J. Math. Kyoto Univ. (JMKYAZ)
13-2 (1973) 301-322

Projection of non-singular projective
varieties

By
Audun HoLME

(Communicated by Professor Nagata, March 6, 1972)
(Revised, October 12, 1972)

Introduction

It is a classical result (cf. [3]) that a non-singular projective
variety X PY over an algebraically closed field k may be embedded
in P#"*1, n=dim(X), via a projection from P} (if N>2n+1). There
are examples which show that in general this can not be done for
P2n.

The second best to an embedding induced by a projection is the
following: A birational model Y of X in P}", together with a bira-
tional morphism A: X—Y induced by a projection, and such that Y
differs from X by as little as possible.

So the question is: How well can one do with this Y?

For curves the answer to this problem is again classical. The
singularities of Y are at most ordinary double points, and 1 is an
isomorphism at all regular points of Y (cf. Chapter I, §1 for the
meaning of “isomorphism at a point™).

In higher dimensions the problem has been considered by E. Lluis
[4], J. Roberts [7], and the author [2].

In [4], Lluis proves that Y has at most a finite number of singu-
larities, which have linear analytic branches, i.e., Spec of the completions
of the local rings at the singular points are fimite unions of regular schemes.

In [7], Roberts shows that if the embedding of X into P} is
sufficiently nice (and all projective varieties can be given such nice
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projective embeddings) then Y has at most a finite number of double
points, with linear analytic branches — and moreover, these have normal
crossings. This last statement is equivalent to that the tangent cone
Cy, (cf. Chapter II, §2) has two components each of which are a Pn,
in general position to each other, at all singular points y of Y.

The author has obtained, (cf. [2]) as a consequence of a certain
formal projection theorem, that without any condition on the embedding
of X, Y has at most double points. But a priori the tangent spaces
of the analytic branches at the double point yeY might coincide,
i.e. Cy, might have only one irreducible component (and as a scheme
Cy, would then necessarily be non-reduced). According to Roberts’
theorem above this could, of course, only occur if the embedding of X
into P} were not nice in his sense.

For curves we have already mentioned that this does not happen.
The purpose of the present work is to extend that result to higher
dimensions.

We first list some well known facts and establish the notation in
Chapter I. Most of this material is more or less readily available in
the literature.

The reader could go directly to Chapter 1I, and refer back when
needed.

Chapter II opens with the study of projective embeddings X &PV
N=2dim(X)+1, with the property that for any two non-singular k-
points x and y of X, the tangent spaces Ty, and Ty, span a space
<Tx, Tx,> of dimension <n+1, n=dim(X). Such subvarieties are
characterized in Theorem 1.1. This theorem implies that if X above
is non-singular, then it must be contained in a hyperplane in P,
Theorem 1.3. Using this information we finally show the result an-
nounced above, namely Theorem 3.1.

Even if Cy, has two distinct components at all the double points
of Y, those components naturally need not be in general position, as
in Roberts theorem. The question of whether this remains true without
any condition on the embedding XGPY is still open. The essential
point here is to obtain a classification, analogous to Theorem 1.1, of
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those X&PY which satisfy
(*) dim<Ty,, Ty,,><2n-1 (n=dim (X))

for all non-singular x, y in X.

Unfortunately, the rather simple techniques used in the proof of
Theorem 1.1 do not seem to be sufficient for this. However, recently
the author has obtained some results which indicate that a different
approach could settle it:

Namely, if P denotes the blowing up of P} x,P} with center in the
diagonal, one can define certain generators t, ¢ and { for the Chow
ring A(P). We shall not go into details here, only say that tN+!=0, ¢
satisfies an equation of degree N with coefficients from Z[t], and ¢(
one of degree 2 with coefficients from Z[t, &].

Now let ¢: XOPY be the closed embedding of a non-singular
subvariety (as before N=2dim(X)+1), and Ilet )?x/k_)\( be the strict
transform of X x,X in P. Then

(X% X) = (D 1ai(@)EEV DL + TNELb (p)eM+1-3Es

We can show that X may be embedded into P}y~! via a projection
from P if and only if

(%) Li(=Dia(f)=0.

