e  im age  o f m  i n  k [t]la, it is readily seen that we get an
exact sequence

0  -->  gr(a ) grm(k[t]) —> [t]/ a) — > O.

Furthermore, o  i s  t h e  canonical homomorphism induced by so, and
gi the  one  induced by

S ince ci ---Spec(g i) a n d  Spec(o)=Pp fl D+ (Z 0 )- *Cy n D + (Z0 )
is induced by 4, the  proof is complete.

Under th e  assumptions in Proposition 2.6, .1.p  induces a  morphism
c: C x - >Cy a , y=A p(x), w h ich  is  o n to  a n d  maps each irreducible
component T1 , ..., (Ilp- 1 (y) =  1 , x , . } )  o f  Cx ,y  o n to  a n  irreducible
component Ci o f  Cy o „  inducing a n  isomorphism e i : T , - + C 1. I t
follows that e y  is  a  un ion  o f Pn's in  P r ' .  In  general th e  number of
irreducible components o f  C r ,,, a n d  Ci ) , is  le ss  th an  o r  equal to  r,
th e  number o f  p o in ts  in  4, 1 (y). (r =e(O y a ), th e  multiplicity, c f .  [9],
Vol II, Ch. VIII Corollary 1 of Theorem 24.)

( 0X, x

Definition. W e say that y  is  a n  ordinary  singularity  i f  Cr o ,  has
r irreducible components.
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Chapter II. P rojections to  P

§ 1. Embedded, projective varieties with a tangent condition. The
a im  o f  this paragraph is to study embedded, projective varieties
PZ  which, loosely speaking, h a v e  th e  property that f o r  any two
regular po in t: x ,  y  o f  X ,  the  tangent spaces Tx ,x  a n d  Tx ,y a r e  very
close to  each  o ther. M ore precisely, we prove a n d  deduce some con-
sequences of the following:

Theorem 1.1. L e t  X  be  a  closed, n-dim ensional subvariety  o f  P .
A ssum e that f o r  any  tw o  regu lar k -po in ts  x  a n d  y  in  X ,  t h e  linear
subspace of  PZ  spanned by  T x ,x  an d  T x  w hich w e denote by
Tx , y >  i s  of  dim ension n + 1 .  Then either

i) T h e re  e x is ts  an  n +l-d im e n s io n al lin e ar su b sp ac e  p 1 1 + 1  o f
P Z , such that X  cPn -" ,
or

ii) T here ex ists an n—  1-dim ensional linear subspace L' 1 o f  P Z ,
such that f o r all regular k -poin ts x E  X , T x ,x pL " - 1 .

P r o o f . L e t  U  b e  th e  o p e n  se t  of Proposition 1 .3  i n  Chapter I.
I f  Tx , = T x ,y f o r  a ll k-points x a n d  y  in  U , the  claim  is trivial: Indeed,
it then  fo llow s that U c Tx ,x0 f o r  a  fixed p o in t x 0 ,  hence X  cTx ,x .
i.e . X  T= - x , . .•  S o  w e  m ay  assume that there a r e  k-points x 1 , X2 E U
su ch  th a t < T 1, T 2 > -, --Pn+1 . L e t  T ,  n Tx ,„, = .  W e show
that Pn+ 1 and  L ' 1 sa tisfy  the  claim of the proposition.

Lemma 1.2. {xG U(k)ITx ,x pL} =  (U , L)(k), w h e re  4 ( U ,  L )  i s  a

closed subset o f  U.

P roof. L e t  io b e  th e  morphism of proposition  1 .3  in  Chapter I.
With notation from there, we have

t (U, L)= so - 1 (4(L )).

I f  now  d (U , L )=U , then i i )  h o ld s. I f  n o t , th en  U— Z (U, L) = V

is  an  open , dense  subset of  X .  T o  p ro v e  i ) ,  it suffices to show that
Vc pn+1.
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So le t x e V. P ut L i = T x n Tx ,x i  =1 , 2. T h e n  L , L i  a n d  L2
are distinct n—  1-dimensional subspaces of P Z : In fact, they are n —1-
dimensional since the intersection of two distinct hyperplanes in  some
PT is ni— 2-dimensional, so since < Tx , T x ,x >  is  17+1-dim ensional as
x e  V, L i is  n —  1-dimensional. F u r t h e r ,  L i *  L  since L i = L  implies
Tx ,„ D L .  L  *  L 2 , since L  = L 2 m eans that T ,  n Tx ,x = Tx ,x ,  n T ,

so Ln Tx ,x = Tx  n Tx  n Tx ,x =L i . Thus L i g L ,  i .e .  L i =L , which
contradicts what we have found above.