Now the nature of the generators above seems to indicate that
(*) may be translated into certain algebraic relations among the a’s
and b’s above. If this can be done, then the next question is whether
those relations imply (xx). If so, Roberts theorem follows without any
conditions on the embedding ¢. On the other hand, if there exists
¢: XGPY such that the relations hold for the a’s and b’s, but (xx)
does not, then it gives a counterexample.

I would like to thank the referee for several improvements in the
presentation of this material.

Chapter 1. Preliminaries

§1. Basic definitions and notation. Throughout we use the nota-
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tion of EGA. In particular, if @ is a local ring, m, denotes the
maximal ideal. If x is a point of the scheme X, then 0, and
my, denote the local ring of X at x, and its maximal ideal, respec-
tively. If X =Spec(R), p(x) denotes the prime ideal of R which cor-
responds to x, and k(x) denotes the field Oy /my ,.

Let k be a field, which we always assume algebraically closed. Put
PY =Proj(k[ Xy, ..., Xy1). An s dimensional linear subspace will be
denoted by Ps. If X and Y are closed subschemes of P§, XNY and
X UY denote the scheme-theoretic intersection and union, respectively:
XNYis given by the sum of the homogeneous ideals I(X) and I(Y),
and XUY is given by I(X)NI(Y).

Further, if X and Y are projective schemes over k, f: Y—-X
a proper morphism and Z a subscheme of Y, then f(Z) denotes the
closed scheme-theoretic image of Z, EGA I, 9.5. In particular the
closure Z of Z in Y is the closed image by the canonical embedding.
We say that f is an isomorphism at x€X if x is contained in an open
subset U such that the induced f~!(U)-U is an isomorphism. The
(closed) set of all points where f is not an isomorphism is denoted by
B(f).

In some situations the following notation will be convenient. Let
S=k[ZZ;|0<i, j<N] be the subring of k[Z,,...,Zy, Zo, oy Zy]
generated over k by the monomials ZoZy, ZoZ,, ..., ZyZy. S is graded
by deg(Z,Z,)=1. Then Proj(S)=P} x,P}. Such notation is convenient
for describing products of grassmanians.

Let P=(py:...: py) be a k-point of P} =Proj(k[X,,..., Xy]), where
Po#0. Let nP:’I\"ﬁ — PV be the blowing up with center P. We have
the diagram

P <, PY x ,PY¥~1 =Proj (k[ Z,Z,;|0<i<N, 1<j<N])
l\
np /P
N
Py Py-1

where 7, is induced by pry, /p is induced by pr, and . is the closed
embedding which identifies P} with the closed subscheme defined by
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ZZ;—Z;Z,=0, 1<i, j<N.
P¥ =Proj (k[ Xo, ..., Xy]) =Proj(k[Z,, ..., Zy]), Where
Zy=X,
Z,=poX;—piXo, i=1,...,N.
Moreover, /p is a P!-bundle, and
Y= (/3 ()

sets up a 1-1 correspondence between k-points of PY~! and P's in
P} passing through P.
The morphism /, induces the projection

Jp: PY—{P}oP}-1.

If X is a closed subscheme of P¥, X denotes the strict transform
of X by np, ie., X is the closure in ﬁ‘:’ of np'(X—{P}). This gives
the commutative diagram

¢
l
X

Let G(N, r) denote the grassmanian which parametrizes P™s in
P}. Recall that for a fixed Ps in P}, the set of points in Gy(N, r)
which correspond to P"’s containing Ps, form a closed subvariety which
we denote by A(P%). Furthermore, recall that

—X—{P} 4> Y =/p(X)

G«(N, r)=Proj(k[T,,..,; |0<i,<NJ/I),

ey ip

where the T’s are indeterminates, and I is a certain homogeneous
ideal, generated by the Pliicker relations. Put t;=T, mod I, i =(i, ..

.y

i,). If Pris spanned by the points

(0,0 «--2 Ao N)s --0s (@0 ...1 Gy y),

then the corresponding point of G,(N, r) has homogeneous coordinates
{Pi,,..,;,} Where p, . is the minor obtained from the iy, ..., I, th,
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column of the matrix

ao’o, seey aO,N

aryo, ceey a"N

It is easily seen from this that

dim G(N, r)=(r+1) (N-r),
and

AP)=G(N—-s—1, r—s—1).

With the notation introduced above, write P} x,G (N, 1)=
Proj(k[Z;t;|i= (iq, i,), 0<1i,, JSN]), Py x PYx,G, (N, )=
Proj(k[Z;,Z;,t}li=(i¢, i}), 0<1i,, jg<N]). Let I'; be the closed subscheme
of P¥x,G(N, 1) defined by the ideal generated by

23=0(=D°Ztiq,. hins
where ;‘,, means *‘i; omitted”. I'; so defined has the following property:
ryk)={x, ) |xes},

where / denotes both a point of G(N, 1) and the corresponding line.
Similarly one defines a closed subset of the second product above,
I, for which I'p(k)={(x, y, )|x, ye/}.

The proof of the following proposition is quite straightforward:

Proposition 1.1.. If T is a subscheme of Gi(N, 1), then
pri(pr3 (T)NT )P} is the closure of the union of all lines in P} which
correspond to points from T.

Corollary 1.2. Let ScP}x,PY—A4pY, be a subscheme of dimen-
sion n. For any k-points pES, denote by L(p) the line passing
through the points pr(p), i=1, 2. Let L(S) be the closure of
\UpesL(P).

Then dimL(S)<n+1.
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Proof. Denote the morphisms induced by the projections by

Py Py x P}
r 7 and I "
1 2
\q=*Gk(N, 1) \"s*Gk(N, )

Let T=p5(p7i(S)). Then L(S)=4q,(¢3'(T)) by the proposition. Hence
it suffices to show that dimg;'(T)<n+1. As g, is a P!-bundle
([1], Proposition 1.3), this will follow if dimT<n. But since SN4p¥, =
@, dimp,;1(S)<n, and the proof is complete.

The following proposition is well known and easy to prove.!

Proposition 1.3 Let X be an n-dimensonal subvariety of PY.
Then there exists an open, dense subset U of X and a morphism

@ : U—)Gk(Na n)a

such that for each k-point x in U, ¢(x) corresponds to Ty, . (Tx,,
denotes the tangent space of X at x.)

Finally, we turn to the concept of generic subspace which will
be used here. In the following all U’s will denote non empty, open
subsets of P}.

1) See for instance [1]: Let pivmtN-n be defined by {ti,...,in} as in [1], Chapter
VII. If the ideal I(X) which defines X in P{=Proj (k[X,,..., X»]) is genera-
ted by F,,..., F,,, then m>N—n and we may choose U and number F,,..., F,
such that the matrix

aF, JoF,
m(x)awam(x)

0Fp . 3Fn

m(x),., aXN(::)

O

has the same rank as

aF, oF,

—‘(x)y'“) (x)
@ X, Xy
0Fy_n 0Fy_,

aXo (x)"") aXN (x)
Then the morphism ¢: U—G(N, n) is given by

o(x)= {Ph.-". tN-n}
where pti-wiv-n js the minor obtained from the iyth., ...,iy_sth. columns of (2).
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Start with a U,. For all k-points «, in U, we give ourselves
a Uj(ay), for each k-point a, in Uy(a,) a Us(ay, a;), etc. We get the
system

U,
Uyay), ;€U

Ujs(ag, a3), 2, €Uy, ay€Uy(ay)

Uloy, cooy 0,_y), €Uy, o0, €U,_ (g, ...y 0p_y)

A system of non-empty open subsets as above will be denoted by
gN-r(PY), 9V or ¢ when no confusion is possible. Whenever the
relation between U’s and o’s are as above, and «.€U,(ay, ..., %_,),
write

a=(ay, ..., q,)EGNT,

Moreover, making some of the open subsets smaller, if necessary,
one may assume that the subspace P, defined by
a],OZO"' A +al,NZN=0

o, 0Zo+ -+ +a, nNZy=0

is of dimension s=N—r. This will always be assumed in the following.

Definition. A linear subspace Ps of P} is said to be a %s-space
if Ps=P, for some a=¥".

The following proposition follows easily from Bertinis first and
second theorems:

Proposition 1.4. If X is a non-singular subvariety of PY, of di-
mension r>2. Then there exists ¥N~"*! such that XNP, is a non-
singular, reduced and irreducible curve for all ac@N-r+1,

Definition, A projective curve X in P} is said to be strange if
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it is not a P', and there exists a k-point p of P} such that peTy .
for all non-singular k-points x of X.