Since L 1 , L 2  and L  are distinct n+l-dim ensional subspaces,

<L , L i > =T x ,x „ 1=1, 2

<L 1, L 2> =T X ,x

Hence

<L , L 1, L 2> <T= Tx,x2, Tx,x> =

« L i ,  L > ,  < L ,  L 2 »  = T x ,x 2> =P n +1

Thus x E P n +' and the c la im  fo llo w s. This completes the proof of
Theorem 1.1.

In the statements o f Theorem 1.1, i) tells th a t X  is contained in
a  low dimensional subspace of P . in  general, ii) need  not im p ly th is.
However, if X  is non-singular, then the following holds:

Theorem 1.3. L e t  X  b e  a  non-singu lar, c losed  subv arie ty  of
PZ , o f  d im ension  n . A ssum e th at i i )  i n  T heorem  1.1 holds, an d  that
N >2 n +1 . T h e n  X  is  c o n tain e d  in  som e hyperplane = P N - 1  o f  P .

P ro o f. W e  n e e d  th e  f o llo w in g  re su lt (c f . [ 4 ] ,  C oro llary  2  of
Lemma 1.):

Lemma 1.4. 3 )  L e t  X  b e  an  n -d im ensional subv arie ty  o f  P .

3) T h e  follow ing neat proof o f  this Lem m a was pointed o u t b y  th e  re fe ree : Let
L  b e  th e  linear system o f  hyperplane-sections o f  X .  T h en  Xcr Hyperplane <=#)
dim L= N.
I f  D =H .X , H  a  hyperplane, is a  general member of L , then dim tr D L--=clim L - 1
So X  Hyperplane •#> D c1 Hyperplane, an d  th e  proof can be completed by in-
duction.
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L e t  t  b e  a p o sitiv e  in teg er su ch  th at n +  N .  S uppose th at  f o r a
generic Pt, P fn  X  is contained in  so m e  t- 1-dim ensional subspace Qt-1

of P .  T h e n  X  is contained in  a  hyperplane of

P u t  t =N — n +1. T h e n  t> 2n +1— n +1> 2 ,  s o  i n  order to  prove
Theorem 1.3, it suffices to show

Lemma 1.5. L et the  situation  b e  a s  i n  Theorem  1.3. T hen there
ex ists V t  su c h  th at  f o r  a l l  Vt-spaces Pt, P ro ( i s  a  p la n e  curve.

P ro o f. B y  Proposition 1 .4 , Chapter I there  ex ists g i  such that
a ll  gt-spaces Pt. intersect L  in  a  p o in t  p2  a n d  intersect X  i n  a  non-
singular irreducible curve X . .  N o w  X .  h a s  t h e  p ro p e rty  th a t a ll
tangents meet in  p . :  In  fa c t, le t x  b e  a  k-point o f  X .  different from
p . .  Then th e  line  Tx .,„  an d  th e  hyperplane L o f  Tx, x =13 "  meet in  a
p o in t , s a y  p ' :  O n  t h e  o th e r  h a n d , Tx ,x  c PL, s o  p' E  L n Pt.= {p,(}.
N ow  the  proof o f  Lemma 1.5, and  hence o f  Theorem 1.3 is completed
by Theorem 1.5 o f Chapter I.

§ 2 .  The strange subset of X x kX .  The following n o tio n  is moti-
vated by the tangent condition of the previous paragraph.

Proposition 2.2. There ex ists a  closed subset S t(X ) of  X x kX , such
th at St(X)(k)= {(x, y)1 dim < TX, X ,  TX,y > n +11.

P r o o f . Suppose X =Proj(k[X 0 , Fm )). T h e  subspace
Tx ,x  o f  PZ is given by

(2.2.1) E7=oXi (x )-0 , a =1, ..., m.

L e t  71, x  denote  th e  affine cone  over Tx i . e .  th e  linear subspace of
AZ+1 w h ic h  i s  th e  closure o f  th e  in v e rse  im a g e  o f  Tx  u n d e r  the
canonical morphism

AZ- E l — ..., 0)1 PZ.

I f  A r  =Spec(k[X 0 , X i , ] ) ,  t h e n  T A „  i s  t h e  subspace defined by
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(2.2.1). W ith this notation, the condition

dim < T , + 1

is equivalent to

dim< 71, x , <n+2

which in  turn is equivalent to

dimrt x n 71,,,_2(n+1)—(n+ 2)=n.