The following theorem is due to E. Lluis (cf. [5] and [8]):

Theorem 1.5. If k is of characteristic +2, then there are no
non-singular strange curves. In characteristic 2, the only non-singular
strange curves are the plane conics.

§2. Birational unramified projections. The proof of the following
proposition is straightforward:

Proposition 2.1. If P& X, then the morphism Ap: X—Y is finite.

For all y in Y, denote ((4p)4«(@x)), by Oy, Let U=Spec(A) be
an open affine of Y which contains the k-point y, and let m, be the
maximal ideal of y. Then A3!(U)=V =Spec(B), where B is a finite
A-algebra (since Ap is finite).

Identify A4, 6 with 0y, and B, with Oy , by the canonical isomor-
phisms. The semilocal ring Oy , is finite over the local ring ¢y , and
A3'(»)={x; ..., x,} can be put in 1—1 correspondence with the set
{my, ..., m} of maximal ideals in Oy, in such a way that 0y, =
(Ox,))n,- Let n, be the ideal in 0y , generated by my ,.

Recall that the affine tangent cone of Y at y is

CY-}’ = Spec(grmy, y(a Y,y))'

Later Cy,, will be identified with a dense open subset of a projective
scheme Cy , which is the closure of the union of all lines in P}-!
tangent to Y.

For X we shall need the union of all lines tangent at some point
of Az!(y). Define

CX, y = Spec(grn y(@x,y)),

which is the union of all tangent cones of X at the points of Az!(y).
There is a canonical morphism c,: Cy, ,—Cy,,.
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Now put Oy ,=R, 0y ,=0, n,=n, my ,=m and R, =0, i=1,..,r.

Since R is finite over 0, the n-adic completion R of R is isomorphic

to R®05, in particular the canonical ¢: O-R is injective. Moreover,
as is easily seen, there is a canonical isomorphism

R i) I-.[',l= 1éia

such that the composition

0—> II5-10;

is compatible with the canonical homorphisms

[/ 0_>0‘°.

The next proposition describes the action of a projection on Cy,
and Cy ,:

Proposition 2.2. Assume that X is non-singular and that 1, is
unramified at all points of Az'(y). Then c, is surjective, and each
irreducible component T, of Cy,, is mapped onto some irreducible

component C; of Cy,, Moreover, ¢

, induces an isomorphism

¢;: T,—=>C,.

Proof. ¢ induces the graded homorphism y: grm(é\)—» gra(R). It
suffices to prove the claim for ¢=Spec(y): Indeed, the following diagram
commutes

Spec(gra(0)) ——Spec(gr(R))

l l

Spec(gr,(9)) «—Spec(gr,(R))
where the vertical arrows are the canonical isomorphisms.
Lemma 2.2.1. Let n;=Ker(e;). Then

i) n;is a prime ideal, i=1, ..., 1.
i) n,N ... Nn,=(0)
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Let ;: grﬁ(é)agrm‘(@,.) be the graded homomorphism induced by o¢;.
Then

iii) ; is surjective

and if p;=Ker(y,).

The lemma implies the propositions: Since X is non-singular,
grm(@:) is isomorphic to a polynomial ring in n=dimX variables, so
p;=Ker(y;) is a minimal prime. Thus by iv) Spec(grm(ca)=V(p,)U
... UV(p,). On the other hand, the homomorphisms y; can be factored
as follows:

gra (0) —> gro(R) — TTi=814,(0) — 8ra,(0)

and hence Spec(y,) is the restriction of & to T;=Spec(gra,(0)), i=
1, ..., r. As ¥; is surjective, one thus gets an isomorphism of T; onto
its image V(p;) in Spec(grﬁ((f)).

Proof of the lemma: ¢; is induced by the canonical unramified
fi: 0> 0; which induces

O/me— O0/m? e— . — O/mJ —

ft.ol fl.ll ft,/l

O;/m; —0;/m} e— -+ — wi/m{ —

| | |

0 0 0

In fact, all is known except that f;; is onto. But as f; is unramifi-
ed, the restriction of f; ;,

Fijimi~tmi — mi~t/m{

is onto for all j. Using this the claim follows by induction on j.

Hence ¢; and y; are onto. Further, since 5,- and @ have the
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same dimension, Ker(p;) are minimal primes of (5, i=1,...,r. Since
the canonical 0C+H7=1(5i sends a to {g{@)};=y,., one gets
ii). For iv), note that

P=@jzo(m;Nmi+mi*!/mi*l),

So Pr P = (D= (IT= 1 (M, N MEe 4 mivtEmivt 1)) fmJ* 1L,
Thus as [Tj-(n,Nnmiv+miv*)cn, - on,+mi*t (py - - p,);=(0), and
the proof is complete.

Let x be a k-point of X. With notation from §1, define

CX,x=nx(/; l(/x(Xx))) and (_:X,(xl,...,x,-) =U ?=1Cx,xi

for a set of k-points. When Az'(y)={x,, ..., x,}, put Cx ,=Cx x,...x}

Proposition 2.3. There is an open embedding i,: Cyx ,Cy . which
identifies Cy . with an open dense subset of Cy ..

Remark. If x=(1:0:...:0), then i, maps Cy, onto D,(Z,)N
Cx,. and is induced by the isomorphism Cpy =5 D.(Z,), defined by
the k-algebra isomorphism

k[Z,]Z,,..., Zy] Zo]z—’gf(z,/zo,...,zN/zo)(k[Zl/Zo,--q ZylZo])

which maps Z,/Z, to (Z,/Z, mod (Z,/Z,, ..., Zy|Z,)?).

Proof of remark.? The blowing up diagram of §1 induces
AV=1,1(D,(Zo)) & Proj(k[t e, tN1[Z1yees Zy])
:’,“’:Spec(k[t,,..., tn])=D.(Z,y) Il’ﬁ”:Proj(k[Zl,..., ZD
where t,=Z,/Z,. ﬂ is defined by the ideal
{t:Z;—t;Z)|1<i, j<N}).

hence .@,? ND,(Z) is the closed subscheme of Spec(k[t,,..., tyuj, ...,
uyl), u;=Z;/Z;, defined by the ideal ({tu;—t;/1<j<N}). Thus A¥n
D, (Z))=Spec(k[t;, t,/t;, ..., ty/t;]), and moreover, the restriction m,; of

2) This proof can be found in [6], p. 319.
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n, is defined by the inclusion k[t,, ..., ty]1 k[, ti/t;, ..oy ta/t].
Note that the above proves the following lemma:

Lemma 2.4. The projection

Z1:00.:0): Di(Zg)—{(1:0: ...: 0)} »>P}~!

Now let a be the ideal in k[t,, ..., ty] which defines the subscheme
X0=XnD+(Zo) in D+(Zo)=SpeC(k[tl, ceey tN])'
Then 7, %4(X,) is defined by the ideal

ai=ak[t,~, tl/ti’ ooy tN/ti]‘
Define
a¥={Fek[t, t,/t;, ..., ty/t;]] 3 m such that *F<a;}.

Clearly a¥ is an ideal, and since E=n;!(x) is given in A¥YnD.(Z)=
Spec(k[t;, ti/t;, ..., ty/t;]) by the ideal (1), it follows that

X, =Xn(AYND(Z)S Spec(k[t;, t,/t;, ..., ty/t;])
is defined by the ideal a¥. Moreover,
Xi,x=X~x n D+(Zl)

is defined by the ideal generated by a¥ and the image of (¢, ..., ty),
ie. by the ideal

b;=af+(t).

Hence X, is given as a subscheme of E;=[AYND.(Z)],=Spec(k[t,
ti/t, ..., ty/t]/(t)) =Speck[ty/t;, ..., ty/t;]) by the ideal

bi=bif(t)=a} +(1)/(1).
To describe the ideal B,-, we use the following notation: If
F(ty, ..., ty)=F, + ... +F,,

where F, ,..., F, are the homogeneous parts of F of degrees v,<...<v,
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we put in(F)=F,,.
It is then readily seen that

B‘={(p/t'i| ¢ =in(F) where F€a and v, =r}.

Thus /«(X,,)=D.(Z)nV,(in(a)*), where in(a)* is the homogeneous
ideal in Kk[Z,,..., Zy] obtained from in(a) by replacing t; by Z;.
This gives

ﬂ; 1(/; 1(/x(gi,x))) =
/7' (V.(in(a)*) U {x} =V(in(a))

by means of Lemma 2.4. This completes the proof of the proposition.