N o w  7-1 n  r t y c A r i  is defined by

Eiv_ X  ° F 1  (x) =0,-o a =1, m

(2.2.2)
OF E N  X. œ (y) =0, a =1, mi - °  O X

a n d  thus, finally, the condition is equivalent to

Fm)  ,x ,
xN)

rk
F m )   „

(X 0 ,... , )

Now let F be  the closed subset of

X* x ,X* =Spec(S® k S)=Spec(k[X, IT ]/J)

where

J =(F i (X), F,„(X), F i (Y), Fm(Y))

defined by th e  ideal generated by J  a n d  a l l  N +1 —n-minors o f  t h e
matrix

a ( F , , . . • ,  F .)   ( Apo , xN)xN)

Fm )  (y 0 ,Y N )
a(X 0,...,X N ))

W e then get St(X) as the im age of Fn U by the canonical

tfr : U = (X* — {(0, 0)}) x k(X* — {(0, 0)}—> X x k X.
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Since th e  polynomials which define F  are homogeneous in the variables
X 0 , X N  and in  the  variab les Y 0 , Y N ,  th is  is  a  closed subset of
X x k X.

§ 3. Projections of algebraic varieties to Pi n . W e  a r e  going to
prove the following:

Theorem 3 . 1 .  L e t  X  b e  a p ro je c tiv e , non-singular v ariety , de-
f ined ov er the algebraically  closed f ield k. A ssum e th at X  is embedd-
e d  a s  a  closed subvariety o f  P in + i w here n =dim(X).

T hen there  ex ists a po in t P P ' '  s u c h  t h a t  the projection 63

induces a  morphism

A: X Y

w here Y  i s  a  closed subvariety of  P i" . A  i s  a n  isomorphism except
a t  a  f in ite  num ber o f  k-points y i , y s i n  Y ,  w h ich  a re  ordinary
double points o f  Y.

W e need  th e  following result from [2] (Corollary 3.3):

Proposition 3 .2 .  L e t  X =Proj (kN o , •••, b e  a  closed sub-
v ariety  o f  Pin - " ,  w hich is non-singular of  dim ension n. Let

F(X _.<2n, 0  j ..<2n+1)

be a non-zero poly nom ial w ith coefficients f rom  k.
T hen there ex ist linear com binations in •••, with coeffi-

cients f rom  k,

Ci =
l i 3 O 0 +  • a i n + 1 . 2 n +  1, i =1, ..., 2n

such  that F(ot, J ) * 0  an d  su c h  th at i f  T =k [C ], then  the inclusion
T c -S  = k [] induces a  morphism

A : X—>Y=Proj(T)

w h ich  is  unramified a n d  a n  isom orphism  ex cept at a  f inite num ber
o f  k-points, w hich are double points of  Y .
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Clearly the  conc lu sion  o f th is  proposition m a y  b e  re p h ra se d  as
fo llow s: F o r  any non-em pty o p en  s u b s e t  U  o f  P li n +  ,  there exists
P  E U  su c h  th a t the projection i p  h a s  th e  property  o f  t h e  theorem,
except possibly fo r y  y s  being ordinary singularities.

T h e  p roof o f  Theorem  3.1 now  am ounts to  finding a  non-empty
open  subset U  o f  Pi n+ 1 s u c h  t h a t  i f  PE U  sa tisfie s  Proposition 3.2,
th e n  Y  =/ p(X ) has at m ost ordinary singularities.

F irs t, if S t ( X ) —  X then  by  T heorem  1 .3 , X  is contained in
a hyperplane of PV + 1 ,  s o  th e  c la im  is trivial. I f  o n  t h e  other hand
S t(X )* X  x k X , then by Proposition 2.2

dim (St(X )— tl x / k )..< 2n —1

Hence by Chapter I ,  Corollary 1.2

dim L(St(X)— z 1 x / k ) 2n

Therefore U =Pin+ 1 — L(St(X)— A x /k )  is  a  non-empty open  subset.
Suppose n o w  th a t  P E U  satisfies the conclusion of Proposition

3.2. T o  show is tha t for a ll y EB(Ap)

C y ,y  =Spec y(0,,y))

has exactly two irreducible components, cf. page 315.
Since y  i s  a  d o u b le  p o in t a n d  A p: X  -4 Y  is unramified, '(y )=

{x 1 , x 2 }, see page 315.
The projection i p  m aps Tx  a n d  T „  onto  distinct n-dimensional

subspaces of P .  In  f a c t ,  if  Ip(Tx ) = 6 , ( T ) ,  then

<T 1 T x 2 > = P >

is  an n + 1-dimensional subspace, contradicting P  L ( S t ( X ) —  " ) .
B y  Proposition 2.3, Corollary 2.5 and  P roposition  2 .6  o f Chapter

I ,  it now follows that

c y ••
 C

x ,ix i,x2 )
C

Y•Y

m aps th e  two irreducible components o f  C y o ,  o n to  distinct irreducible
components of C y o ,. Thus the claim follows by Chapter I, Proposition 2.2.
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T U F T S  U N IV E R S IT Y , M ED FO RD , M ASS. U .S .A .

U N IV E R S IT Y  O F  B E R G E N , B E R G E N , NORW AY.
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