Corollary 2.5. If x is a non-singular k-point of X, then Cy .=
Ty x

Proof. Immediate from the remark following Proposition 2.3.
The following proposition describes how a projection acts on the
tangent space:

Proposition 2.6. Assume P&X, and that 2, is unramified. Let
yeY be a k-point. Then 1, induces a morphism ¢,: Cyx ,—Cy,, which
makes the following diagram commutative:

éx,y—tp—’ Cy,y
¢'T J

CX.y cy ’CY,y

Remark. For each x;€Ap!(y) there is an open embedding ;:
CxxCyx,,. Since Cy, is the disjoint union of all Cy,’s, and by
definition Cy,=U%1Cxxp ¢1 --» &, induce a morphism s: Cy,— Cx,.

Proof of the proposition. Enough to show that the following
commutes

Cx,xu Pp,1 ? CY,)'

Cx»x: <, ? CY.)'
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where ¢; is induced by the canonical f;: 0y ,—0x,,. One may assume x;=
(1:0:0:...:0), P=(0: ...: 0: 1) and hence y=(1:0:...:0). Put Z,/Z,=
t;, Z/Z,=%. Then the projection /p: D (Zy)—D,(Z,) is given by the
homomorphism k[#,, ..., iy ]<k[t;, ..., ty] which maps #; to t. The
maximal ideals which correspond to x; and y are m=(ty, ..., ty) and
n=({,, ..., Iy_y), respectively. Let a and b be the ideals in k[t,,
..., ty] and k[Z,, ..., Iy_;] which define XND,.(X,) and Y ND.(Zy).
Finally u,, ..., uy and #,, ..., iy_, denote the images of the #’s and
s in m/m2 and n/n2, respectively. The following diagram commutes:
gr(k[t])=k[ul s klul=gr,(k[1])

[

k[u]/gr,(b) —5—k[u]/gr,(a)

grmv.y(al’. y)_“—"grmx.xi(ax.xa)’

where the ideal @oa N+ mi*t!/mitt in gr (k[t]) is denoted by gr,(a).
If m is the image of m in k[t]/a, it is readily seen that we get an
exact sequence

0 — gr,(a) — gru(k[t]) — gra(k[t]/a) — 0.

Furthermore, ¢ is the canonical homomorphism induced by ¢, and
g; the one induced by f;.

Since ¢;=Spec(g;) and Spec(@)=/p: Cx,,,ND(Zo)=Cy,ND.(Z,)
is induced by /p, the proof is complete.

Under the assumptions in Proposition 2.6, 1, induces a morphism
c: Cx,—Cy,, y=Ap(x), which is onto and maps each irreducible
component Ty, ..., T,(Az* () ={xy, ..., x,}) of Cyx, onto an irreducible
component C; of Cy, inducing an isomorphism ¢;: Ty, —C,. It
follows that Cy, is a union of P"s in P}~1. In general the number of
irreducible components of Cy, and Cy, is less than or equal to r,
the number of points in Ap!(y). (r=e(0y,), the multiplicity, cf. [9],
Vol II, Ch. VIII Corollary 1 of Theorem 24.)

Definition. We say that y is an ordinary singularity if Cy, has
r irreducible components.
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Chapter II. Projections to P2"

§1. Embedded, projective varieties with a tangent condition. The
aim of this paragraph is to study embedded, projective varieties X&
PY which, loosely speaking, have the property that for any two
regular point: x, y of X, the tangent spaces Ty, and Ty, are very
close to each other. More precisely, we prove and deduce some con-
sequences of the following:

Theorem 1.1. Let X be a closed, n-dimensional subvariety of P¥.
Assume that for any two regular k-points x and y in X, the linear
subspace of P} spanned by Ty, and Ty, which we denote by <Ty,,
Ty,y> is of dimension < n+1. Then either

i) There exists an n+1-dimensional linear subspace P"*! of
Py, such that XcPr+!,
or

ii)y There exists an n— l-dimensional linear subspace L"~' of P},
such that for all regular k-points xeX, Ty DL 1.

Proof. Let U be the open set of Proposition 1.3 in Chapter I
If Ty =Ty, for all k-points x and y in U, the claim is trivial: Indeed,
it then follows that UcTy,, for a fixed point x,, hence XcTy,,
ie. X=Tx,,. So we may assume that there are k-points x;, x,€U
such that <Tx,,, Tx,,>=P"*!l. Let Ty, N Tyx,,=L""'. We show
that Pr+! and L~ ! satisfy the claim of the proposition.

Lemma 1.2. {xeU(k)|Tx.D>L}=4(U, L)(k), where AU, L) is a
closed subset of U.

Proof. Let ¢ be the morphism of proposition 1.3 in Chapter I.
With notation from there, we have
4(U, L)=p~'(4(L)).

If now 4(U, L)y=U, then ii) holds. If not, then U—4(U, L)=V
is an open, dense subset of x. To prove i), it suffices to show that
Vc prtl,
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So let xeV. Put L;=Ty, NTx, i=1,2. Then L,L, and L,
are distinct n— I-dimensional subspaces of P¥: In fact, they are n—1I-
dimensional since the intersection of two distinct hyperplanes in some

m is m—2-dimensional, so since <Ty ,,, Ty, > is n+1-dimensional as
x€V,L; is n— l-dimensional. Further, L;# L since L;=L implies
Ty, ,DL. L,#L,, since L,=L, means that Ty , NTy =Ty, NTx, s
$0 LNTy, =Ty ,NTxx,NTx =L,. Thus L,CL, ie. L;=L, which
contradicts what we have found above.

Since L,, L, and L are distinct n+ I-dimensional subspaces,

<L, L;>=Tx,,, i=1,2
<L, L,>=Ty,,
Hence
<L, Ly, Ly;>=<Tx » Tx,x, Tx,x>=
<<L,,L>, <L,L,>>=<Ty,,, Ty ,,>=P""!

Thus xe P"*! and the claim follows. This completes the proof of
Theorem 1.1.

In the statements of Theorem 1.1, i) tells that X is contained in
a low dimensional subspace of P}. In general, ii) need not imply this.
However, if X is non-singular, then the following holds:

Theorem 1.3. Let X be a non-singular, closed subvariety of
Py, of dimension n. Assume that ii) in Theorem 1.1 holds, and that
N>2n+1. Then X is contained in some hyperplane H=PN-! of P}.

Proof. We need the following result (cf. [4], Corollary 2 of
Lemma 1.):

Lemma 1.4. Let X be an n-dimensional subvariety of P}.

3) The following neat proof of this Lemma was pointed out by the referee: Let
L be the linear system of hyperplane-sections of X. Then Xd Hyperplane <&
dim L=N.

If D=H-X, H a hyperplane, is a general member of L, then dim¢rpL=dim L—1
So X & Hyperplane<= D & Hyperplane, and the proof can be completed by in-
duction,
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Let t be a positive integer such that n+t=N. Suppose that for a
generic P', P'N X is contained in some t—1-dimensional subspace Q'~!

of PY. Then X is contained in a hyperplane of PY.

Put t=N—-n+1. Then t>2n+1—n+1>2, so in order to prove
Theorem 1.3, it suffices to show

Lemma 1.5. Let the situation be as in Theorem 1.3. Then there
exists @' such that for all %'-spaces P, P'NX is a plane curve.

Proof. By Proposition 1.4, Chapter I there exists %' such that
all @*-spaces P! intersect L in a point p, and intersect X in a non-
singular irreducible curve X, Now X, has the property that all
tangents meet in p,: In fact, let x be a k-point of X, different from
Do Then the line Ty , and the hyperplane L of Ty ,=P" meet in a
point, say p’: On the other hand, Ty,cP, so p LnP.={p,}.
Now the proof of Lemma 1.5, and hence of Theorem 1.3 is completed
by Theorem 1.5 of Chapter I.

§2. The strange subset of X x,X. The following notion is moti-
vated by the tangent condition of the previous paragraph.

Proposition 2.2, There exists a closed subset St(X) of X x,X, such
that StX)(k)={(x, y)ldim< Ty, Tx,> <n+1}.

Proof. Suppose X =Proj(k[X,, ..., Xy1/(Fy, ..., F,,)). The subspace
Ty,. of P} is given by

@.2.1) N X, g‘; 0)=0, a=1,.., m

Let T%, . denote the affine cone over Ty,, i.. the linear subspace of
A¥*1 which is the closure of the inverse image of Ty, under the
canonical morphism

AY*1-{(, ..., 0)} —> P}.

If AY*'=Spec(k[Xq, ..., Xy]), then T¢, is the subspace defined by
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(2.2.1). With this notation, the condition
dim<Ty,, Tx,,><n+1
is equivalent to
dim<T% ., T%,,><n+2
which in turn is equivalent to
dimT% .NT%, ,>2(n+1)—(n+2)=n.

Now T% ,.NT% ,CcA*! is defined by

N JF, _ _
i=0XiaXi (x)=0, a=1, ..., m
2.2.2)

OF
N . (N _
LoX; X, (y) =0, a=1, ..., m

and thus, finally, the condition is equivalent to

o(F,,..., F.))
X Xy ¥

rk <N+1-n
o(F,,..., F,)
(Ko Xy )

Now let F be the closed subset of
X*x X*=Spec(S®,S)=Spec(k[ X, Y]/J)
where
J=(F1(X), ceey Fm(X)9 FI(Y)’ cees Fm(Y))

defined by the ideal generated by J and all N+1—n-minors of the
matrix

o(F,,..., F,)

6(X0,..., XN) (X07 ceey XN)

S5y (Yoo oo )

We then get St(X) as the image of FN U by the canonical
Y: U=(X*={(O, ..., ) x (X*—{(O, ..., 0)} =X x,X.
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Since the polynomials which define F are homogeneous in the variables
X, -..s Xy and in the variables Y, ..., Yy, this is a closed subset of
X x . X.

§3. Projections of algebraic varieties to P2". We are going to
prove the following:

Theorem 3.1. Let X be a projective, non-singular variety, de-
fined over the algebraically closed field k. Assume that X is embedd-
ed as a closed subvariety of PE"*! where n=dim(X).

Then there exists a point PeP2**! such that the projection /p
induces a morphism

MmX—Y

where Y is a closed subvariety of PE". A is an isomorphism except
at a finite number of k-points yi, ...,y in Y, which are ordinary
double points of Y.

We need the following result from [2] (Corollary 3.3):

Proposition 3.2. Let X =Proj(k[&, ..., 2n41]) be a closed sub-
variety of P"*', which is non-singular of dimension n. Let

F(X,/0<i<2n, 0<j<2n+1)

be a non-zero polynomial with coefficients from k.
Then there exist linear combinations in &g, ..., ¢y, With coeffi-
cients from k,

Gi=a; 080+ -+ 204 182mr1,  I=1,...,20

such that F(o;;)#0 and such that if T=k[(], then the inclusion
TS =k[E] induces a morphism

A: X-Y =Proj(T)

which is unramified and an isomorphism except at a finite number
of k-points, which are double points of Y.
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Clearly the conclusion of this proposition may be rephrased as
follows: For any non-empty open subset U of P2"*!, there exists
PeU such that the projection /p has the property of the theorem,
except possibly for y,, ..., y, being ordinary singularities.

The proof of Theorem 3.1 now amounts to finding a non-empty
open subset U of P2"*! such that if PeU satisfies Proposition 3.2,
then Y=/p(X) has at most ordinary singularities.

First, if S{(X)=Xx,X then by Theorem 1.3, X is contained in
a hyperplane of PZ"*!, so the claim is trivial. If on the other hand
St(X)+ X x,X, then by Proposition 2.2

dim (SH(X)—Ax,)<2n—1
Hence by Chapter I, Corollary 1.2
dim L(St(X) — dx;) <2n

Therefore U=PZ"*!—L(St(X)—A4y,) is a non-empty open subset.
Suppose now that PeU satisfies the conclusion of Proposition
3.2. To show is that for all yeB(ip)

CY,}’ = SpeC (grm Y, y(w)’,y))

has exactly two irreducible components, cf. page 315.

Since y is a double point and 1,: X— Y is unramified, Az!(y)=
{x,, x,}, see page 315.

The projection /p maps Ty,, and Ty,, onto distinct n-dimensional
subspaces of PZ". In fact, if /p(Ty,,)=¢/p(Tx,,), then

<Tx,, Tx ,>=<Tyx,, P>

is an n+1-dimensional subspace, contradicting P& L(SH(X)— Ax,).
By Proposition 2.3, Corollary 2.5 and Proposition 2.6 of Chapter
I, it now follows that

¢y Cxxrx2)—Cry

maps the two irreducible components of Cy, onto distinct irreducible
components of Cy,. Thus the claim follows by Chapter I, Proposition 2.2,
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